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Resumen

Las propiedades dindmicas y viscoeldsticas de los sistemas coloidales son fundamentales
para comprender el comportamiento de materiales complejos en diversas aplicaciones,
incluyendo sistemas bioldgicos, liberacion de farmacos y materiales avanzados. En entornos
bioldgicos, estas propiedades juegan un papel crucial en la mecanica celular, el transporte
intracelular y los procesos de difusion, influyendo en como las particulas se desplazan en
medios confinados o heterogéneos. En la liberacion de farmacos, la viscosidad local y la
viscoelasticidad del medio pueden afectar la agregacion de nanoparticulas, su difusion y su
interaccion con fluidos bioldgicos, lo cual es esencial para optimizar terapias dirigidas. Més
allda de la biomedicina, estas propiedades también son relevantes en nanotecnologia,
optoelectronica, cristales fotonicos y dispositivos de cristales liquidos.

Esta tesis se centra en el andlisis de las propiedades dinamicas y viscoelasticas de sistemas
de cristales liquidos coloidales compuestos por particulas esferocilindricas, con un enfoque
particular en el efecto de interacciones dipolares sobre estas propiedades. El trabajo se enfoca
principalmente en la simulacion de dos fases de cristal liquido: nematica y esmética,
utilizando el método de Dinamica Monte Carlo (DMC).

Este método, basado en el algoritmo de Metrdpolis, genera movimientos aleatorios de las
particulas, cuyos desplazamientos estan restringidos de acuerdo con el coeficiente de difusion
en el limite de dilucion infinita. Para ello, se emplean las ecuaciones de Einstein para el
movimiento browniano, lo cual impide que las particulas presenten movimientos no fisicos,
como el intercambio de posiciones entre particulas o el movimiento colectivo de clusteres.
Debido a esta formulacion, el método DMC reproduce de manera efectiva la evolucion
temporal de sistemas con dinamica browniana, permitiendo estudiar su comportamiento sin
necesidad de resolver explicitamente ecuaciones de movimiento. Asi, el re-escalamiento
adecuado de los pasos de Monte Carlo permite acceder a escalas temporales comparables con
los tiempos de relajacion caracteristicos del sistema.

A partir de estas simulaciones, es posible analizar diversas propiedades estructurales y
dindmicas del sistema, tales como los desplazamientos cuadraticos medios, los coeficientes
de difusion y los tiempos de relajacion del sistema. Sin embargo, en sistemas de cristales
liquidos, la viscoelasticidad juega un papel crucial en sus respuestas mecéanicas y tienen
aplicaciones directas en el disefio de materiales. Por esta razon, ademds de analizar
propiedades dinamicas, en este trabajo exploramos las propiedades reologicas del sistema
mediante la técnica de microreologia pasiva, que permite estimar los modulos viscoelasticos
del sistema a partir del analisis del movimiento espontdneo de particulas trazadoras. A
diferencia de la reologia convencional, que mide la respuesta promedio de un material a nivel
macroscopico, la microreologia pasiva proporciona informacion local, lo cual es
particularmente relevante en sistemas de cristales liquidos, donde la viscoelasticidad puede
variar espacialmente debido a la anisotropia del sistema.
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Los sistemas de cristal liquido estudiados inicialmente interactian mediante el potencial de
Kihara. Para analizar como las interacciones de largo alcance modifican las propiedades del
sistema, se introdujeron interacciones dipolares empleando el método de campo de reaccion.
Esto permiti¢ evaluar su impacto en las propiedades viscoeldsticas y dinamicas, incluyendo
el coeficiente viscoeldstico, los desplazamientos cuadraticos medios y los coeficientes de
auto-difusion. Dado que las interacciones dipolares modifican la organizacion estructural de
los cristales liquidos, su estudio proporciona informacion relevante para comprender coémo
estas interacciones afectan la respuesta mecénica del sistema y sus posibles aplicaciones en
sistemas anisotropicos.

Si bien este trabajo se centra en el estudio de cristales liquidos coloidales, entender las
interacciones locales puede ayudar a hacer inferencias sobre las propiedades macroscopicas,
ya que las interacciones a escala microscopica pueden influir en el comportamiento global
del sistema y en propiedades clave para el disefio de dispositivos tecnologicos.

Esta relacion entre estructura y propiedades macroscopicas es clave en diversas aplicaciones
tecnoldgicas, incluyendo materiales para displays y dispositivos dpticos. Durante mi estancia
en AlphaMicron, una empresa especializada en cristales liquidos moleculares para eyewear
y pantallas, adquiri experiencia en la fabricacion y caracterizacion de celdas de cristales
liquidos. Los sistemas que estudié¢ durante mi estancia en AlphaMicron, si bien de naturaleza
molecular, comparten principios clave con los cristales liquidos coloidales simulados en esta
tesis, como el autoensamblaje, la anisotropia en el transporte y la respuesta viscoelastica.
Esta experiencia me permitié conectar la teoria con desafios practicos en la fabricacion y
disefio de dispositivos, reforzando la importancia de comprender las propiedades locales y
dinamicas en materiales anisotropicos.

En este trabajo, se contribuye al entendimiento de las propiedades dindmicas y viscoelasticas
en cristales liquidos coloidales, explorando como la estructura y las interacciones afectan la
difusion, los tiempos de relajacion y la viscoelasticidad local del sistema. En particular, se
analiza la influencia de las interacciones dipolares en estos materiales, proporcionando una
base para futuras investigaciones sobre el impacto de interacciones de largo alcance en
sistemas anisotropicos. Estos resultados pueden ser relevantes en el estudio de materiales
funcionales para aplicaciones como sensores, dispositivos Opticos y tecnologias fotdnicas,
asi como en el disefio de sistemas de liberacion de farmacos mas eficientes, donde en ambos
casos la respuesta dinamica y viscoeldstica desempefia un papel fundamental en el
rendimiento del sistema.
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Summary

The dynamic and viscoelastic properties of colloidal systems are essential for understanding
the behavior of complex materials in various applications, including biological systems, drug
delivery, and advanced materials. In biological environments, these properties play a crucial
role in cellular mechanics, intracellular transport, and diffusion processes, influencing how
particles move within confined or heterogeneous media. In drug delivery, local viscosity and
viscoelasticity can impact nanoparticle aggregation, diffusion, and interactions with
biological fluids, which is essential for optimizing targeted therapies. Beyond biomedicine,
these properties are also relevant in nanotechnology, optoelectronics, photonic crystals, and
liquid crystal devices.

This thesis focuses on the analysis of the dynamic and viscoelastic properties of colloidal
liquid crystal systems composed of spherocylindrical particles, with particular emphasis on
the effect of dipolar interactions on these properties. The study primarily explores the
simulation of two liquid crystal phases, nematic and smectic, using the Dynamic Monte Carlo
(DMC) method.

This method, based on the Metropolis algorithm, generates random particle displacements,
which are constrained according to the diffusion coefficient in the infinite dilution limit. To
achieve this, Einstein’s equations for Brownian motion are employed, preventing unphysical
movements such as particle exchanges or collective cluster translations. Due to this
formulation, the DMC method effectively reproduces the temporal evolution of systems
governed by Brownian dynamics, allowing their behavior to be studied without explicitly
solving equations of motion. By appropriately rescaling Monte Carlo steps, it is possible to
access time scales comparable to the system’s characteristic relaxation times.

These simulations allow for the analysis of various structural and dynamic properties of the
system, such as the mean squared displacement (MSD), diffusion coefficients, and relaxation
times. However, in liquid crystal systems, viscoelasticity plays a crucial role in their
mechanical responses and has direct applications in material design. For this reason, in
addition to analyzing dynamic properties, this work also explores the system’s rheological
properties using the passive microrheology (MR) technique. This approach estimates the
system’s viscoelastic moduli by analyzing the spontaneous motion of tracer particles. Unlike
conventional rheology, which measures a material’s macroscopic response, passive
microrheology provides local information, which is particularly relevant in liquid crystal
systems where viscoelasticity can vary spatially due to anisotropy.

The studied liquid crystal systems initially interacted via the Kihara potential. To investigate
how long-range interactions modify the system’s properties, dipolar interactions were
introduced using the reaction field method. This allowed for an assessment of their impact
on viscoelastic and dynamic properties, including the viscoelastic coefficient, mean squared
displacement, and self-diffusion coefficients. Since dipolar interactions influence the
structural organization of liquid crystals, their study provides valuable insight into how they
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affect the mechanical response of the system and their potential applications in anisotropic
materials.

Although this work focuses on colloidal liquid crystals, understanding local interactions can
help infer macroscopic properties, as microscopic interactions influence the global behavior
of the system and key properties relevant to technological applications.

This relationship between structure and macroscopic properties is key to various
technological applications, including materials for displays and optical devices. During my
internship at AlphaMicron, a company specializing in molecular liquid crystals for eyewear
and display technologies, I gained experience in the fabrication and characterization of liquid
crystal cells. The systems I worked with at AlphaMicron, although molecular in nature, share
fundamental principles with the colloidal liquid crystals simulated in this thesis, such as self-
assembly, transport anisotropy, and viscoelastic response. This experience allowed me to
bridge theoretical knowledge with practical challenges in the fabrication and design of
devices, reinforcing the importance of understanding local and dynamic properties in
anisotropic materials.

This work contributes to the understanding of dynamic and viscoelastic properties in
colloidal liquid crystals, exploring how structure and interactions affect diffusion, relaxation
times, and local viscoelasticity. In particular, it analyzes the influence of dipolar interactions
in these materials, providing a foundation for future research on the impact of long-range
interactions in anisotropic systems. These findings may be relevant for studying functional
materials in applications such as sensors, optical devices, and photonic technologies, as well
as in the design of more efficient drug delivery systems, where dynamic and viscoelastic
responses play a fundamental role in system performance.
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Chapter 1

1 Introduction

Colloidal systems play a crucial role in various technological applications, spanning
nanotechnology, optoelectronics, and biological systems, including proteins, blood cells, and
microorganisms [ 1.1]. Understanding, predicting, and controlling the microstructural and dynamic
properties of these systems is fundamental to advancing both theoretical knowledge and practical
applications where processes such as self-assembly and nucleation play a crucial role [1.2], for
imstance, in systems like liquid crystals [1.3][1.4].

One of the key aspects of colloidal liquid crystals research is the study of their dynamic behavior,
which has led to critical insights across multiple fields in physics and technology. For example,
self-assembling systems of rod-like particles exhibit novel optical characteristics due to their
anisotropic shapes, making them relevant for fundamental research in liquid crystal phases.
Additionally, in biological systems, colloidal interactions govern processes in active matter, such
as bacterial motion and cellular organization [1.5].

While experimental techniques provide valuable information on colloidal dynamics,
computational simulations are essential for studying these systems at different time and length
scales. A widely used simulation approach is Brownian Dynamics (BD), which models colloidal
motion by solving the overdamped Langevin equation. However, BD simulations require careful
selection of the time step to balance computational efficiency and accuracy in long-time dynamics
[1.6][1.7].

An alternative approach is Dynamic Monte Carlo (DMC), a stochastic method based on the
Metropolis algorithm, which updates the system state through probabilistic moves rather than
integrating differential equations. Each move is accepted or rejected based on an energy criterion
dictated by the Boltzmann distribution, allowing the system to evolve while maintaining detailed
balance. DMC has been widely applied in studying colloidal suspensions, glassy materials, and
self-assembling structures, including silica dynamics [1.8], demonstrating its versatility in
modeling equilibrium and non-equilibrium phenomena. In this work, DMC is employed to study
the dynamics of spherocylindrical rods in liquid crystal phases, capturing their diffusive and
structural properties efficiently.

Beyond their diffusive behavior, colloidal systems also exhibit viscoelastic properties, which
describe their ability to store and dissipate mechanical energy. Understanding these properties is
crucial in multiple fields, including soft matter physics, biomimetic materials, microfluidics, and
drug delivery [1.9-1.13] where controlling local viscosity and elasticity provides insight into self-
organization and transport phenomena. In colloidal liquid crystals, the viscoelastic response is
particularly relevant, as these systems exhibit anisotropic mechanical properties that influence
their collective behavior.

To investigate these local viscoelastic properties, microrheology has emerged as a powerful tool,
allowing the measurement of viscosity and elasticity by analyzing the thermal motion of an
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Chapter 1

embedded probe particle. In this work, we implement passive microrheology within DMC
simulations, tracking the mean squared displacement (MSD) of a spherical probe particle to extract
the complex shear modulus of the surrounding liquid crystal medium. This study contributes to
the fundamental understanding of viscoelasticity in anisotropic colloidal suspensions, providing a
theoretical framework for future experimental and numerical investigations in the field.

In addition to short-range interactions, dipolar interactions play a fundamental role in determining
the properties of liquid crystalline colloidal phases. These long-range interactions influence the
rheological behavior of the system, modifying its local viscoelastic response. Unlike molecular
liquid crystals used in commercial applications, colloidal liquid crystals represent a class of
systems where mesoscopic interactions drive self-assembly and structural organization.

In this work, dipolar interactions are introduced using the reaction field method, enabling a detailed
study of how they affect local viscoelastic properties. By comparing systems with and without
dipolar interactions, we analyze modifications to viscoelastic coefficients, mean squared
displacements, and self-diffusion properties. The results obtained in this study provide a theoretical
basis for understanding how long-range interactions influence viscoelastic behavior in colloidal
liquid crystals, contributing to the broader investigation of soft condensed matter systems.

The thesis is divided into ten chapters, which are described as follows: Chapter 2 describes the
fundamental concepts of colloids and liquid crystals. Chapter 3 introduces Monte Carlo (MC) and
Dynamic Monte Carlo (DMC) methods. Chapter 4 explains the microrheology method
implemented in the simulations. The details for the reaction field method, essential for
incorporating dipolar interactions, are described in Chapter 5. Chapter 6 describes the process for
visualizing the particles derived from the results of the simulations. Chapters 7 and 8 discuss the
structural, dynamic and viscoelastic results obtained for dipolar and non-dipolar systems. Chapter
9 presents practical applications based on an internship project in the liquid crystal industry.
Chapter 10 summarizes the conclusions and future perspectives.
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Chapter 2

2 Colloidal Systems and Liquid Crystals Definition and
Properties

Soft matter physics comprises a diverse range of materials that exhibit properties intermediate
between solid and liquid states. Among these, liquid crystals stand out for their ability to combine
fluidity of liquids and ordering of solids. These unique properties make them ideal for numerous
applications, from display technologies to advanced functional materials.

In colloidal liquid crystal systems, the building blocks are colloidal particles suspended in a
medium that self-organize into ordered phases under the influence of thermal fluctuations and
external forces. The motion and interactions of these particles are governed by Brownian
dynamics.

Colloidal liquid crystals are particularly interesting because they help us understand how small-
scale interactions can lead to large-scale structures and properties, for example phase transitions
and ordering phenomena.

This chapter introduces the basic concepts of liquid crystals and their connection to colloidal
systems, which is important for understanding the behavior of the materials studied in this thesis.

2.1 Colloidal Systems

Colloidal systems consist of particles with sizes typically ranging from 1 nm to 10 um, placing
them at the interface between molecular and macroscopic scales [2.1]. In this regime, their
behavior is strongly influenced by a combination of thermal fluctuations, Brownian motion, and
interparticle interactions. Unlike molecular systems, where interactions are often dominated by
short-range forces, colloidal particles experience effective interactions that can extend over longer
distances due to excluded volume effects, electrostatic forces, or external fields.

A key characteristic of colloidal particles is their Brownian motion, which arises from random
thermal displacements due to collisions with surrounding molecules [2.2]. This diffusive behavior,
combined with their relatively slow dynamics compared to atomic or molecular systems, makes
colloidal suspensions ideal for studying phase transitions, self-assembly, and emergent ordering
phenomena.

In particular, colloidal liquid crystals represent an important class of anisotropic colloidal systems.
Here, the phase behavior is dictated by the shape and interactions of the particles themselves, rather
than by the presence of an explicit solvent. The equilibrium phases, such as isotropic, nematic, and
smectic states, emerge from the collective organization of rod-like colloidal particles, which
interact primarily through excluded volume effects and soft repulsive interactions [2.3]. The
stability and transitions between these phases are highly sensitive to the specific nature of the
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interparticle potential, making them an ideal model system for investigating how microscopic
interactions influence macroscopic ordering.

2.2 Liquid Crystals

Liquid crystals (LCs) are materials that exhibit properties of both liquids and solids. Like liquids,
they can flow and adapt to the shape of their container, but they also display ordering
characteristics typical of solids. However, unlike conventional solids, their molecular arrangement
is not fully rigid or periodic. This intermediate nature defines liquid crystals as mesophases,
existing between the crystalline solid and isotropic liquid states.

To better understand liquid crystals, it is useful to first consider the fundamental differences
between solids and liquids. Crystalline solids maintain a fixed shape with molecules arranged in a
regular, periodic lattice. This structure grants them both positional order (particles are spatially
fixed) and orientational order (molecules align in specific directions), leading to anisotropic
physical properties, such as variations in optical, mechanical, or thermal behavior depending on
the measurement direction.

In contrast, liquids exhibit neither positional nor orientational order. Molecules move freely, rotate,
and flow, resulting in an isotropic state where physical properties remain the same in all directions.
Although there are no long-range correlations in a typical liquid, short-range correlations exist due
to intermolecular forces, such as van der Waals interactions or hydrogen bonding.

Liquid crystals are a unique intermediate state between liquids and solids. They exhibit
orientational order, where molecules preferentially align along a common direction, defined by the
nematic director, but may lack full positional order, depending on the phase. Some liquid crystal
phases, such as smectics, maintain partial positional order, whereas nematic phases only retain
orientational alignment. [2.4][2.5].

A defining characteristic of liquid crystals is their anisotropic behavior. Properties such as
refractive index, conductivity, and elasticity [2.6] depend on molecular orientation and external
forces. This anisotropy is a direct consequence of molecular alignment, distinguishing liquid
crystals from isotropic liquids.

Liquid crystals can form by heating a crystalline solid or cooling an isotropic liquid. These
thermotropic transitions occur within specific temperature ranges and are reversible. Upon heating,
a crystalline solid can transition into an isotropic liquid, but depending on molecular properties
and temperature, it may pass through liquid crystalline phases such as nematic or smectic before
becoming fully disordered. Similarly, cooling an isotropic liquid can lead to the formation of liquid
crystal phases under appropriate conditions.

The molecular structure plays a key role in determining liquid crystal formation. Rod-like
(calamitic) and disk-like (discotic) molecules are particularly well-suited for forming liquid crystal
phases [2.5]. Their anisotropic shape allows them to align in preferred directions, giving rise to the
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orientational order that distinguishes liquid crystals from ordinary fluids. However, unlike solid
crystals, liquid crystals do not exhibit complete positional order but instead display local ordering
with long-range correlations.

Phase Ordering description

3D positional order,

Crystal Orientational order,
Smectic LC 1D positional order,

Orientational order,
Nematic No positional order,

Orientational order,

No positional order,

lgafrapiz: Uauid No orientational order

Figure 2.1 Description of molecular organization and ordering of different phases of matter.

LCs have several applications. Some of them are in the field of electro-optics [2.7]. LCs are used
in displays, particularly in the technology behind them. Various types of displays can be created
such as dynamic scattering, twisted nematic, supertwisted nematic, among others. Liquid crystal
displays (LCDs) are commonly used in electronic devices such as televisions and smartphones.
The alignment of the liquid crystal molecules can be manipulated by applying an electric field,
which changes the optical properties of the material and produces an image [2.7]. LCs find
applications in sensors. LCs are used to detect changes in temperature, pressure, or other physical
properties. The alignment of the molecules changes with the input signal, which can be detected
and used to measure the input. LCs are also used in materials science, since they have been used
to produce materials with unique properties, such as high strength and toughness [2.7].

The study of liquid crystals has also led to new insights into fundamental physics and chemistry.
The structure and behavior of liquid crystals have been used to explore phenomena such as
chirality, phase transitions, and defects. The properties of liquid crystals can also be modified by
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the addition of other molecules, leading to the development of new materials with tailored
properties.

The significance of simulating and characterizing LCs has grown due to their extensive
applications in fields such as electronics, materials science, and sensing. The unique properties of
liquid crystals not only drive advancements in various technologies but also enhance our
understanding of fundamental physics and chemistry.

2.3 Nematic Liquid Crystals

The defining characteristic of nematic liquid crystals is the alignment of their molecules along a
preferred direction, known as the nematic director, or simply as the director, typically denoted as
n. In the nematic phase, molecules tend to align parallel to the director, but unlike solid crystals,
they are not fixed in position and can move freely relative to one another [2.5]. As a result, nematic
LCs exhibit long-range orientational order while retaining liquid-like dynamics [2.8].

The director is a unit vector that represents the average molecular orientation within the material
and serves as the principal axis defining the system's symmetry. This concept is illustrated in
Figure 2.3.2, where the director n is shown as the preferred molecular orientation in a nematic
liquid crystal phase. The angle 8 represents the deviation of individual molecular axes from the
director. Although the local orientation of the director can vary spatially, nematic phases can be
easily aligned by weak external fields, such as electric or magnetic fields, or through interactions
with surfaces. This alignment results in a monodomain configuration, where the entire sample
exhibits a uniform molecular orientation.

An aligned nematic phase possesses uniaxial symmetry, meaning its physical properties remain
unchanged under rotations around the director, assuming the system is isotropic in the
perpendicular directions. This anisotropy is a key feature of nematic liquid crystals and is
responsible for their unique optical and mechanical behaviors, making them highly useful in
applications such as liquid crystal displays (LCDs).
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Figure. 2.3.1 Representation of the nematic liquid crystal phase and the director vector n. The
molecules tend to align along the director, represented by the unit vector n. The angle 6
indicates the deviation of individual molecular axes from the director.

The director is typically considered to be equivalent to its inverse, n and —n, reflecting the
apolar nature of the molecules.

The alignment of the molecules forming the nematic phase, parallel to the director n can be
approximately quantified using the order parameter S,. First proposed by Tsvetkov in 1939, this
parameter assumes that each mesogen behaves as a uniaxial particle, with its orientation described
by a unit vector u

3 1
(S2) = 5((“ n)?) — >

Where u - n = cosf, with 8 the angle between the molecular axis and the director, S,(cosf) is
the second Legendre polynomial and the angular brackets indicate an average over all the
molecules comprising the system.

For a system where all molecules are perfectly aligned with respect to the director, S, =1
Conversely, in a completely isotropic system, there is no preferential direction for the molecular
orientations, meaning the molecules are oriented randomly in all directions. This results in the

components of the molecular orientation along the X,Y and Z axes being equal on average.
Mathematically, this can be expressed as

1
(cos?) = () = () = (uf) = 3
Where
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uftui+ui =1

Therefore, in a completely disordered system, the order parameter S, = 0, indicating no
directional preference.

Nematic liquid crystals exhibit anisotropy due to their orientational order. This anisotropy affects
different physical properties, including optical, dielectric, and rheological behavior, which are
direction-dependent relative to the director. For example, nematics exhibit different macroscopic
viscosities depending on the relative orientation of the flow velocity v of the director as described
in [2.9](2.10].

The liquid crystal molecules that form the nematic phase tend to have elongated, rod-like shapes
that promote the alignment. This alignment is a result of molecular interactions such as van der
Waals forces, which favor parallel orientations.

To further illustrate the nematic phase, Figure 2.3.2 presents a representative snapshot obtained
from our Monte Carlo simulations. In this configuration, elongated particles exhibit long-range
orientational order along a preferred direction, consistent with nematic behavior. However, unlike
smectic or crystalline phases, positional order is absent, allowing for free translational motion of
the particles while maintaining their alignment.

Figure 2.3.2 Snapshot of a nematic liquid crystal phase obtained from Monte Carlo simulations.
The elongated particles align along a common direction, forming a uniaxial nematic phase
characterized by long-range orientational order without positional order.
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Conventional nematic liquid crystals represented by an elongated or rod-like shape constitute a
uniaxial medium, with nonpolar symmetry. A well-known example of a thermotropic nematic
liquid crystal molecule is the 4-n-pentyl-4-cyano-biphenyl (5CB). The following figure presents
the chemical structure of SCB (a), (b) its coarse-grained representation and (c) illustrates its
molecular shape.

CHs

Figure 2.3.3 a) Molecular dynamics visualization (Ovito) with explicit atomic representation,
showing hydrogen and carbon atoms, and at the top the cyanobiphenyl group (CN). b) Chemical
structure of the SCB molecule, showing its aromatic rings and chemical bonds. ¢) Simplified rod-
like representation of the molecule, often used in coarse-grained models.

The molecule 5CB is a widely studied nematic liquid crystal due to its relatively simple structure
and well-characterized physical properties. Its rod-like geometry and chemical composition make
it a prototypical example for understanding the behavior of nematic phases. The representations in
Figure 2.3.3 highlight its versatility, from detailed atomic models used in molecular dynamics
simulations to simplified rod-like approximations employed in theoretical studies. These models
serve as the foundation for exploring the alignment, order, and anisotropic properties characteristic
of nematic liquid crystals

The ability of nematic molecules to move and reorient in response to external stimuli makes them
highly dynamic systems. Despite the presence of orientational order, nematics exhibit behavior

akin to fluids and share similar viscosities and densities with isotropic liquids

In addition to the flow behavior, nematics exhibit unique optical properties due to their anisotropic
nature. For example, they can show birefringence, which is the difference in the refractive index
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depending on the polarization direction of light relative to the director. As mentioned previously,
these optical properties are essential for the development of display technologies.

2.3.1 Chiral Nematics

Chiral nematics, also known as cholesteric liquid crystals, are a special type of nematic phase
where the director n adopts a helical configuration. This twisted structure can occur naturally in
systems composed of chiral molecules (chiral mesogens) or can be induced by adding a chiral
dopant to a nematic liquid crystal. Cholesteric liquid crystals derive their name from cholesterol,
the first liquid crystals discovered, in 1888 by Friedrich Reinitzer [2.11].

In cholesterics, the local alignment of molecules resembles that of nematics, but the director
gradually rotates around a helical axis, forming a periodic structure. The distance over which the
director completes a full 360° rotation is called the pitch p, which typically spans a few hundred
nanometers. Although this gives cholesterics their unique optical properties, such as selective
reflection of light, on a molecular scale they appear quite similar to nematics.

The pitch and handedness of the helix are determined by the chirality of the constituent molecules.
For example, right-handed molecules produce a right-handed helical structure, while left-handed
molecules create a left-handed one. This intrinsic twist can be visualized by considering threaded
rods that cannot align perfectly parallel but instead adopt a twisted orientation when in contact,
ultimately forming a helical arrangement.

Cholesteric liquid crystals are notable for their striking visual effects, including their vibrant,
iridescent colors, which arise from the interaction of light with the helical structure. Due to these
characteristics, cholesterics ar useful for applications such as liquid crystal displays, temperature
sensors, and optical filters.

2.4 Smectic Liquid Crystals

Smectic liquid crystal (LC) phases are characterized by a combination of orientational and
positional order. In these phases, particles self-organize into a layered structure [2.5], with each
layer having an average thickness L approximately equal to the particle length. This representation
is shown in Figure 2.4.1. Compared to nematic phases, smectics exhibit a higher degree of order
and, despite retaining fluidity, they are more viscous and share greater similarities with crystalline
phases than nematics and cholesterics.

The layered structure in smectic phases represents a form of positional order that is less rigid than
the three-dimensional periodicity found in solid crystals. A wide variety of smectic phases exist
[2.12], each with distinct molecular arrangements within the layers, leading to unique structural
properties. In general, a smectic phase is denoted as Sm, while specific types, such as Smy, Smg,
Sme, etc., are identified with additional subscripts to distinguish between different subphases.
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Among smectic phases, the simplest and most studied is the smectic A (Smy) phase. In Smy,
particles are arranged into layers and, on average, remain oriented perpendicular to these layers
(Figure 2.4.1). Within each layer, the molecules lack long-range positional order, behaving like a
two-dimensional liquid. This simplified description captures the essential nature of the Sm, phase,
though molecular interactions and fluctuations in orientation may introduce additional
complexities. Moreover, smectic layers are often flexible, and the phase exhibits anisotropic
properties that are influenced by external fields or surface interactions.

Figure 2.4.1. Snapshot of a smectic liquid crystal phase obtained from Monte Carlo simulations.
The elongated particles self-organize into distinct layers while maintaining long-range
orientational order. Within each layer, the molecules behave as a two-dimensional liquid,
exhibiting no long-range positional order.

The smectic phase depicted in Figure 2.4.1 illustrates the characteristic layering of molecules,
where long-range orientational order is preserved while translational order remains confined
within individual layers.

The extent of translational order, characterized by a periodicity d, corresponds to the smectic layer

spacing, which is approximately equal to the length L of a mesogen. This ordering is quantified by
the smectic order parameter [2.14] given by
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3cos?6 — 1 27
w= (2 T s (ZE2) (2.4.1)
2 d,

In equation 2.4.1 z; is the position of the center of mass of the particles and it includes the
orientational order term S, multiplied by the positional order term, which corresponds to the first
term in the Fourier expansion of the positional order distribution function.

While the Sm, maintains molecules on average perpendicular to the layers, resulting in a phase
that is optically uniaxial, other smectic phases exhibit molecular tilt relative to the layer normal.
One such example is the Sm., where molecules adopt a characteristic tilt angle 6 with the layer
normal, as illustrated in Figure 2.4.2. Depending on whether the molecules in neighboring layers
exhibit a helical arrangement or not, the Sm, phase can be classified as chiral or non-chiral. [2.13]

This tilt angle can vary with temperature and molecular interactions, influencing the material’s
optical and structural properties. The degree of tilt plays a crucial role in distinguishing between
smectic subphases and is a defining characteristic of Sm, systems. In some cases, this ordering
can lead to additional symmetry breaking, giving rise to chiral or non-chiral smectic phases,
depending on the relative orientation of neighboring layers

‘odm \\\&
TTRY
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Figure 2.4.2 Representation of smectic liquid crystal phases. (a) Smy phase, where molecules
remain perpendicular to the layers. (b) Sm. phase, where molecules exhibit a characteristic tilt
angle 0 relative to the normal layer.

Beyond the Smectic A and Smectic C phases, additional smectic subphases exist, characterized by
increased molecular organization within the layers. One such example is Smg. This phase has a
layered structure similar to Smy,, where the molecules are, on average, perpendicular to the layer
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normal. However, Smg exhibits higher viscosity than Smyand feature hexagonal arrangements of
molecular centers within each layer, resulting in a biaxial symmetry. This type of arrangement is
referred to as bond order, making the Smp phase a bond-orientationally ordered variant of Smy.
These hexagonal clusters may be orientationally ordered or disordered relative to one another,
depending on the specific Smp phase.

2.5 LC properties

Liquid crystals exhibit unique physical properties that arise from their intermediate state between
solid and liquid phases. Their molecular structure leads to a combination of fluidity and anisotropic
ordering, resulting in macroscopic behaviors that differ significantly from those of isotropic liquids
or crystalline solids.

Among the most relevant properties that characterize liquid crystals are their dielectric response,
viscosity, and elasticity, which are intrinsically linked to the orientational and positional order of
their constituent molecules. These properties play a fundamental role in determining phase
behavior, structural transitions, and the response of liquid crystals to external fields.

Understanding these physical properties is essential for characterizing the stability and dynamics
of liquid crystalline phases. In particular, dielectric properties influence molecular interactions and
polarization effects, while viscosity and elasticity are key to describing the flow and mechanical
response of these materials. The following sections discuss these properties in more detail, with
an emphasis on their role in liquid crystal phase behavior and how they are treated in theoretical
and computational models.

2.5.1 Dielectric Properties

Pure organic liquids exhibit dielectric behavior (with conductivity 0=0) and are also diamagnetic,
meaning their magnetic susceptibility can be expressed a u = 4my = 1. The refractive index n,
linked to the dielectric permittivity at optical frequencies, is given by n? = ue =~ 1. At these
frequencies, the dielectric permittivity €(w) is influenced by the average electronic and atomic
polarizabilities of the molecules ({y?)), and can be described by the Lorenz—Lorentz relation
[2.15]:

n?—1 4mp
_ne E
nz2+1 3 ‘mNA(y ) 251

Where p is the density of the substance, m is the molecular mass, N, is the Avogadro number and
((yE) is the average polarizability in the electric field E.
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e2—-1 4mp u?
=2 N (oF 2.5.2
2+1 3m A<(y)+3kBT> (2.5.2)

2
Where ?)::—T is the orientational component of the average static polarizability, which depends upon
B

the size of the dipole moment .

The dielectric constant is a fundamental property of materials that describes their response to
external electric fields, and its calculation can be approached from different perspectives. In
classical theory, relationships such as the Clausius-Mosotti and Lorenz-Lorentz equations link
macroscopic properties, like the dielectric constant, to molecular-scale parameters, such as
electronic polarizability and dipole moment. These equations are widely used to understand and
predict the behavior of dielectric materials at various frequencies

These relationships are particularly useful for describing macroscopic properties of homogeneous
dielectric systems. In this work, the Claussius-Mosotti equation is used to compute the dielectric
constant of the dielectric medium used in the reaction field method. The focus lies on describing
local interactions at the molecular scale through Monte Carlo simulations. Specifically, the
reaction field method is used, which determines the dielectric constant of the medium by
simulating dipoles confined within a dielectric sphere without the need for an external electric
field.

In this framework, the reaction field generated by the dipoles is sufficient to evaluate the dielectric
properties of the system. This approach does not aim to derive macroscopic properties from global
averages but rather explores how local interactions and the induced reaction field contribute to the
effective dielectric constant of the medium.

This relationship will be revisited in detail in subsequent chapters to explore its implications for
our systems.

2.5.2 Viscoelastic Properties

The viscoelastic properties of liquid crystals are fundamental in determining their dynamic
response to external perturbations, such as electric or mechanical fields. These properties influence
key behaviors, including molecular reorientation, flow dynamics, and deformation modes.

In nematic liquid crystals, deformations are primarily described by splay, twist, and bend
distortions of the director n, which represent local reorientations of the average molecular
alignment. Unlike conventional fluids, these deformations do not involve translational
displacements of molecules but instead result in variations in the elastic free energy. The elasticity
of nematic liquid crystals is commonly described by the Frank free energy, which is governed by
the elastic constants K;j (splay), K; (twist), and K3 (bend). Similarly, their viscous behavior
follows an anisotropic Navier-Stokes formulation, incorporating viscosity coefficients that account
for directional dependence in the viscous stress tensor [2.15]. Additionally, rotational viscosity
coefficients (y4,y,) characterize the dissipation of energy associated with molecular reorientation,
which can couple with flow effects, leading to phenomena such as backflow.
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While these macroscopic models describe bulk rheological behavior, this thesis focuses on local
viscoelastic properties, which are explored through passive microrheology in Monte Carlo
simulations and will be described with more detail in the following section. Instead of
characterizing large-scale flow or director deformations, a spherical tracer particle is introduced
into the simulated liquid crystal system to probe the local viscoelastic environment. By analyzing
the tracer’s motion and its interactions with the surrounding medium, local viscosity and
viscoelastic moduli are inferred.

This microrheological approach provides insight into spatial variations and heterogeneities in
viscoelastic behavior that are not captured by macroscopic models. For instance, while classical
elasticity theories assume uniform distortions of the director field, microrheology highlights how
local molecular interactions, confinement effects, and anisotropic fluctuations shape the
rheological response. These insights are particularly relevant in colloidal liquid crystals, where
local effects strongly influence the overall dynamics and phase behavior.

2.6 Brownian Motion

Brownian motion refers to the erratic and random movement of microscopic particles suspended
in a fluid. This phenomenon, first observed by Robert Brown in 1827 [2.16] while examining
pollen grains in water, arises from the continuous collisions of fluid molecules with suspended
particles. Since its discovery, Brownian motion has become a foundational concept in fields such
as statistical mechanics, molecular biology, and materials science, contributing to our
understanding of diffusion processes, particle dynamics, and the behavior of soft matter systems.
The range of application of Brownian motion also includes modeling of stock prices, of thermal
noise in electrical circuits and of random perturbations in a variety of other physical, biological,
economic, and management systems [2.17].

The term Brownian motion describes the random movement of particles suspended in a medium.
In Brownian motion a given particle is equally likely to move in any direction and further motion
is totally unrelated to past motion. The motion is caused by the collisions of fluid or solvent
molecules with the suspended particles, and it is affected by various physical factors, such as
particle size, fluid viscosity, and temperature. The process in which the particles tend to move from
a region of high concentration to a region of lower concentration is called diffusion.

The direction of the particle’s collisions is constantly changing, and at different times the particle
is hit more on one side than another, leading to the seemingly random nature of the motion. This
explanation of Brownian motion served as convincing evidence that atoms and molecules exist
and was further verified experimentally by Jean Perrin in 1908 [2.18].

The properties of Brownian motion have been extensively analyzed, including the mean square
displacement, diffusion coefficient, and velocity autocorrelation function. The analysis of
Brownian motion has led to the development of several models, including the Langevin equation,
the Fokker-Planck equation, and the Einstein relation.
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The theory of Brownian Motion was developed by Albert Einstein, and it is worth giving a general
review to this theory to better explain some physical concepts used in liquid crystal simulations.

2.7 Einstein’s theory of Brownian Motion

In 1905, Albert Einstein transformed this phenomenon into a cornerstone of statistical mechanics
with his seminal paper, “Uber die von der molekularkinetischen Theorie der Wirme geforderte
Bewegung von in ruhenden Fliissigkeiten suspendierten Teilchen” [2.19]. In this work, Einstein
provided the first probabilistic formulation of the motion of suspended particles, bridging
thermodynamics and stochastic processes.

Einstein's analysis began with thermodynamic arguments and the concept of osmotic pressure,
leading to the derivation of the particle diffusion constant by balancing diffusion and drift currents.
This relationship, now known as the Einstein relation, connects the diffusion constant of particles
to the viscosity of the surrounding fluid [2.18].

Einstein’s insights into Brownian motion revolutionized the understanding of stochastic processes.
He laid the foundation for the modern theory of diffusion, including the formulation of stochastic
differential equations by Paul Langevin, which extended Newtonian mechanics to incorporate
random, memory-less forces. This work enabled the development of a probabilistic framework for
understanding particle dynamics

In his work about Brownian motion, Einstein proposed an infinitesimal time step, however,
microscopically large enough, to permit a large number of collisions between the suspended
particles. Many fluid molecules will collide with the Brownian particle within the time steps.
Under these conditions, it is possible to define a function f(x, t) for representing the probability
density function of finding a particle within spatial and time intervals [2.17]. Therefore,
f(x,t)dxdt gives the probability of the number of Brownian particles, with spatial coordinates x
and time coordinates t that fall within an interval between x and x + dx and between a time t and
t + dt.

In this derivation, we consider the diffusion equation in a single spatial dimension (x-direction)
for simplicity. However, in the later analysis, the generalization to three dimensions will be used,

as the simulations account for motion in all spatial directions.

The function f(x, t) should satisfy the following differential equation [2.18]:

of (x, t) _p 0%f(x,t)

— - (2.5.1)

Equation (2.5.1) is referred to as the diffusion equation. The constant D results equal to the half of
the mean squared displacement (MSD) within a time dt, as demonstrated below.

26



Chapter 2

To accomplish the above task and to find the analytical expression of the function f(x,t) it is
convenient to Fourier transform the spatial part of the differential equation 2.5.1 by means of the
following Fourier relations,

F(u,t) = ]mf(x, t) e"12m% gy, (2.5.2)

flx,t) = J-OOF(u, t) el2mux gy, (2.5.3)

Equations (2.5.2) and (2.5.3) represent the direct and inverse Fourier transforms of the function
f(x,t) in the spatial domain

Equation (2.5.3) is now substituted in equation (2.5.1). We obtain

®oF(u,t) . © .
f ((31: )e‘2” du = DJ- (—4n*u®)F(u,t) e?™ du. (2.5.4)
Equation (2.5.4) is satisfied if the integrands are equal. Therefore, we obtain the following equation
oF (u,t
gt ) = (—4n%u?D)F (u, t). (2.5.5)

Equation (2.5.5) represents equation (2.5.1) in the frequency-space time domain. Integrating
equation (2.5.5) we find

In(F(u,t)) = (—4m?u®D)t + C. (2.5.6)
Equation 2.5.6 leads to
F(ut) = Age(-4m"u*D)t, (2.5.7)
Now, considering the initial condition at t = 0, F (u, 0) = A,. Therefore, we obtain,
F(ut) = F(u, 0)e(-47*u?D)t, (2.5.8)

Equation 2.5.8 represents the solution of the probability density function in Fourier space. Now,
to find the solution in spatial coordinates and time, we will use the inverse Fourier transform given
by equation (2.5.3), written for brevity as follows

f(x,t) = FYF(u,0)e(-47"uw*D)t} (2.5.9)
The product of functions inside of the inverse Fourier transform of equation (2.5.9), corresponds

to a convolution in spatial domain. We obtain then,
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fx,£) = f(x,0) @ F1{el-+w*w*D)t} (2.5.10)

In equation (2.5.10) the symbol @ represents a one-dimensional convolution between the
functions.

It still remains to calculate the Fourier transform of the second term and to accomplish that we use
the properties of the Fourier transform of a gaussian function F{e ™™} = ™™ and F{f (ax)} =
%T {f (%)} giving as a result

F0) = F(60) ® \/ﬁe(%). (2511)

Equation 2.5.11 represents the general expression of the probability density function for the
Brownian motion and can be used for any physical initial conditions.

For our study, as we have an a-priory knowledge of our distribution, which is a Gaussian one, we
consider the simple case of a Dirac delta function i.e.f(x,0) = §(x). Under this condition
equation (2.5.11) leads to

flx,t) = e<%) (2.5.12)

vVanDt

Equation 2.5.12 represents a probability density function with a spatial Gaussian profile and
matches with our assumption at time t = 0

Using equation 2.5.12 it is deduced that the mean square displacement of the particle evolves with
time calculating.

vy — L[ )
(x=(t)) = f x“e\4mDt 2.5.13
( ) V4T[Dt —00 ( )
Setting the appropriate variables changes as A = % = ﬁ, and using the known result of the
integral f_oooo xZe A gy = T\/f/z’ we obtain the result for the mean square displacement of the
particle evolving with time,
(x%(t)) = 2Dt (2.5.14)

Where t must be large enough according to the previous assumptions.
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Equation (2.5.14) leads to the definition of the diffusion coefficient D [2.17][2.18]. This equation
will allow us to calculate the diffusion in liquid crystal systems which is crucial to understand their
dynamical behavior.

2.8 Self-diffusion

The concept of self-diffusion refers to the process by which individual molecules or particles
spread out spontaneously within a fluid due to their inherent kinetic energy [2.20]. This movement
occurs without any external force or concentration gradient driving it.

Self-diffusion is closely related to Einstein's theory of Brownian motion. In Brownian motion,
small, suspended particles exhibit random, jiggling movements in a fluid due to the constant
collisions with fluid molecules. The random motion of these particles is a manifestation of self-
diffusion at the microscopic level. The kinetic energy of the fluid molecules causes them to collide
with and transfer their momentum to the suspended particles, leading to their dispersion throughout
the fluid.

In essence, self-diffusion is the molecular-level process responsible for the Brownian motion
observed on a macroscopic scale. Both phenomena are consequences of the random thermal
motion of particles, but self-diffusion specifically refers to the movement of individual molecules
or particles within a fluid.

In this thesis, the long-time self-diffusion coefficient is calculated using DMC simulations by
analyzing the MSD of the particles over time. We track the position of the particles throughout the
simulation and compute the MSD, which reflects how the positions deviate from their initial
locations. By examining the linear region of the MSD versus time plot, where the displacement
increases proportionally with time, we determine the self-diffusion coefficient. In the previous
subsection, we derived the equation for MSD in terms of D for a single spatial direction, x.
However, this result can be generalized to a three-dimensional system by considering the total
displacement vector r, where 72 = x? + y? + z2. In this case, the diffusion coefficient depends
on the number of spatial dimensions d, such that

p o L @)

=g (2.6.1)

Where d =1, 2 or 3, depending on whether the diffusion is considered in one, two, or three
dimensions, respectively.

This approach provides a measure of how quickly particles diffuse within the system, offering
valuable insights into the dynamic behavior of the liquid crystal phases under investigation.

Self-diffusion exhibits distinct regimes characterized by the relationship between time and the
mean square displacement of particles. In the short-time regime, the mean square displacement
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increases quadratically with time, reflecting the restricted motion of particles due to spatial
constraints and localized interactions. This behavior is typical in solids or dense liquids. As time
progresses, the system enters the linear regime, where the mean square displacement becomes
linearly proportional to time. In this regime, particles exhibit more free and unrestricted movement,
characteristic of liquid states, leading to enhanced diffusion rates.

To quantify self-diffusion in liquid crystal phases, we compute the MSD along two distinct
directions: parallel and perpendicular to the nematic director. This distinction is crucial because,
in a nematic phase, particles are more likely to diffuse along the nematic direction due to the
orientational order, while diffusion perpendicular to the director may be more restricted. In the
smectic phase, additional positional order introduces further constraints, leading to a more
anisotropic diffusion behavior.

The values o D and D, are extracted by fitting the linear regime of MSD curves over time. These
results provide insight into how nematic and smectic order influence particle mobility.

The calculated self-diffusion coefficients will allow us to compare diffusion properties across
nematic and smectic phases at different temperatures and subsequently evaluate the impact of
dipolar interactions on their viscoelastic moduli. The concepts reviewed in this section will serve
as a foundation for understanding the structural and rheological behavior of the system, as well as
for interpreting the simulation data presented in the results section.

2.9 Statistical Mechanics resources

In this subsection we will introduce some aspects that will permit us to establish how the energy
of a system is partitioned among the states of the ensemble that constitute it. This will allow us to
introduce the concept of the partition function.

Let us consider a physical system composed by M states denoted as, State,, State, ... Statey,.
Each state has corresponding energies Eq, E, ... Ey. In each one of the states there are nq, n, ...
ny, particles, respectively. The total number of particles Ny, corresponds to Ny = nq +n, + -+ +
ny, and that the total energy, E7, corresponds to E; = n{E; + nyE; + -« + ny Ey. We want to
calculate the total number of ways to distribute the particles, assuming that each particle must be
allocated in one of the M allowable states.

For the computation, we allocate n, particles in one of the M possible states, n, particles in one
of the remaining M — 1 states and we continue in this manner until the last n,, particles are
positioned in the last available state. In this way, there will be n;! - n,!...ny = [[M,n;! possible
configurations. However, as the configurations are indistinguishable among them, to attain the
correct number of possible combinations, it is necessary to divide by M! Therefore the total number
of possible configurations, denoted by Y, is given as,

v = i=1 !

T (2.7.1)
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Due to physical principles, it is expected that the parameter Y, given by equation 2.7.1, should take
a maximum value, as suggested in reference [2.21]. Therefore, considering that each number n; is
large, this requirement is equivalent to maximize, instead, In(Y"), given as follows,

In(Y) = In(ny! + ny! + -+ ny!) — In(M?). (2.7.2)

Equation 2.7.2 will be maximized, subjected to the following constraints,

M M

Np = Z n; and E; = Z nE;. (2.7.3)

Equation 2.7.2 together with the equations given in 2.7.3 can be solved by using Lagrange
multipliers, which will lead to the equation
n; e’

— = 2.7.4

Equation 2.7.4 represents the probability of an equilibrium system being in the state i. We also
note in this equation that the constant parameter A, must be negative for physical reasons.
Therefore, it will be represented as —f. In what follows we will provide a heuristic approach to
estimate the value of 3.

In the following figure we depict a particle in a system travelling in an arbitrary direction towards
the surface denoted as A.

A

Figure 2.7.1. Diagram of a particle in a system travelling in an arbitrary direction towards the
surface denoted as A).

In figure 2.7.1, the particle has velocities (vy, v, ;) and mass m. We will focus on the direction

v, of the particle. The particle will travel a distance Ax towards the surface depicted as A in a time
At and will be reflected back a distance Ax in an additional time At. Under these conditions, the
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particle will bear an initial momentum equal to p = mv, and after reflection, its momentum will
be p = —muv,. Therefore, the total momentum change will be Ap = 2mv, and it will take place
in a time t = 2At. The corresponding force exerted on the surface will be F = Ap/2At.

With the above conditions, and using At = Ax/V,., the pressure on the surface A, P = F/AyAz,
can be written as,

mV;
P = .
AxAyAz

(2.7.5)

Noticing that in equation 2.7.5, AyAyAz represents the volume of the infinitesimal box, such that
pV = ml,.

To proceed with our heuristic approach, we will consider that the particle resembles an ideal gas
following approximately the relation pV = kT, where k is the Boltzmann constant. Using this
equation one obtains,

m
T= i <V, >. (2.7.6)

In equation 2.7.6 the symbol <*> represents an average.

Using the results from equation 2.7.6, the expression of the number of particles n; bearing energy

—Bm, . 2 2
E;takes the form n; = e*1e™2 (V412 4V,

represented by,

2
). This result leads to the equation of the temperature,

—Bm
szfff ]/xzeT(sz'l'Vyz‘FVZZ)ded]/yd]/Z
T = , (2.7.7)

—Bm
k f[f ez <) gy av,

Solving the integrals involved in equation 2.7.12 we find that § = %, such that the expression of
the probability density function can be expressed as,

E;
n; e kT

In equation 2.7.8 the denominator is referred to as the Partition Function [2.22], from the German
word “’Zustandsumme’’, and it is typically represented by the letter Z as follows,

Ej
7= Z o T (2.7.9)

all states
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We will see that the partition function, given by equation 2.7.9, will allow us to characterize our
thermodynamic system.

Despite the approximations assumed in our previous derivations, it results that the equations
obtained are in good agreement with experimental results reported in the literature.

From the partition function derived above, it is possible to obtain different thermodynamic
properties. One such property is the free energy [2.21], and it is related to the partition function

by means of the logarithm of the partition function as follows.

From equation 2.7.8, the expectation value of the energy is given by
M
<E>= Z E;P;. (2.7.10)
i

In equation 2.7.10, P; has been defined as n;/N. Substituting equation 2.7.8 in equation 2.7.10
one obtains,

M E(u)
Y Eje kT
<E>= ) (2.7.11)
Z{VI e kT

Taking the natural logarithm of the expression of the partition function, equation 2.7.9, and taking
its partial derivative with respect to 1/kT gives,

M
an(2) 1 B
e E(H)Z(—E)e R (2.7.12)
o(gr) Eirew

In equation 2.7.12 the expectation value of the energy (average energy) has been related to the
partial derivative of the natural logarithm of the partition function, with respect to the inverse of
temperature. Therefore, the expectation value of the energy can be expressed as,

01In(2)
9 (k)

The partition function can also be related to thermodynamic variables. Usually, these variables are
related through the entropy S. However, S is not as easily measured as P,V or T. For this reason,
we define the Helmholtz free energy A, which provides a more convenient way to describe the
properties of the system,

<E>=-— (2.7.13)

A=U-TS. (2.7.14)
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In equation 2.7.14, U represents the total internal energy of the system [2.23]. By dividing eq
(2.7.14) by T, leads to U =0 A/T/0(1/T). Comparing this result with equation 2.7.14 one
obtains,

A =—kTInZ. (2.7.15)
The equation 2.7.15, relates the Helmholtz free energy with the partition function. From the free
energy equation, given by 2.7.15, it is possible to determine the amount of work that the system

performs in a thermodynamic process where the temperature is held constant.

Other important thermodynamic quantities, such as entropy, can be derived from the eq (2.7.14).

The entropy can by calculated as
S= (6(A)> (2.7.16)
~o\oar "
NV

Equation 2.7.16 relates the entropy of the system with the Helmholtz free energy, where the N and
V are held constants.

In the following section we will use the statistical concepts represented by the above equations to
introduce the concept of canonical ensemble.

2.10 Canonical ensemble
Let us consider a system characterized by temperature (T) and pressure (P), as the one shown in
Figure 2.8.1, in which the system undergoes a process from state I to state /I in two possible paths.

In state I the system has free energy A; and in state I/ A;;. The energy difference between two
states can be written as [2.21]

I 11

Equation 2.8.1 shows explicitly that the difference of free energy is independent of the path
followed by the system.
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3
>

T

Figure 2.8.1 Two different paths between two points in the P-T space

To perform the calculations, in equation 2.7.1 it is necessary to explicitly write the dependence of
the energy with respect to the variables of the system. For instance, if the variables are position
and momentum, written as 7V and p", for the N-particle, the corresponding partition function can
be written as

_E(rp)
Z= fe KT drdp. (2.8.2)

Equation 2.8.2 is the continuous expression of the discrete expression given by equation 2.7.16.
The space in which these states are represented is referred to as the phase-space, and it
characterizes all possible states of a physical system. The energy E represents the total energy
given by E = K + U where K is the kinetic energy and U the potential energy.

Statistical mechanics utilizes ensembles, chosen based on specified macroscopic variables. Here,
we will focus on the canonical ensemble, as it serves as the crucial link between statistical
mechanics and thermodynamics, established through the partition function.

It is possible to calculate different averages over the phase-space, depending on the variables that
are fixed. This leads to the concept of ensemble. The possible microstates a system could be in are
known as the ensemble of states for a system [2.22]. An ensemble consists of a large collection
of identical systems. The feature that distinguishes one type of ensemble from another is the
communication allowed between the systems.

There are different types of ensembles. For instance, the microcanonical ensemble consists of
identical systems, each system with the same energy E volume V' and number of molecules N, and
with the property that communication between systems is not allowed, i.e. there is no interchange
of energy, so that the energy will remain constant as well as its volume and its number of molecules
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[2.24]. Nothing is exchanged with the other systems in the microcanonical ensemble. The
canonical ensemble is the same as the microcanonical with one exception: its systems are allowed
to exchange energy in the form of heat. This exchange constitutes the communication among the
systems of this ensemble, so that the temperature T, the number of molecules and the (average)
energy become constant. As an example of a system where we fix the temperature, we suppose a
system that is in contact with a reservoir, so that the latter and the system can exchange energy in
the form of heat. This reservoir will allow to fix the temperature of the system while letting the
energy fluctuate. A representation of this idea is depicted in the following figure

HEAT RESERVOIR

L] L] L]
L] [ ]
. . .
L] L [ ] L]
L] [ ] ° [
. L4 .
° ] Y L] L]
L] L] ®
L] L] L]
[ ] * L]

Figure 2.7.2 NVT ensemble where a heat transfer is allowed.

As we mention above, in the NVT ensemble, particles, volume, and temperature are kept constant.
In this case, the system is allowed to exchange heat with outer space so that the temperature stays
constant. We can imagine it as a system immersed in a giant reservoir or a thermostat. The system
must remain closed, with no particle exchange and no work done over the reservoir or vice versa.

The goal of the simulation methods is to calculate macroscopic properties from microscopic
properties, so the selection of the ensemble used in the simulation will depend on the properties
and the type of system that will be studied. Typically, canonical ensemble is used in the study of
phase diagrams, phase transition, among others [2.21].

Since we are interested in calculating structural properties, the simulations performed in this work
will be carried out in the Canonical NVT ensemble as it will be described in the following chapters.

Chapter 3
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3 Computational Simulation Method

As described in the last chapter, the probability density function given by equation 2.7.15, allows
us to completely characterize a thermodynamical system. However, when the number of particles
of a system is large, its evaluation becomes a complex task. As we will show in the following
sections, a numerical method, referred to as Monte Carlo (MC), will provide an alternative
approach to estimate the value of 2.7.15. In the following subsections we will focus on this
method.

3.1 Monte Carlo method

To begin with, we will rewrite equation 2.7.15, substituting Z with 2.8.2, as,
E(TN,pN)
e kT
_E@N,pM)

[e " kT drNdpV

P(E) = (3.1.1)

In equation 3.1.1, we have moved from the discrete case to the continuous one by replacing n; /Ny
with P(E), and additionally, we have expressed explicitly the energy as a function of the phase-
space variables, ", p".

Equation 3.1.1 is the main equation to determine the macroscopic behavior of a thermodynamic
system allowing us to compute expected values of observables; for example, in a ferromagnetic
system, the average spin will measure the degree of magnetization.

To calculate the expectation value of an observable S, we use the probability density function [3.1]
given by equation (3.1.1), as follows,

E(rN pN

[S(r)e ™ *k  drNdpV
<§>= D) . (3.1.2)

[e™  *kT drNdpV

In equation 3.1.2, we have made explicitly the dependence of the observable S(r,p) on the
coordinates and momenta, however its expected value will be independent from them.

In general, equation 3.1.2 cannot be calculated analytically, therefore a numerical approach is
necessary. However, when the number of particles of a system is large (>100), the calculation
requires excessive processing time. Therefore, as mentioned above, the Monte Carlo method can
be used as an appropriate alternative, reducing drastically the processing times. Furthermore, to
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improve as possible the processing time, we will use a special scheme of the Monte Carlo method,
introduced by Metropolis et al [3.2] and it will be described in the following section.

To apply the metropolis scheme, it is useful to notice that not all the points in phase-space
contribute strongly to the calculation of the observable §, due to low exponential values in
equation 3.1.2. Therefore, it will be convenient to define a probability function p(r), to sample
points only when the exponential takes high values. The exponential in equation 3.1.2 will be
referred to as the Boltzmann factor. The calculations will only be taken at high Boltzmann factors.

To introduce p(7r) in equation 3.1.2, we will proceed as follows.

First, we will rewrite equation 3.1.2 as,

S (@)
<S§>= j p(r)pgge_Ek_T/Z dr. (3.1.3)

Now we will rewrite equation 3.1.3, as,

<§>= ]p(r)é‘*(r)e_%/z dr. (3.1.4)

In equation 3.1.4 we have defined $*(r) = §(r)/p(r). The function p(r) appears in equation
3.1.4 as a weight factor. In addition, we have dropped the dependence on p since our simulations
our variables will depend on the potential energy. In the following subsection we will describe
how to apply this equation.

3.2 Metropolis Algorithm

We now apply the metropolis method to estimate the probability distribution P(r) given in
equation 3.1.1, where we have dropped the dependence on p.

The integral in the denominator in equation (3.1.1) is complicated to calculate analytically [3.3].
Therefore, we proceed as follows.

First, to simplify our following description, we will replace the parameter r by x, to consider a
one-dimensional model. The generalization of this process for 3-dimensional systems is
straightforward. Under these conditions, we notice that equation 3.1.1 can be written as,

P(x) = @ (3.2.1)

In equation 3.2.1 C represents a proportionality constant and for brevity we have defined F(x) =
exp (—E(x)/kT).
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The procedure consists of the following enumerated five steps.

1) We will generate a sequence of numbers {xy}= (xq, X1, ..., Xy) 1in such a way that,
when N becomes large, the histogram of {xy} will resemble P(r). The way this
sequence of numbers is performed is referred to as a Markov chain. There are many
ways of setting up a Markov chain that has this property. The Metropolis-Hastings
algorithm is one of these.

i) We propose an initial arbitrary value for xy. From this value, we want to generate x;.
The process continues this way until the final value. The values are obtained as follows.

ii1) We take a normal distribution with mean u = 0 and 2 = 1, denoted as norm(0,1)
From this distribution we calculate, x; = x, + norm(0,1).

iv) We take a uniform distribution between (0,1) denoted as unif(0,1). From this
distribution we generate a number g = unif (0,1).

V) From the above values, we compare q with the ratio F (x;)/F (x,). If the value of q is
less than the ratio then x; = xy + norm(0,1). Otherwise, x; = x,. This process is
repeated iteratively until the final element Is calculated xy.

A description of how the method works can be found in [3.4]. A summary of this description,
which is based on the calculation of the probabilities of the acceptance ratios between two
occurring events, follows.

We define acceptance probabilities of going from the state with value x = a to a state with value
x = b, and from x = b to the state x = a, as A(a = b) and A(b — a), respectively.

As described above, we first assign an arbitrary value for x, and we try to assign a value to x4,
taken from a random distribution. In general, this random value is taken from a normal distribution
as x; = xo + norm(0,1). This x; value is taken as a trial value to be tested. For this, we consider
the following relation

F(a)
A(a - b) = Tg(bla). (3.2.2)

Equation 3.2.2 indicates that the probability of acceptance of going from a state with value x = a
to a value x = b is equal to the probability of the state x = a multiplied by the conditional
probability of getting the state x = b given the state x = a,

Reciprocally,

F(b)
Ab - a) = Tg(alb). (3.2.3)

Equation 3.2.3 gives the probability of acceptance of going from the state x = a to the state x =
b.

Taking the ratio between the two probability acceptances, equations 3.2.2 and 3.2.3 give,
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A(a—b) F(b) g(alb)

A(b > a) F(a)ghla) (324)

In equation 3.2.4, the algorithm is established for general conditions in which non-symmetrical
distributions are considered. In these cases, g(a|b) # g(bla). These cases the algorithm is
referred to as the Metropolis-Hesting method. When these distributions are symmetrical, the
algorithm is simply known as Metropolis algorithm. These cases are more likely to occur in
physical processes and it will be implemented in our simulations.

Under the above conditions, equation 3.2.4 can be simplified as

A(a—~b) F(b)
Ab->a) F(a)

(3.2.5)

In equation 3.2.5 we can consider two cases, F(b)/F(a) < 1or F(b)/F(a) = 1.
For the first case, it must be accomplished that A(a —» b) < 1and A(b - a) = 1.
For the second case, we require that, A(a - b) = 1and A(b - a) < 1.

The above cases can be written in only one equation as

(3.2.6)

A(a - b) = min( F(b)>.

Yr@

To use equation 3.2.6, Metropolis et. Al [3.2], proposed to substitute the deterministic number one
by a random number obtained from a uniform distribution between 0 and 1. Let us refer to this
number as q. Then if q results less than the ratio F(b)/F(a), the new value of the sequence is
accepted. Otherwise, the new value is simply a copy of the old one.

To demonstrate that the Metropolis method works properly, we designed a Python program to

generate two different probability density distributions e~ and e *°. These distributions were

chosen arbitrarily for illustrative purposes. The examples show how the algorithm converges to
the desired equilibrium distribution over time. A detailed explanation, along with the generated
distributions and their comparisons with analytical expectations, is provided in Appendix I.

Now, we are in the position to use the Metropolis method to simulate the evolution of the
movements of the particles in our system, in accordance with the probability represented by
equation 3.1.1. The displacements of the particles will be carried out as follows.

First, we distribute the particles in a crystalline cell, represented by a cubic box of dimensions
sides L. Next, the movement of each particle is according to the following pseudo code language.

Let N represent the total number of particles inside the box, then:

for (n=1, up to N, increase n in steps of 1)

{
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num_part=random(from 1 to N); #Select one of the N particles in a random way
ro=position of the selected particle; #Store the original value of the selected particle
Eo=exp(-U(10)num_part)/(kT); #Calculate the energy corresponding to the selected particle
m=ro+tnorm(0,1); # Select a trial position according to the description of the above section
En=exp(-U(rn)num_part)/(kT); #Calculate the energy corresponding to the selected particle
g=unif(0,1); #Generate a random value between 0 and 1 from a uniform distribution
if (q<Ew/Eo)

accept the value of 1
else
n=T0; #The trial value is not accepted, we keep the old value.

} # End of the for cycle

The pseudo code listed above can be used to displace the particles according to the probability
density function that rules the system. From the position of the particles, we can follow the
evolution of the system and track the different statistical parameters of interest such as the average
energy, the mean square displacement, and others. In chapter 6 we present the results obtained
with this scheme.

3.3 Radial Distribution Function

Now that we have devised a method to move the particles according to the probability density
function that rules the system, we require a statistical measure that describes the spatial distribution
between them. This parameter is usually the radial distribution function g (), which is a statistical
representative that will allow to describe the structure of our liquid crystals [3.5]. This function
provides the probability of finding a particle at a given distance from a reference particle, offering
insights into the local structure of nematic and smectic phases. It is particularly useful for
describing the presence of defects or disorders in these phases, providing the degree of deviation
from perfect alignment.

Mathematically, the radial distribution function can be described as,

1
g(r) = N §(|(ri—1))—7|) (3.3.1)

Where 7; and r; represent the positions of particles i and j, respectively, N is the total number of
particles and r is the radial distance between two particles.
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A schematic representation of how g(r) is computed is shown in the following figure:

Figure 3.3.1 Schematic representation of the calculation of the radial distribution function g(r)).
The reference particle is shown in orange, while neighboring particles within a shell of thickness
dr are counted to compute g(r).

Figure 3.3.1 illustrates the computation of the radial distribution function g(r). To compute g(r),
a reference particle (orange) is selected, and concentric shells of thickness dr are constructed
around it. The number of neighboring particles within each shell (purple) is then counted and
normalized by the expected particle density in an ideal gas. Peaks in g(r) indicate preferred
distances between particles, revealing structural correlations in the system. In liquid crystals,
anisotropic interactions lead to distinct features in g(r), requiring separate calculations along
parallel and perpendicular directions to the nematic director.

Following the same approach used to compute the radial distribution function g(r), we define
analogous distribution functions along the parallel and perpendicular directions relative to the
director n. These functions allow us to analyze positional correlations along different spatial
directions, revealing structural ordering in anisotropic phases.

These functions are described as follows,

a1 = (> > 8(1(ri~ 7)) *n| - 2), (33.1)
1
9.0 =373 " 8(1(ri = 7)) xn| = 1)), (332)

In equations 3.3.1 and 3.3.2, r; and r; represent the positions of particles i and j, respectively. The

unit vector n denotes the nematic director. The delta function §(7) ensures that only pairs
separated by a distance z (parallel case) or r (perpendicular case) contribute to the summation.
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These equations allow us to distinguish between positional correlations along the director (parallel
case) and those in the perpendicular plane [3.6]. In practice, these functions provide a useful tool
for detecting structural ordering and provide information of the formation of layers along the
director vector, since it calculates the probability of finding particles at a certain distance from a
reference point, confirming the formation of a smectic phase.

The following figure shows an example of g ;(z) for a LC system in the smectic phase:

Parallel distribution function g(z)

-7.5 -5.0 -2.5 0.0 2.5 5.0 7.5
z/h

Figure 3.3.1 Parallel distribution function g;;(2) in a smectic phase, showing characteristic peaks
associated with layer formation.

Figure 3.3.2 illustrates the parallel distribution function g;,(z) for a smectic phase. The presence
of multiple peaks indicates the formation of well-defined layers along the director, with each peak
corresponding to a preferred interlayer distance. The periodicity in g;(z)) confirms the existence
of long-range positional order along the nematic director.

Although equations 3.3.1 and 3.3.2 are analytically correct for calculating g|;(z) and g, (), they
are not appropriate for programming purposes and their direct implementation in simulations
requires a discrete approach using histograms. Therefore, we will use the approach proposed in
[3.7], illustrated in the listing and pseudocode presented in Appendix 3.

This section provides the theoretical background necessary to analyze the structural properties of
our simulated liquid crystal phases. The computed g (r) will later be used to compare nematic and
smectic structures, providing additional insight into their ordering.

Now, we will describe the periodic boundary conditions. For this we will refer to the following
subsection
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3.3.1 Additional details Periodic boundary conditions

In order to simulate bulk phases, it is important to choose correct boundary conditions to mimic
the surroundings of our N-particle system [3.7]. The box volume that contains the particles will be
treated as the primitive cell of an infinite lattice of identical cells. In figure 3.3.1, we depict a two-
dimensional 3x3-lattice, containing only two particles, denoted as A and B, for illustrative
purposes. In this illustration, the primitive cell is the bottom left cell, and the other cells are replicas
of the primitive one. We will use figure 3.3.1 to establish the pseudocode used in our simulations.

Y

2 | — X

[
o

Figure 3.3.1. Boundary conditions considered to establish the pseudocode used in our
simulations.

In figure 3.3.1 r represents the vector joining particles A and B. However, as it can be appreciated,
particle B is not in the primitive cell. However, due to periodicity, B must be in the primitive cell.
Therefore, we have to consider, instead, vector r’.

Let us denote r'=[x', y'] and r=[x,y]. The relationship between the coordinates of r’ and r, is as
follows: x'=x-L*int(x'/L) and y'=y-L*int(y'/L). These equations are used above, in the
pseudocode of section 3.3.
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To use the pseudocode, we have to introduce the interactive potential between the particles and
their shape. In the following section we give details of our model.

3.4 Model and MC simulation details

The system studied in this work comprises N,. =1000 rod-like particles with aspect ratio L/g=5,
where L and o are the length and diameter of the rods, respectively as depicted in the following

figure.
0]
-

Figure 3.3.1 Model of a spherocylinder with aspect ratio L /o =5 and diameter o.

For our long-range interaction simulations, the dipolar model system is also a soft spherocylinder
with a point dipole oriented along the molecular axis.

We use kT, o and T = 62 /D, as our energy, length and time units, with k Boltzmann’s constant,
T the absolute temperature, Dy = kT /nyo a diffusion constant related to the solvent viscosity and
1o the viscosity coefficient of the solvent [3.8].

The particles that we simulate in this work interact via a shifted and truncated Kihara potential.
The interactions will take place only in the repulsive region of this potential. Its mathematical
representation is as follows [3.9].

12 6 1
pay @) @) ] ansvE
Uij(ryj, u;, u;) = din dm 4
0 dpy > V2o,

(3.3.1)
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In equation 3.3.1 the subscripts i and j denote a pair of interacting particles where r;; represents
the vector between their centers. The parameters U; and U; give their respective orientations. The
strength of the interaction is set by a proportional term €. This term represents the value of the
depth of the potential, as depicted in figure 3.3.2. The value /20 is the critical point between the
attractive and repulsive regions. Therefore, if d,,, is greater than this value, the potential vanishes,
as indicated in equation 3.3.1, to neglect the attractive effect. For illustrative purposes this region
is plotted in dashed line in figure 3.3.2. The dependence of U;; on the parameters indicated in
equation 3.3.1 comes from the parameter d,, which is by itself a function as follows,
dpm=dm (1;j,U;, U;). Furthermore, Ref. [3.10] provides an algorithm to calculate the minimum
distance between two spherocylinders.

Kihara Potential
| | | | T T T T

1.4 — U(r)/€ attractive
- U(r)/€ repulsive
1.2+ -

(0,€)

|

1.0

0.8

0.6 -

Uldm)/e

0.4

0.2

0.0

|
0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
dm/O

Figure. 3.3.2 Shifted and truncated Kihara potential as represented by equation 3.3.1, with
parameters € =2 and o = 0.6. In our study, the attractive region will be considered equal to zero.

In figure 3.3.2 we have chosen arbitrarily parameters € and o, 2 and 0.6 respectively.

In this work we will apply the MC method to study two particular mesophases, nematic and
smectic, in liquid crystals, interacting via the Kihara potential. For this study, we will choose five
reduced temperatures T*=5,7,10,15 and 20. The parameter T* is defined as T* = kT /e (where T
is the absolute temperature).

For the above task, we will make use of the packing fraction, defined as ¢ = N,. V,./V , where V.
is the volume of the rod, N, the total number of rods and V' is the volume of the box. The values
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were chosen according to the phase diagram for soft-spherocylinders published by Cuetos &
Martinez Haya in Ref. [3.11]. For illustrative purposes, in figure 3.3.3 we show the plot published
in reference [3.11]. The packing fraction values for Nm and Sm phase are ¢ = 0.49 and ¢p = 0.55,
were set, respectively, which correspond to densities of p* = 0.12 and p* = 0.14. With the
previous initial conditions, NVT MC simulations were carried out to stabilize nematic and smectic
phases at the three different temperatures.

T

20

15

T*10

L]

K

L*=5.0

$05 040 045 020
*

P

Figure 3.3.3. Phase diagram of spherocylinders for an aspect ratio L/D = 5. Taken from
reference [3.11].

The above reference will allow us to set the initial conditions for our simulations. Once these
values, the packing fractions and the reduced temperatures, have been set for our systems, we
proceed to run several Monte Carlo simulations and we will calculate different functions such as
the order parameter and distribution functions, in order to characterize the structural properties of
the mesophases. We will report these results in chapter 6.

As mentioned above, another important quantity that appears in the study of the phase transition
and will be reported in the structural results of liquid crystal phases, is the order parameter S,. It
is the distinguishing feature of most phase transitions when the value of the parameter is nonzero.
This parameter will be described in more detail in the following section.
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3.5 Order parameter

The order parameter is a crucial concept in the study of liquid crystals. In liquid crystals, the order
parameter is a measure of the degree of alignment or orientational order of the molecules in the
material. This order parameter is an important characteristic that distinguishes liquid crystals from
regular liquids. The value of the parameter is non-zero in the ordered phase but identically zero in
the disordered phase.

The order parameter can be measured using various experimental techniques, such as X-ray
scattering, polarized optical microscopy, and differential scanning calorimetry. The order
parameter is a key factor in determining the behavior of liquid crystals, including their phase
transitions and response to external stimuli.

The order parameter is often used to describe the behavior of liquid crystals in terms of their phase
transitions. For example, when a liquid crystal undergoes a transition from a nematic phase to an
isotropic phase, the order parameter drops to zero. Similarly, when a liquid crystal undergoes a
transition from a smectic phase to a nematic phase, the order parameter increases.

The order parameter is also used to describe the behavior of liquid crystals in response to external
stimuli. For example, when an electric field is applied to a liquid crystal, the order parameter can
be modified, resulting in a change in the molecular alignment and other physical properties of the
material.

The order parameter is defined differently in different kinds of physical systems. In a ferromagnet
it is simply spontaneous magnetization. In a liquid—gas system it will be the difference in the
density between the liquid and gas phases at the transition; for liquid crystals the degree of
orientational order is telling. An order parameter may be a scalar quantity or may be a
multicomponent (or even complex) quantity.

In our analysis we will use the scalar order parameter, and this parameter is defined as
S, = 1,(cosB)
Where the [, the second Legendre polynomial [3.12].

The order parameter ranges from 0 (completely isotropic) to 1 (perfectly aligned). Typical values
of order parameters for nematic and smectic liquid crystal phases can vary significantly depending
on the specific material and conditions, for example, temperature, concentration, or external fields.
However, general ranges for these order parameters are often used as references:

As we described in previous chapters, in the nematic phase, the liquid crystals exhibit long-range
orientational order but no positional order. The order parameter quantifies the degree of alignment
of the liquid crystal molecules relative to a preferred direction and typically, for well-ordered
nematic phases, S, ranges from 0.5 to 0.8. For example, in many nematic liquid crystals, S, might
be around 0.7 to 0.8 in the bulk phase.
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In the smectic phase, as we described, the liquid crystals exhibit both long-range orientational
order and partial positional order, organized into layers. There are several subphases of smectic
liquid crystals, such as smectic A, smectic C and smectic B, each with different characteristics.

Values of the order parameter in the Sm phase typically are in the range of 0.8 to 1.0, reflecting
the extent of layer formation [3.13].

3.6 Dynamic Monte Carlo method

The DMC method is based in the generation of random numbers to make the particles move based
on a transition probability function in order to calculate dynamic properties such as the mean
square displacements and the diffusion coefficients. In the DMC method, the time step and the
maximum displacement of the particles are related through the short-time diffusion coefficients.
This is accomplished in the limit of small displacements and using the Einstein equation for
Brownian motion, that relates the mean square displacement of a particle with its diffusion
coefficient, deduced in chapter 2. By rescaling the MC time step via its acceptance rate, a unique
MC time scale is obtained making it possible to calculate dynamic properties at different time
scales. [3.9]. A description of the DMC method applied in this work is available in references
[3.14-3.16]

As mentioned, in DMC mthod a time scale for the displacements of the particles is defined and it
can be related with the time scale for Brownian motion. This relation depends on the acceptance
rate of the trial movements and the number of Monte Carlo cycles.

The acceptance rate is influenced by the displacement step size, for shorter displacements, the
probability of accepting a move is higher, and the associated energy allowed between the
movement in two states. If the change in energy corresponds to a permitted value, then the
movement will be accepted with a probability according to its Boltzmann factor e ~#AY

Let’s assume a particle j is situated at x = 0. The particle can be displaced to a new position
within the interval [—8x, §x]. The probability of finding a particle in its initial position after a trial
movement iS Prgjecteq = A'. The probability of accepting the movement is Pgecepteq = 1 —

Prejected =A

A can be assumed to be constant within the interval [—d&x, dx], simplifying the mathematical
treatment of the method.

This assumption is valid in the limit of infinite dilution or when displacements are infinitesimally
small, as in these conditions the acceptance probability is expected to be independent of the step
size. However, at high concentrations or when interactions between particles are strong, the
acceptance probability may become highly dependent on the displacement step size. In these cases,
deviations from the assumed constant A could affect the time scale calibration of the DMC method.

A

Making this simplified assumption, then the probability of moving the particle is Ppppe = Tor -
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Thus, calculating the mean square displacement, we obtain the expression

6x 2
A(6x
<x*> J- X2Pope dx = (6x) (3.6.1)
s 3

One can obtain a similar result for N particles performing C,. cycles.
In this case the mean square displacement reads

A(6x)?
3

< x?2>=Cye (3.6.2)
In the case of rod-like particles with axial symmetry, there are 3 translational degrees of freedom
corresponding to the displacement of the center of mass, and 2 rotational degrees of freedom
associated with their orientation. The rotation around the particle's long axis does not affect its
state and is therefore not considered a degree of freedom. In the general case of f degrees of
freedom, a particle can be moved to a point § = &;,&5,.. ..., & belonging to an f-dimensional
hyperprism of size [—8&,8&,] with k = 1,2, ..., f. It is supposed that this move is accepted with
uniform probability A. Similarly, for the case f =1, the normalized probability of a displacement
to any point reads

A
Prove(§) = V_: (3.6.3)

Where Vs = l—[{ (26¢&;) is the volume of the hyperprism. For this case the man square displacement
is given by

A(681)*
< sz > Ekzpmove déy = 3 (3.6.4)
V=
Extending this result for the case of N identical particles we obtain,
A(6&,)?
<&’ >=Cyc _( :jk) (3.6.5)

Using the above result, it is possible to define a time unit for a DMC simulation defined as ¢ty
which can be related to the time unit of a Brownian dynamic simulation tzp. During an MC step,
the goal is to modify all the degrees of freedom of a randomly chosen particle at once. After this
modification, the move is then accepted with probability A. Linking the displacements and
rotations of a particle to a consistent temporal scale is effectively done through the Einstein relation
for the diffusion coefficient, deduced in chapter 2. Using this equation and if the MC moves are
statically independent, time and space are related as follows:
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Where Dy, is the self-diffusion coefficient associated to the kth degree of freedom and 6ty is the
time needed to perform an MC cycle in the MC timescale. Using the above result allows us to
obtain an expression of the mean square displacement, given by

2
(&°) = §ADkCMC5tMC (3.6.7)
For a BD simulation its corresponding Einstein equation is given by

(&k°) = 2Dy 8tgp (3.6.8)

Combining equations (3.6.7) and (3.6.8) a relation between both timescales is obtained as follows:
A
tBD = ECMCCStMC (369)

The equation connects the timescales in BD and DMC simulations. However, it's crucial to note
that Eqgs. (6)-(8) hold true only under infinite dilution conditions, where the acceptance rate
remains seemingly unaffected by the displacement size. Conversely, in cases of finite dilution,
when particle collisions occur, these equations lose their exactness, yielding approximate
outcomes.

It is important to notice that the maximum displacements must be small enough in order to have
accurate equivalence between DMC and BD simulations but not extremely small so that it collects
significant statistics in a realistic period of simulation time.

Equation (3.6.9) is the fundamental equation that will be used to rescale the simulation results,
reported in chapter 6, to a unique time scale and will allow us to calculate dynamic properties,
such as the self-diffusion coefficients of the system.

As mentioned in the previous section, to satisfy the requirement for the correct application of
DMC, small displacements of the particles are required. These maximum displacements can be
defined via the short-time diffusion coefficients of the particles.

In the DMC method, random displacements of the center of mass and rotations of the long axis of
the particles will be performed. These maximum displacements and rotations can be related with
the respective short-time self-diffusion coefficients via the time step 8ty as it is shown in the
following equations

5TJ_ = 4/ ZDJ_(StMC (3610)
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In equations (3.6.10-3.6.12) §r and dO represent the displacements and the rotations respectively,
while 8t is the time over which the displacement occurs, and D is the corresponding self-diffusion
coefficient.

It is important to distinguish between short-time and long-time diffusion coefficients. The
diffusion coefficients derived here correspond to the short-time self-diffusion coefficients, which
describe the initial motion of particles before significant interactions dominate and are obtained
from the inverse of the friction coefficients in the infinite dilution limit as will be shown in the
following paragraphs. In contrast, the long-time diffusion coefficients incorporate the effects of
particle collisions and collective behavior, which modify the transport properties at longer
timescales. The short-time diffusion coefficients derived in this section will be used to define the
time step in the DMC method and to rescale the simulation results.

Since the short-time diffusion coefficients in equations [3.6.10-3.6.12] depend on the friction
coefficients, it is necessary to introduce them first. Particles moving through a medium experience
frictional drag, a force proportional to their velocity but in the opposite direction. This frictional
force is determined by a friction coefficient, which depends on both the size and shape of the
particles. These friction coefficients are inversely proportional to the diffusion coefficients,
establishing a direct link between friction and particle mobility.

To compute the previously derived expressions for the maximum displacements and rotations, it
is necessary to determine the diffusion coefficients in the limit of infinite dilution. These
coefficients can be obtained using the expressions for the friction coefficients of particles with
spherocylindrical geometry. In reference [3.17], the authors derive analytical expressions for the
friction coefficients of particles with different shapes using the induced forces method. In their
approach, the shape of the particles is described through the function,

h(x) = (1 — x?")2n (3.6.13)

where the parameter n controls the particle geometry. When n = 1, the function describes
spheroids, while for n —oo, it corresponds to straight cylinders. For intermediate values, such as
n = 8, which will be used for our calculations, the particles resemble cylinders with rounded
edges, making them more suitable for modeling rod-like particles.

The equations (3.6.14-3.6.16) express the friction coefficients perpendicular, parallel and
rotational, in terms of h(x), providing the necessary framework for calculating diffusion properties
in rod-like systems.

{1 = (3.6.14)
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2mngL
G = ——r s (3.6.15)
lng—i—if_ldxlnh(x)
1
n L? [~ dxInh(x)
=1 711 3 T (3.6.16)
lng—i—if_ldxlnh(x) lnE_F_Efqulenh(x)

In equations (3.6.14-3.6.16), the parameter € is defined as € = % and h(x) is a positive function

and defined for —1 < x < 1 with n being a positive integer.
In the particular case of rod like particles n = 8. The integral that needs to be numerically solved
for this case is expressed as
1 1
| = Ef In h(x) dx (3.6.16)
-1
The result for I for n = 8 is I = -0.0061. This result allows us to calculate the value for each
friction coefficient given in equations (3.6.14-3.6.16).

The corresponding short-time diffusion coefficient is given by the inverse of each corresponding
friction coefficient, as follows

(3.6.17)

By substituting the corresponding value of D, ;- in the Einstein’s equations (3.6.10-3.6.12) the
expression for the displacements and rotations are obtained.

Once we have calculated the mean square displacement through the DMC method our goal will be
to carry out a rheological study of the systems, where we are interested in calculating the
viscoelastic behavior of each phase to characterize the shear moduli and its dependence on the
long-range interactions. This will be discussed in more depth in the rheology chapter.

3.7 Van Hove and intermediate scattering functions

The Van Hove function (VHF) and the intermediate scattering function (iSF) are two key functions
for characterizing and understanding the dynamics of LCs. These functions provide insights into
how particles move and interact over time and will be calculated in our simulations.
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The VHF and iSF are the reciprocal time dependent functions for the radial distribution function
and the structure factor, respectively.

The Van Hove function describes the probability density of finding a particle i at a position r at
time t, given that a reference particle was at the origin at t = 0. This function is crucial for studying
transport properties and microscopic motion, as it allows us to distinguish between localized and
diffusive behaviors in complex fluids. By analyzing the VHF, we can determine whether particles
remain close to their original positions, undergo typical diffusive motion, or exhibit anomalous
transport mechanisms.

The VHF can be decomposed into two contributions. The self-VHF part G,(r,t) represents the
probability distribution of displacements of the same particle over time, while the distinct-VHF
G4 (r,t) represents the probability of finding a particle i in the vicinity of r at a time ¢, knowing
that a particle j is in the vicinity of the origin at a time #=0.

In this work, we focus exclusively on the self-part of the Van Hove function, given by
Gs(r,1) = 3 8((r +71,(0) — (1)) (3.7.1)

Particularly for our study, instead of analyzing its time evolution, we evaluate it at a fixed time, as
it will be reported in chapter 6. This approach allows us to examine the probability distribution of
particle displacements over a specific timescale, revealing structural and dynamical characteristics
of the system at that time.

Instead of considering correlations in space, one can perform a study in reciprocal space in Fourier
components. The intermediate scattering function is defined as the Fourier transform of the Van
Hove function

F(k,t) = [ dkG(r, t)e ke (3.7.2)

Reciprocally to the case of VHF, iSF can be defined as a self and a distinct part. Where the self-
part is given by

F(k,t) = [ dkGg(r, t)e et (3.7.3)

Instead of Fourier transform, during the simulation the self-iSF function can be also directly
computed from the trajectories of the particles by using following expression,

F(k,t) = %(Z,”:l exp [ik. (r; () — ;(0)]) (3.7.4)

4 Microrheology in Liquid Crystals

4.1 Introduction to Microrheology
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Microrheology refers to a set of techniques used to determine the viscoelastic properties of
complex fluids at a microscopic scale. Unlike conventional bulk rheology, which measures the
macroscopic response of a material to externally applied deformation [4.1], microrheology infers
local viscoelastic moduli by analyzing the motion of tracer particles embedded in the medium.
These methods overcome some limitations of bulk rheology, such as the need for large sample

volumes and restricted frequency ranges, making them particularly useful for heterogeneous or
small-scale systems [4.2].

Due to its versatility, microrheology has been applied in various fields, including biological and
soft matter systems [4.1]. It has been used to study the viscoelastic properties of DNA solutions,
where the mechanical response varies depending on molecular alignment under shear flow. In cell
mechanics, microrheology has provided insights into the stiffness of the cytoskeleton and the local
heterogeneity of intracellular environments. Additionally, it has been employed to monitor
gelation processes in colloidal suspensions and to characterize flow behavior in microfluidic
devices, where conventional rheometers are impractical.

Microrheology approaches can be broadly categorized into passive and active methods. Passive
microrheology tracks the spontaneous thermal motion of probe particles to extract viscoelastic
properties, whereas active microrheology applies controlled external forces to probe the
mechanical response of the system [4.2][4.3]. Both approaches provide insights into key
viscoelastic parameters, such as the complex shear modulus and the stress relaxation modulus,
which are interconnected through well-established mathematical transformations.

These techniques are particularly relevant for colloidal liquid crystals, where anisotropic
interactions lead to spatial variations in viscosity and elasticity. These materials exhibit
viscoelastic behavior, meaning they combine properties of both solids and liquids. Their
mechanical response is characterized by the complex shear modulus G *(w) [4.4], which depends
on the frequency w and is given by

G*(w) = G'(w) + 6" (0) (4.1.1)

where G'(w), also called the storage modulus, represents the elastic component, which describes
how the material stores energy when deformed and G"' (w), known as the loss modulus, represents
the viscous component, which describes energy dissipation due to internal friction [4.5].

While microrheology is often applied in experiments, tracking the motion of probe particles in
biological and colloidal systems, it can also be implemented in simulations. In this work, we
implement microrheology within DMC simulations, introducing a tracer particle into the liquid
crystal systems. By tracking its displacements over time, we infer local viscoelastic properties of
the system, providing insight into its mechanical behavior at a microscopic scale.
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4.1.1 Active vs Passive Microrheology

As mentioned, microrheology techniques can be classified into active and passive methods: Active
microrheology involves applying external forces (e.g., electric or magnetic fields) to control
particle motion and directly measure the material’s response [4.2], while passive microrheology
analyzes the thermal Brownian motion of tracer particles to infer material properties without
applying external forces [4.3].

In passive microrheology, no external force is applied to deform the material. Instead, the
characteristic frequency w is determined by the time scales of Brownian motion of the probe
particle:

At high @ we probe short-time dynamics, where the material may behave more elastically, while
at low w we probe long-time dynamics, where viscous effects dominate. Thus, the viscoelastic
response is inferred without an imposed deformation frequency, making microrheology ideal for
studying soft and biological materials.

In this work, we use passive microrheology, as it allows us to extract the local viscoelastic response
of liquid crystal phases by tracking the motion of an embedded spherical probe particle in dynamic
Monte Carlos simulations. Such method can be modified to include calculations of viscoelastic
properties by adding a spherical tracer to the phases and analyzing its mean square displacement,
giving results of the viscous and elastic moduli of the system. There are different approaches to
analyzing the mean square displacement to obtain information of the viscoelastic coefficients. We
have chosen an analytical approach that will be described in the next section.

4.2 Generalized Stoke-Einstein Relation (GSE)

The Generalized Stokes-Einstein Relation provides a theoretical framework to extract the
viscoelastic modulus G*(w) from the MSD of a probe particle. The viscoelastic modulus can be
obtained using the Fourier transform of the MSD

In classical diffusion theory, the diffusion coefficient D is related to viscosity 7 through the Stokes-
Einstein relation:

D= kT
~ 6mna

(4.2.1)

Where k is the Boltzmann constant, T is the temperature and a is the particle radius.

However, in viscoelastic fluids, viscosity is not constant but depends on frequency. The
generalized version of the equation connects the mobility of the probe particle with the complex
shear modulus G*(w).
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In the following paragraphs we will describe the expression that relates the viscoelastic moduli
with the mean square displacement of the probe particle, which will be implemented in our
simulations.

A full derivation of the generalized Stokes-Einstein equation in the Fourier frequency domain can
be found in Mason et al. (2000). Here, we summarize the main steps.

First, the Langevin equation describes the motion of a spherical particle in a viscoelastic fluid and
is given by

mv(t) = fz(t) — ] It — tHv(t)dt’ (4.2.2)

where m is the mass of the probe particle, v(t) its velocity, {(t) is a memory function describing
the local viscoelastic response and fz(t) a Gaussian random force due to the Brownian motion.

Fourier transforming equation 4.2.2 allows us to obtain v*(w) in terms of the frequency in the
Fourier space as,

(@) +mu(0)

vi(w) = {(w) + iwm

(4.2.3)

Multiplying equation 4.2.3 by the factor v(0) we obtain

f (@)v(0) + mv(0)?

<V (@)v(0) = {(w) + iwm

(4.2.4)

The causality of the function f(w) guarantees that the following condition is satisfied
f(w)v(0) =0
The equipartition theorem states that
m < v(t)v(t) >= kT (4.2.5)
Putting together equations 4.2.4 and 4.2.5 leads to the relation

kT

<v*(w)v(0) >= m

(4.2.6)

Therefore, we obtain the following form for the function {(w)

kT

{(w) = < v*(w)v(0) >

(4.2.7)
The Fourier transform of the mean square displacement is given by
6
F{< Ar? >} = —=F{< v*(0)v(0) >} (4.2.8)
(iw)?
Equation 4.2.8 leads to the relation
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O — (429)
(@)= o Fi< art >) -
The known stoke relation for the drag of a pure viscous fluid [4.2] is given by
{(w)
= 4.2.10
n=e— ( )
Substituting equation 4.2.9 in 4.2.10 we obtain
= kT (4.2.11)
n= (iw)2maF{< Ar? >} o
The complex viscoelastic coefficient is given by
G'(w) =iwn (4.2.12)
This leads to the equation of the G* modulus given by
kT
G*(w) = (4.2.13)

iwmaF{< Ar? >}

Equation 4.2.13 is known as the generalized Stoke-Einstein equation and it relates the
viscoelasticity of a fluid with the mean square displacement of the particles immersed in it. This
equation will be used and implemented to the DMC simulation results of the MSD of the spherical
probe particle, to calculate the viscoelastic modulus G*(w) of the LC systems, as reported in the
results section.

4.3 Mason Approach

In this section, we are interested in describing the approach for measuring the viscoelasticity of a
liquid crystal medium. There are many ways of representing linear viscoelasticity [4.6]. One of
these ways is the so-called generalized Stokes-Einstein equations (GSE), mentioned in the last
section, which can also be written as [4.7]

kT
masL{{(Ar2(t))}

G(s) = (4.3.1)
In equation 4.3.1, t represents time and s repreents its corresponding Laplace coordinate. The
operator L represents the Laplace transform of the mean square displacement (Ar?(t)). The
parameter a represents the radius of the particles.

Equation 4.3.1 gives an analytical way to calculate the linear viscoelastic response of a fluid, by
knowing the mean square displacement, of the particles of the fluid, (Ar2(t)). This approach,
however, cannot be made in a direct manner, since the data obtained from experiments and
simulations are sampled over limited discrete times, due to the complexity of the acquisition
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processing, leading to severe errors. An alternative approach proposed in [4.7] will be used in this
work and described in this section.

The method consists in expanding the function (Ar2(t)) in a Taylor series around a given time t,,
as follows,

(Ar2()) = t%*Oay + a, (t — ty) + ay(t — to)2 + - ]. (4.3.2)
In equation 4.3.2, when t = t,, gives,

(A% (to)) = agty®™, (4.3.3)

Taking only the first term in the series given by 4.3.2 and using equation 4.3.3 leads to,

(Arz (tO)) ta(s).

(Ar?(0)) = totx(s)

(4.3.4)

Now, we will substitute t, = 1/w, in equation 4.3.4. We obtain,

L(wio)) ta(s),

(art() = —2

(4.3.5)
Wo

Here, w, represents a chosen characteristic frequency around which the Taylor expansion is
performed. This choice facilitates the calculation, and the final expressions can be generalized to
any frequency w. Now we will take the natural logarithm at both sides of equation 4.3.5. We
obtain,
In{Ar2(t)) = In (Ar? (wi)> + a(s) In(wy) + a(s) In(t) (4.3.6)
0
Taking the derivative respect with time on both sides of equation 4.3.6, gives
din{Ar?(t))

a(s) dint

(4.3.7)

t=t0

Equation 4.3.7 gives explicitly the value of a(s). We will leave this value pending to be used later
in our calculations. Meanwhile, we rewrite the equation 4.3.5 as,

1
(Ar2(0)) = w, @) (Ar? (w—)> pals), (43.8)
0
and focus in obtaining the Laplace transform of equation 4.3.8. For this we will use the following

equation,

F'(a(s) +1)

L{ta(S)} = gal(s)+1

(4.3.9)
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Substituting equation 4.3.9 in equation 4.3.8 gives

1\ I'la(s)+1)
2 ~ (s) 2( )y —~~~ -7
LA = 00 (r? (o) = (43.10)
Substituting s by iw, in equation 4.3.10, gives
1\ I'la(wy) +1
L{ATE(E))} = (Ar? (—))Mi‘“(“’o). (4.3.11)
Wo iwg
Equation 4.3.11, will allow to rewrite equation 4.3.1 as,
~ kT
G(wy) = ja(wo) (4.3.12)

rra (Ar? (wio)) (e wg) + 1)

Writing i%(©0) = cosg a( wy) + ising a( wy), allows to write the real and imaginary parts, as

well as the magnitude, of equation 4.3.12 as,

kT T

G'(w) = Re|[G(w)] = T cos— a( w) (4.3.13)
a {Ar? (5)> T(a(w) +1)
~ kT m
G'"(w) = Im[G(w )] = T sin= a( w) (4.3.14)
a (Ar? (5)) lNa(w)+1)
kyT

|G(w)| ~ (4.3.15)

ma (Ar? (%)) F[l + (06( w))]

Equations 4.3.13-4.3.15, characterize completely G (s). As we have not imposed any restrictions
on w,, in these equations, we have replaced w, by a general value w.

The above equations will allow us to analytically calculate the viscoelastic response of our
systems, where a tracer particle will be inserted in the fluid medium, assuming that the local
viscoelastic modulus around the sphere is the same as the macroscopic viscoelastic modulus, as
we will see in the results section.

4.4 Implementation of Microrheology in DMC Simulations

As previously stated, microrheology is a technique used to determine the viscoelastic properties of
soft materials by tracking the thermal motion of embedded tracer particles. Unlike conventional
rheology, which applies external forces to measure a material’s bulk response, passive
microrheology relies on the intrinsic Brownian motion of tracers to extract local viscoelastic
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moduli. In this study, we implement a passive microrheology technique using dynamic Monte
Carlo simulations to analyze the local viscoelastic response of the medium surrounding a spherical
tracer within the liquid crystalline phases.

Our approach involves simulating a tracer embedded in a colloidal rod suspension to understand
the influence of local structural arrangements on the system's linear viscoelastic properties. By
focusing on both the elastic modulus G'(w), and the viscous modulus G” (w), obtained from
|(7 (w) |, as the real and imaginary parts, respectively, we aim to study the relation between phase
ordering and the viscoelastic behavior of the surrounding medium. In addition, we will explore the
effects of long-range interactions by introducing dipoles into our simulations, allowing us to assess
their impact on the viscoelasticity of the liquid crystalline phases.

To accomplish this, we first define the translational diffusion coefficient of the tracer at infinite
dilution, D;, which is estimated from the Stokes-Einstein equation. It is expressed as

_Dyo

=—— 4.4.1
‘T 3nd, (4.4.1)

The diameter of the tracer used in the simulations is d; = 1o. A correlation between the tracer
size and the viscoelastic response has been reported in previous works [4.8]. Based on this, we
selected the appropriate tracer size to obtain accurate results.

We performed simulations containing N,, = 999 rods and N; = 1 embedded spherical tracer. The
packing fraction is given by ¢ = (N, V. + V;/V) where oV, = no3/6 + mo?L/4 and V, =
nd,> /6.

For a system containing rods and a spherical particle, the Brownian dynamics time can be derived
from the rescaling of the MC time of the individual components as follows

A A
6tBD = ?t(stMC’t == ?r(stMC’r (4‘42)

In equation 4.3.2, A; and A, represent the acceptance rates for the tracer and the rods, respectively.
Thes rates are determined at fixed MC times &ty and &ty . Although the two species in the
simulations have different MC timescales, these must be rescaled to the same BD timescale. To
achieve this, we establish a fixed MC time step for the rods and then calculate the MC time for the
tracer as well as A; and A, until eq converges, with the following expression

Ay
atMC,t = A—(?tMC'r (443)
t

We set the values for the MC time of the rods as 10-3 and recalculated the MC time step for the
tracer in each simulation with the eq anterior

We performed simulations where we calculated 5000 trajectories with 10> MC cycles to calculate
the mean square displacements in each phase.
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The MSD is used to calculate the viscoelastic response of the system, which can be derived from
the shear moduli given by the equation deduce in the previous section and given in Ref. [4.5]

kgT

|G(w)| ~ wa(ar?(S)Hr{1+(al w)]

(4.4.4)

Similar as in our MC simulations described in previous chapters, we performed NVT simulations
in a cubic box with periodic boundaries. Using equilibrium configurations, we investigated the
dynamics of the tracer to calculate the coefficients G'(w) and G" (w).

The microrheology simulations provide insights into the complex interactions that influence the
rheological characteristics of these phases. By examining these interactions, we enhance our

comprehension of the behavior of liquid crystalline phases. The results of this analysis will be
detailed in the rheology results section.

5 Long- range interactions

There are two main approaches to studying long range interactions. The first one, is the so-called
Ewald summation, in which the particles are constrained in a squared cavity. In this technique the
total electrostatic energy of the system is divided into two parts: a short-range contribution that is
computed directly in real space, and a long-range contribution that is calculated in reciprocal space
[5.1]. By doing so, it efficiently accounts for the interactions between all charged particles in the
system, regardless of their separation distance.

The second approach is the reaction field method, in which the particles are surrounded by a
spherical cavity and a reaction field is produced due to the polarization of the dielectric medium
[5.2]. In this work we are going to focus on the last method, and it will be implemented in the
Monte Carlo simulations to study the long-range interactions within the liquid crystal particles.

Long-range interactions in physics and chemistry refer to forces that act between objects or
particles over significant distances, typically extending beyond the immediate vicinity of the
interacting entities. These interactions are characterized by their influence not being limited to
short distances and often follow an inverse square law, meaning they decrease with distance but
can affect objects far apart.

In the context of liquid crystals and computational simulations, long-range interactions are
important in understanding the behavior of liquid crystals. Liquid crystal molecules exhibit long-
range orientational order, where their orientations are correlated over relatively large distances.
This behavior is influenced by intermolecular forces like dipole-dipole interactions, van der Waals
forces, and Coulombic forces, which have a long-range nature. These interactions play a crucial
role in maintaining the ordered structure and alignment of liquid crystal molecules.
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In computational simulations, such as molecular dynamics or Monte Carlo simulations, accurately
representing long-range interactions is essential for modeling the behavior of liquid crystals.
Specialized techniques, like the methods previously stated. These methods account for the long-
range nature of forces like electrostatic interactions, ensuring that simulations provide realistic
insights into the behavior of liquid crystals.

Long-range interactions are fundamental in understanding the behavior of liquid crystals. In
computational simulations of liquid crystals, accurately modeling these long-range interactions is
critical for capturing their characteristic ordered structures and alignment, allowing researchers to
predict and study the properties and behavior of these materials.

5.1 Dipolar potential

In this study we will use the reaction field method to calculate the long-range dipolar-dipolar
interaction between the particles in the liquid crystal mesophases. The results obtained,
considering these interactions, will allow us to characterize more precisely the viscosity of the
liquid crystal mesophases, as it will allow to include in our simulations the formulas for the
viscoelastic coefficients deduced in the previous sections. For these calculations we will require
the analytical expression of the dipolar potential, which we will review briefly in the following
paragraphs.

The analytical expression of an electric field due to two punctual charged particles forming a dipole
is given in [5.3]. For convenience, a brief description follows.

Referring to figure 5.1.1, the electric field at point P can be written as,

E

q {r—ra—l r—ra}

= - 5.1.1
dagaUr—r, =13 |r—ry)3 ( )
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Figure 5.1.1 Two point particles with charge +q and -q. The electric field due to these particles is
calculated at P.

In figure 5.1.1, q and -q are the charges of the positive and negative particles, respectively,
positioned as depicted.

The denominator in equation 5.1.1 can be written as,

1y — U3 = {(r =1y (r =1y — D} 3. (5.1.2)

The dot product in equation 5.1.2 can be expanded in terms of r — 1, as,

r—r,=U3={(r-r)*+1?-21-(r— ra)}_%. (5.1.3)

In equation 5.1.3, I? is very small, therefore 5.1.3 can be approximated to,

3
r—r, =l 3 ={(r—-r)*>—-21-(r—ry)} 2 (5.1.4)
Factorizing the term (r — r,) ™2 in equation 5.1.4 gives,

21-(r—ry)__3

r—r,— U3 =0-1r)31- CETRE 172 (5.1.5)

Expanding into a Taylor series the right term of equation 5.1.5, leads to,

3l (r— ra)}

— (5.1.6)

r—r, =l 3 =|r—ry3 {1 +
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Substituting equation 5.1.6 in equation 5.1.1, the electric field takes the form,

E=—1 {lr—ra|‘3{1+w}(r—ra—l)—l}. (5.1.7)

4me |r —1g|? lr —ry|3
0 a a

Equation 5.1.7 can further be rewritten as,

r—r,—l 3l-(r—r)(r—r,—1 r—r
o1 a (r—ryr—r, -0 a | (5.1.8)
dmey ((r—7rg)? [r —1gl° lr —7r,l?
Equation 5.1.8 can be written as,
r—r,—l -3l-(r—r)l+3l-(r—ry)(r—r r—r
_ q a n ( ) ( a)( a) _ a (5.1.9)
dmey ((r—1g)? [r—14° lr — 7.3
In equation 5.1.9 we can neglect terms of order of 12, leading to,
3-(r—ry)r—r l
=1 r=7r)r—1a) . (5.1.10)
4me [r —7ql° (r—ry)?
Finally equation 5.1.10 can be written as,
3p-(r—ry)(r—r
me [r —7q|° (r—ry)?

In writing equation 5.1.11 we have defined p = ql, which represents the dipolar moment.

Finally, we will define a normalized vector n = r — r, /|r — r|. Therefore 5.1.11 can be written
as,

1 3n'p P }
= — 5.1.8
47‘[80{ Ir—ra|3]n r —ry|3 ( )

Equation 5.1.8 gives explicitly the analytical expression for the electric field as a function of the
p,n and r,. We will require this equation for the calculations of the reaction field that will be
described in the following chapters.

5.2 Onsager reaction field

In the previous section we calculated the electric field E at a point 1, due to a dipolar particle. This
expression is given by

65



Chapter 5

3 . —
ponlpn)—p

521
|7 — 103 ( )

Where p is the dipole moment of the particle and n is the unit vector along the direction from r
to Try.

The corresponding electric potential at 7 is given by

p.'n
(o) = =~ (5.2.2)
In equation 5.2.2, 1, is defined as
Py (ro) = (5.2.3)
|7 — 1]
And the dipole operator is defined as
0p,=-p-V (5.2.4)

For a second particle located at r2 interacting with the potential in equation 5.2.1, the interaction
potential will be given by

Yo(r) = —p2 - Vb = —(p2* V)2 - Vy (5.2.5)

This expression indicates that the pair interaction between point dipoles is obtained by applying
the dipole operator 0,, twice to equation 5.2.3

The potential ¢ must be a solution to the Poisson equation.

V2 = —:io (5.2.6)

Where p is the charge density. This requirement is relevant when simulating systems interacting
with the potential 1. Since this is a potential of a long-range nature, simulating systems
interacting under the influence of this potential needs to include the surrounding mediums effects.
The system that we will simulate will consist of the dipolar particles within the cell surrounded by

a medium which interacts with the particles. To model these interactions, we will use the reaction
field method.

To model the interaction with the surrounding medium, we transform the potential ), into an

effective potential ¥, ¢r. This effective potential must be consistent with the Maxwell equations,
and it also must approach 1), as the number of particles N approaches infinity.
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The effective potential Y, can be described using the Green function G(r4, 7). The general
solution to the Poisson equation for a unit point charge inside a volume Vis given by

G(ry,1m3) = Yepr + F(ry,13) (5.2.7)
Where F(r,,1,) satisfies
V2F(r,,1ry) =0
The function F(ry, 1,) represents the potential of a system due to localized charges outside the

volume V. For a dipolar system we can obtain similar results by applying the dipole operator
twice to obtain

Yo = Yerr + Ys (5.2.8)
Where
Yerr = —(01 V(P2 - V)G(ry,12) (5.2.8a)
And
Ys = —(P1- V) (P2 - VIF(ry,12) (5.2.8b)

In the reaction field (RF) method, each dipole is surrounded by a spherical cavity filled with a
continuum medium characterized by a dielectric constant €. This medium is polarized by all
dipoles within the cavity, creating a reaction field inside it. The interaction between a central dipole
and another dipole within the cavity is described by the standard free-space interaction plus the
additional energy from the reaction field. The interaction with dipoles outside the cavity is
considered negligible, simplifying the simulation.

Since the particles inside the cavity will polarize the medium, in turn will create a reaction field
that will interact with the particles. This field is called the reaction field.
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Figure 5.2.1 Dipolar particle surrounded by a dielectric medium with dielectric constant €. The
dipolar field and the reaction field are acting within the sphere.

In figure 5.2.1 €, is the dielectric constant of the surrounding medium, E, is the electric field and
Egp is the reaction field.

The field Egy interacting within the particles inside the cavity is given by

Err(0) = (2€s+ 1) ZP, (5.2.9)

The energy of interaction between the central dipole and the reaction field is given by

Y, = —p; - Egr (5.2.10)

Where the contribution to the total energy due to the reaction field is given by
1
Urr = Ez Y; (5.2.11)
J

The other contribution to U comes from the free space interaction 1), between the central dipole

and all the other dipoles inside the cavity, assuming that for dipoles outside the sphere the
contribution is null.

The effective pair interaction associated with this model is
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2
€ — Tij
lpeff = — (i V)(p] V) <2€S n 1>R_C3#(5212)
Which can be written as
eff =0 \2e,+1) R L

For |rl-j| < R; and Y,rr = 0 for |‘rij| > R..

The potential is of the form of equations (5.2.8 (a-b)) so that we can identify a Green function that
is obtained as the free space term plus a term that satisfies the Laplace equation inside the volume
under consideration.

The simulation of dipolar systems interacting by the potential given by equation last can be carried
out using aspherical truncation. This truncation must be done for R. < L/2. The dielectric constant
is another parameter that must be adjusted. A self-consistent method is a convenient way of making
the method more efficient.

To carry out the self-consistent method we start by giving an arbitrary value to the dielectric
constant and it is updated at regular intervals. For the calculation of €, we will use the Clausius-

Mossotti expression that is derived in the following paragraphs.

Let’s start with the polarization vector in a medium that is defined as the dipolar moment per unit
volume as,

M
P =<1->=Py+(VP) e (5.2.14)

Where P, denoted the initial polarization and e, is the external field vector.

The polarization can be calculated using the following expression

%fe_B(T'FUVDW"'UE"'eOM) d,r.N

b= fe_B(T+Uvow+UE+eoM) drN (5.2.15)
Where we have defined the Hamiltonian H as,
.7'[ = T + UVDW + UE + eoM (5216)

Where Uy pyy is the energy related to the short-range interactions, Uy denotes the energy due to the
dipole-dipole interactions and eyM accounts for the reaction field energy. M represents the total
dipole moment, and it is calculated by the sum of the individual dipoles as
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M = Ua (5.2.17)

M=

a=1
The partition function Z of the system is expressed as
Z = ZigealQ (5.2.18)
Where Q is given by
1
Q=vy e PZarV (5.2.19)
To simplify notation, we define the numerator of equation 5.2.15 as

M
G = 7 f e P drN (5.2.20)

To calculate the total polarization of the system given by equation 5.2.15, we first calculate VP

VP-V(G)—VG GVQ (5.2.21)
Q Q @ o
Evaluating the necessary terms, we find
MZ
VG =g f 7e-ﬂﬂ drV (5.2.22)
And
VQ = MpB J e BH garN (5.2.23)

Putting together results 5.2.22 and 5.2.23 into equation 5.2.21 we obtain VP is given by

M2 _
_ﬁfTe Plar M B[ Me ¥ arV

VP = < => 5.2.24
[ e P drN v [e B drN ( )

This can be simplified to the form
VP = §{< M? > —< M >?%} (5.2.25)

Substituting this result into equation 5.2.14, we obtain
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M B
P =< 7> P, + V{< M? > —< M >?%}-¢, (5.2.26)

The polarization vector is related to the electric field E through the susceptibility X as
P =XE (5.2.27)
For an isotropic medium, according to electromagnetism, the displacement D is given by
D =E + 4mP (5.2.28)
Using together equations 5.2.27 and 5.2.28 we obtain
€E = E + 4nXE (5.2.29)

The systems response to an electric field can be expressed as
P=P,+ Ef)((r)dr (5.2.30)

By comparing equations 5.2.30 and 5.2.26 and making an expansion around the external field e,
we find the following expression

fx(r)dr = §{< M? > —< M >?%}- ¢ (5.2.31)

According to [5.4], for an isotropic dielectric medium, the susceptibility y is expressed as

(r)=13(€_1) (5.2.32)
X 4 \e + 2 o

Inserting equation 5.2.32 into equation 5.2.31 we obtain

C :L ;) =yg (5.2.33)

Where vy is usually defined as 4mpu?/9kT and g is defined as g = §{< M? > —< M >?%}- ¢,

Equation 5.2.33 is the Clausius-Mossotti equation [5.4][5.5] where € is the macroscopic dielectric
constant of the material, €, is the static dielectric constant, which reflects the response of the
material to an external electric field at low frequencies and yg represents a term related to the
reaction field in the material. This equation will be implemented in the code to calculate the long-
range interactions of the liquid crystal systems as we will see in the results section.
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The Clausius-Mossotti equation describes how the material's ability to polarize in response to an
applied electric field influences its overall dielectric behavior. This relationship is crucial for
understanding the dielectric properties of materials and their response to external fields [5.6][5.7].

This equation along with the reaction field method, used in physics and chemistry, is a theoretical
approach used to describe the influence of surrounding molecules or charges on a specific molecule
or ion within a medium. It represents the collective effect of the environment on the properties of
a solute, such as its electrostatic interactions or energetics. The reaction field accounts for the
polarizability and charge distribution of the medium and is often used in the study of solvation,
molecular interactions, and related phenomena, especially in the field of statistical mechanics and
molecular simulations. This method will be implemented in the Monte Carlo simulations to add
the long-range interactions acting between the colloidal particles.

In the following section we describe our simulation procedures and the results.

6 Results for the non-dipolar case

6.1 Structural properties

The first part of the study presented here consisted of performing MC simulations to stabilize the
two different mesophases of the liquid crystals, nematic and smectic, referred to in the above
chapters, to characterize their structure. To this end, MC simulations were carried out for five
different temperatures T* = 5,10, 15 and 20 for both phases. The number of MC cycles was 10000
in each simulation. The equilibrium state was considered achieved when energy was stable within
statistical fluctuations

We calculated structural properties, the radial distribution function along the parallel and
perpendicular directions to the director vector to distinguish between the positional and
orientational order of the particles and the order parameter the measure the degree of positional
order [6.1].

The results for the distribution functions in parallel and perpendicular directions to the director are
shown in Figures 6.1.1 and 6.1.2, respectively.
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Figure 6.1.1 Pair correlation functions perpendicular to the nematic director. Nematic phase(top)
and smectic phase(bottom) at T* = 5,10, 15 and 20. Insets a) and b) in the bottom frame
correspond to two representative states of the plots, taken at T* = 10 for the nematic and

smectic phases at densities p* = 0.12 and 0.15, respectively. The highest peak corresponds to
the lowest temperature (T* = 5), and the peak heights decrease progressively as temperature
increases in both phases.

Figure 6.1.2 Distribution function in parallel direction to the nematic director at T* =
5,10, 15 and 20. Dashed lines and symbols correspond to smectic and nematic phases,
respectively. The highest peak corresponds to the lowest temperature and the peak heights
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decrease progressively as temperature increases. Smectic phases exhibit more pronounced
periodic peaks, while nematic phases show a smoother decay. Equilibrium densities are p* =
0.12 and p* = 0.15 for the nematic and smectic phases, respectively.

Densities are expressed in reduced units and defined as p* = 03N /V, where N is the total number
of particles, V the volume of the system and ¢ the diameter of the rod.

Figure 6.1.1 reveals that both nematic and smectic phases resemble a typical fluid-like behavior in
the perpendicular direction, with the first peak appearing at around one diameter length (r/o =
1). After this point, the amplitude of the fluctuations decays exponentially, such that g, (x,y)
stabilizes to a value of one approximately after three diameters length (r/o = 3). As the
temperature increases from T* =5 to 20, the peaks flatten, and the fluctuations decay at
progressively shorter distances. This result is expected since higher temperatures lead to less
ordered phases causing a smaller peak near the central particle. This behavior is similar for both
phases.

Figure 6.1.2 shows periodic correlations that indicate the layered structure typically seen in smectic
phases. It is observed the presence of three peaks for the smectic phases (T* = 5,10, 15 and 20)
indicating the clear formation of layers, whereas in the nematic phases the function is almost a
constant since in these phases the particles are not ordered in a layered structure.

In the smectic phase, each peak corresponds to a layer where particle density is at its maximum.
In contrast, the spaces between layers are almost entirely empty, with a very low probability of
finding particles in these regions.

Increasing the temperature significantly affects the density distribution in the smectic phase but
has a negligible impact on the nematic phase, which shows no evidence of positional order at any
of the studied temperatures.

We also calculated the order parameter for the different temperatures. These results are shown in
the following table

T S, Nematic S, Smectic
5 0.87 0.96
10 0.86 0.96
15 0.84 0.94
20 0.82 0.93

Table 6.1.1. Order parameter (S,) obtained for different reduced temperatures (T*).

The results in table 6.1.1 show that the order parameter for nematic phases is lower than the
corresponding one of the smectic phases, as expected. The order parameter also decreases with the
temperature for both phases.
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6.2 Dynamic properties

Now that we have established the structural differences between the nematic and smectic phases,
we now examine how these distinctive morphological features affect their dynamic behavior.

As previously described, the system comprises N=1000 rods. The units used in our simulations for
the time will be rescaled by a factor T defined as T = 62/D,,, where Dy = kT /uo is a diffusion
constant and u is the viscoelastic coefficient of the solvent.

To calculate the dynamic behavior of our systems, we first calculated the MSD in the direction
parallel and perpendicular to the nematic director and after this, we calculated the long-time
diffusion coefficients. To this end, we ran DMC simulations at different values of the MC time
step, between 8ty = 107> and 1072, and then, we applied Equation (3.6.9) to rescale the results
and recover the unique BD time scale [3.9]. The rescaled MSDs collapse into a single master curve
as shown in Figure 6.2.1, where we report the parallel MSD in the smectic phase at T* = 10.
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Figure 6.2.1 Mean square displacement in the smectic phase at T* = 10 in the direction parallel
to the nematic vector. Dotted, dashed and long-dashed lines refer to independent DMC
simulations at T* = 5, and 8ty = 107°,1073, and 1072, respectively. Solid lines have been
obtained by rescaling the corresponding dashed lines according to Equation (3.6.9)

The re-scaling procedure to obtain the MSD across the whole spectrum of relevant time scales is
the same for all the remaining systems.
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The resulting master curve is obtained by superimposing four separate rescaled MSDs (dashed
lines) calculated from DMC simulations at times S8ty = 107°,107%,1073,and 1072.The
calculated MSD shows an initial diffusive regime, primarily influenced by the particle geometry.
This is followed by an intermediate time regime where the neighboring layers form a cage around
the particles the presence of neighboring layers form a sort of cage around the particles, slowing
down diffusion Finally, a long-time diffusive regime develops fully at t/7 > 1, where the MSD
exhibits linear behavior. Similar behavior has also been detected at the remaining temperatures
T* =5,8,12,15 and 20 with some differences observed in the extension of the cage effect and
the onset of the long-time diffusive regime.

In particular, the effect of temperature on the MSD is clarified in figure 6.2.2, where we report
parallel and perpendicular MSDs in nematic (top frame) and smectic (bottom frame) LCs at T* =
5 and 20, that are the lowest and highest temperatures studied.
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Figure 6.2.2. Mean square displacements in nematic (top frame) and smectic (bottom frame) LCs
at T* = 5 (circles) and T* = 20 (triangles). Open and solid symbols refer to perpendicular and
parallel direction, respectively.

To appreciate better the behavior of the plots, we do not show the parallel and perpendicular

MSDs at intermediate temperatures, which exhibit a profile in between those reported in figure
6.2.2 for nematic and smectic phases.
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We also notice that, in the nematic phase, at short time scales the relationship between parallel and
perpendicular MSDs is such that & = Ar} /Arlf > 1, while it inverts at intermediate time scales,
when the parallel MSD becomes larger and stays so up to the long-time diffusive regime. This
behavior has also been reported in Brownian dynamics simulations of soft repulsive rods at T* =
1.465 [6.2], a temperature at which the phase behavior of soft spherocylinders can be mapped on
that of hard spherocylinders [6.3]. The dominant character of the long-time parallel diffusion has
also been observed experimentally in N phases of rod-like viruses [6.4], but less clear is whether
this tendency already exists at short time scales as observed in simulations. To gain an insight into
the effect of temperature on the ratio between perpendicular and parallel diffusivities, we have
calculated the time when the crossover from & > 1 to £ < 1 is observed. Such an inversion time,
referred to as t;, does indeed change with temperature and the results are shown in figure 7.2.3.
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Figure 6.2.3 Inversion time between parallel and perpendicular MSD of the nematic phase.
Symbols correspond to simulation results and the solid line is a fitting exponential function.

We observe that t; is relatively large at low temperatures and then gradually decreases following
an exponential law of the type t;/t = A + Bexp(—CT), where A = 0.40, B=1.51 and C =0.37
are fitting parameters. It is evident that at large enough temperatures, t; tends to a constant value,
approximately equal to 0.407, that will not change significantly up to the isotropic-nematic
transition temperature.
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6.3 Self-diffusion

The MSDs are used to calculate the long-time self-diffusion coefficients and their dependence on
temperature. More specifically, parallel and perpendicular self-diffusion coefficients in N and Sm
phases were obtained from the slope of the corresponding MSDs in the long-time diffusive regime:

. 1d<3n®)-n0)]*>

where d = 1 or 2 denotes the dimensionality of particle dynamics associated to the parallel or
perpendicular MSD, respectively. By contrast, the total self-diffusion coefficient has been
calculated as Dr = (D, +2D,)/3. The dependence of the self-diffusion coefficients on
temperature in N and Sm phases is presented in the two frames of Figure 6.3.1.

In(D/Do)

0.05 010 015 020
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Figure 6.3.1 Total (Dr), parallel (D)) and perpendicular (D, ) self-diffusivities, represented with
triangles, squares and circles, respectively, as a function of the reduced temperature in the N (a)
and Sm (b) phases. Solid lines are exponential fits of the type D/Dy = D*exp(E*/T™*), with
D* =1{0.0621,0.0196,0.0328} and E* = {11.5901,12.1927,11.6009} for parallel,
perpendicular and total self-diffusivities, respectively, for the nematic states, and D* =
{0.0308,0.0167,0.0129} and E* = {42.243,12.1584,12.948} for parallel, perpendicular and
total self-diffusivities, respectively, for the smectic states.

In agreement with previous molecular dynamics simulation of liquid crystals [6.5], we find that
the three sets of long-time self-diffusion coefficients exhibit a dependence on T* that is well-
described by an Arrhenius-like exponential law, that reads D/D, = D*exp(E*/T™), with the
preexponential factor D* and activation energy E* fitting parameters. We also observe that the
dependence of D, on temperature is very similar in both N and Sm phases. At a given temperature,
most likely due to the packing difference between the two LC phases, the numerical value of D
is slightly larger in the N phase than in the Sm phase, but otherwise D; = D, (T) exhibits the same
exponential trend, with very similar fitting parameters, in both frames of Figure 6.3.1.

On the other hand, the diffusion along the director is significantly slower in the Sm phase (E* =
42) than in the N phase (E* = 11) by almost one order of magnitude, most likely due to the layered
structure that hampers the penetration of the rods and thus delays their diffusion along the nematic
director. These findings are in qualitative agreement with former theoretical, simulation and
experimental works that clarified the existence of free-energy barriers hampering the diffusion of
rod-like particles through Sm layers [6.6-6.11].

Therefore, while SRS particles in the N phase preferentially diffuse in the direction of the nematic
director, in the Sm phase they are essentially constrained in a two-dimensional space, especially
at T* < 10, where D is almost negligible.

6.4 The Van Hove function

We now turn our attention to the probability of observing particles that displace significantly
shorter or longer distances than the average particles over the same period of time. The existence
of such particles, here referred to as fast or slow, is corroborated by the computation of the s-VHFs
along the nematic director and perpendicularly to it, as given, respectively, in the following
equations

N
1
G, (r,t) = N—(Z §(z — [zt + to) — z(t)]) (7.4.1)
T =
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N
Go(r t) = Ni<z §(r — [r:(t + to) — 1;(t)])) (7.42)
r =

Where z and r = /x? + y? are the particle center-to-center distances in the direction of n and
perpendicularly to it, respectively, and § is the Dirac delta function.

To illustrate these calculations, we show the s-VHFs at t/t = 10, a time that is sufficiently long
to observe the relevant dynamical features of both N and Sm phases across the whole spectrum of
temperatures studied. These results for the s-VHF for N and Sm phases in parallel and
perpendicular direction, respectively, are shown in Figures 6.4.1 and 6.4.1
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Figure 6.4.1 Self-part of the van Hove function at a time t/7 = 10™* in N (bottom) and Sm (top)
phases along the nematic director at scaled temperatures T* = 5, 8,10, 12,15,17 and 20.

80



Chapter 6

|- Illllll

- A lllllll

11

g g S

r/io

Figure 6.4.2 Self-part of the van Hove function at a time t/7 = 10™* in N (bottom) and Sm (top)
phases in planes perpendicular to the nematic director for scaled temperatures T* =
5,8,10,12,15,17 and 20. Symbols as in figure 6.4.1.

In particular, the parallel s-VHF of Sm LCs, shown in the top frame of Figure 6.4.1, displays
periodically peaked profiles that follow the typical layered structure of this phase. At increasing
temperatures, from T* = 5 to 20, these peaks become less and less pronounced, suggesting a more
uniform probability of finding particles at any distance along the nematic director. Nevertheless,
at relatively low temperature, with the smectic layers well defined and less prone to density
fluctuations, the profiles unambiguously suggest that particles preferentially jump from layer to
layer and almost no particles are observed in between. For instance, at T* = 5, while most particles
are still in their original layer (primary peak), there exist especially fast particles that succeeded in
diffusing, over the same period of time, to a contiguous layer (secondary peak). This is also
observed at larger temperatures, but the difference between the height of primary and secondary
peaks gradually softens and eventually disappears at T* = 20.

The bottom frame of Figure 6.4.1 reports similar s-VHFs for the N phase. In this case, profiles
with a maximum at z = 0 and monotonic decay at relatively long distances are observed. Most
particles are therefore at or very close to their original position, with few of them fast enough to
be displaced substantially larger distances over the same time window. With increasing
temperature, more and more particles are able to move longer distances and correspondingly, less
and less are found at their original location.
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Finally, the perpendicular s-VHFs shown in Figure 6.4.2 for N (bottom frame) and Sm (top frame)
phases reveal the presence of an interesting variety of particles. At t/T = 10™*, most of them have
left their initial position, as indicated by the peak of the distribution. These particles coexist with
others that either remained very close to their original location or displaced significantly larger
distances. Upon increasing temperature, the probability of observing such slow and fast particles
becomes more and more uniform and would eventually become space-independent at very large
temperatures, at which the system would transform into an isotropic phase.

6.5 Intermediate scattering function

Temperature also plays a key role in determining the time scale of the structural relaxation of the
system. This has been estimated by computing the s-ISF in the direction parallel and perpendicular
to n. The s-ISFs of N and Sm phases are respectively shown in Figures 6.5.1 and 6.5.2.
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Figure 6.5.1. Temperature dependence of the self-part of the intermediate scattering function in
the N phase along the nematic director (top frame) and perpendicular to it (bottom frame).
Symbols indicate simulation results, while solid lines are stretched-exponential fits. All s-ISFs

have been calculated at wave vectors q,0 = 1 and /(qx2 + q,%)o ~6. Dashed line corresponds

to the 1/e value where relaxation of iSF is commonly measured.
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Figure 6.5.2. Temperature dependence of the self-part of the intermediate scattering function in
the Sm phase along the nematic director (top frame) and perpendicular to it (bottom frame).
Symbols indicate simulation results, while solid lines are stretched-exponential fits. All s-ISFs

have been calculated at wave vectors q,0 = 1 and ’(qx2 + q,%)o ~6. Dashed line corresponds

to the 1/e value where relaxation of iSF is commonly measured.
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In figures 6.5.1 and 6.5.2, both have been calculated at the wave vectors corresponding to the peak
of the static structure factor, which are q¢ = (0,0,q,) with q,0 = 1 for the parallel s-ISFs and

q = (4x,qy,0) with ’(qx2 + q,%)o =6 for the perpendicular s-ISFs.

Both LC phases exhibit a relevant difference between parallel and perpendicular relaxation, with
the former taking up to 2 to 3 extra time decades. In all the cases studied, the decay of the s-ISFs
closely follows a stretched-exponential function of the form exp [—(t/t,)?], typically observed
in dense fluids [6.12], with t,. and f fitting parameters. In particular, the exponent f is
approximately between 0.6 and 0.7 for F; ., and between 0.8 and 0.9 for F; ,, suggesting a more
stretched decay in planes perpendicular to the nematic director than in the direction parallel to it.
These values agree well with those reported in previous simulation of hard spherocylinders
[6.4][6.5].

While the dependence of f on temperature is relatively mild, the relaxation time t,., arbitrarily
defined as the time at which F;, = 1/e, changes significantly with the temperature as can be
inferred from Figure 6.5.3, where In (t, /1), is plotted as a function of In (T*),. The so-calculated
relaxation time exhibits a power-law dependence on T* that holds in both Sm and N phases.
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Figure 6.5.3. Relaxation times for Sm (top frame) and N (bottom frame) phases. Open and solid
symbols refer respectively to structural relaxation perpendicular to the nematic director and
parallel to it. Solid lines are fitted functions of the form t,./t = b - T** where a =-1.36 and

b=2980.

6.6 Effect of modifying the Kihara potential on phase behavior

The particles simulated in this work interact via a shifted and truncated Kihara potential, as
mentioned before. This potential is commonly used to model soft repulsive rod-like particles,
capturing essential features of their phase behavior. In standard implementations, the repulsive
interactions follow an exponent of 12-6, analogous to the Lennard-Jones potential. However, in
this section, we explore the impact of modifying these exponents to 10-4 in order to examine the
sensitivity of the phase diagram to the range and strength of the repulsive interactions.

The effect of modifying the interparticle interactions in liquid crystal systems has been extensively
studied in the literature. It is well known that the introduction of soft repulsive interactions can
significantly alter the stability of the different mesophases. For instance, in Ref [3.11] studied soft
repulsive rods and demonstrated that temperature plays a crucial role in determining the stability
regions of isotropic, nematic, and smectic phases, in contrast to hard-rod systems where the phase
behavior is primarily controlled by density alone. This motivates the exploration of how changing
the Kihara potential exponents affects the phase transitions in our system.
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We performed constant-temperature Monte Carlo (MC) simulations in the NPT ensemble at T* =
5, where we systematically varied the pressure of the system. As the pressure was adjusted in the
input parameters, the simulation box volume fluctuated accordingly, allowing us to explore the
resulting phase behavior. This approach enables the identification of phase transitions by analyzing
the equilibrium density at different pressure values.

In this study, we investigate the effect of modifying the exponents of the Kihara potential from
(12,6) to (10,4) to assess how changes in the range and softness of the repulsive interactions
influence the phase diagram. The modified potential retains the same functional form as the one
described in Section 3.4, but with different exponents. Specifically, its mathematical representation
is given by:

o \1° ag\* 1
Ul-j(rl-j,ul-,uj) = dm dm 4

0 dn > V20,

(6.6.1)

where d,, represents the shortest center-to-center distance between two spherocylinders,
considering their orientations.

We find that modifying the exponents from (12,6) to (10,4) leads to slight shifts in the phase
diagram. The figure below presents the resulting phase diagram at T* = 5 where different liquid
crystal phases (isotropic, nematic, and smectic) are identified along with representative snapshots
of particle configurations in each phase. The modifications to the potential result in changes in the
pressure-density relationships, affecting slightly the locations of the isotropic-nematic (I-N) and
nematic-smectic (N-Sm) transitions. Specifically, the nematic phase appears to be more stable
across a broader range of densities compared to the standard Kihara potential, while the smectic
phase remains well-defined but with slight shifts in its stability region.
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Phase Diagram of Modified Kihara Potential at T* =5
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Figure 6.6.1 Phase diagram obtained from NPT Monte Carlo simulations at T* = 5 for a system
of spherocylinders interacting via a modified Kihara potential with exponents (10,4). The
different symbols represent the identified phases: black circles correspond to the isotropic phase
(I), red squares to the nematic phase (N), and blue triangles to the smectic phase (Sm). The
vertical lines indicate the approximate locations of the isotropic-nematic (I-N) and nematic-
smectic (N-Sm) transitions. The snapshots show representative configurations of the system at
different pressures, illustrating the structural differences among the phases

These observations help as a reference for understanding how the introduction of additional
interactions, such as dipolar interactions, might further modify the phase diagram. Dipole-dipole
interactions are known to promote the formation of smectic and ferroelectric phases in rod-like
systems, as evidenced in previous studies [5.5]. By first examining how variations in repulsive
interactions alone influence phase stability, we can better anticipate the effects of long-range
attractive and anisotropic interactions, which are explored in later sections of this work.

7 Results for the dipolar case

In this chapter, we present the results obtained from DMC simulations for rod-like particles with
a permanent dipole moment, investigating the influence of long-range dipolar interactions on the
structural and rheological properties of the system. This analysis builds upon previous studies of
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non-dipolar systems, where particles interacted exclusively via the Kihara potential. By
incorporating dipolar interactions using the reaction field (RF) method, we aim to determine how
these long-range forces modify both the static and dynamic behavior of the system. This approach
allows us to simulate the effect of the surrounding medium on the dipolar interactions within a
finite simulation cell, as previously discussed in chapter 5.

Simulation Setup and Parameters Selection

MC and DMC simulations were performed on systems of N rod, each possessing a central,
permanent dipole moment aligned along the main axis of the rod. To account for dipolar
interactions within a finite simulation box, we employed the reaction field method, which
approximates the effect of an infinite medium by surrounding each particle with a dielectric
continuum. This approach ensures a more realistic treatment of long-range dipolar interactions,
mitigating the limitations imposed by periodic boundary conditions.

The reaction field method requires optimizing two key parameters: the cutoff radius R, and the
dielectric constant of the surrounding medium €. The choice of R, is constrained by the
dimensions of the simulation box, ensuring that the spherical cavity enclosing each dipole remains
fully contained within the parallelepiped simulation cell. Following previous studies, we set R, =
Lmin/2 where Ly, = min {Ly, L,, L,} represents the smallest edge length of the simulation box.
This choice maximizes the volume of the cavity while preserving the consistency of the RF
potential within periodic boundary conditions.

For the dielectric constant €5, we employed a self-consistent iterative approach [5.5], where €, is
periodically updated based on the simulated dielectric properties of the system. This method
ensures a more accurate representation of the surrounding continuum, as the dielectric response of
the system evolves throughout the simulation. Specifically, we initialized the simulation with an
estimated value of €4 and recalculated it every 103 Monte Carlo cycles using the Clausius-Mossotti
fluctuation formula (5.2.33).

This iterative process converges to a stable €, , ensuring that the reaction field method accurately
captures the dielectric screening effects.

Each simulation was equilibrated over 10 Monte Carlo cycles. One Monte Carlo cycle consisted
of N trial moves, including translational and rotational displacements of the rods.

The strength of the dipole is represented by the dipole moment value ¢ = 1. The dipole moment

Hreal

is given in reduced units, expressed as y = Teokto where g, is the permittivity of free space, k is
&o g

the Boltzmann constant, T the temperature of the system and o the particle diameter.
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Figure. 7.1 Representation of a dipolar particle with a central permanent dipole moment. The
dipole is aligned with the major axis of the rod, as indicated by the arrow.

Previous studies have shown that dipolar interactions become more significant at lower
temperatures [5.5], especially in liquid crystal systems. By comparing the results from both
temperatures, we aim to better understand how dipole-dipole interactions affect the mechanical
and dynamic properties of the system

To evaluate the impact of dipolar interactions, we analyzed key structural and rheological
properties in both dipolar and non-dipolar systems, including order parameter, MSD, self-diffusion
coefficients and viscoelastic moduli.

By introducing dipolar interactions, we observe a significant modification of the system’s
response. Notably, the presence of dipole moments leads to increased structural ordering, as
evidenced by higher values of S, Similarly, the mean squared displacement and self-diffusion
coefficients exhibit anisotropic behavior, reflecting the directional influence of dipolar
interactions.

By employing the DMC method in combination with the reaction field approach, and applying the
passive microrheology technique, it is possible to detect changes in the viscoelastic properties of
liquid crystals upon the introduction of dipolar interactions. The tracer particle effectively captures
these variations, confirming that the method is sensitive to the influence of long-range interactions.
The observed effects are discussed in detail in the following subsections.
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Microrheology

In order to probe the viscoelastic properties of the systems, we introduced a spherical tracer particle
with a diameter g; = 1, in the liquid crystals. The tracer behaves as a hard sphere, allowing us to
track its motion over time. By measuring its displacement, we can determine the system's
viscoelastic modulus.

Figure 7.2 Snapshot of a spherical tracer particle embedded in a bath of spherocylinders in the
smectic phase. Dipole positive and negative signs are indicated by colors red and blue,
respectively.

As depicted in Figure 7.2, the tracer moves through the liquid crystal, and its displacements are
analyzed in the parallel and perpendicular directions relative to the nematic director. These
displacements are essential for calculating the viscoelastic response, allowing us to extract both
the elastic modulus G’ (w) and the viscous modulus G"' (w), as previously mentioned in chapter 4.

We performed DMC simulations to investigate the microrheological behavior of both nematic and
smectic phases. These simulations were carried out at different temperatures, T* = 1, 1.46, and
10, in order to explore how dipolar interactions influence the viscoelastic properties at varying
thermal conditions.
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7.1 Effect of Dipolar Interactions at High Temperatures

We begin by presenting simulations of the Sm phase at a higher temperature: T* = 10. At this
temperature, the influence of dipolar interactions is relatively weak, as thermal motion dominates
and disrupts the ordering effect that dipoles can have. This supports our observation that at high
temperatures, the impact of dipole interactions on the system's overall behavior is minimal, as also
reported in previous studies on dipolar fluids under comparable conditions [7.1].

In contrast, as temperature decreases, the effects of dipolar interactions become more pronounced,
leading to stronger alignment and order within the system. This will be further discussed in the
following sections. The snapshots below illustrate the behavior at T* = 10, showing the limited
role of dipoles at this temperature.

In the following snapshots, we present the configurations for both dipolar and non-dipolar systems
atT* = 10.

a) b)

Figure 7.1.1. Snapshot of Sm phase for non-dipolar a) and dipolar b) systems at T* = 10.

As expected, there are no significant differences between the two systems. To further investigate
whether the presence of dipoles induces structural changes, we calculated the distribution function
parallel to the nematic director. The graph of g(z), shown below, reveals that there are no notable
changes in the characteristic peaks of the smectic phase. Both dipolar and non-dipolar systems
exhibit virtually identical g(z) profiles, indicating no discernible structural differences.
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Figure 7.1.2. Parallel distribution function of Sm phase for non-dipolar and dipolar systems. Left
frame corresponds to the distribution function in parallel direction to n, while the right frame
corresponds to the perpendicular direction.

Figure 7.1.2 shows that the structure in the parallel and perpendicular directions remains
practically unchanged for both systems, indicating that the dipoles do not significantly affect the
structural order at higher temperatures.

This clearly conveys that the dipoles have little impact on the system's structure at high
temperatures.

We also computed the order parameters for both systems, which were also nearly identical,
reinforcing the observation that dipolar interactions have minimal impact on the ordering of the
rods at this temperature, as shown in the following figure.
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Figure 7.1.3. Order parameter for dipolar (blue) and non-dipolar (red) Sm phase at T* = 10,
obtained from the MC simulations.

Finally, we analyzed the mean square displacement of the tracer particle. Given the absence of
significant changes in the system's structure and order, it is unsurprising that no substantial
differences were observed in the MSD between the dipolar and non-dipolar systems. This is clearly
illustrated in the following figure.
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MSD of tracer for Non-Dipolar and Dipolar Phases at T" =10
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Figure 7.1.4. MSD of tracer in parallel and perpendicular directions for dipolar and non-dipolar
Sm phase at temperature T* = 10.

As shown in Figure 7.1.4, the MSDs for both dipolar and non-dipolar systems at T = 10 are
nearly identical in both parallel and perpendicular directions, indicating that dipolar interactions
do not significantly affect tracer dynamics at this high temperature. This result is consistent with
previous reports suggesting that thermal energy dominates over dipolar interactions at high
temperatures, leading to behavior that resembles that of non-polar systems [7.1]. Although the
outcome might seem expected, confirming it through simulation supports the validity of the model
and provides a reference point for comparison with lower-temperature cases. The following section
explores tracer behavior at lower temperatures, where dipolar interactions play a more prominent
role in restricting mobility and enhancing structural order.

7.2 Transition from Nematic to Smectic Phase

To investigate how dipolar interactions influence phase behavior and viscoelastic properties in
anisotropic fluids, we performed Dynamic Monte Carlo (DMC) simulations on a system of
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spherocylindrical particles, with and without embedded dipoles, at reduced temperature T* = 1
The particles interact via the Kihara potential, and long-range dipolar interactions were
incorporated using the Reaction Field method. At this temperature and density p* = 0.12 the
system without dipoles stabilizes in a nematic phase. When dipolar interactions are introduced, the
system undergoes a transition to a more ordered smectic phase, as shown in Figure 7.2.1.

Figure 7.2.1 shows representative snapshots of the systems. The non-dipolar system exhibits a
nematic phase with well-aligned rods, while the dipolar system transitions into a layered smectic
phase. The inclusion of dipoles, modeled via the Reaction Field method, promotes enhanced
orientational and positional ordering, consistent with a smectic structure.

a) b)

Figure 7.2.1 Snapshots of the system before and after dipolar interactions were introduced. (a)
Non-dipolar system in the nematic phase. (b) Dipolar system showing transition into a smectic
phase.

In Figure 7.2.1, two systems can be observed. Panel (a) shows the non-dipolar system in the
nematic phase, characterized by orientational ordering without translational layering. In contrast,
panel (b) illustrates the dipolar system, where clear layered structures emerge, indicative of a
smectic phase. These results clearly show that dipolar interactions promote the stabilization of a
smectic phase, even under conditions where the system would otherwise remain nematic. Similar
behavior, where dipolar interactions favor the formation of smectic ordering, has been reported in
previous studies of dipolar liquid crystal phases [7.1]. Additionally, the rods appear to alternate
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their orientation along the director, suggesting the possibility of local antiferroelectric ordering.
To quantitatively corroborate this visual observation, we calculated the Legendre correlation
functions, as discussed below.

To analyze potential ferroelectric or antiferroelectric behavior, we calculated the Legendre
correlation functions S;(r) and S;3(r), which correspond to the first and third Legendre
polynomials, respectively. Specifically, S; (r) detects ferroelectric order (aligned dipoles), while
S3(r) is sensitive to antiferroelectric alignment (alternating dipoles). As shown in Figure 7.2.2,
both functions tend to zero for the dipolar systems across all distances, indicating the absence of
long-range ferroelectric or antiferroelectric phases, despite the visual alternation in dipole
orientation observed in the snapshots. This finding is consistent with prior studies on dipolar rod-
like systems, where no macroscopic ferroelectric order was detected under comparable conditions
[7.3], [7.4].
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Figure. 7.2.2 Legendre correlation functions S; (r) and S;(r)) for dipolar and non-dipolar
systems. The functions were calculated to assess the presence of ferroelectric or antiferroelectric
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order. Both S; (r) and S;(r) approach zero for the dipolar system, indicating the absence of long-
range ferroelectric alignment.

The structural transition from Nm to Sm is further supported by the analysis of the nematic order
parameter S, shown in Figure 7.2.3. The evolution of S, over Monte Carlo cycles reveals that the
non-dipolar system stabilizes around 0.77, which is consistent with typical values for nematic
phases. In contrast, the dipolar system reaches an S, value of approximately 0.89, indicating
significantly enhanced orientational alignment driven by dipolar interactions.
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Figure 7.2.3 Evolution of the nematic order parameter S, over Monte Carlo cycles for dipolar
and non-dipolar systems at T* = 1

The observed increase in S, for the dipolar system is consistent with previous reports demonstrating
that dipolar interactions can reinforce orientational ordering, particularly when dipoles are aligned
along the rod's longitudinal axis [7.4]. Although dipolar interactions alone do not necessarily
induce macroscopic polar phases, they can influence the degree of alignment, especially in systems
where steric and dipolar effects act together. This enhanced orientational ordering contributes to
the stabilization of smectic-like structures, as observed in the snapshots and corroborated by the
higher S, value. The extent of this effect depends on factors such as dipole strength and dipole
location on the rod, as discussed by Weis et al. [7.4].
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To further quantify the structural transition, we computed pair correlation functions in the parallel
and perpendicular directions, as well as the total correlation function, as shown in Figure 7.2.4.
The dipolar system exhibits pronounced peaks in g(z), characteristic of smectic layering, whereas
the non-dipolar system shows flatter profiles typical of a nematic phase. In the perpendicular
direction, both systems display similar correlations, while the total distribution function g(r),
reveals enhanced short-range ordering in the dipolar case.
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Figure. 7.2.4 Distribution functions g(z);, g(r),and g(r). for dipolar and non-dipolar

systems at T* = 1. Dipolar interactions promote stronger parallel correlations indicative of
smectic layering.

As structural analyses revealed significant differences between dipolar and non-dipolar systems,
particularly the formation of smectic layers in the presence of dipolar interactions, we next
investigated whether these structural changes influence rod mobility. To this end, we computed
the mean squared displacement of the rods in both parallel < Ar? > and perpendicular < Ar? >,
directions relative to the nematic directorat T* = 1. Figure 7.2.5 shows the MSD curves for dipolar
and non-dipolar systems in both directions.
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MSD for Non-Dipolar and Dipolar Phases
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Figure 7.2.5 Mean squared displacements of rods in the || and L directions for dipolar and non-
dipolar systems at T* = 1. Blue symbols correspond to the non-dipolar system while red
symbols correspond to the dipolar one. Circles and squares refer to parallel and perpendicular
directions, respectively. The dipolar system shows a marked reduction in parallel displacement
due to smectic layering, while perpendicular displacement is slightly higher for the non-dipolar
system.

In the non-dipolar system, the MSD values for both < Ar? >, and < Ar? >, are relatively high
in comparison to the dipolar one, indicative of free rod mobility characteristic of a nematic phase.
However, in the dipolar system, the MSD in the parallel direction decreases significantly. This
reduction is attributed to the formation of smectic layers, which hinders translational motion along
the director, as rods must overcome the energy barrier associated with moving across layers. In
contrast, the MSD in the perpendicular direction remains comparable between dipolar and non-
dipolar systems, suggesting that lateral rod mobility is less affected by smectic ordering.

These observations confirm that dipolar interactions induce anisotropic constraints on rod
mobility, particularly suppressing displacement along the director due to the emergence of layered
structures. This effect has been reported in previous studies where smectic-like ordering imposed
significant barriers to translational motion along the director while preserving x-y mobility [7.3],
[7.4].
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Building upon the observed differences in rod mobility, we next investigated how dipolar
interactions affect the local viscoelastic response of the system. To this end, we performed
microrheological analysis using tracer particles embedded in the system. Microrheology has
proven particularly valuable in exploring mechanical responses at the microscale, such as in
biological systems [7.2]. The mean squared displacement of these tracers was calculated in both
parallel < Ar? >, and < Ar? >, directions for dipolar and non-dipolar systems at T* = 1, as
shown in Figure 7.2.6.
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Figure 7.2.6 MSD of tracer particles in parallel and perpendicular directions for dipolar and non-
dipolar systems at reduced temperature T* = 1. The blue symbols correspond to the non-dipolar
system, while red symbols represent the dipolar one. Circles and squares refer to parallel and
perpendicular directions, respectively. The dashed line indicates a polynomial fitting.

As can be seen from Figure 7.2.6, in the non-dipolar system, tracer particles exhibit higher MSD
values in both directions, reflecting the fluid-like nature of the nematic phase. When dipolar
interactions are present, and the system transitions to a smectic phase, the tracer MSD decreases,
especially in the parallel direction. This reduction indicates restricted mobility along the director,
consistent with the presence of smectic layers that confine the tracer and hinder its movement
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between layers. In contrast, the difference in MSD between dipolar and non-dipolar systems in the
perpendicular direction is smaller, suggesting that lateral diffusion is less impacted by layering.

To quantitatively assess the viscoelastic response of the system, we computed the storage and loss
moduli using the Mason method [4.7]. As described in chapter 6, this method is based on the
generalized Stokes-Einstein relation, where the frequency-domain moduli are calculated directly
from the tracer MSD using the Gamma function, avoiding explicit Fourier transforms.

Figure 7.2.7 presents the computed G'(w) and G"'(w) in parallel and perpendicular directions for
dipolar and non-dipolar systems at T* = 1.

In the parallel direction, the dipolar system exhibits significantly higher values of G'(w) and
G"'(w) across all frequencies compared to the non-dipolar system. This is attributed to the smectic
layering induced by dipolar interactions, which increases the rigidity and viscous resistance along
the director. The formation of layers hinders tracer motion and enhances the elastic and viscous
response.

Conversely, in the perpendicular direction, the non-dipolar system shows higher values of both,
G'(w) and G"(w), than the dipolar system. This can be explained by the differences in phase
structure: in the nematic non-dipolar system, the disordered arrangement leads to more frequent
collisions and steric hindrance as the tracer moves laterally, thereby increasing the viscoelastic
response. In contrast, the dipolar smectic phase presents well-organized layers that may offer less
resistance to lateral tracer motion, facilitating smoother diffusion across layers.
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G'(w) and G"(w) for dipolar and non-dipolar systems
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Figure 7.2.7 G'(w) and G"'(w) calculated from tracer MSD using the Mason method for dipolar
(red) and non-dipolar (blue) systems at T* = 1. In the parallel direction, the dipolar system
exhibits higher viscoelastic moduli due to smectic layering. In the perpendicular direction, the
non-dipolar system shows higher moduli, reflecting increased hindrance to lateral tracer motion
in the nematic phase.
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The directional contrast in viscoelastic moduli underscores the anisotropic mechanical response
induced by dipolar interactions and confirms the formation of a more rigid structure along the
director and a more compliant response perpendicular to it in the dipolar system.

To facilitate a direct comparison of the viscoelastic moduli across different systems and directions,
we present all calculated values of G'(w) and G (w) for dipolar and non-dipolar systems, in both
[ and L directions, on a single graph (Figure 7.2.8). This allows us to assess how the phase
transition from nematic to smectic, induced by dipolar interactions, affects the frequency-
dependent mechanical response.

In all cases, the loss modulus G''(w) is consistently larger than the storage modulus G'(w) across
the frequency range studied. This behavior is characteristic of liquid crystal phases, which
generally exhibit viscous-dominated responses at these scales, particularly in rod-like systems.

The highest moduli values are observed for the dipolar system in the parallel direction, i.e., along
the director of the smectic phase. Both G'(w); and G"'(w) ; for the dipolar case show a pronounced
increase, especially at higher frequencies. This is attributed to the formation of smectic layers,
which restrict tracer motion along the director, thereby enhancing the elastic resistance and energy
dissipation, reflected in the higher moduli.

In contrast, the moduli for the perpendicular direction G'(w), and G''(w), are comparable
between dipolar and non-dipolar systems. However, the non-dipolar system displays slightly
higher values, especially in G"(w), indicating that x-y (perpendicular) motion in the nematic
phase is more constrained. This can be explained by the lack of defined in-plane ordering in the
nematic phase, which introduces fluctuations and local obstacles to lateral diffusion, increasing
the viscous resistance. Conversely, in the smectic phase, well-defined x—y plane ordering can
facilitate smoother tracer displacement across the layers, slightly reducing G"'(w) | .

Finally, the lowest moduli across all cases are observed for the non-dipolar system in the parallel
direction, i.e., G'(w); and G"'(w) for the nematic phase. This is expected, as the absence of
positional order in the nematic phase allows for relatively unrestricted tracer motion along the
director, resulting in lower viscoelastic resistance.
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G'(w) and G"(w) for dipolar and non-dipolar systems
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Figure 7.2.8. Viscoelastic moduli G'(w) and G"'(w) calculated from tracer MSDs for dipolar and
non-dipolar systems at T* = 1, in parallel and perpendicular directions. All moduli show
G" (w) > G'(w), typical of liquid crystals. The highest values correspond to the parallel direction
in the dipolar system, while the lowest are observed in the parallel direction of the non-dipolar
system. Slightly higher G (w), values for the nematic phase indicate increased lateral resistance
due to lack of in-plane order.

7.3 Nm and Sm at temperature 1.46

Having established the significant impact of dipolar interactions on phase behavior, structure, and
viscoelastic response at T* = 1, we extended our investigation to a slightly higher temperature,
T* = 1.46, to explore whether these effects persist or evolve under reduced thermal constraints.
At this temperature, we performed simulations for both nematic and smectic phases, with and
without dipolar interactions, following a similar analytical framework as before.

In contrast to the behavior observed at T* = 1, where dipolar interactions induced a clear phase
transition from nematic to smectic ordering, no phase transitions occurred at T* = 1.46. Each
system remained in its initial phase throughout the simulation duration. The nematic systems
maintained orientational order, while the smectic systems preserved their layered structures. This
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provided an opportunity to assess the structural and dynamical modifications induced by dipolar
interactions without the phase change.

Figures 7.3.1 and 7.3.2 show snapshot configurations for all systems. In the nematic systems (top),
the non-dipolar system exhibits moderate alignment, while the dipolar system shows slightly
increased ordering due to the aligning effect of the dipoles. In the smectic systems (bottom row),
layering is clearly visible in both cases, with more defined and stable layers in the dipolar system,
suggesting enhanced positional order.

a)

Figure 7.3.1 Snapshot configurations at T* = 1.46. a) Sm phase without dipolar interactions. b)
Nematic phase with dipolar interactions.

b)
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a) b)

Figure 7.3.2 snapshot configurations at T* = 1.46 a) Nm phase without dipolar interactions., b)
Smectic phase with dipolar interactions.

To quantify the structural differences observed in the snapshots, we analyzed the pair distribution
functions along and perpendicular to the director. These functions provide insight into how dipolar
interactions influence positional correlations and the degree of local order within each phase.

In the nematic phase, dipolar interactions induce the appearance of small oscillations in g(z),,
which are absent in the non-dipolar system. These subtle features indicate the onset of positional
correlations along the director, reflecting a tendency toward smectic-like ordering, but it is
insufficient to drive a full phase transition. In contrast, in the smectic phase, dipolar interactions
lead to sharper and more pronounced peaks in g(z); revealing enhanced layer definition and
increased positional stability. The perpendicular distribution function shows only minor changes
between dipolar and non-dipolar systems in both phases, suggesting that lateral correlations are
less sensitive to dipolar effects and that the primary structural impact of dipoles is exerted along
the director.
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Figure 7.3.3a) Pair correlation functions g(z), and g(r), for Nm phase at T* = 1.46
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Figure 7.3.3b) Pair correlation functions g(z), and g(r), for Sm phase at T* = 1.46

To complement the structural analysis, the nematic order parameter S, was computed for both
phases to quantify the degree of orientational alignment. In the nematic phase, the presence of
dipolar interactions increases S, from approximately 0.7 in the non-dipolar system to around 0.8,
indicating improved alignment along the director, as shown in Figure 7.3.4. In the smectic phase,
a similar effect is observed, with S, rising from about 0.92 to nearly 0.97 in the dipolar system,
approaching high orientational order. This result is consistent with previous findings that dipolar

interactions can reinforce orientational order by promoting alignment along the molecular axis
[7.6].

These results confirm that dipolar interactions enhance orientational alignment in both phases.
This strengthening of local alignment, together with the previously discussed increase in positional
correlations, demonstrates that dipolar forces act to reinforce both types of order, even in the
absence of a phase transition at this temperature.
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Figure 7.3.4 Nematic order parameter S, in the nematic phase at T* = 1.46. The dipolar system
shows enhanced orientational order, reaching values around 0.8.
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Figure 7.3.5 Nematic order parameter S, in the smectic phase at T* = 1.46. Dipolar interactions
increase S,from 0.938 to 0.98, indicating stronger alignment along the director.

Similar to the observations made at the lower temperature, the smectic dipolar snapshots at T* =
1.46 also suggest the presence of a spontaneous alternation in rod orientation across layers, raising
the possibility of ferro- or antiferroelectric behavior. To explore this phenomenon quantitatively,
we computed the angular distribution of rod orientations relative to the director n, defined by the
angle 6 between the rod axis and n.

Figure 7.3.6 shows the resulting angular probability density function for the smectic phase at T* =
1.46. In the non-dipolar system, a narrow peak centered at 6 = 0° is observed, indicating strong
alignment of all rods with the director. In contrast, the dipolar system displays two distinct
symmetric peaks at 0 = 0° and 0 = 180°, confirming an equal distribution of rods pointing in
opposite directions. This bimodal distribution highlights the dipolar-induced alternation in
orientation, potentially indicative of local ferroelectric or antiferroelectric arrangements.
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Probability Density of Rod Orientation in Smectic Phase

[ Non-dipolar
0.12 - mmm Dipolar

0.10 -
0.08 -
0.06 -

0.04 -

flé)probability density

0.02

0.00 - —_—
30 60

0 (Rod orientation angle relative to n, degrees)

Figure 7.3.6 Probability density function of rod orientation relative to the director n in the smectic
phase at T* = 1.46. The non-dipolar system (red) exhibits a narrow peak at 0 = 0°, indicating
strong alignment with the director. In contrast, the dipolar system (blue) shows a bimodal
distribution with peaks at 6 = 0° and 0 = 180°, suggesting equal populations of rods pointing in
opposite directions.

To determine whether the observed bimodal orientation leads to any long-range polar order, we
computed the first and third Legendre correlation functions, S;(r) and S3(r) As stated, a non-
zero S;(r) would indicate net dipole alignment characteristic of ferroelectric order, while a
significant S;(r) would suggest alternating dipole orientations consistent with antiferroelectric
behavior.

As shown in Figure 7.3.7 , both S;(r) and S3(r) remain near zero across all distances for dipolar
and non-dipolar smectic systems, confirming the absence of long-range polar ordering. These
results demonstrate that although local alternation of dipole orientation occurs, evidenced by the
angular distribution, this does not translate into macroscopic ferroelectric or antiferroelectric
phases under the simulated conditions. The dipolar interactions instead promote local orientational
patterns without leading to global polar order.
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Legendre Correlation Functions in Smectic and Nematic Phases
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Figure 7.3.7 Legendre correlation functions S; (r) and S5 (r) for dipolar and non-dipolar in
smectic (black) and nematic (blue) systems at T* = 1.46. In all cases, S;(r) and S3(r) remain
near zero, indicating the absence of ferroelectric or antiferroelectric ordering.

To complement the structural analysis and assess how dipolar interactions impact the local
mechanical environment, we investigated tracer dynamics through the calculation of the mean
squared displacement in both parallel and perpendicular directions relative to the director. Figure
7.3.8 presents the MSD curves for tracer particles embedded in the nematic phase at T* = 1.46
for both dipolar and non-dipolar systems.

Consistent with the anisotropy of the phase, the largest tracer displacements occur along the
parallel direction. However, the presence of dipolar interactions leads to a notable reduction in
parallel MSD, highlighting increased hindrance to motion along the director due to enhanced
structural order induced by dipoles. In contrast, the perpendicular MSD displays only minor
differences between dipolar and non-dipolar systems, suggesting that dipolar interactions have a
less significant influence on tracer mobility in directions orthogonal to the director. These results
confirm that dipolar-induced ordering restricts tracer motion primarily along the director axis,
reflecting anisotropic viscoelastic resistance in the medium.
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MSD of tracer for Non Dipolar and Dlpolar Phases at T'=1.46
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Figure 7.3.8 MSD of tracer particles in Nm phase in parallel and perpendicular directions for
dipolar and non-dipolar systems at reduced temperatureT* = 1.46. Blue symbols correspond to
the non-dipolar system, while red symbols represent the dipolar one. Circles and squares refer to
parallel and perpendicular directions, respectively. The dashed line indicates a polynomial
fitting.

The corresponding viscoelastic moduli G'(w) and G" (w) computed from tracer MSD using the
Mason method, are shown in Figure 7.3.9. In the perpendicular direction, only modest differences
arise between dipolar and non-dipolar systems, suggesting that while dipolar interactions introduce
a slight increase in in-plane order, they do not significantly hinder lateral tracer motion.

In contrast, in the parallel direction, the viscoelastic moduli are substantially higher in the dipolar
system across the frequency spectrum. This reflects the enhanced positional order and stiffness
along the director due to dipolar interactions, which impede tracer motion and strengthen the
material’s elastic response. This effect becomes particularly pronounced at high frequencies,
indicating an elastic-dominated regime associated with smectic-like layering that constrains
motion along the director.
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Figure 7.3.9 Viscoelastic moduli G'(w)(continuous lines) and G''(w)(dashed lines) for Nm
phase calculated from tracer MSD using the Mason approach for nematic phases at T* = 1.46
for non-dipolar (blue) and dipolar (red) systems. Top: perpendicular direction; bottom: parallel

direction.
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The MSD analysis for tracer particles in the smectic phase at T* = 1.46 revealed a distinct
anisotropic behavior. Contrary to what is observed in the nematic phase, where tracers move more
freely along the parallel direction, in the smectic phase the displacements are larger in the
perpendicular direction. This is evident from the increased slope of the MSD curve for the
perpendicular direction compared to the parallel one. The confinement within smectic layers,
combined with the highly ordered structure, restricts movement along the director axis, while
allowing relatively easier diffusion across the layers. Similar behavior, showing enhanced tracer
mobility in the direction perpendicular to the layers, has been reported in experimental and
theoretical studies of smectic systems, and is attributed to the energetic barriers that arise from
layer stacking and positional order [7.7]

MSD of tracer for Non- Dlpolar and Dlpolar Phases at T =1.46
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Figure 7.3.10 MSD of tracer particles in Sm phase in parallel and perpendicular directions for
dipolar and non-dipolar systems at reduced temperature T* = 1.46. Blue symbols correspond to
the non-dipolar system, while red symbols represent the dipolar one. Circles and squares refer to

parallel and perpendicular directions, respectively. The dashed line indicates a polynomial
fitting.
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We also computed the loss and storage moduli using microrheology analysis for both dipolar and
non-dipolar systems. The results show that in the smectic phase, both moduli are significantly
higher in the dipolar system, in both the parallel and perpendicular directions. This indicates that
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the introduction of dipolar interactions increases the system’s resistance to deformation, making it
more viscoelastic. The presence of permanent dipoles enhances the rigidity of the system,
suppresses tracer mobility, and increases energy dissipation under deformation, consistent with
the observed MSD suppression in the parallel direction.

G'(w) and G"(w) for dipolar and non-dipolar systems
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Figure 7.3.11 Viscoelastic moduli G'(w)(continuous lines) and G''(w)(dashed lines) for Sm

phase calculated from tracer MSD using the Mason approach for nematic phases at T* = 1.46

for non-dipolar (blue) and dipolar (red) systems. Top: perpendicular direction; bottom: parallel
direction.

In the smectic phase, the impact of dipolar interactions is even more pronounced. The values of
G'(w) and G"(w) are substantially higher than in the nematic case, especially in the parallel
direction (along the layers). This reflects the combined effects of layered positional order and
dipolar alignment, which reinforce mechanical rigidity. The storage modulus G'(w), in particular,
shows a steeper slope at low frequencies in the dipolar smectic system, highlighting its more solid-
like behavior.

Interestingly, the gap between dipolar and non-dipolar systems widens in the smectic phase
compared to the nematic one, indicating that dipolar interactions have a stronger influence when
positional order is present. This confirms that dipoles enhance viscoelasticity not only by
orientational effects but also by stabilizing and stiffening the layered structure.

Moreover, both directions, parallel and perpendicular, show increased G'(w) and G (w) in the
dipolar smectic phase, but the difference is more noticeable in the parallel direction, consistent
with the observed confinement of tracers and suppression of motion along the director.

These results confirm that dipolar interactions contribute to increased viscoelasticity in both
nematic and smectic phases, although their influence is more pronounced in systems where
positional order, such as layering, plays a dominant role.

Finally, to gain further insight into the local dynamics of tracer particles in the nematic phase at
T* = 1.46 we analyzed their individual trajectories along the x, y, and z directions over time
(Figure 7.3.12). The results reveal a clear anisotropy in tracer motion. Substantial fluctuations are
observed in both the x and y directions, indicating relatively unrestricted in-plane diffusion. In
contrast, displacement along the z-axis is markedly limited. The tracer remains largely confined
within a single smectic-like layer, exhibiting only one transition to an adjacent layer approximately
at the midpoint of the simulation.

This behavior highlights the presence of energy barriers that impede inter-layer movement, likely
arising from the enhanced positional order and structural constraints imposed by dipolar
interactions. The increased order along the director (z-direction) fosters the formation of well-
defined layers, which restrict vertical tracer mobility, effectively trapping it within a layer for
extended durations.

As a result, tracer motion becomes highly constrained along the z-axis, leading to elevated
viscoelastic resistance in this direction. This is directly reflected in the significantly higher values
of G'(w) and G"'(w) observed for the dipolar system in the parallel case. The confinement and
ordering induced by dipolar interactions enhance the system’s elastic stiffness along the director,
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establishing a direct connection between microscopic structural organization and the macroscopic
viscoelastic response.
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Figure 7.3.12 Trajectories of a tracer particle along x (black), y (blue), and z (red) directions in
the nematic dipolar system at T* = 1.46. The tracer exhibits significant movement in the x and y
directions but remains confined along z, indicating layer localization. Only one layer transition is

observed during the simulation. The restricted z-motion suggests energy barriers due to dipolar-

induced layering, contributing to enhanced viscoelastic resistance in the parallel direction.

The analysis of tracer particle displacement along the z-axis revealed a clear confinement within
a single smectic-like layer for most of the simulation time, as shown in figure 7.3.12. The
displacement graph shows that the tracer remains in one layer with minimal fluctuation, followed
by a sudden transition to a neighboring layer, after which it becomes confined again. These rare
inter-layer jumps suggest the presence of energy barriers associated with the layered structure.
This behavior is consistent with the experimental observations described by Fujii et al., who
reported that the smectic layering imposes significant resistance to motion perpendicular to the
layers due to structural constraints and energy barriers [7.7].

8 Applications of liquid crystals and practical experience
during internship
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In this chapter, we reflect on the broader relevance of liquid crystal research and its intersection
with industrial applications.

While the focus of this thesis is on the theoretical and computational study of colloidal liquid
crystals, particularly in nematic and smectic phases, the physical principles governing liquid
crystal behavior is also central in many practical technologies.

To complement the fundamental work presented in this dissertation, a research internship was
undertaken at AlphaMicron Inc., a company that develops and manufactures liquid crystal-based
optical devices. This experience provided valuable insights into how liquid crystal materials are
engineered and integrated into functional systems such as smart eyewear and displays.

The following sections describe two specific applications of liquid crystals studied during the
internship: guest-host systems for adaptive lenses and the use of photoalignment techniques.
Though distinct from the simulation-based work of this thesis, these technologies are grounded in
the same physical phenomena and illustrate the real-world relevance of liquid crystal science.

8.1 Applications of liquid crystals in the industry

Liquid crystals (LCs) have enabled a wide range of technological innovations across various
industries. Historically, their unique optical and electro-optical properties have been widely
exploited in the development of display devices such as televisions, watches, and calculators. In
recent years, their applications have expanded to include advanced systems such as virtual reality
(VR) lenses, eyewear, and smart windows.

The importance of the research in liquid crystals relies in the fact that it is necessary to understand
and characterize the behavior of the particles that compose the liquid crystals to be able to modify
them to achieve suitable optical, dielectric and rheological properties depending on the application.

Here we will focus on two specific applications. The first one is guest-host liquid crystal cells used
in dynamic eyewear, and the second application is LC devices that employ photoalignment
techniques for enhanced optical control.

These two applications were studied during an internship at at the company AlphaMicron Inc.
(Kent, Ohio, USA), a leading developer of LC-based technologies for commercial and defense-
related applications.

8.2 Applications of liquid crystals in eyewear

There are some situations where the human eye needs to be protected against rapid changes in
environmental lighting conditions and guest-host liquid crystals are particularly suitable for this
purpose due to their unique optical properties. They can adjust the opacity of the films, enabling
the creation of variable transmission lenses that enhance visual clarity and reduce glare.
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At AlphaMicron, a sophisticated method is employed to adjust the transmission of the LC cells,
that contain a mixture of liquid crystals and dichroic dyes. When a voltage is applied, the
orientation of the LC molecules changes, which in turn alters the alignment of the dye molecules.
Since these dyes absorb light anisotropically, the system’s optical transmission can be precisely
controlled by the applied field.

There are various studies that model how the dipole aligns with the molecular axis of the dye
particles. These studies are crucial for understanding and optimizing the interaction between the
dye molecules and the liquid crystal host, which directly impacts the efficiency and performance
of the liquid crystal cells. By analyzing these alignments, researchers can design more effective
systems for applications such as adaptive eyewear, where precise control over light absorption and
transmission is essential. [21]

Here, we describe liquid crystal cells fabricated through a process learned at AlphaMicron, which
utilizes a mixture of dyes and chiral nematic liquid crystals. These cells are specifically designed
for use in eyewear applications. The devices operate on the principle that the dye guest aligns with
the liquid crystal host. By applying an electric field, the orientation of the liquid crystal matrix can
be switched between a high transmission and lower transmittance colored states. This occurs
because the anisotropic absorption of dichroic dyes follow the electro-optical response of the liquid
crystal molecules. Such guest-host devices do not necessarily require polarizers or color filters, as
the absorption properties are defined by the guest dye molecules and their alignment.
Consequently, they may provide more robust devices with higher optical efficiencies and lower
power consumption compared to some conventional polarized based liquid crystal eyewear. This
innovative technology in smart eyewear offers enhanced visual comfort and protection by
dynamically adapting to changing light conditions.

The process of making these liquid crystal cells is described in the following chapter.

8.3 Internship experience: Liquid crystals eyewear

During my internship at AlphaMicron, I was trained in the complete fabrication process of guest-
host LC cells for eyewear applications.

The fabrication process begins with the preparation of empty LC cells made of polycarbonate
substrates coated with ITO (indium tin oxide), which acts as a conductor. The cells also contain
small spherical spacers which are used to maintain uniform cell thickness, as depicted in the
following diagram
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Figure 8.3.1. Schematic representation of a guest—host liquid crystal cell. The cell consists of two
polycarbonate substrates, each coated with a transparent Indium Tin Oxide (ITO) electrode.
These electrodes allow an electric field to be applied across the cell. Between the substrates, a
mixture of liquid crystals (LC) and dichroic dyes is confined. Small polymer spacer beads are
dispersed across the substrates to maintain a uniform cell gap, ensuring consistent alignment.
The LC molecules, along with the dye guests, reorient in response to the applied electric field.

A UV-curable glue is applied along the perimeter to form a sealed rectangular enclosure, as
shown in Figure 8.3.2, into which the LC-dye mixture will later be injected.

Figure 8.3.2 Two empty cells containing indium tin oxide (ITO) and spacers. On top, a
rectangular seal of glue has been applied to define the filling area.
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After this, the cell is placed inside a vacuum chamber, where the mixture of liquid crystals and
dyes is poured into the rectangular enclosure formed by the UV glue.

Figure 8.3.3 LC cell inside the vacuum chamber.

In this step, the cell is positioned within the vacuum chamber, where the surrounding air is
evacuated to create a low-pressure environment. This low-pressure condition enhances the
capillary action, allowing the dye solution to infiltrate the cell more effectively.

Once the vacuum chamber is turned off, the mixture of liquid crystals and dyes fills the
polycarbonate cell through a capillary action, as illustrated in the following image.
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Figure 8.3.4. The process of filling a cell with dyes through capillarity after the cell has been
placed inside a vacuum chamber.

As capillary action takes effect, the dye solution is drawn into the cell, gradually filling it from
the bottom up.

The capillarity filling process takes approximately 5 hours and continues until all empty spaces
within the cells are fully occupied, as shown in the following figure.
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Figure 8.3.5. Capillary filling process completed. The liquid crystal cells have been successfully
filled with liquid crystals and dyes through capillary action. The filled regions are visible,
indicating uniform infiltration of the material inside the sealed area.

Once the cells are completely filled, they must be cleaned to remove any excess material, ensuring
a homogeneous film inside. After this, the cells are sealed with UV glue to prevent air from
entering. Once sealed, the cells are placed in a holder and taken to the spectrometer for
characterization of their absorption and transmission properties.
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Figure 8.3.6. Placement of the cell in a holder for optical characterization

After fabrication, the liquid crystal cell is mounted on a holder and characterized using a
spectrometer. This process involves comparing the cell’s light absorption with and without an
applied voltage.

As discussed in the previous section, applying voltage alters the elastic response of the liquid
crystal, causing the dye molecules to reorient into a planar twisted configuration, resulting in
increased light absorption and making the cell appear darker, as depicted in the following diagram

| | | |
00N A SN

0 ==

| | |
Transparent Opaque

Figure 8.3.8 Optical states of a guest—host liquid crystal cell under different electrical conditions.
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In the absence of an electric field (left), the liquid crystals and dye molecules align uniformly,
minimizing light absorption and resulting in a transparent state.
When an electric field is applied (right), the alignment is disturbed. The dye molecules no longer
follow a uniform orientation, increasing light absorption and scattering. This leads to an opaque
appearance. The optical response of the system is thus controlled by the alignment of the dichroic
dye molecules within the liquid crystal host, which responds to the applied voltage.

The perceived darkness and final color of the cell depend on the specific dye used and its
concentration. By selecting different dyes, a variety of optical effects can be achieved, enabling
custom tuning of the device’s transmittance and color properties to meet specific eyewear
applications.

The image below displays cells filled with different types and concentrations of dyes, allowing for
a variety of colors and optical properties.

Figure 8.3.9. Example of liquid crystal cells filled with different dyes. Each cell contains a
different dye mixture, resulting in variations in color and light absorption. The selection of dyes
influences the optical properties of the cells, which can be tailored for specific applications.
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The following picture displays a different type of cell used to create a specific kind of eyewear. In
this example, it can be noticed that the cell resembles more the cells used to fabricate eyewear and
the dye used is a mixture of blue dyes, chosen to achieve particular optical properties. This
selection of dyes allows for customized color performance and light absorption characteristics,
tailored to the intended application of the glasses.

Figure 8.3.10. Example of a different model of cell filled with a mixture of blue dyes.
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Figure 8.3.11. Liquid crystal cells filled with a mixture of blue dyes and equipped with flexible
connectors (flexes). The flexes allow for electrical connections to apply voltage to the cells and
control the liquid crystal alignment. These completed eyewear-shaped cells are now ready for
optical characterization and performance testing.

In figure 8.3.11 we show the result once we completed all the steps presented in this chapter. The
cells are prepared for use with uniform dye distribution and are ready for optical characterization.

8.4 Internship experience: Liquid crystals photoalignment

Liquid crystals are also widely used in advanced optical devices, and photoalignment techniques
play a crucial role in their performance. During my internship at Alphamicron I was also involved
into the development of different liquid crystal devices requiring photoalignment techniques.
Azobenzene is a compound frequently used in photoalignment applications due to its ability to
undergo reversible photoisomerization when exposed to ultraviolet (UV) light. In the
photoalignment process, this material is exposed under a UV laser and its molecules can change
their orientation in response to light, thereby influencing the alignment of liquid crystal layers.
This process aligns the AZO molecules in a precise pattern, which in turn dictates the orientation
of the liquid crystal molecules. Such controlled alignment is essential for optimizing the optical
properties of LC cells. The ability to precisely manipulate the liquid crystal alignment enables the
development of high-performance devices with applications in areas such as virtual reality (VR)
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glasses, where accurate light modulation and display quality are critical. This technology also
benefits other advanced optical systems, including high-resolution displays and adaptive lenses,
by improving their functionality and versatility.

The process of photoalignment of the LCs consists of various steps which are described in the
following paragraphs.

First, a layer of photoalignment material is applied to one side of a polycarbonate substrate
containing indium tin oxide (ITO) using spin coating. Then it is baked briefly for 30 seconds. Once
the photoalignment material is evenly coated, the substrate is exposed to a UV laser to create a
specific photoalignment pattern. This pattern determines the orientation of the liquid crystal
molecules.

After the photoalignment process, a layer of UV glue is applied to the substrate. A drop of liquid
crystal is then dispensed onto the glue. We rub the other substrate mechanically and apply spacers.
The assembly of the cell is completed using a vacuum filling process, which creates a vacuum to
sandwich the two sides of the substrate together and ensure the liquid crystal is evenly distributed
throughout the cell. This process is summarized in the following diagram.

Photoaligment of LC cell

Glass ITO
Substrate substrate
AZO spin-

coating and Rub layer
heating mechanically

Pattern )

AZO layer E:ap:esrg
with laser
Fill with LCs
Add glue
Assemble
both
substrates

Vacuum filling
5 minutes

Figure 8.4.1. Step-by-step fabrication process of a liquid crystal cell using photoalignment and
guest—host configuration. The left path describes the preparation of the substrate with the AZO
photoalignment layer, which is spin-coated, baked and optically patterned using a polarized
laser. The right path shows the preparation of the counter-substrate, which includes an ITO layer
and its mechanical rubbing.
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Once the cell has been assembled and filled with the liquid crystal mixture, it is possible to verify
the photoalignment pattern by observing the cell under a polarizer. The alignment of the liquid
crystals can produce visible birefringence effects, which manifest as colorful patterns when viewed
between crossed polarizers. These patterns result from the optical anisotropy of the aligned
nematic phase and can indicate whether the photoalignment was successful and uniformly
transferred across the substrate.

In the example shown below (figures 8.4.2 and 8.4.3), the cell fabricated during the internship
exhibits a clearly visible interference pattern, confirming the presence of photoinduced alignment
within the material

It is possible to see the polarization of the material making use of a linear polarizer. The polarizer
is rotated and the polarization of the material inside the cell can be observed.

-
S

o
S
&
n&\

Figure 8.4.2 Photoaligned glass cell filled with nematic liquid crystal analyzed under a linear
polarizer at position 1, highlighting the patterned molecular alignment induced during
fabrication.
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Figure 8.4.3 Photoaligned glass cell filled with nematic liquid crystal analyzed under a linear
polarizer at position 2.

The sample cell is then examined using crossed polarized illumination under the microscope using
a linear polarizer to verify that the photoalignment pattern has been correctly made and that the
pattering lines created with the UV laser are not overlapping, creating undesired effects.
Confirmation of the photoalignment is achieved by observing a gradient of color within each
pattern, as illustrated in the following picture.
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Figure 8.4.4 Picture of a photoaligned nematic liquid crystal cell under the crossed-polarized
light microscope.
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9 Conclusions and Perspectives

In summary, this thesis has explored the dynamics of soft-repulsive rod-like particles within
nematic and smectic liquid crystals through Dynamic Monte Carlo (DMC) simulations. We
calculated a comprehensive spectrum of dynamical properties that characterize the long-time
relaxation behavior both along and perpendicular to the nematic director. Key findings include the
calculation of mean square displacements (MSD), which were essential in determining self-
diffusion coefficients and understanding their temperature dependence. Our analysis unveiled the
existence of particles capable of displacing significantly longer distances than the average over the
same time frame, shedding light on the complex dynamics within these systems.

We calculated a range of dynamic properties to characterize the long-time relaxation behavior both
parallel and perpendicular to the nematic director. Specifically, the MSD was key in determining
the self-diffusion coefficients and assessing their dependence on temperature. The static structure
factor (s-VHF) highlighted the presence of particles that can cover significantly greater distances
compared to most particles over the same period, while the iSF provided insights into the
timescales of structural fluctuation decay. Moreover, we investigated the temperature-dependent
behavior of the intermediate scattering functions, revealing distinct dynamics between the nematic
and smectic phases.

The incorporation of dipolar interactions through the reaction field method allowed us to
investigate their profound effect on structural organization and microrheological response. At
T* = 1, we observed that dipolar interactions strongly promote orientational and positional order,
inducing a nematic-to-smectic phase transition. This was supported by enhanced peaks in the
parallel distribution function, increased S, and the formation of well-defined smectic layers.
Despite the visual alternation in dipole orientation, no macroscopic ferroelectric or
antiferroelectric ordering was found, as confirmed by angular distributions and the parameters
S1(r) and S5(r), which remained near zero.

Dipolar interactions also strongly suppressed rod and tracer mobility along the director, leading to
increased viscoelastic moduli G'(w) and G''(w) in the parallel direction. This indicates higher
elastic resistance due to dipole-induced layering, particularly at high frequencies where G'(w)
dominates. Conversely, in the perpendicular direction, only modest changes in viscoelastic moduli
were observed, suggesting that dipoles have less influence on lateral dynamics.

At T* = 1.46, a similar analysis showed that dipolar interactions no longer induce a phase
transition, and both nematic and smectic systems retained their original phase. Nevertheless,
dipoles still enhanced structural ordering: in nematic systems, small oscillations appeared in g(z);
while in smectic phases, peaks in g(z); became sharper. The nematic order parameter S, increased
in both phases (from 0.7 to 0.8 in nematic; 0.92 to 0.98 in smectic), confirming stronger alignment.
In the smectic dipolar system, a bimodal angular distribution (6 = 0° and 180°) was again observed,
but S;(r) and S3(r), confirmed the absence of global polar order.
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Microrheological analysis in the nematic phase at T* = 1.46showed anisotropic tracer dynamics.
Tracer particles exhibited greater displacement in the parallel direction, with dipolar interactions
reducing mobility along this axis. The perpendicular MSD curves were similar between dipolar
and non-dipolar systems, indicating limited dipolar influence laterally. The viscoelastic moduli
G'(w) and G"(w) calculated from tracer MSD reflected these trends, with significantly higher
values in the parallel direction for dipolar systems, consistent with enhanced rigidity and layered
confinement.

Trajectory analysis of tracer particles further confirmed layered confinement along the z-axis, with
tracers remaining within a smectic-like layer and only rare transitions between layers. This
behavior highlights energy barriers imposed by dipolar-induced ordering, explaining the increased
viscoelastic resistance along the director.

In conclusion, dipolar interactions have a strong influence on both structural and viscoelastic
properties in liquid crystal phases, particularly at lower temperatures. They enhance phase order,
restrict motion along the director, and increase mechanical rigidity, especially in smectic-like
systems. These results offer insight into how dipolar interactions influence structure and
viscoelastic behavior in anisotropic systems, which could be relevant for understanding or guiding
the design of materials used in optical, display, or biological applications.

Looking to the future, there are several possible directions for extending this research. One
immediate step is to explore the effects of varying particle shapes and sizes on the rheological
properties of liquid crystals. It would also be worth exploring refinements in the modeling of
dipolar interactions, for example by incorporating higher-order multipoles or flexible dipoles, as
suggested in recent studies of polar fluids and soft matter systems (Cifelli et al., Soft Matter 2020;
Vanakaras & Photinos, Liq. Cryst. 1995). This could offer a more realistic description of
anisotropic colloidal suspensions or organic mesogens, especially in biological or electro-optic
applications.

Another important direction is to expand the range of temperatures, densities, and dipole strengths
explored in the simulations. This would help map out the full phase behavior of dipolar
spherocylinder systems and could reveal new mesophases, such as twist-bend nematics or
ferroelectric smectics, which have been reported in experimental studies (Chen et al., Nature
2013).

Future studies could also couple microrheology simulations with external fields, such as magnetic
or electric fields, to mimic conditions in active systems and smart materials. These fields are
known to influence viscoelastic properties and alignment and studying them in simulations could
be relevant for understanding liquid crystal elastomers, responsive gels, or biological tissues where
external stimuli play an important role.

Finally, combining this simulation approach with machine learning techniques could help identify
hidden structure—property relationships, such as clustering formation, or enable faster prediction
of optimal parameters for mechanical or dynamic behavior in soft matter systems. These directions
could significantly contribute to the understanding of dipolar interactions in anisotropic fluids and
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open new opportunities for applications in physics, chemistry, and materials science, from
biological systems to advanced soft materials.
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Appendix 1

In this appendix, we present two examples of the Metropolis algorithm applied to probability
sampling. The first example demonstrates the generation of a normalized histogram following an
exponential distribution, while the second example applies the method to a Gaussian distribution.
The histograms obtained from the Metropolis sampling are compared with the corresponding
analytical distributions to validate the implementation.

The following figures depict the results obtained from the Metropolis method. The corresponding
code written in python is listed in Appendix II.
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Figure Al. Normalized histogram obtained with Metropolis compared with the analytical target
distribution exp(-x)
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Figure A2. Normalized histogram obtained with Metropolis compared with the analytical target

distribution exp(-x?)

The histograms in Figures Al and A2 show the distributions obtained from the Metropolis
algorithm. The red line represents the expected analytical distribution, and the blue bars depict the
sampled data. The agreement between the sampled and analytical distributions confirms that the
Metropolis method accurately reproduces the desired probability densities. Minor deviations at the

tails may be attributed to statistical noise due to finite sample size.

These examples demonstrate the effectiveness of the Metropolis method for probability sampling.
Beyond this simple application, the algorithm is widely used in Monte Carlo simulations for more

complex systems, such as molecular dynamics and statistical physics models.
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Appendix 11

Metropolis Algorithm Code
Metropolis Algorithm

r0=1.0
def Target(x):
1f(x<0):
return 0
else:
return np.exp(-((x-3)**2)/r0**2)

N=4000;
x=np.zeros(N+1);
x[0]=3; # Initial Value
for n in range(1,N+1):
a=x[n-1];
b=a+ np.random.normal(0,1); #
p=np.random.rand(1)*1; # Generate number between 0 and 1
A=Target(b)/Target(a);
if (p<A):
x[n]=b; # Accept value
else:
x[n]=a; # Don’t accept value and repeat value a

s=np.zeros(N+1)
f=np.zeros(N+1)
for n in range (O,N+1):

s[n]=(n-(N/2))/N*6+3
fln]=np.exp(-((s[n]-3)**2)/r0**2)

Histo=np.histogram(x,bins=10)
XX=Histo[1][0:10]

Figl=plt.figure(1);

#plt.hist(x, bins=30);

plt.plot(s,f, linewidth=3.0, color='r')
plt.bar(XX,Histo[0]/1050)
Figl.show();

136



Appendix

Appendix 11T

Radial distribution function pseudocode
Here, we describe the algorithm used to compute the radial distribution function g(r) in our
simulations. Unlike the theoretical definition, where g(r) is expressed as a sum over Dirac delta
functions, numerical implementations require discretization using histograms. The algorithm is as
follows.

Let Np represent the total number of particles in the system and Np the number of bins in the
histogram that will represent g, (r) or g;;(r), which, for simplicity, will be represented only by

g@).

The bins will be separated a radial distance Ar. Therefore Ar = Np /L. The parameter L represents
the dimensions of the box, which, for simplicity, are considered equal.

With the above conditions, g(r) is composed by Ny discrete variables, g[0], g[1], g[2] ... g[Ng —
1].

The program first initializes to zero the histogram as follows.
For i=0 to Ng-1:
gli] = 0;

Now, we compute the distance between the particles and fill the histogram with the following
pseudocode.

For i=0 to Nz-2:
For j=1+1 to Ng-1:
r=|r; — 1;;
x'=x-L*int(x'/L) ; y'=y-L*int(y'/L).  # Periodic boundary conditions as described in 3.3.1.
r = Ry
m=int(r'/ Ar); # Choose the correct bin.
g[m]=g[m]+2; # Found two particles in this bin.
The above pseudocode counts the number of particles in each bin.
We have to normalize the histogram. This is done as follows.
We compute the volume of each bin as follows.
Volumeli]=4/3n(r;.3—71;3), withr;,; = (i + 1) Ar, and r; = ;Ar.

Therefore, the volume of the i-bin is given as, Volume[i]=4/3wAr3((i + 1)3—i3).
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With this condition, each normalized bin, is written as, g[i] = g[i]/(2 * Np * Volumel[i]).
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Appendix VI

Visualization of the rods configurations

We can visualize the configurations of the particles contained in the colloidal phases calculated by
the Monte Carlo simulations by creating a program to place each of the spherocylinders at their
corresponding spatial coordinates within a cubic box. While this task may be extensive, there are
various open-access codes already available to accomplish this task. We will utilize the VISUAL
COLLOIDS tool, developed by Michiel Hermes, and can be accessed through the link in reference
[8.1]. This tool enables us to draw different geometrical shapes such as spheres, cylinders,
spherocylinders, and others. We have chosen this tool due to its friendly useability and in the
following lines we describe the parameters required by the program in order to render the
spherocylinders in their positions inside a specific cubic box.

To accomplish the task mentioned above, we will refer to figure VI.1. It is necessary to provide
the program with the coordinates of the centers of mass of each rod, denoted as (x,, yo, Zg). In our
case, the centers of mass of the rods coincide with their geometrical centers and, pointed and
depicted by the vector A in the figure. Additionally, to establish the orientation of the rods, we
define a unit vector, denoted as U = (u,, Uy, u,), aligned with the major axis of the spherocylinder.
This vector must be unitary, and it will be multiplied by a scalar L to set the length of the rod to
this value. Finally, two additional vectors, V = (V,,V,,V,) and W = (W,, W,,, W,) , perpendicular
to each other and both orthogonal to vector U, forming a triad, need to be provided. The lengths of
V and W determine the rod's diameters along their respective directions, as depicted in Figure VLI.

A
u

v OsYO:ZO)

—~3y

Figure VI.1. Physical parameters that need to be provided to the program in order to place the
spherocylinders inside a cubic box of determined dimensions.
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To accomplish the process described above, we take the value of the coordinates of the U vector
for each spherocylinder obtained from the Monte Carlo simulations. Now, to find the coordinates
of the other two vectors, V and W , we proceed as follows according to the next cases. If the three
coordinates of the vector & are different from zero, we generate two random values between 0 and
1. These values will be assigned to V, and V,, of the V vector. For the remaining coordinate, V,, the

value is obtained by imposing the perpendicular condition given by

w, Ve +u, Wy, +u,V, =0 (VL.1)
Vy

Having assigned the values of the components V,, and V,, the value of V; can be calculated by the

following

U,V + UV,
I/Z:_M (VL.2)
U,

In the case that one of the coordinates of the vector U vanishes, then, finding the vector V is
straightforward.

We still need to generate the W vector. To do this, we use the cross product as
W=uxV (VI.3)

As mentioned above the lengths of the vectors V and W which will define the diameters in their
corresponding directions, which will be denoted as Dy, and Dy, respectively. Therefore, we
adjust their magnitudes as follows.

|V| = Dy (VL. 4a)

|W| = Dy, (V1. 4b)

As an illustration, the parameters of the vectors &,V and W corresponding to a rod centered at
the origin, pointing in z direction, with length L=6 and diameter 1, will be

@ =(0,01); L=6; V=100 W=(0,01)

Using the previews parameters the program will exhibit the following image.
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V

Figure VI.2. Spherocylinder exhibited by the program using the above parameters.

X

In figure VI.2 we have introduced a box of lengths 23x23x23 units.

As in our calculations the direction of the dipoles is considered, it is necessary to visually indicate
the direction of the rods. To depict this direction, we will indicate by means of red and blue colors,
the positive and the negative charges of the dipoles, respectively. This is accomplished as follows.

To accomplish this, we will draw two overlapped cylinders, displaced a small distance A one with
respect to the other in the @ direction, creating the illusion of a single spherocylinder, showing the
two mentioned colors.

To accomplish the above task, we will refer to figure VI.3.
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Figure VI.3. Displacement of the rod from the position (X,, Yy, Z,) to the new position
(Xp, Yp, Zyp ), in the direction of i

To displace one of the cylinders a quantity A in the direction of the vector & from the point
(X0, Y0, Zy), pointed by vector 4 to the new position (X, Yy, Z,, ), pointed by vector B, as depicted
in the figure V1.3, we define a new vector C, of magnitude A, pointing in the direction of i, as

C=Aw (VI.5)
From the figure we notice the following relation between the three vectors
A+C=B (VI.6)

From equation (VI.6) we then observe that to displace the rod a distance A in the direction of & we
only need to add to the initial point (X,, Yy, Z;) the components of the new vector C as

B= (XO + Aux, YO + Auy, ZO + Auz) (VI. 7)

Now, we need to displace the other spherocylinder a distance A in the W direction. Therefore, the
negative charged part of the rod, will be given accordingly by a vector B’ as

B’ = (Xo — Auy, Yy — Auy, Zy — Auy,) (VI..8)

As an example of the above procedure, in figure V1.4, we exhibit two displaced spheroyclinders,
slightly overlapped, one blue and the other red, giving the above mentioned desired illusion.
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Figure VI.4. Two displaced spherocylinders slightly overlapped, one blue and other red, giving
the illusion of only one rod exhibiting two colors.

The method described in this section will allow us to show our results showing the dipolar direction
of each rod as will be shown in the results section. The following figure shows a preliminary
illustration applied to 1000 rods.

Figure VI.5. Snapshot of 1000 rods applying the described method to represent the dipoles
orientation. The red half represents the positive part of the dipole, while the blue half represents
the negative part, illustrating the scheme used to visualize dipoles in the simulation.
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