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Abstract

This present thesis is devoted to the study of dynamical and cosmolog-

ical solutions for a two-branes system, in which the fifth dimension is

compactifed on a circle. Under a particular hypothesis, which is used

to integrate Einstein’s equations, a new set of solutions is derived

and they reveals that the cosmological parameters in both branes are

related, and this interdependence is due to the bulk geometry. By

supposing one of the two branes is dominated, first by a single com-

ponent and then by a real scalar field, We will analyze what conditions

are necessary to obtain inflation in our visible brane. This is achieved

by analyzing the corresponding dynamical system emerging from the

modified Friedmann equations, establishing what are the limits where

these models are valid. A characteristic of these types of models is the

ability to explore different types of cosmological solutions according

to the shape and components of the universe.
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1

Introduction

For years scientists have speculated about how our universe evolved: how it

emerged, what is its shape, what are its limits and where it is going. Undoubt-

edly the most daring questions inquire about its origin and what have exist be-

fore its formation, giving explanations that range from the religious to the purely

speculative ones [22]. Physics, however, can help us with some clues about how

everything could have become visible: with the proposal of some hypothetical

scenarios, one can apply the basic laws (Newtonian and Einsteinian) and achieve

some important conclusions. It should be clear here that there is no guarantee

that the known laws, applicable to the solar system, are also valid at scales as

large as clusters of galaxies; however, the hypothesis known as the cosmologi-

cal principle assures us that the universe is homogeneous and isotropic so that

anywhere and in any direction, the laws of nature are exactly the same [46].

Without underestimating the knowledge that was forged throughout history,

we can say with certainty that the study of the universe as a whole has its origin in

the first half of the twentieth century. In the last century, cosmologists have made

great contributions concerning the size of our universe (at least the visible part)

and its probable age, begining with the development in 1915 of Albert Einstein’s

general theory of relativity, followed by major observational discoveries in the

1920s: first, Edwin Hubble discovered that the universe contains a huge number

of external galaxies beyond our own Milky Way; then, work by Vesto Slipher

and others showed that the universe is expanding. Edwin Hubble, known for

his famous law of redshift, established that galaxies are moving away from each

1



1. INTRODUCTION

other at a speed proportional to their distance, which led him to conjecture that

in early times the galaxies were so close together that they could have emerged

from a large concentration of energy as a result of a huge explosion (explosion

here understood as an expansion of space, time and matter together) Moving on

from these discoveries, scientists have made great efforts to explain what exactly

happened at the moment of the Big Bang. Recent observations of the cosmic

background radiation shed light on the first minutes of the birth of the universe

as well as the exact composition of its primary components.

Knowledge of the structure and components of all visible things and the laws

that govern them, plays a crucial role in the correct understanding of the differ-

ent stages in which the universe has been gestated. The most successful theories

suggest the idea of an initial stage, where space and time has been “conceived”

from a singularity (Big Bang) at scales as large as those hypothesized by Grand

Unified Theory (GUT), and that the universe emerged about 13.8 billion years

ago with a homogeneous and isotropic distribution of matter at very high temper-

ature and density, which has been expanding and cooling since then[87] followed

by a stage of exponential inflation, which cooled the universe to enter in a stage

of relaxation and subsequent reheating. Finally the large potential energy of the

inflaton field decays into particles and fills the Universe with Standard Model

particles, including electromagnetic radiation, starting the radiation dominated

phase of the universe [41]. The Lambda cold dark matter (ΛCDM) model is a

parametrization of the Big Bang cosmological model in which the universe con-

tains a cosmological constant, denoted by Lambda, associated with dark energy,

and cold dark matter. It is frequently referred to as the standard model of Big

Bang cosmology, because it is the simplest model that provides a reasonably

good account of the majority of the properties of the cosmos. Despite the large

observational technological advancement, which has proven to be true at earlier

stages, other questions plague cosmologists, especially those having to do with

the formation of structure, the mechanism that generates inflation and also stops

it, the dark energy and dark matter, the current accelerated expansion, etc. [52].

And it is from these “gaps” in the standard theory of cosmology (and related the-

ories) that many theoretical scientists have been motivated themselves to develop

more sophisticated models of the standard ΛCDM , trying to explain natural phe-

nomena that remain mysterious, but others tend to develop completely different

2



Figure 1.1 According to the Big Bang model, the universe expanded from an

extremely dense and hot state and continues to expand today. If the known laws

of physics are extrapolated beyond where they are valid, there is a singularity.

Modern measurements place this moment at approximately 13.8 billion years

ago, which is thus considered the age of the universe. Image taken from https:

//en.wikipedia.org/wiki/File:Universe_expansion2.png

3
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1. INTRODUCTION

theories [51].

As an alternative solution to the challenges arising from the standard cos-

mology, in the last century multidimensional models have emerged, which raise

the possibility that the universe has more than four dimensions, which can have

different sizes, and the 4D cosmology is recovered on a brane1 [20]. One of the

first proposals considered an extra dimension to Einstein’s equations; Its effect on

the dynamic equations is in the introduction of new energy modes called Kaluza-

Klein tower (see [19, 67] for a pedagogical review). One of the difficulties of this

model is that it considerably limits the possibility of experimentally detecting

these modes of energy; an analysis of results from the LHC in December 2010

severely restrict theories with large extra dimensions [38]. While these models

were proposed as an attempt to solve the problem of the hierarchy and the uni-

fication of forces, they have also been the basis for tackling issues like inflation,

dark matter, etc; there is even an important branch of study called brane theory

or braneworld cosmology.

Among the more recent models that challenge standard theories, there are

multidimensional models [89], in particular the theories of strings, which were

developed in the 20’s and today are an area of very strong research that has

resulted in the M theory: a multidimensional theory that encompasses all the

others as special cases (See [6] for an excellent review). The strings, initially

proposed as fundamental constituents of matter, are a particular case of p-branes

(which are more general objects in p dimensions) in such a way that a 1-brane is

a fundamental particle, while a 3-brane is an extended object, where the 1-branes

may be limited. Under some specific hypotheses, M theory must be reduced to a

five dimensional theory [8], where our universe can be seen as a 3-brane moving in

a space of 5 dimensions where the fifth dimension is compactified on an orbifold.

Braneworlds in 5 dimensions are the most attractive extension of M-theory

and have been studied from a cosmological point of view as an excellent approach

to solve the unsolved problems in standard theory since they provide an extra

ingredient in the dynamical equations at high energies and consequently in the

early universe. This present thesis is an attempt to explain the inflation mech-

1In cosmology the term ”brane” is used to refer to objects similar to the four-dimensional

universe that move in a ”bulk” of higher dimension. Standard Model particles are confined to

such a brane.
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anism by suggesting the universe is 5-dimensional with two branes: hidden and

visible, and the source of inflation lives in the hidden one.

The motivation of the work in this present thesis, is the braneworld theory

and the possibility of obtaining an inflationary early universe from it. Recently,

there has been considerable interest in the dynamics of brane interactions. The

interest was motivated partly by the insights which static brane configurations

have already given to long-standing low-energy issues like the hierarchy problem,

and partly by the potential application of brane collision/annihilation processes

to the cosmology of the very early universe [21],[39]. In electrodynamics there is a

well known tool for solving problems of electrostatic potentials, called method of

images, which provides that, under certain settings, an electrostatic distribution

behaves as a single charged point and viceversa [34]. The basis of this method is

the principle of unicity of potential: where two potentials simultaneously satisfy

Poisson’s equation, the two are equivalent. In this regard, it is established that

from the phenomenological point of view, two or more different phenomena can

have a measurable same result. Under this philosophy, branes models propose the

existence of a field of matter at the beginning and the end of a fifth coordinate,

that satisfies Einstein’s equations, and the effects of having distributions of matter

in a hidden area, are equivalent to those produced by dark matter and dark

energy in the early times of the universe. This is perhaps the main inspiration for

multidimensional models: what if the visible effects around the 5-dim world are

due to a distribution of matter in a hidden area? It is also is the justification for

the introduction of matter and dark energy. The idea is quite attractive, especially

because this opens a vast range of possible causes for the known phenomena.

The results presented in section 4.2 are the main motivation of this thesis,

particularly the mechanism which generates inflation: it is not clear what is the

nature of the inflaton field because it does not correspond to any physical mat-

ter field, besides that, inflation requires extremely specific initial conditions and

a mechanism which stops it. Here we suppose inflation emerges as a result of

having a hidden sector in the universe in which the scalar field is trapped, and

its gravitational effects are detected in the visible sector. In order to sustain this

hypothesis, we have solved the Einstein Equations, and have imposed boundary

conditions on then. An interesting set of solutions is found which connects the

cosmological evolution in both sectors. Many works in multidimensional theo-
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1. INTRODUCTION

ries point to the scalar field as been responsible for causing inflation, which is

immersed in the bulk (such that models can induce either inflation or a hot big-

bang radiation era, as in the ekpyrotic or cyclic scenario or in colliding bubble

scenarios). Our research aims to complement such works, while opening up the

possibility of investigating other possible consequences in the field of cosmology.

The present thesis is organized as follows: Chapter 2 is devoted to the in-

troductory review to the standard cosmology and braneworld theory. It explores

the main results and the motivations to introduce extra dimensions. Chapter 3

presents the main results of the study of brane dynamics, the main aspects of the

RS1 model 1 and the brane cosmological equations. At the end of this chapter,

we present a brief treatment of the cosmology for two branes fixed in the bulk

and the master thesis results. A novel way to solve the 5D Einstein equations is

presented, also showing the possible exact solutions and the corresponding con-

straints. Chapter 3 is devoted to the mathematical develop of the proposed model

and the analysis for a universe dominated by only one component. Finally, We

show the scalar field dominating case, in which the inflation phenomenon is caused

by the interaction between both branes. Discussion is presented in Chapter 4.

1Randall–Sundrum models are models that describe the world in terms of a 5-dimensional

space where the elementary particles are localized on a (3 + 1)-dimensional surface or brane.

RS-1 model has a finite size for the extra dimension with two branes, one at each end
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2

Modern Cosmology

Physical cosmology is the study of the universe as a whole, and is interested in

knowing its physical properties: Its age, its size and shape, its limits, its compo-

nents and its evolution over time, among other things. In contrast to astronomy

and astrophysics, cosmology is responsible for recovering observational data from

the universe at Megaparsec scales, where the particular objects of study are clus-

ters and superclusters of galaxies [78, 84]. On scales bigger than 100Mpc the dis-

tribution of matter in the universe is known to be very homogeneous, both from

direct observation of the galaxies and from the isotropy of the microwave back-

ground [56]. Traditionally, cosmology focused only on the study of the universe at

large scales, but recent research suggests its familiarity with particle physics study

at Planck time scale [59], so that for complete understanding, modern theories of

quantum physics and field theory must be used.

Physical cosmology, as an observational/experimental science, is relatively

new, with its beginning exactly a century ago, when Albert Einstein established

the mathematical foundations of general relativity in 1915, from which the theo-

retical models of the universe unfolded. Einstein himself was the first to propose

a static model of the universe in 1917, which included a constant term (cosmo-

logical constant) that maintained a balance with the gravitational forces of stars

[35]1. In the same year, Willem de Sitter proposed, under a similar idea, a model

1The cosmological constant was initially introduced by Einstein in 1917 to achieve a static

universe, which coincided with the conception of the universe at that time. His original equa-

tions from 1915 did not allow for a static universe: gravity leads from a universe initially in

dynamic equilibrium to one in contraction. The effect of introducing a cosmological constant

7



2. MODERN COSMOLOGY

Figure 2.1 Original of the graphic presented by Edwin Hubble about his law of

distance against radial velocity between extra-galactic nebulaes [32]

of the universe in expansion, but it did not became relevant until some time later;

de Sitter’s universe also contained the cosmological constant, but no other matter

[66]. In 1922-1924, Alexander Friedmann [25, 26] proposed the first solutions to

Einstein’s equations for an expanding universe, where the possibility of having

three different curvatures arises: positive, zero and negative. It was not until

1929 that Edwin Hubble published an analysis of radial velocity, with respect to

Earth, of some nebulae, from which he concluded his famous Hubble law: there

is a relationship between the distance of the nebula and its rate of recession [32].

From that moment on, the first successful ideas about the origin of the universe

emerged. Lematrie, in 1931, concluded that if galaxies are moving away from

each other, then at some point they had to be very close and confined in a highly

dense region, hypothesis that he called the primeval atom or the Cosmic Egg [45].

From this idea, the term Big Bang was born, coined by Sir Fred Hoyle derisively

to refer to the theory of Lematrie. It was not until 1965 that astronomers Arno

leads to a positive energy density but with negative pressure, which counteracts the attraction

force of the stars.
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A. Penzias and Robert W. Wilson [68] detected a 2.7 K radiation that perme-

ated the universe; with this discovery, the theory of the Big Bang got its first

experimental evidence.

Figure 2.2 Picture of the evolution of the universe. From left to right, the fig-

ure represents the most important stages in the formation of the universe, from

the Big Bang to the formation of galaxies. Image taken from https://es.m.

wikipedia.org/wiki/Archivo:HistoryOfUniverse-BICEP2-20140317.png

With the Big Bang theory, the correct abundance of helium, deuterium and

lithium was predicted (1966-1974), however other problems plagued cosmologists:

the horizon problem, the flatness of monopoles and the formation of structure.

In 1981, Alan Guth proposed the solution of the inflationary Big Bang, which

solves the above problems [30] (See [85] for a review). The observational evidence

for the Big Bang theory has been provided by the COBE (1990) [9] Boomerang

(1998, 2003) [58], CBI (2002-2003) [75] and WMAP (2005-2009) [43] satellites,

as well as other important information, such as the existence and abundance of

matter and dark energy, which are detailed below.
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2. MODERN COSMOLOGY

2.1 Einstein’s equations

Undoubtedly, one cannot speak of modern cosmology without taking into account

the foundations of such a discipline, that is, Einstein’s equations. In Einstein’s

general relativity theory, spacetime is curved due to the presence of a distribution

of mass-energy. Such curvature is a property of spacetime itself. Thus, the

acceleration of an object in a gravitational field is independent of the mass and

physical condition of the body, which follows a geodesic path. There is, therefore,

no difference between inertial and gravitational mass because the warping of

spacetime is the same independently of the test particle used to measure 1.

Figure 2.3 In the presence of a massive object, spacetime is curved. Image taken

from https://es.wikipedia.org/wiki/Curvatura_del_espacio-tiempo

The theory of general relativity establishes the equivalence between matter

and curvature through the field equations,

Rµν −
1

2
gµνR = κTµν , (2.1)

where gµν is the metric tensor, which describes the spacetime geometry (4-

1While it was known from Newtonian mechanics that inertial and gravitational mass have

the same magnitude, it was not until the formulation of general relativity, that Einstein offered

a satisfactory explanation, as he relates: one and the same property of the body is manifested

either as inertial mass, or as gravitational mass [23].
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2.1 Einstein’s equations

dimensional semi-Riemannian manifold 1); Rij is the Ricci’s tensor2, which de-

scribes the curvature of the metric manifold and R its contraction; κ is a numerical

factor which depends on Newton’s gravitational constant, G, obtained by extrap-

olating the Newtonian limit of equations; Tµν is the stress-energy tensor, which

describes the flow of energy and momentum and satisfies the continuity equation,

∇νT
µν = 0. (2.2)

The Einstein field equations can be derived using the Einstein-Hilbert action

by the principle of least action,

S =

∫
(

1

2κ
R + LM

)√−gd4x, (2.3)

where LM is a Lagrangian describing any field that is present in the theory. In

[80], [11], [29] and [12] different solutions to Einstein’s equations are displayed.

In the case for a perfect fluid, as it is considered for the universe to cosmolog-

ical scales3, we have as stress energy tensor,

Tµν = (ϵ+ p)UµUν + pgµν , (2.4)

where ϵ, p and Ui are the energy density, pressure and the velocity four-vector

respectively.

Finally, it is necessary to consider that Einstein, motivated by the idea of

a static universe, introduced into his equations an additional term called the

cosmological constant (Λ), which modifies the field equations to the form

Rµν −
1

2
gµνR + Λgµν = κTµν . (2.5)

Initially, the cosmological constant drove to an unstable universe, so Einstein

refers to it as a serious detriment of the formal beauty of the theory; but now,

following the observations, this term is needed to describe an expanding universe.

The physical nature of the cosmological constant is still a mystery, and it is only

associated with the energy density of the vacuum.

1Srtictly speaking gµν = ∂µ∂ν µ, ν = 0, 1, 2, 3, where the ∂i are the basis of vectors for the

tangent space of the manifold.
2The Ricci tensor is defined using Riemann tensor, Rα

µβν , through the expression: Rµν =

Rα
µαν , and the curvature scalar, R, as R = gµνRµν

3Scales of roughly 100 Mpc or more
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2. MODERN COSMOLOGY

2.2 Chronology of the Big-Bang

From observations such as those made by Edwin Hubble (1929), the cosmologists

have suggested that in the past the universe came from a singularity (Big Bang),

of which there is strong evidence supported mainly by the study of the cosmic

background radiation (CMB) initiated by Penzias and Wilson (1964). Once the

universe was “born”, it experienced a period of exponential expansion, called

“inflation” and then enter a state of “reheating”. This state of relaxation allowed

in certain sectors of space (through the decay of the inflaton) the creation of

the standard model particles and electromagnetic radiation, which formed stars,

planets and interstellar gas. By way of summary, post-Big Bang events are pre-

sented below. It should be noted that the data are not conclusive, and differ

from one author to another, because the complete quantum theory to describe

processes on Planck length and timescales is still in development. For a detailed

analysis of the cosmological eras, refer to [42]

Planck age (0 to 10−43 seconds): The four fundamental forces of nature (strong

nuclear, weak nuclear, gravity and electromagnetic) coexist. There is not cur-

rently a Unified Physical Theory that can give accurate data of this stage, how-

ever, quantum mechanics states that time intervals or intervals of length less than

the Planck units are meaningless.

Great Unification age (10−43 to 10−36 seconds): The universe expands and

cools and the first separation of the fundamental forces arises, separating gravity

form the other three. It is known as grand unification, because the physical

theory describing the remaining three forces (strong nuclear, weak nuclear and

electromagnetic) is known as GUT. The universe was then a high density soup

of particles and antiparticles of high density; the entire mass of a galaxy cluster

would fit into the space occupied by a hydrogen atom. This age comes to and

end when the strong nuclear force separates the weak nuclear and electromagnetic

forces.

Inflationary age (10−36 to 10−32 seconds): the early universe went through

a phase of exponential expansion. This rapid accelerated expansion is proposed

as a solution to the problems of flatness, homogeneity and isotropy, as well as

the absence of magnetic monopoles. The most accepted mechanism that causes

inflation is the presence of a scalar field (inflaton), which slides from a constant
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2.2 Chronology of the Big-Bang

potential state V0 (false vacuum), to a global minimum (true vacuum) where in-

flation ends and the field oscillates and couples to other fields to form the particles

and interactions of the standard model. Inflation cools the universe from a tem-

perature TGUT ≈ 1028K to 1022K When inflation ends, the temperature returns

to the pre-inflationary temperature; this is called reheating or thermalization be-

cause the large potential energy of the inflaton field decays into particles and fills

the universe with Standard Model particles, including electromagnetic radiation,

starting the radiation dominated phase of the universe.

Finally, there was the Baryogenesis, that is an asymmetry between the amount

of particles and antiparticles created when part of the energy of the universe

materialized in baryons. The Dirac equation predicts the existence of particles

and antiparticles, and the CPT theorem guarantees that both particles have the

same mass and half-life, but opposite charge; so the observed asymmetry (for

every 10 billion particle-antiparticle pairs, there is one extra particle that does

not have an antiparticle to annihilate with and become background radiation)

may be due to some violation of CP symmetry after the inflationary stage.

Electroweak age (10−36 to 10−12 seconds): This stage was overlaid with infla-

tion, or what is the same, the inflation occurred during electroweak era, where

the strong interaction becomes distinct from the electroweak interaction, which

is known as spontaneous symmetry breaking, and that’s when the fundamental

particles have acquired their mass by the Higgs mechanism.

Quarks age (10−12 to 10−6 seconds): in this period the four basic forces of

nature are already in their present forms. The Universe still has such a high

temperature that prevents the binding of quarks forming hadrons.

Hadrons age (10−6 to 1 second): the universe continues to expand, and the

temperature falling. When it gets cold enough, the quark-gluon plasma formation

begins with hadrons, then protons and neutrons come together to their antipar-

ticles. Neutrinos are decoupled from the rest of the particles and begin to travel

freely through the universe. If we can dispose the necessary detectors (very elu-

sive neutrinos) could catch a cosmic background remnant of them as existing for

photons.

Leptons age (1 to 10 seconds) most anti-hadrons and hadrons have been de-

stroyed at the end of the age of hadrons and leptons now (electrons and the like)

and anti-leptons dominate the mass of the universe. At the end of this age, most
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2. MODERN COSMOLOGY

leptons and their antiparticles are annihilated, leaving a small residue that will

be arriving at our days.

Photons age (10 seconds to 300,000 years) after the age of leptons energy of

the universe is dominated by photons. The universe is so energetic that even

photons interact with protons, electrons and atomic nuclei. It will take 300,000

years before the universe has cooled enough for photons to continue their path

freely, as neutrinos have already done.

Nucleosynthesis (1 seconds to 3 minutes): the formation of nuclei occurs dur-

ing the age of leptons and first minutes of the age of photons. In this period the

protons and neutrons combine to form nuclei of hydrogen, helium and traces of

lithium. Due to the expansion of the universe, after 3 minutes the temperature

is not enough to follow the process and it stops. Now the universe is plasma of

atomic nuclei, electrons, neutrinos and photons.

Recombination (300,000 years): the universe has continued to expand and the

temperature has dropped enough to allow atomic nuclei combine with electrons

and form atoms. Finally photons are free to follow their path, the universe

becomes transparent to them. We can see the echo of this was in the Cosmic

Microwave Background.

Reionization (150,000,000 1,000,000,000 years): tiny differences in the homo-

geneity of the universe, caused certain regions of it to begin to accumulate more

matter due to gravity. Finally, the gravitational collapse turns the first quasars,

the radiation is so intense that reionized clouds surrounding atoms. Once the star

clouds began to collapse on themselves due to gravity and interaction with quasar

radiation, the first stars emerged. The generation of heavier atomic elements in

their centers, and later planting in the Universe by the supernova explosions, gave

way to the formation of the constituent elements of life. New generations of stars

lighting up the Universe continue to the present.

Galaxy formation: gravity causes matter volumes collapsing to form larger

structures: Galaxies.

Today it is well known [3], with some degree of accuracy, that the universe

has an age of 13.75× 109 years, and the current visible radius is about 14 billion

parsecs in addition that is currently expanding rapidly, and it is unknown the

final destination (although most likely expand to cool completely). The present

overall density of the Universe is very low, roughly 9.9 × 10−30 grams per cubic
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centimetre. The primary components of the energy density are the dark energy

and dark matter, consisting of 73% dark energy, 23% cold dark matter and 4%

ordinary matter, and the “dark” term is used to indicate the total ignorance of its

nature, and they have been postulated due to inconsistencies between observation

and theory.

Figure 2.4 9-year WMAP image of background cosmic radiation (2012). Fig-

ure taken of https://es.m.wikipedia.org/wiki/Archivo:WMAP_image_of_

the_CMB_anisotropy.jpg

Many of the principal knowledge of the early universe is supported by the

study of the CMB (cosmic microwave background) which is the thermal radiation

assumed to be a relic of the early universe (for a mini review, refers to [81]).

The universe was once very hot and dense, the photons and baryons would have

formed a plasma. As the universe expanded and cooled there came a point

when the radiation (photons) decoupled from the matter. The radiation cooled

and is now at 2.72 Kelvin and that the spectrum of the radiation is almost

exactly that of a black body with a little anisotropy. The anisotropy of the

cosmic microwave background is divided into two types: primary anisotropy, due

to effects which occur at the last scattering surface and before; and secondary

anisotropy, due to effects such as interactions of the background radiation with

hot gas or gravitational potentials, which occur between the last scattering surface

and the observer.

The structure of the cosmic microwave background anisotropies is principally

determined by two effects: acoustic oscillations and diffusion damping. The

acoustic oscillations arise because of a conflict in the photon-baryon plasma in the

early universe. The pressure of the photons tends to erase anisotropies, whereas
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2. MODERN COSMOLOGY

the gravitational attraction of the baryons makes them tend to collapse to form

dense haloes. These two effects compete to create acoustic oscillations which give

the microwave background its characteristic peak structure. The peaks corre-

spond, roughly, to resonances in which the photons decouple when a particular

mode is at its peak amplitude.

2.3 Standard Big-Bang Cosmology

Based in the cosmological principle, which means that the universe is homoge-

neous and isotropic on large distance, the standard cosmology have the Friedmann-

Robertson-Walker (FRW) metric as the most general metric that describes the

universe geometry [17]:

ds2 = gµνdx
µdxν = −dt2 + a2(t)

[

dr2

1− kr2
+ r2(dθ2 + sin2 θdϕ2)

]

. (2.6)

Where a(t) is the scale factor with t being the cosmic time. The constant k =

{+1, 0,−1} is the spatial curvature, where the values correspond to closed, flat,

and open universes, respectively.

In order to know the dynamical evolution of the universe, it is required to

solve the Einstein equations, which we suppose are valid at large scales. The

Einstein equations are expressed as [87]

Gµν ≡ Rµν −
1

2
gµνR = 8πGTµν − Λgµν , (2.7)

where Rµν , R, Tµν , and G are the Ricci tensor, Ricci scalar, energy momentum

tensor, gravitational constant, respectively. The Planck energy, mpl = 1.2211 ×
1019GeV, is related with G through the relation mpl = (ℏc5/G)1/2. Here ℏ and

c are the Planck’s constant and the speed of light, respectively. Traditionally

the theorist works with a natural system of unities in which ℏ = c = 1. Λ is a

cosmological constant originally introduced by Einstein, but recently revived as

a primary element that produces accelered expansion in the Λ-Cold Dark Matter

model.

For the background metric (2.6) with a negligible cosmological constant, the

Einstein equations (2.7) yield

H2 =
8π

3m2
pl

ρ− k

a2
, (2.8)
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2.3 Standard Big-Bang Cosmology

ρ̇+ 3H(ρ+ p) = 0 , (2.9)

where a dot denotes the derivative with respect to t, and H ≡ ȧ/a is the Hub-

ble expansion rate. Eqs. (2.8) and (2.9) are so called the Friedmann and Fluid

equations, respectively. The evolution of the universe is dependent on the mate-

rial within it. This is characterized by the equation of state between the energy

density and the pressure, p(t) = ωρ(t). Typical examples are :

ω = 1/3 → p = ρ/3 , radiation , (2.10)

ω = 0 → p = 0 , dust , (2.11)

ω = −1 → p = −ρ , quintessence . (2.12)

When the spatial geometry is flat (k = 0), the solutions for Eqs. (2.8) and (2.9)

are

Radiation dominant : a ∝ t1/2 , ρ ∝ a−4 , (2.13)

Dust dominant : a ∝ t2/3 , ρ ∝ a−3 , (2.14)

Quintessence dominant : a ∝ ekt , ρ = constant . (2.15)

Combining Eqs. (2.8) and (2.9) give the well known equation of acceleration,

ä

a
= − 4π

3m2
pl

(ρ+ 3p) . (2.16)

In these simple cases, the universe is expanding deceleratedly (ä < 0) as confirmed

by Eq. (2.16). In contrast, a positive ä is possible only when ρ+3p < 0 is satisfied

The Friedmann equation (2.8) can be rewritten as

Ω− 1 =
k

a2H2
, (2.17)

where

Ω ≡ ρ

ρc
, with ρc ≡

3H2m2
pl

8π
. (2.18)

Here the density parameter Ω is the ratio of the energy density to the critical

density. Current observations suggest Ω − 1 ≈ 0 and a positive accelerated

universe, which suggest the Λ term is not negligible at all.

Although today there is a well-established theory that explain to a high ac-

curacy the physics of the visible universe, there are also other non-solved issues,

including inflation, which is mentioned in the next section.
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2.4 Composition of the Universe

Very little has been said until now about the primary components of the universe,

but much of the study of the cosmos has to do with the kind of matter that

composes it. The term Ω = ρ/ρc that appears in the equation (2.17), encompasses

all types of matter-energy contained in the universe [83]. Recent observations

suggest a value Ω ≈ 1, that is, that the universe is nearly flat, k ≈ 0. This

result suggests that the total energy density in the universe must be close to the

critical density, that is, ρ ≈ ρc. However, experimental calculations suggest that

baryon matter and radiation only contribute a small fraction of Ω, around 0.04,

while 0.23 exists in the form of dark matter and the remaining 0.73 in the form

of dark energy. Table (2.1) shows a complete inventory of all the components in

the universe.

Figure 2.5 Recent observations point towards the Universe is mostly composed of

dark energy and dark matter, both of which are not well understood at present.

Less than 5% of the Universe is ordinary matter,which is present in form of Star,

radiation and interstellar gas. Image taken from https://es.m.wikipedia.org/

wiki/Archivo:Matter_Distribution.JPG

According to the Friedmann equations, the expansion rate of the universe

is determined by the energy density and also by the equation of state of its

constituents. The main components of the matter composition that play an im-

portant role at temperatures below a few MeV are primordial radiation, baryons,

electrons, neutrinos, dark matter and dark energy.

Primordial radiation. The cosmic microwave background (CMB) radia-
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tion has temperature Tγ0 ≈ 2.73K. Its current energy density is about ργ0 ≈
1034gcm−3 and constitutes only 10−5 of the total energy density. The radiation

has a perfect Planckian spectrum and appears to have been present in the very

early universe at energies well above one GeV. Since the temperature of radiation

varies in inverse proportion to the scale factor, it must have been very high in

the past.

Baryonic matter. This is the material out of which the planets, stars, clouds

of gas and possibly dark stars of low mass are made [27]; some of it could also

form black holes. We will see later that the data on light element abundances

and CMB fluctuations clearly indicate that the baryonic component contributes

only a small percentage of the critical energy density (Ωb ≈ 0.04). The number

of photons per baryon is of the order of 109.
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Table 2.1. The Cosmic Energy Inventory [27]

Componentsa Totalsa

1 dark sector 0.954± 0.003

1.1 dark energy 0.72± 0.03

1.2 dark matter 0.23± 0.03

1.3 primeval gravitational waves ≤ 10−10

2 primeval thermal remnants 0.0010± 0.0005

2.1 electromagnetic radiation 10−4.3±0.0

2.2 neutrinos 10−2.9±0.1

2.3 prestellar nuclear binding energy −10−4.1±0.0

3 baryon rest mass 0.045± 0.003

3.1 warm intergalactic plasma 0.040± 0.003

3.1a virialized regions of galaxies 0.024± 0.005

3.1b intergalactic 0.016± 0.005

3.2 intracluster plasma 0.0018± 0.0007

3.3 main sequence stars spheroids and bulges 0.0015± 0.0004

3.4 disks and irregulars 0.00055± 0.00014

3.5 white dwarfs 0.00036± 0.00008

3.6 neutron stars 0.00005± 0.00002

3.7 black holes 0.00007± 0.00002

3.8 substellar objects 0.00014± 0.00007

3.9 HI + HeI 0.00062± 0.00010

3.10 molecular gas 0.00016± 0.00006

3.11 planets 10−6

3.12 condensed matter 10−5.6±0.3

3.13 sequestered in massive black holes 10−5.4(1 + ϵn)

4 primeval gravitational binding energy −10−6.1±0.1

4.1 virialized halos of galaxies −10−7.2

4.2 clusters −10−6.9

4.3 large-scale structure −10−6.2

5 binding energy from dissipative gravitational settling −10−4.9

5.1 baryon-dominated parts of galaxies −10−8.8±0.3

5.2 main sequence stars and substellar objects −10−8.1

5.3 white dwarfs −10−7.4

5.4 neutron stars −10−5.2

5.5 stellar mass black holes −10−4.2ϵs

5.6 galactic nuclei early type −10−5.6ϵn

5.7 late type −10−5.8ϵn

6. poststellar nuclear binding energy −10−5.2

6.1 main sequence stars and substellar objects −10−5.8

6.2 diffuse material in galaxies −10−6.5

6.3 white dwarfs −10−5.6

6.4 clusters −10−6.5

6.5 intergalactic −10−6.2±0.5

7 poststellar radiation 10−5.7±0.1
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Table 2.1 (cont’d)

Componentsa Totalsa

7.1 resolved radio-microwave 10−10.3±0.3

7.2 far infrared 10−6.1

7.3 optical 10−5.8±0.2

7.4 X-γ ray 10−7.9±0.2

7.5 gravitational radiation stellar mass binaries 10−9±1

7.6 massive black holes 10−7.5±0.5

8 stellar neutrinos 10−5.5

8.1 nuclear burning 10−6.8

8.2 white dwarf formation 10−7.7

8.3 core collapse 10−5.5

9 cosmic rays and magnetic fields 10
−8.3+0.6

−0.3

10 kinetic energy in the intergalactic medium 10−8.0±0.3

aBased on Hubble parameter h = 0.7.

Dark matter and dark energy. The CMB fluctuations imply that at

present the total energy density is equal to the critical density. This means that

the largest fraction of the energy density of the universe is dark and nonbaryonic.

It is not quite clear what constitutes this dark component. The first hypothesis to

postulate dark matter based upon robust evidence was Vera Rubin’s in the 1960s

and 1970s, using galaxy rotation curves [79]. Combining the data on CMB, large

scale structure, gravitational lensing and high-redshift supernovae, it appears that

the dark component is a mixture of two or more constituents. More precisely,

it is composed of cold dark matter and dark energy. The cold dark matter has

zero pressure and can cluster, contributing to gravitational instability. Various

(supersymmetric) particle theories provide us with natural candidates for the cold

dark matter, among which weakly interacting massive particles are most favored

at present. The non-baryonic cold dark matter contributes only about 25% of the

critical density. The remaining 70% of the missing density comes in the form of

nonclustered dark energy with negative pressure. It may be either a cosmological

constant (p = −ρ) or a scalar field (quintessence) with p = ωρ, where ω is less

than −1/3 today.

Primordial neutrinos. These are an inevitable remnant of a hot universe.
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Figure 2.6 Strong gravitational lensing as observed by the Hubble Space Telescope

in Abell 1689 indicates the presence of dark matter. Image taken from https:

//esahubble.org/images/heic1317a/

If the three known neutrino species were massless, their temperature today would

be Tν ≈ 1.9K and they would contribute 0.68 times the radiation density. At-

mospheric neutrino oscillation experiments suggest that the neutrinos have small

masses. Even so, it appears that they cannot constitute more than 1% of the

critical density.

2.5 Inflation

Inflation is the mechanism by which the universe expands exponentially and has

been postulated as the response to various unsolved problems in standard cosmol-

ogy, namely the flatness problem (why the universe is nearly flat) horizon (why

the universe has the same temperature in all directions) and magnetic monopoles

(why no magnetic monopoles have been detected yet). Although the mechanism

that generates inflation is unknown, in 2014 the project BICEP2 [2] announced

the detection of gravitational waves from inflation, providing a strong support to

the inflationary theory. The basic ideas of inflation were originally proposed by

Alan Guth in 1981, which is now known as old inflation. This corresponds to the

de-Sitter inflation which makes use of the first-order transition to true vacuum.
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However, it has a serious shortcoming in that the universe becomes inhomoge-

neous by the bubble collision soon after the inflation ends. Another version was

proposed by Andrei Linde and Albrecht and Steinhardt in 1982, which is known

as new inflation [49, 50]. This corresponds to the slow-roll inflation with the

second-order transition to true vacuum. Unfortunately this scenario also suffers

from a fine-tuning problem of spending enough time in false vacuum to lead to a

sufficient amount of inflation. In 1983 Linde [48] considered the variant version

of the slow-roll inflation called chaotic inflation, in which initial conditions of

scalar fields are chaotic. According to this model, our homogeneous and isotropic

universe may be produced in the regions where inflation occurs sufficiently.

Figure 2.7 Shape of the Potential V (ϕ). The scalar field rolls slowly until reach

the minimum of potential V0. Image taken from http://universeinproblems.

com/index.php/File:Inflation_3_2_1.jpg

As a first approach, inflation is modeled by the existence of a real scalar field

which filled the early universe. This scalar field is subject to the action of a po-

tential which has a specific shape such that slow-roll conditions are satisfied: it

must be flat enough to generate the exact amount of inflation. At present, while

inflation is understood principally by its detailed predictions of the initial condi-

tions for the hot early universe, the particle physics is largely ad hoc modeling.

As such, though predictions of inflation have been consistent with the results of

observational tests, there are many open questions about the theory.

The scalar fields are the main ingredients in particle physics theories and,
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more recently, in the early universe models. Consider a homogeneous scalar field

ϕ, (inflaton), whose potential energy leads to the exponential expansion of the

universe (For a review, refers to [16]). The energy density and the pressure density

of the inflaton can be described, respectively, as

ρ =
1

2
ϕ̇2 + V (ϕ) , p =

1

2
ϕ̇2 − V (ϕ) , (2.19)

where V (ϕ) is the potential of the inflaton. Substituting Eq. (2.19) for Eqs. (2.8)

and (2.9), it gets

H2 =
8π

3m2
pl

[

1

2
ϕ̇2 + V (ϕ)

]

, (2.20)

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0 , (2.21)

where κ2 ≡ 8πG = 8π/m2
pl, and the curvature term k/a2 in Eq. (2.8) has been

neglected. During inflation, the relation ρ + 3p < 0 is satisfied and yields ϕ̇2 <

V (ϕ), which indicates that the potential energy of the inflaton dominates over

the kinetic energy of it. Therefore a flat potential of the inflaton is required in

order to lead to sufficient amount of inflation. Imposing the slow-roll conditions:
1
2
ϕ̇2 ≪ V (ϕ) and ϕ̈ ≪ 3Hϕ̇, Eqs. (2.20) and (2.21) are approximately given as

H2 ≃ 8π

3m2
pl

V (ϕ), (2.22)

3Hϕ̇ ≃ −V ′(ϕ). (2.23)

Defining the so-called slow-roll parameters

ϵ ≡
m2

pl

16π

(

V ′

V

)2

, η ≡
m2

pl

8π

V ′′

V
, (2.24)

It can easily verify that the above slow-roll approximations are valid when

ϵ ≪ 1, |η| ≪ 1 . (2.25)

The inflationary phase ends when ϵ and |η| grow of order unity. A useful quantity

to describe the amount of inflation is the number of e-foldings, defined by

N ≡ ln
af
ai

=

∫ tf

ti

Hdt , (2.26)
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where the subscripts i and f denote the quantities at the beginning and the end

of the inflation, respectively.

In order to solve the flatness problem, Ω is required to be |Ωf − 1| ∼ 10−60

right after the end of inflation. Meanwhile the ratio |Ω − 1| between the initial

and final phase of inflation is given by

|Ωf − 1|
|Ωi − 1| ≃

(

ai
af

)2

= e−2N , (2.27)

where is used the fact that H is nearly constant during inflation. Assuming that

|Ωi − 1| is of order unity, the number of e-foldings is required to be N ∼ 70 to

solve the flatness problem. A similar number of e-foldings are required to solve

the horizon problem.

Inflationary cosmology solves a considerable number of cosmological problems

such as flatness, horizon, and monopole problems. In addition, inflation makes

it possible to generate nearly scale-invariant density perturbations, which is con-

sistent with observations. Inflation is really an efficient mechanism to solve the

cosmological problems associated with standard big-bang cosmology. In addition,

elementary particles can be produced during the reheating stage after inflation

through the decay of the inflaton. It is fair to say that standard inflation with a

slow-roll flat potential is the most promising scenario of the very early universe

among the models proposed so far. Nevertheless there are still many unsolved

problems even in the inflationary cosmology: What is the origin of the infla-

ton field? What is the state of the universe before inflation? Can the initial

singularity be avoided?

2.6 CMB

The energy content in radiation from beyond our Galaxy is dominated by the

Cosmic Microwave Background (CMB), discovered in 1965 [68]. The spectrum

of the CMB is well described by a blackbody function with T = 2.725K. This

spectral form is one of the main pillars of the hot Big Bang model for the early

universe. The lack of any observed deviations from a blackbody spectrum con-

strains physical processes over cosmic history at redshifts z ≤ 107. However,

at the moment, all viable cosmological models predict a very nearly Planckian

spectrum, and so they are not stringently limited.
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Another observable quantity inherent in the CMB is the variation in temper-

ature (or intensity) from one part of the microwave sky to another. Since the first

detection of these anisotropies by the COBE satellite [9], there has been intense

activity to map the sky at increasing levels of sensitivity and angular resolution.

A series of ground- and balloon-based measurements was joined in 2003 by the

first results from NASAs Wilkinson Microwave Anisotropy Probe (WMAP) [10].

These observations have led to a stunning confirmation of the Standard Model of

Cosmology. In combination with other astrophysical data, the CMB anisotropy

measurements place quite precise constraints on a number of cosmological pa-

rameters, and have launched us into an era of precision cosmology.

Observations show that the CMB contains anisotropies at the 10−5 level, over

a wide range of angular scales. These anisotropies are usually expressed by using

a spherical harmonic expansion of the CMB sky:

T (θ, ϕ) =
∑

lm

almY lm(θ, ϕ) (2.28)

The vast majority of the cosmological information is contained in the tempera-

ture 2 point function, i.e., the variance as a function of separation θ. Equivalently,

the power per unit lnl is l
∑

m ∥alm∥2/4π.
The CMB has a mean temperature of Tγ = 2.72548 ± 0.00057K (1σ) [24],

which can be considered as the monopole component of CMB maps, a00. Since

all mapping experiments involve difference measurements, they are insensitive

to this average level. Monopole measurements can only be made with absolute

temperature devices, such as the FIRAS instrument on the COBE satellite [9].

Such measurements of the spectrum are consistent with a blackbody distribution

over more than three decades in frequency. A blackbody of the measured tem-

perature corresponds to nγ = (2ζ(3)/π2)T 3
γ ≃ 411cm−3 and ργ = (π2/15)T 4 ≃

4.64× 10−34gcm−3 ≃ 0.260eV cm−3.

The largest anisotropy is in the l = 1 (dipole) first spherical harmonic, with

amplitude 3.346 ± 0.017mK. The dipole is interpreted to be the result of the

Doppler shift caused by the solar system motion relative to the nearly isotropic

blackbody field, as confirmed by measurements of the radial velocities of local

galaxies.

Excess variance in CMB maps at higher multipoles (l ≥ 2) is interpreted

as being the result of perturbations in the energy density of the early Universe,
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manifesting themselves at the epoch of the last scattering of the CMB photons.

In the hot Big Bang picture, this happens at a redshift z = 1100, with little

dependence on the details of the model. The process by which the hydrogen and

helium nuclei can hold on to their electrons is usually referred to as recombination.

Before this epoch, the CMB photons are tightly coupled to the baryons, while

afterwards they can freely stream towards us

2.7 The hierarchy problem

Other strong motivations for the study of branes theory, which is the subject in

this thesis, is the fundamental problem of the hierarchies in particle physics [36].

In a four-dimensional world there are at least two fundamental energy scales: the

weak scale, mEW ∼ 103 GeV and the Planck scale, mP l ∼ 1019 GeV. Physics is

well described by the Standard Model at least up to 100 GeV or so. At the Planck

scale, gravity becomes as strong as the SM interactions and a quantum theory

of gravity is required [37]. Why is there such a vast difference between the two

scales? This question is the essence of the hierarchy problem. Consider the Higgs

boson whose physical mass, mH ∼ mEW . Now suppose our theory is cut-off at

some large scale Λ ∼ mP l, where obviously mH ≪ Λ. Calculations of the one loop

correction for the Higgs mass leads to the equality m2
H = m2

0+Λ2. The bare mass,

m2
0, must then be of order −Λ2 to give a renormalised mass near the weak scale,

but this implies a surprising fine tuning. If we believe that our fundamental theory

contains scales as high as the Planck scale, then the cancellation just described is

disturbingly precise, given the huge numbers involved. What is more, this bizarre

precision is required again at all subsequent orders of perturbation theory.

Traditionally, it is thought that this vast desert between the weak and the

Planck scales must be populated with new theories, such as supersymmetry [61].

Above the scale of supersymmetry breaking, the problems with radiative correc-

tions to the Higgs mass are solved, although we may still ask why the desert

exists at all.
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Figure 2.8 One loop corrections to the Higgs Mass. Image taken from https:

//en.wikipedia.org/wiki/Hierarchy_problem

2.8 M-theory and Branes

Brane-world models are an interesting viewpoint of the universe dynamics adding

new degrees of freedom which can help to solve the problems of dark matter(DM)

and dark energy (DE). In principle, these models has been motivated by String

theory and M-theory, where our visible universe can be seen as a 4D manifold

(brane) immersed in a space-time of more than three spatial dimensions (bulk)

where usually the standard model of particles (SM) fields are trapped on the

brane, being the gravity the only field that can escape to the bulk.

Figure 2.9 Kaluza-Klein compactification. Image taken form https://es.

wikipedia.org/wiki/Compactacion_(fisica)

Historically, the theories with more spatial dimensions begin with the Kaluza

and Klein works, who’s, following the Nordstrom idea, built a 5D theory as an

attempt for unify gravity and electromagnetic forces. A novel feature of 5D mod-
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els is that mP l, the 4D Planck scale, is not more the fundamental scale, which is

M5; additionally, the compact extra dimensions implies every multi-dimensional

field corresponds to a Kaluza-Klein tower of four-dimensional particles with in-

creasing masses. At low energies, only massless (at E >> 1/R) particles can

be produced, whereas at E ≈ 1/R extra dimensions are detectable. This is the

starting point of string theories which, trying to reconcile quantum mechanics

and general relativity, postulate a more general space-time of 4+D dimensions,

where the fundamental particles are conceived as small vibrating strings. Re-

cent research in string theory and its generalization M-theory have suggested the

number of dimensions, to make a consistent quantum string theory is eleven.

Inherited in these models are the p-branes (0 < p < 9), which are the funda-

mental constituents of the universe. A brane, where the open strings have their

endpoints, is called D-brane. Our visible universe can be a very large D-brane

extending over three spatial dimensions. Material objects, made of open strings,

are confined on such D-brane, while gravity and other exotic matter such as the

dilaton can propagate in the bulk. This scenario is called brane cosmology or

brane-world cosmology. A reduction to 5D of M-theory is suggested by Horava

and Witten [8, 31].

The strong coupling limit of the E8×E8 heterotic string theory at low energy

is described by 11D supergravity with the eleventh dimension compactifed on an

S1/Z2 orbifold. The two boundaries of space-time are two 10-branes, on which

gauge theories are confined. Witten argued that 6 of the 11 dimensions can

be consistently compactifed on a CalabiYau threefold and that the size of the

Calabi-Yau manifold can be substantially smaller than the space between the

two boundary branes. Thus, in that limit space-time looks five-dimensonal. A

5D realization of the HW theory and the corresponding brane-world cosmology

is given in [53, 54, 55]. These solutions can be thought of as efectively 5D, with

an extra dimension that can be large relative to the fundamental scale, providing

the basis for the Arkani-Dimopoulos-Dvali (ADD) [7], Randall-Sundrum (RS)

[76, 77], and Dvali-Gabadadze-Porrati (DGP) brane models of 5D gravity [20].
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2.8.1 ADD model

Another solution to solve the hierarchy problem that is radically different to

supersymmetry, is known as ADD model. The model assumes that there is only

one fundamental energy scale, the weak scale. The observed large Planck scale

comes from extra dimensions, beyond the traditional four. As observers, we are

limited to a braneworld embedded in a (4 + n)-dimensional space-time. The

(4 + n)-dimensional Planck scale, M , is now the fundamental scale of gravity,

and is taken to be of order the weak scale. The extra dimensions are given by

an n-dimensional compact space of volume Rn. In order to recover standard

gravitational behavior, V (r) ∝ 1/r, our effective four-dimensional Planck scale is

given by

m2
P l = Mn+2Rn. (2.29)

Figure 2.10 Figure illustrates the whole (4+n) dimensional universe, where the

brane is placed. Additional n dimensions are compact. Figure taken form http:

//backreaction.blogspot.com/2006/07/extra-dimensions.html

By taking Rn to be sufficiently large we can recovermpl ∼ 1019 GeV. However,

in some sense the hierarchy problem has not be solved, because there is now a new

hierarchy between the weak scale and the compactification scale, 1/Rn ≪ mEW .

Fortunately, the Randall-Sundrum I (RS1) model is an extension of these ideas

that does not appear to transfer the problem in this way. Other problem for

the model is the lack of experimental evidence; results from the Large Hadron

Collider (2014) and Fermi-LAT do not appear to support the model thus far

[1],[18].
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2.8.2 Randall-Sundrumm overview

As we explained before, originally the brane-world models attempted to solve the

hierarchy problem, but the ADD only translate the hierarchy from one side to

another. In the Randall Sundrum I (RSI) model, the mechanism is completely

diferent [40]. Instead of using large dimensions, RS used the warped factor σ(y) =

k |y|, for which the mass m0 measured on the invisible (Planck) brane is related

to the mass m measured on the visible (TeV) brane by m = e−kycm0. Clearly,

by properly choosing the distance yc between the two branes, one can lower m to

the order of TeV, even m0 is still in the order of Mpl. It should be noted that the

five-dimensional Planck mass M5 in the RS1 scenario is still of the order of Mpl

and the two are related by M2
pl = M3k−1(1− e−2kyc) ≃ M2

5 for k ≃ M5.

Figure 2.11 Two parallel branes. Image taken from https://www.infoniac.ru/

news/Nauka-v-fil-me-Interstellar-krotovye-nory-chernye-dyry-prostranstvo-vremya.

html

The RS brane-worlds and their generalizations (to include matter on the

brane, scalar fields in the bulk, etc.) provide phenomenological models that reflect

at least some of the features of M theory, and that bring exciting new geometric

and particle physics ideas into play. The RS models also provide a framework

for exploring holographic ideas that have emerged in M theory. Roughly speak-

ing, holography suggests that higher-dimensional gravitational dynamics may be

determined from knowledge of the fields on a lower-dimensional boundary. The

AdS/CFT correspondence is an example, in which the classical dynamics of the

higher-dimensional gravitational field are equivalent to the quantum dynamics of
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a conformal field theory (CFT) on the boundary.

2.8.3 DGP model

The Dvali-Gabadadze-Porrati braneworld model has been considered as a model

which could modify gravity because of the existence of the extra-dimensions. In

the DGP model the 3-brane is embedded in a Minkowski bulk spacetime with in-

finitely large 5th extra dimensions. The Newton’s law can be recovered by adding

a 4-dimensional (4D) Einstein-Hilbert action sourced by the brane curvature to

the 5D action [7]. While the DGP model recovers the standard 4D gravity for

small distances, the effect from the 5D gravity manifests itself for large distances.

Remarkably it is possible to realize the late-time cosmic acceleration without

introducing an exotic matter source. The DGP model is given by the action

S =
1

2κ2
(5)

∫

d5X
√

−g̃R̃ +
1

2κ2
(4)

∫

d4x
√−gR +

∫

d4x
√−gLM (2.30)

where g̃AB is the metric in the 5D bulk and gµν = ∂µX
A∂µX

B g̃AB is the induced

metric on the brane with XA(xc) being the coordinates of an event on the brane

labeled by xc. The first and second terms in the above equation correspond to

Einstein Hilbert actions in the 5D bulk and on the brane, respectively. Note

that κ2
(5) = 1/M3

(5) and κ2
(4) = 1/M2

(4) are 5D and 4D gravitational constants,

respectively. The Lagrangian brane LM describes matter localized on the 3-

brane. Solving Einstein equations, with aid of the Israel junction conditions [60],

we obtain the modified Friedmann equation for a FLRW brane:

H2 − ϵ

rc
H =

κ2
(4)

3
ρM (2.31)

where ϵ = ±, H and ρM are the Hubble parameter and the matter energy density

on the brane respectively. In the DGP the length scale is given by rc, defined by

rc =
M2

(4)

2M3
(5)

. (2.32)

In the regime rc ≫ H−1 the first term dominates and the standard Friedmann

equation is recovered. Meanwhile, in the regime rc ≪ H−1, the second term

leads to a modification to the standard Friedmann equation. If ϵ = 1, there
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is a de Sitter solution characterized by HdS = 1/rc. One can realize the cosmic

acceleration today if rc is of the order of the present Hubble radius H
−1
0 . This self

acceleration is the result of gravitational leakage into extra dimensions at large

distances. In another branch (ϵ = −1) such cosmic acceleration is not realized.
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3

Brane Cosmology

Although brane cosmology is a widely studied topic, it is important to men-

tion that there are no solid models that provide concrete results to the study of

the phenomenology of the universe. However, there are important contributions

which serve as a framework for the development of new cosmological models. In

the previous chapter three of the most important were mentioned, in this chapter

we will abound in the primordial results of the Randall-Sundrum models, fol-

lowed by a formal treatment of the brane cosmology and the brane/bulk based

approaches. At the end of the chapter, two-branes configuration is exposed as an

introduction to the proposed model of this thesis. Several models study solutions

to the dynamic equations of the universe with two branes interacting with each

other, and become the basis of this study

3.1 Randall-Sundrum model

The Randall-Sundrum model was conceived in 1999 to address the Higgs Hier-

archy Problem in particle physics. It arose enormous interest from theoreticians

and phenomenologists and is popular among the builders of extra dimensions

theories. Randall Sundrumm models are conceived under the hypothesis that

the real world is a higher-dimensional universe described by a warped geometry.

More concretely, the visible universe is a five-dimensional anti-de Sitter space and

the elementary particles are localized on a (3 + 1)-dimensional brane.
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3.1.1 RS1 model

In RS1, there are two 3-branes embedded in a five dimensional anti-de Sitter bulk

spacetime where xµ are the familiar four-dimensional coordinates while 0 ≤ y ≤ yc

is the coordinate for the extra dimension. Clearly our space-time cannot fill all

of the five dimensions, so it is necessary to specify boundary conditions: identify

(xµ,+y) with (xµ,−y) and take y to be periodic with period 2yc. The branes are

placed in the orbifold fixed points at y = 0 and y = yc and are taken to have

tension λ0 and λc respectively. These fixed points may also be thought of as the

boundaries of the five-dimensional spacetime so that the action describing this

model is given by

S =
1

2κ2
(5)

∫

d4x

∫ yc

−yc

dy
√
g5 (R5 − 2Λ5) − λ0

∫

y=0

d4x
√
g0 − λc

∫

y=yc

d4x
√
gc .

(3.1)

where g5 is the bulk metric and g0, gc are the induced metrics on the branes

at y = 0, yc respectively. 2κ2
(5) = M−3

5 is a constant which is related to the five-

dimensional Planck mass. In order for the 3-branes to satisfy the four dimensional

Poincaré invariance, the metric is choosen to take the following form

ds2 = a2(y)ηµνdx
µdxν + dy2 (3.2)

The bulk equations of motion with orbifold boundary conditions impose a fine

tuning of the brane tensions against the bulk cosmological constant

λ0 = −λc =
6k

κ2
(5)

, Λ5 = −6k2 (3.3)

This implies −Λ5

6
=

κ4
(5)

36
λ2
0. We are also free to set a(0) = 1 so that we arrive at

the following solution for the metric

ds2 = e−2k|y|ηµνdx
µdxν + dy2 for − yc ≤ y ≤ yc. (3.4)

The Z2 symmetry about y = 0 is explicit whereas the other boundary con-

ditions should be understood. We also note that the constant y slicings exhibit

Poincaré invariance as required. The metric (3.4) contains an exponential warp

factor which is seen graphically in figure 3.2. Notice the peak in the warp factor

at the positive tension brane and the trough at the negative tension brane. If
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Figure 3.1 Orbifold symmetry. Image taken from https://www.researchgate.

net/publication/239928060_The_Randall-Sundrum_Model

well the RS1 model is a non realistic model, there are many works which include

matter energy distribution or scalar field on the brane, which is the case of this

thesis.

3.1.2 Solving the hierarchy problem

In order to tackle the hierarchy problem, we will need to derive the (effective) four-

dimensional Planck scale, mpl in terms of the five-dimensional scales M, k, yc.

We do this by identifying the four-dimensional low energy effective theory. This

comes from massless graviton fluctuations. In principle, we should also include

massless fluctuations in the brane separation, often referred to as the radion field

but in this section will assume the brane separation is stabilised at yc. The

gravitational zero modes now take the form

ds2 = e−2k|y|ḡµν(x)dx
µdxν + dy2 where ḡµν = ηµν + hµν(x) (3.5)

and we interpret hµν as the physical graviton in the four-dimensional effective

theory. We now substitute equation (3.5) into the action (3.1) to derive the

effective action. Focusing on the curvature term we find that

Seff = M3

∫

d4x
√
ḡR̄

∫ yc

−yc

dz e−2k|y| + . . . (3.6)
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where R̄ is the Ricci scalar built out of ḡµν(x). We now perform the y-integral to

obtain

m2
pl =

M3

k

[

1− e−2kyc
]

. (3.7)

This tells us that mpl depends weakly on yc in the limit of large kyc. We will see

that this is not the case for the physical masses in the SM.

Figure 3.2 Solving hierarchy problem. Image taken from https://www.

researchgate.net/publication/239928060_The_Randall-Sundrum_Model

Suppose we live on the negative tension brane at y = yc. Consider a fundamen-

tal Higgs field bound to this brane. If it has a five-dimensional mass parameter,

m0, then the matter part of the action near the brane is given by

Sc =

∫

y=yc

d4x
√
gc

[

gµνc ∇µH
†∇νH − λ

(

|H|2 −m2
0

)2
]

(3.8)

where ∇µ is the covariant derivative corresponding to gc. The metric at y = yc

is ḡcµν = e−2kyc ḡµν so that

Sc =

∫

y=yc

d4x
√
ḡe−4kyc

[

e2kyc ḡµν∇µH
†∇νH − λ

(

|H|2 −m2
0

)2
]

(3.9)

We now renormalise the Higgs wavefunction, H → ekycH, to derive the following

part of the effective action

Seff =

∫

y=yc

d4x
√
ḡ
[

ḡµν∇µH
†∇νH − λ

(

|H|2 − e−2kycm2
0

)2
]

+ . . . (3.10)
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An observer on the brane will therefore measure the physical mass of the Higgs

to be

mH = e−kycm0. (3.11)

This result generalises to any mass parameter on the negative tension brane.

We shall now address the hierarchy problem directly. Assume that the bare

Higgs mass, m0, and the fundamental Planck mass, M , are both around 1019 GeV,

thereby eliminating any hierarchy between the two scales in the five-dimensional

theory. The physical masses in the effective theory are given by equations (3.7)

and (3.11). To ensure that mH ∼ 103 GeV and mpl ∼ 1019 GeV we require that

ekyc ∼ 1015. The presence of the exponential here is crucial because all we really

need is kyc ∼ 50. We see that we have solved the hierarchy problem without

introducing a second hierarchy involving the compactification scale, 1/yc or the

AdS length, 1/k. We should emphasize here that this is only true if the radion is

stabilised. If not, its fluctuations appear in the exponential, spoiling the solution

to the problem.

3.2 Brane dynamics

Randall-Sundrum braneworlds provide a radical new way of thinking about our

universe and the extra dimensions that might exist. If this extra dimension

is warped anti-de Sitter space then it can be infinitely large and still exhibit

localisation of gravity on the brane. A more general treatment is present in this

section in which the basic idea is to use the Gauss-Codazzi formalism to project

the 5D curvature along the brane.

The 5D field equations determine the 5D curvature tensor; in the bulk, they

are
(5)GAB = −Λ5

(5)gAB + κ2
5

(5)TAB, (3.12)

where (5)TAB represents any 5D energy-momentum of the bulk, as a 5D scalar

field.

Let y be a Gaussian normal coordinate orthogonal to the brane (which is

placed at y = 0), so that nAdX
A = dy, with nA being the unit normal. The 5D

metric in terms of the induced metric on {y = const.} surfaces is locally given by

(5)gAB = gAB + nAnB,
(5)ds2 = gµν(x

α, y)dxµdxν + dy2. (3.13)
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3. BRANE COSMOLOGY

The extrinsic curvature of {y = const.} surfaces describes the embedding of these

surfaces. It can be defined via the Lie derivative or via the covariant derivative:

KAB =
1

2
£n gAB = gA

C (5)∇CnB, (3.14)

so that

K[AB] = 0 = KABn
B, (3.15)

where square brackets denote anti-symmetrization. The Gauss equation gives the

4D curvature tensor in terms of the projection of the 5D curvature, with extrinsic

curvature corrections:

RABCD = (5)REFGHgA
EgB

FgC
GgD

H + 2KA[CKD]B, (3.16)

and the Codazzi equation determines the change of KAB along {y = const.} via

∇BK
B
A −∇AK = (5)RBC gA

BnC , (3.17)

where K = KA
A.

Some other useful projections of the 5D curvature are:

(5)REFGH gA
EgB

FgC
GnH = 2∇[AKB]C , (3.18)

(5)REFGH gA
EnFgB

GnH = −£nKAB +KACK
C
B, (3.19)

(5)RCD gA
CgB

D = RAB − £nKAB −KKAB + 2KACK
C
B. (3.20)

The 5D curvature tensor has Weyl (tracefree) and Ricci parts:

(5)RABCD = (5)CACBD +
2

3

(

(5)gA[C
(5)RD]B − (5)gB[C

(5)RD]A

)

− 1

6
(5)gA[C

(5)gD]B
(5)R.

(3.21)

3.2.1 Field equations on the brane

Using Equations (3.12) and (3.16), it follows that

Gµν = −1

2
Λ5gµν +

2

3
κ2
5

[

(5)TABgµ
Agν

B +

(

(5)TABn
AnB − 1

4
(5)T

)

gµν

]

+KKµν −Kµ
αKαν +

1

2

[

KαβKαβ −K2
]

gµν − Eµν , (3.22)
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3.2 Brane dynamics

where (5)T = (5)TA
A, and where

Eµν = (5)CACBD nCnDgµ
Agν

B, (3.23)

is the projection of the bulk Weyl tensor orthogonal to nA. This tensor satisfies

EABn
B = 0 = E[AB] = EA

A, (3.24)

by virtue of the Weyl tensor symmetries. Evaluating Equation (3.22) on the

brane (strictly, as y → ±0, since EAB is not defined on the brane) will give the

field equations on the brane.

First, we need to determine Kµν at the brane from the junction conditions.

The total energy-momentum tensor on the brane is

T brane
µν = Tµν − λgµν , (3.25)

where Tµν is the energy-momentum tensor of particles and fields confined to the

brane (so that TABn
B = 0). The 5D field equations, including explicitly the

contribution of the brane, are then

(5)GAB = −Λ5
(5)gAB + κ2

5

[

(5)TAB + T brane
AB δ(y)

]

. (3.26)

Here the delta function enforces in the classical theory the string theory idea

that Standard Model fields are confined to the brane. This is not a gravitational

confinement, since there is in general a nonzero acceleration of particles normal

to the brane.

Integrating Equation (3.26) along the extra dimension from y = −ϵ to y = +ϵ,

and taking the limit ϵ → 0, leads to the Israel–Darmois junction conditions at

the brane,

g+µν − g−µν = 0, (3.27)

K+
µν −K−

µν = −κ2
5

[

T brane
µν − 1

3
T branegµν

]

, (3.28)

where T brane = gµνT brane
µν . The Z2 symmetry means that when you approach the

brane from one side and go through it, you emerge into a bulk that looks the

same, but with the normal reversed, nA → −nA. Then Equation (3.14) implies

that

K−
µν = −K+

µν , (3.29)
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3. BRANE COSMOLOGY

so that we can use the junction condition Equation (3.28) to determine the ex-

trinsic curvature on the brane:

Kµν = −1

2
κ2
5

[

Tµν +
1

3
(λ− T ) gµν

]

, (3.30)

where T = T µ
µ, where we have dropped the (+), and where we evaluate quantities

on the brane by taking the limit y → +0.

Finally we arrive at the induced field equations on the brane, by substituting

Equation (3.30) into Equation (3.22):

Gµν = −Λgµν + κ2Tµν + 6
κ2

λ
Sµν − Eµν + 4

κ2

λ
Fµν . (3.31)

The 4D gravitational constant is an effective coupling constant inherited from

the fundamental coupling constant, and the 4D cosmological constant is nonzero

when the RS balance between the bulk cosmological constant and the brane

tension is broken:

κ2 ≡ κ2
4 =

1

6
λκ4

5, (3.32)

Λ =
1

2

[

Λ5 + κ2λ
]

. (3.33)

The first correction term relative to Einstein’s theory is quadratic in the

energy-momentum tensor, arising from the extrinsic curvature terms in the pro-

jected Einstein tensor:

Sµν =
1

12
TTµν −

1

4
TµαT

α
ν +

1

24
gµν
[

3TαβT
αβ − T 2

]

. (3.34)

The second correction term is the projected Weyl term. The last correction term

on the right of Equation (3.31), is

Fµν = (5)TABgµ
Agν

B +

[

(5)TABn
AnB − 1

4
(5)T

]

gµν , (3.35)

where (5)TAB describes any stresses in the bulk apart from the cosmological con-

stant.
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3.2 Brane dynamics

3.2.2 Modified Friedmann equations

To obtain the equivalent Friedmann equations in brane worlds, it is instructive to

use Gaussian normal coordinates, in which the brane is fixed but the bulk metric

is not static at all.

(5)ds2 = −n2(t, y)dt2 + a2(t, y)

[

dr2

1− kr2
+ r2dΩ2

]

+ dy2. (3.36)

Here a0 = a0(t) = a(t, 0) is the scale factor on the FRW brane at y = 0, and t

may be chosen as proper time on the brane, so that n0 = n(t, 0) = 1. Then the

metric functions are

n =
ȧ

ȧ0
, (3.37)

a = a0

[

cosh
(y

ℓ

)

−
{

1 +
ρ(t)

λ

}

sinh

( |y|
ℓ

)]

. (3.38)

The junction conditions determine the Friedmann equation. The extrinsic curva-

ture at the brane is

Kµ
ν = diag

(

n′

n
,
a′

a
,
a′

a
,
a′

a

)

y=0

. (3.39)

Then, by Equation (3.30),

n′

n

∣

∣

∣

0
=

κ2
5

6
(2ρ+ 3p− λ), (3.40)

a′

a

∣

∣

∣

0
= −κ2

5

6
(ρ+ λ). (3.41)

The field equations yield the first integral

(aa′)2 −
(

aȧ

n

)2

+
Λ5

6
a4 − ka2 + CDR = 0, (3.42)

where CDR is constant corresponding with the dark radiation contribution. Eval-

uating this at the brane, using Equation (3.41), gives the modified Friedmann

equations

H2
0 =

κ2

3
ρ
(

1 +
ρ

2λ

)

+
C

a40
+

1

3
Λ− K

a20
, (3.43)

Differentiating Equation (3.43) and using the energy conservation equation,

we obtain

Ḣ0 = −κ2

2
(ρ+ p)

(

1 +
ρ

λ

)

− 2
C

a40
+

K

a20
, (3.44)
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3. BRANE COSMOLOGY

In order to recover the observational successes of general relativity, the high-

energy regime where significant deviations occur must take place before nucle-

osynthesis, i.e., cosmological observations impose the lower limit

λ > (1 MeV)4 ⇒ M5 > 104 GeV. (3.45)

3.2.3 Inflation on the brane

Now it is instructive that the field satisfies the Klein–Gordon equation

ϕ̈+ 3Hϕ̇+ V ′(ϕ) = 0. (3.46)

In 4D general relativity, the condition for inflation, ä > 0, is ϕ̇2 < V (ϕ), i.e.,

p < −1
3
ρ, where ρ = 1

2
ϕ̇2 + V and p = 1

2
ϕ̇2 − V . The modified Friedmann

equation leads to a stronger condition for inflation: Using Equation (3.43), with

m = 0 = Λ = K, and Equation (3.46), we find that

ä > 0 ⇒ w < −1

3

[

1 + 2ρ/λ

1 + ρ/λ

]

, (3.47)

where the square brackets enclose the brane correction to the general relativity

result. As ρ/λ → 0, the 4D result w < −1
3
is recovered, but for ρ > λ, w must

be more negative for inflation. In the very high-energy limit ρ/λ → ∞, we have

w < −2
3
. When the only matter in the universe is a self-interacting scalar field,

the condition for inflation becomes

ϕ̇2 − V +

[

1
2
ϕ̇2 + V

λ

(

5

4
ϕ̇2 − 1

2
V

)

]

< 0, (3.48)

which reduces to ϕ̇2 < V when ρϕ = 1
2
ϕ̇2 + V ≪ λ.

In the slow-roll approximation, we get

H2 ≈ κ2

3
V

[

1 +
V

2λ

]

, (3.49)

ϕ̇ ≈ − V ′

3H
. (3.50)

The brane-world correction term V/λ in Equation (3.49) serves to enhance the

Hubble rate for a given potential energy, relative to general relativity. Thus
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3.3 Two branes in a five dimensional bulk

there is enhanced Hubble ‘friction’ in Equation (3.50), and brane-world effects

will reinforce slow-roll at the same potential energy. We can see this by defining

slow-roll parameters that reduce to the standard parameters in the low-energy

limit:

ϵ ≡ − Ḣ

H2
=

M2
p

16π

(

V ′

V

)2 [
1 + V/λ

(1 + V/2λ)2

]

, (3.51)

η ≡ − ϕ̈

Hϕ̇
=

M2
p

8π

(

V ′′

V

)[

1

1 + V/2λ

]

. (3.52)

Self-consistency of the slow-roll approximation then requires ϵ, |η| ≪ 1. At low

energies, V ≪ λ, the slow-roll parameters reduce to the standard form. However

at high energies, V ≫ λ, the extra contribution to the Hubble expansion helps

damp the rolling of the scalar field, and the new factors in square brackets become

≈ λ/V :

ϵ ≈ ϵgr

[

4λ

V

]

, η ≈ ηgr

[

2λ

V

]

, (3.53)

where ϵgr, ηgr are the standard general relativity slow-roll parameters.

The number of e-folds during inflation, N =
∫

Hdt, is, in the slow-roll ap-

proximation,

N ≈ − 8π

M2
p

∫ ϕf

ϕi

V

V ′

[

1 +
V

2λ

]

dϕ. (3.54)

Brane-world effects at high energies increase the Hubble rate by a factor V/2λ,

yielding more inflation between any two values of ϕ for a given potential. Thus

we can obtain a given number of e-folds for a smaller initial inflaton value ϕi. For

V ≫ λ, Equation (3.54) becomes

N ≈ −128π3

3M6
5

∫ ϕf

ϕi

V 2

V ′
dϕ. (3.55)

3.3 Two branes in a five dimensional bulk

In this thesis we consider that space is 5-dimensional and contains two four-

dimensional branes, which are spatially homogeneous, isotropic and time-independent

and located at y = 0 and y = yc. The fifth dimension is periodic and has a re-

flection symmetry of (orbifold) with respect to each of the branes. Therefore,

the space between the two membranes is only half of the space along the fifth
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3. BRANE COSMOLOGY

dimension. This model is the simplest and we will only limit ourselves to cal-

culating some relationships between the branes. In this section the formalism of

the following authors is handled [13], [88], [14], [44].

3.3.1 Topological constraints

The primary result of this thesis is based on the hypothesis that when consider-

ing two branes, there is necessarily an interdependence between their properties

and, as a consequence, some phenomena observed on one brane are caused by

some phenomenon on the other brane. These restrictions are the product of the

modification of the geometry near each of the branes.

Following the treatment made by Binetruy et. al. [13], is possible, starting

form the metric

ds2 = −n2dt2 + a2gµνdx
µdxν + b2dy2, (3.56)

to solve the Einstein’s equations, from the global point of view, leading to the

second derivative of scalar factor a necessarily takes the form

a′′ = [a′]0 (δ(y)− δ(y − yc)) + ([a′]0 + [a′]c) (δ(y − yc)− 1) , (3.57)

where [a′]0 and [a′]c, are the jump of a′ on the first and second branes and they

are equivalent to the energy distribution in each brane:

[a′]0
a0b0

= −κ52

3
ρ0, (3.58)

[a′]c
acbc

= −κ52

3
ρc. (3.59)

Integrating (3.57) over y yields the following solution for a:

a = a0 +
(

1/2|y| − 1/2y2
)

[a′]0 − 1/2y2[a′]c, (3.60)

A similar expression is obtained for n. Allowing a linear dependence in y for the

function b, we write:

b = b0 + 2|y|(bc − b0), (3.61)

where b0 is assumed to be constant in time. These two solutions for a and b

metric coefficients are used to obtain (with a little algebra) the equations

ρ0a0 = −ρca1/2, (3.62)

(2ρ0 + 3p0)n0 = −(2ρc + 3pc)nc. (3.63)
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3.3 Two branes in a five dimensional bulk

Figure 3.3 Analogy with electrostatic

Hence the matter on one brane is constrained by the matter on the other. Au-

thors in [14] suggest the constraints between the two branes obtained above can

probably be seen as a particular example of “topological constraints”, which im-

pose specific restrictions on the distribution of localized matter in a space that

contains compact dimensions and which can be found in many different contexts

(D-branes, orientifolds or topological defects).

Analyzing the simplest solutions, one can envisage linear solutions in |y| for
a and n, of the form

a = a0(t) (1 + λ|y|), (3.64)

n = n0(t) (1 + µ|y|), (3.65)

b = b0, (3.66)

where b0 is assumed to be constant in time. λ and µ are in general functions of

time and depend directly on the matter content of the brane. They are obtained

from boundary conditions,

λ = −
κ2
(5)

6
b0ρ0, µ =

κ2
(5)

2

(

ω0 +
2

3

)

b0ρ0. (3.67)

We have introduced ω0 ≡ p0/ρ0 which is not necessarily a constant. Note that

the metric is well defined for κ2
(5)b0ρ < 1.

An interesting consequence of our solution is the behaviour of the second

brane. As in the previous section, the matter content of the second brane is
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3. BRANE COSMOLOGY

totally determined by the “topological constraints” due to the compactness of

the additional dimension. Since our solution is a particular case of the general

form (3.60), the same relations (3.62) and (3.63) apply, which implies

ρc = −ρ0

(

1−
κ2
(5)

6
b0ρ0yc

)−1

, (3.68)

and

2 + 3wc = (2 + 3ω0)
1− κ2

(5)

6
b0ρ0yc

1 + (2 + 3ω0)
κ2
(5)

6
b0ρ0yc

, (3.69)

where wc ≡ pc/ρc. In the general case, w0 and wc will be time-dependent. Even if

w0 is chosen to be constant, wc will be time-dependent, except in two particular

cases: w0 = wc = −1 corresponding to a cosmological constant on both branes

(although of opposite signs), and w0 = wc = −2/3.
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The model

In the context of two-brane models with matter fields, one can naturally to ask if

the parameters which determine the evolution in time in both branes are related.

This is the central idea of present thesis. Binetruy et al. [14] have shown that

there exists an equation which relate the fields in both branes assuming a mutual

interaction between them, through a topological constrains. For example, in

[28] the authors assume that the hidden brane is dominated by a scalar field,

trying to reproduce the dark matter effects in the visible brane. Based in the RS

models and in the previous results founded by [13], this thesis work focuses in

generalize the solution showed in the last section for a vacuum 5D bulk, in which

we propose the metric coefficients have a particular mathematical structure. This

formalism generates a dynamical equation for the Hubble parameter in hidden

brane Hc closely related with the dynamics of the visible brane H0; in the other

words, the fields immersed in one brane generates dynamics in the other brane

through gravitational effects. First, we study a toy model with equations of state

(EoS) constant and the repercussions in the mutual brane evolution; on the other

hand we study as a particular field election a scalar field as responsible of the

inflationary dynamics in the hidden brane.

4.1 Cosmology for a two branes system

The model for this thesis, consist of a two-brane system embedded in a 5dim

manifold, in which the fifth extra dimension is represented by the coordinate y,
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and then the branes will be located at y = 0 (which will represent our visible

universe), and at y = yc (which will be called the hidden universe), respectively.

I write the action for this system as

S = − 1

2κ2
(5)

∫

d5x
√

−g(5)R(5) +

∫

d4x
√

−g(4)(L0 + Lc), (4.1)

where g(5), κ(5) and R(5) are the 5-dimensional metric, gravitational constant and

the Ricci scalar respectively. The most general metric for this model can be

written in the form

ds2 = −n2(t, |y|)dt2 + a2(t, |y|)gijdxidxj + b2(t, |y|)dy2 , (4.2)

where n(t, |y|), a(t, |y|) and b(t, |y|) are general functions, whereas gij is the 3dim
metric. As an important feature, we impose the symmetries enumerated in the

following way:

1. Reflection, (xµ, y) → (xµ,−y)

2. Compactification, (xµ, y) → (xµ, y + 2iyc), i = 1, 2, . . .

Similarly, we demand that each metric coefficients a(t, |y|), n(t, |y|) and b(t, |y|)
are subjected to the conditions [88]

[F ′]0 = 2F ′|y=0+, (4.3)

[F ′]c = −2F ′|y=yc−, (4.4)

F ′′ =
d2F (t, |y|)

d |y|2
+ [F ′]0 δ(y) + [F ′]c δ(y − yc), (4.5)

where the prime denotes derivate with respect to y, the square brackets denotes

the discontinuity in the first derivative at the positions y = 0 and y = yc and F

is a generic function which meets the above conditions [88].

The equation 4.5 is obtained if we demand that d |y| /dy = 1, and d2 |y| /dy2 =
2δ(y)−2δ(y−yc), for y ∈ [0, yc]. The subindex 0 will be used for quantities valued

at y = 0, whereas a subindex c will be used for quantities valued at y = yc.
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4.1 Cosmology for a two branes system

Figure 4.1 The function |y| defined in a cyclic coordinate y

Notice that from here, we use units in which c = ℏ = 1, and that the 5dim

metric has the surplus signature diag(−,+,+,+,+). We now consider the validity

of Einstein’s equations in five dimensions, G̃AB = κ2
(5)T̃AB,

Also, we will assume that the two branes are dominated by perfect fluid

matter components that satisfy the following barotropic equations of state (EoS):

p0 = ω0ρ0, and pc = ωcρc, respectively. Here, p0, pc are the pressure, ρ0, ρc are the

energy density and ω0, ωc are the EoS of the visible and hidden brane, respectively.

Then, the energy-momentum tensor is written as

T̃A
B = − Λ5

κ2
(5)

gAB +
δ(y)

b0
diag(−ρ0,p0, 0) +

δ(y − y0)

bc
diag(−ρc,pc, 0) , (4.6)

where the first term corresponds to the bulk contribution of a 5dim cosmological

constant (CC) Λ5, κ
4
(5) ≡ 6κ2

(4)/λ0, where λ0 is the brane tension and κ(4) is the

4dim gravitational constant; finally, the second and third term correspond to the

matter fields contained in the two branes. Taking the conservation of energy-

momentum tensor, ▽AT̃
A
B = 0 immediately yields the known results for each

brane

ρ̇0 + 3(p0 + ρ0)
ȧ0
a0

= 0 (4.7)

where a dot denotes derivative with respect to time. We will further assume the

perfect fluid components satisfy equations of state in the form p0 = ω0ρ0, and
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pc = ωcρc. Up to this point, both equations of state are free functions of time,

but some particular cases will be discussed in further chapters.

The matter fields and the metric functions are constrained by the conditions

at y = 0 and y = yc[14, 88]

a′|0
a0b0

= −
κ2
(5)

6
ρ0 ,

a′|c
acbc

= +
κ2
(5)

6
ρc , (4.8)

n′|0
n0b0

= −
κ2
(5)

3
(3p0 + 2ρ0) ,

n′|c
ncbc

= +
κ2
(5)

3
(3pc + 2ρc) , (4.9)

4.2 First generalization and master thesis work

In a previous work [69], which is the subject of the Master thesis degree, we have

showed that it is possible generalize the metric presented by [76] by choosing a

particular form of the metric coefficients a and b. Let us begin with an ansatz

for the metric coefficient a(t, |y|) such that it depends on two time dependent

parameters, λ(t) and α(t), as

a(t, |y|) = αf(λ |y|) . (4.10)

Function f , and its derivative f ′, are well defined at [0, yc], actually f(0) = 1. In

this way,

a(t, |y|) = a0f(λ |y|) . (4.11)

According to Eq. (4.4) , we obtain

[a′]0 = 2λa0f
′
0, [a′]c = −2λa0f

′
c , (4.12)

where f ′ ≡ df(λ|y|)
d(λ|y|)

. Note, λ is a term wich is not variable in the y-coordinate;

so, in the boundary of the two branes, its value must be proportional to energy

density in each brane. This implies energy density components in both branes

are not evolving as separated entities, but are related. Using Eqs. (4.8), in (4.12),

we find

κ2
(5)ρc = − b0f

′
c

bcf ′
0fc

κ2
(5)ρ0. (4.13)

In the last equation, fc and f ′
c are functions of λ, and consequently, functions of

ρ0, namely,

λ = − b0
6f ′

0

κ2
(5)ρ0 . (4.14)

52



4.2 First generalization and master thesis work

These last two results show that there exists a connection between the two

branes just in the form of topological constraints. Now, we are interested in

the connection between the equations of state in each brane. In analogy to Eq.

(4.13), but now for the ansatz

n(t, |y|) = g(β |y|), (4.15)

where g(0) = 1, and using Eqs. (4.4) and (4.9), , we find

κ2
(5)ρc(2 + 3ωc) = − b0g

′
c

bcg′0gc
κ2
(5)ρ0(2 + 3ω0) , (4.16)

where g′ ≡ dg(β|y|)
d(β|y|)

. In the former equation, both gc and g′c are functions of β,

where

β =
b0
6g′0

κ2
(5)ρ0(2 + 3ω0) . (4.17)

Combining Eq. (4.16) with Eq. (4.13), we find that ωc is connected to ω0 and

ρ0, namely,

(2 + 3ωc) =
fc
f ′
c

g′c
gc

f ′
0

g′0
(2 + 3ω0)) . (4.18)

This last equation gives us the relationship between the equations of state valued

at the position of each brane. Eqs. (4.13), and (4.18), are the generalization

of (3.68) and (3.69), and both are the main results of this section. Some of the

typical f(λ |y|) and g(β |y|) are showed in Table (4.1)

f(λ |y|) g(β |y|) λ β ρc/ρ0
2+3ωc

2+3ω0

1 + λ |y| 1 + β |y| −b0κ
2
(5)ρ0/6 b0κ

2
(5)ρ0(2 + 3ω0)/6 − b0

bc(1+λyc)
1+λyc
1+βyc

(1 + λ |y|)l (1 + β |y|)m −b0κ
2
(5)ρ0/6l b0κ

2
(5)ρ0(2 + 3ω0)/6m − b0

bc(1+λyc)
1+λyc
1+βyc

eλ|y| eβ|y| −b0κ
2
(5)ρ0/6 b0κ

2
(5)ρ0(2 + 3ω0)/6 − b0

bc
1

Table 4.1 Analysis for three types of functions f and g: linear, potential and

exponential

As an example, let us take b = 1, and

a(t, |y|) = a0(t)e
λ|y| , n(t, |y|) = eβ|y| . (4.19)

We can see that f ′
0 = g′0 = 1, fc = f ′

c and gc = g′c, and therefore ω0 = ωc. When

λ = β < 0, which corresponds to Anti de Sitter bulk, we have ω0 = −1 and it
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4. THE MODEL

is precisely the case of the RS setup [76]. Two instructive works were published

analyzing some of the possible phenomenology in this configuration.

In this section the form of the metric coefficients has been restricted to take

the functional forms (4.10) y (4.15) Inspired in these works, we will develop a

more general treatment (second generalization) by solving the Einstein equations

with a particular ansatz and then will include a scalar field as a source of inflation.

4.3 5-D Einstein equations

Before to arrive to the dynamical analysis of the brane systems, we want to estab-

lish a correct set of solutions to the Einstein Equations, which are presented as a

coupled system of non-homogeneous second-order partial differential equations.

The five-dimensional non zero Einstein tensors, G̃
AB

, for the metric (4.2) are

written as a non-linear differential equations system

G̃00 = 3
ȧ

a

(

ȧ

a
+

ḃ

b

)

− 3
n2

b2

[

a′′

a
+

a′

a

(

a′

a
− b′

b

)]

+ 3k
n2

a2
,

G̃ij =
a2

b2
δij

{

a′

a

(

a′

a
+ 2

n′

n

)

− b′

b

(

n′

n
+ 2

a′

a

)}

+
a2

b2
δij

{

2
a′′

a
+

n′′

n

}

+
a2

n2
δij

{

ȧ

a

(

− ȧ

a
+ 2

ṅ

n

)}

+
a2

n2
δij

{

−2
ä

a
+

ḃ

b

(

−2
ȧ

a
+

ṅ

n

)

− b̈

b

}

− kδij,

G̃05 = 3

(

ȧ

a

n′

n
+

ḃ

b

a′

a
− ȧ′

a

)

,

G̃55 = 3
a′

a

(

a′

a
+

n′

n

)

− 3
b2

n2

[

ä

a
+

ȧ

a

(

ȧ

a
− ṅ

n

)]

− 3k
b2

a2
.

Before to continue, it is necessary to rewrite the above equations in a more

convenient way by using the new variables,

X =
aȧ

n
, Y =

aa′

b
, Z =

(an)′

b
, W =

˙(ab)

n
. (4.20)

In the interval 0 < y < yc, where Einstein’s equatios are valid, G̃AB = κ2
(5)T̃AB,

reads
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4.3 5-D Einstein equations

Y ′

b
− XW

ab
= k − 1

3
a2Λ5, (4.21)

Y ′

b
− Ẋ

n
+

a

bn
(Z ′ − Ẇ ) = k − a2Λ5, (4.22)

W = a
X ′

Y
, (4.23)

Z = a
Ẏ

X
, (4.24)

Ẋ

n
− Y Z

an
= −k +

1

3
a2Λ5, (4.25)

Substituting (4.23) in (4.21) and integrating, we obtain

Y 2 −X2 = a2k − a4
Λ5

6
+ constant, (4.26)

which is the generalization of Eq. (3.42), if we identify the constant with C
DR

.

Note that the Eq. (4.23) and Eq. (4.24) are both the same and can be reduced

to
ḃ

b
=

n

a′

(

X

a

)′

(4.27)

Last set of equations is solvable only when X is an explicitly function of a

4.3.1 General solutions with separation of variables

We can solve (4.26) and (4.27) exactly when the metric coefficients can be written

as

a = at(t)ay(y) (4.28)

n = n(y) (4.29)

b = b(t) (4.30)

Under this ansatz and using the boundary conditions (4.8) and (4.9), Eq. (4.27)

give the solutions

n = k1a
α
y (4.31)

b = k2a
1−α
t (4.32)

α = −(2 + 3ω0) = −(2 + 3ωc) (4.33)
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4. THE MODEL

where k1, k2, α are all constants. Note in this case, ω0 = ωc both constants, and

therefore, the evolution is similar in both branes. Using this results in (4.26), the

metric coefficient a(t, y) must satisfy the follow differential equation.

(

a′y
k2ay

)2

a
2(α−1)
t −

(

ȧt
k1at

)2

a−2α
y =

= ka−2
t a−2

y − Λ5

6
+ CDRa

−4
t a−4

y , (4.34)

This last equation is solvable only in four cases:

1. k ̸= 0; Λ5 = CDR = 0; α = 0, 1

2. Λ5 ̸= 0; K = CDR = 0; α = 0, 1

3. CDR ̸= 0; K = Λ5 = 0; α = 3,−3

4. k = Λ5 = CDR = 0; α = any

The signs for the constants is a determinant ingredient for the solution. Present

results are showed for only demonstrative proposes.

4.3.2 Exact solution

An exact solution for the metric coefficients is obtained when X = λ(t)af(a).

Substituting this ansatz in (4.20), this implies,

n =
ȧ

λ(t)f(a)
. (4.35)

Now, we can integrate Eq. (4.27) to give,

b = Cf(a), (4.36)

Finally, from (4.26) we obtain a differential equation for a

a′ = Cf(a)

√

λ(t)2f(a)2 + k − Λ5

6
a2 +

C
DR

a2
. (4.37)

Usually, to have a stabilized bulk, b is taken to be the unity, but in general,

b = f(a) = C
−1 so, we can make, without lost of generality, C = 1. In this work,

f(a) takes a general form f(a) = am/2, which is the case of non-static internal
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4.3 5-D Einstein equations

dimensions. Substituting last hypotesis in the equations (4.35), (4.36) and (4.37)

immediately yields

n =
ȧ

λ(t)am/2
(4.38)

b = am/2, (4.39)

a′ = am/2

√

λ2am + k − Λ5

6
a2 + C

DR
a−2, (4.40)

The term λ2 behave as curvature, cosmological constant (CC) and dark radiation

when m = 0, 2,−2 respectively. The general metric that solve the 5-D Enistein

equations must satisfy

∫ a

a0

a1−m/2

√

λ2am+2 − Λ5

6
a4 + ka2 + C

DR

da = ±y. (4.41)

This integral is only solvable for m = 0, 2,−2. The case m = 0 is easy to solve

and the general solution is shown in [44]. The cases m=2,-2 can be solving only

with elliptic integrals.

• For m=0 On this case, the integral solution can be reduced to

a2 = A cosh(µy) + B sinh(µy) + C, (4.42)

for negative cosmological constant Λ5 < 0,

a2 = A cos(µy) + B sin(µy) + C, (4.43)

for positive cosmological constant, Λ5 > 0, or finally

a2 =
(

λ2 + k
)

y2 +Dy + E, (4.44)

for nule cosmological constant, Λ5 = 0.

• For m=+2,

F
[

sin−1â,
√

R−/R+

]

= ±
√

R+(λ2 − Λ5/6)Cy, (4.45)
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4. THE MODEL

where

â =
a√
R−

,

R± =
−k ±

√

k2 − 4C
DR

(λ2 − Λ5/6)

2(λ2 − Λ5/6)
,

0 <
R−

R+

< 1,

0 < λ2 − 1

6
Λ5,

• For m=-2

F
[

sin−1â,
√

R−/R+

]

− E
[

sin−1â,
√

R−/R+

]

= ±
√

−Λ5

6R+

Cy, (4.46)

where

R± =
−k ±

√

k2 + 4Λ5(CDR
+ λ2)/6

−2Λ5/6
,

0 <
R−

R+

< 1,

0 < −1

6
Λ5,

being F [x, y] and E[x, y] the incomplete elliptic integrals of the first and

second kind respectively. The utility for this solutions, the corresponding

graphics and its cosmological interpretation is not reported in this thesis.

• Vacuum solutions Flatness and non dark-radiation conditions are im-

posed, k = CDR = 0; these last hypotheses are well justified due to the

observation of an almost null curvature in the observable universe[4], and

the fast decaying of bulk terms due to the scaling term a4 for the dark radi-

ation as well as the observable parameters imposed by nucleosynthesis[57].

So, Eq. (4.41) must be reduced to

da

am/2

√

λ2am − Λ5

6
a2

= dy. (4.47)
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4.4 Metric coefficients and modified Friedmann equations

For Λ5/6 small enough, 1, a general solution of the metric coefficient a is

a(y) ≈ a0
[

1 + (1−m)λam−1
0 y

]1/(1−m)
(4.48)

For m ̸= 1. The case m = 1 is the usual exponential solution, a = a0e
λy. Last

result reveals that scale factor a evolves as a power of the fifth coordinate. If well

there is not an important dependence of the Λ5 term, it is not zero at all. If we

want to be consistent with the reduction of hierarchy along the fifth dimension,

we must impose ac /a0 ≈ [1 + (1−m)Kyc]
1/(1−m) ≈ 10−15, where K ≡ λam−1

0 . In

the next chapter we will show K is proportional to the negative of energy density.

Kyc m

−1 0

−1015 +2

−1/3 −2

−1/2 −1

−50 +1

Table 4.2 Values of the size of the fifth dimension necessary to reduce the hierar-

chy, in concordance with the RS method.

4.4 Metric coefficients and modified Friedmann

equations

We have shown in a previous work that a general solution of the metric coefficients

in a vacuum bulk is obtained by evaluating Eq. (4.48) at the boundary conditions

(4.8), and identifying λam−1
0 = −κ2

(5)

6
ρ0b0, to obtain

a(t, y) = a0

[

1 + (m− 1)
κ2
(5)

6
ρ0b0y

](1−m)−1

, (4.49)

1The term −Λ5/6 is subdominant in the very early times regime, when a → 0, only for

m ≤ 2., it can be shown from Eq. (4.47)
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Figure 4.2 Plot of the reduction of the hierarchy for the metric coefficient a(y)/a0

according with Ec. (4.48). m = −2, blue; m = −1, red; m = 0, green; m = 1,

yellow and m = 2 purple.
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4.4 Metric coefficients and modified Friedmann equations

The coefficients n and b are easily calculated by using (4.38) and (4.39) with aid

of the boundary conditions (4.9) and the conservation equation (4.7),

n(t, y) = n0

[

1 +
(m

2
+ 2 + 3ω0

) κ2
(5)

6
ρ0b0y

][

1 + (m− 1)
κ2
(5)

6
ρ0b0y

]− m
2m−2

(4.50)

b(t, y) = b0

[

1 + (m− 1)
κ2
(5)

6
ρ0b0y

]− m
2m−2

. (4.51)

The functions a0, n0 and b0 correspond to the time-dependent values of the metric

coefficients in the brane at y = 0, and m is a parameter which determinate the

bulk geometry.

Now, we will proceed to calculate an equation that relates the evolution of

the energy density in both branes. With the hypothesis k = CDR = 0, Equation

(4.26) can be written as

X2 = Y 2 + a4
Λ5

6
(4.52)

and using the definitions (4.20), X = aȧ/n = λa1+m/2, Y = aa′/b,

λ2am−2 =

(

a′

ab

)2

+
Λ5

6
(4.53)

Now, evaluating the above equation in the boundary of the two branes and com-

paring,
(

κ2
(5)

6
ρc

)2

+
Λ5

6
=

(

ac
a0

)m−2




(

−
κ2
(5)

6
ρ0

)2

+
Λ5

6



 (4.54)

Finally, using Eq. (4.49), we obtain the relationship among the evolution of

energy densities in the two branes, ρc and ρ0, given by

(

κ2
(5)

6
ρc

)2

+
Λ5

6
=





(

−
κ2
(5)

6
ρ0

)2

+
Λ5

6





[

1 + (m− 1)
κ2
(5)

6
ρ0b0yc

]
m−2
1−m

, (4.55)

Assuming a Friedman-Lemaitre-Robertson-Walker (FLRW) metric on the vis-

ible brane y = yc, with nc = 1, another useful equation can be obtained from 4.9,

establishing the relationship between ω0 and ωc as

ωc =
ω0 + (m

6
− 1)(m

2
+ 2 + 3ω0)

κ2
(5)

6
ρ0b0yc

1 + (m
2
+ 2 + 3ω0)

κ2
(5)

6
ρ0b0yc

(4.56)
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Now, we can evaluate H = ȧ/a into Eq. (4.52),

H =

(

ȧ

a

)

= n2

[

(

a′

ab

)2

+
Λ5

6

]

, (4.57)

to find the corresponding Hubble parameters in each brane, namely [57, 82]

H2
0 = n2

0(κ
4
(5)ρ

2
0/36 + Λ5/6) (4.58)

H2
c = n2

c(κ
4
(5)ρ

2
c/36 + Λ5/6). (4.59)

Using Eq. (4.50) we finally obtain

H2
0 =

[

κ4
(5)

36
ρ0,m (ρ0,m + 2λ0) + Λ4

]

[

1 + (m− 1)
κ2
(5)

6
(ρ0,m + λ0)b0yc

]− m
1−m

[

1 +
(

m
2
+ 2 + 3ω0

) κ2
(5)

6
(ρ0,m + λ0)b0yc

]2

H2
c =

[

κ4
(5)

36
ρ0,m (ρ0,m + 2λ0) + Λ4

][

1 + (m− 1)
κ2
(5)

6
(ρ0,m + λ0)b0yc

]
m−2
1−m

,(4.60)

for all m ̸= 1. In the above equations we have also assumed that the energy

density and pressure in the visible brane can be written in the form ρ0 = ρ0,m+λ0

and p0 = p0,m − λ0[33]. Also, the term Λ4 = κ4
(5)λ

2
0/36 + Λ5/6 is taken as the

effective 4dim CC of the observable universe and at the rest of the thesis I will

neglect its contribution to the cosmology, i.e. Λ4 = 0.

4.5 Brane dominated by a single component

A first treatment of the cosmological solutions in present model, is to assume

the visible brane is dominated by a single component, with negligible tension

(λ0 = 0) such that ω0 is a constant. For that reason, it is easy deduce, from

energy conservation in hidden brane, ρ0 = Γa
−3(1+ω0)
0 , where Γ can be chosen

such that Γ
κ2
(5)

6
yc = 1. Therefore, the modified Friedmann equation and equation

of state in the visible brane are

y2cH
2
c = a

−6(1+ω0)
0

[

1 + (m− 1)a
−3(1+ω0)+m/2
0

]
m−2
1−m

(4.61)
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ωc =
ω0 + (m

6
− 1)(m

2
+ 2 + 3ω0)a

−3(1+ω0)+m/2
0

1 + (m
2
+ 2 + 3ω0)a

−3(1+ω0)+m/2
0

(4.62)

On the other hand, we can express ac in terms of a0 by means of 4.49 as

ac = a0

[

1 + (m− 1)a
−3(1+ω0)+m/2
0

]
1

1−m

(4.63)

Figure 4.3 Plot of ac as a function of a0, for ω0 = 1/3 (left side) and ω0 = 0 (right

side). Solid/dashed lines correspond to m = 0, 2 respectively.

Figure 4.3 shows the behavior of the a0 and ac functions: when m = 0, the

scale factor in the hidden brane apparently starts from a positive value, which

implies there is not a singularity here, while in the m = 2 case, both branes start

from zero.

Figures 4.4 and 4.5 show the evolution of this system for ω0 = 1/3 and ω0 =

respectively. Dashed line represent the case m = 2 while solid line is the case for

m = 0.

As a result of the analysis, we observe in Figure 4.4 that the parameter ωc is

not constant in time, but evolves departing from a period of dark energy dom-

ination to a radiation era. This is the main result of this section and the next

step is consider a scalar field in the hidden sector such that inflation effects can

be obtained in visible brane.

63



4. THE MODEL

Figure 4.4 Plot of Hc and ωc as a function of ac for ω0 = 1/3. Note that the

parameter of the equation of state in the hidden brane is initially ωc = −2/3 and

eventually evolves towards the value 0 and subsequently 1/3. Solid/dashed lines

correspond to m = 0, 2 respectively.

Figure 4.5 Plot of Hc and ωc as a function of ac for ω0 = 0. Note that the

parameter of the equation of state in the hidden brane is initially ωc = −2/3

and eventually reaches the value 0. Solid/dashed lines correspond to m = 0, 2

respectively.
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4.6 Scalar field living in the brane

4.6 Scalar field living in the brane

In 1-brane RS-type brane-worlds, where the bulk has only a vacuum energy,

inflation on the brane must be driven by a 4D scalar field trapped on the brane.

In more general brane-worlds, where the bulk contains a 5D scalar field, it is

possible that the 5D field induces inflation on the brane via its effective projection.

More exotic possibilities arise from the interaction between two branes, including

possible collision, which is mediated by a 5D scalar field and which can induce

either inflation or a hot big-bang radiation era, as in the ekpyrotic or cyclic

scenario or in colliding bubble scenario.

In this section, we study the case in which the visible brane is populated with

a standard scalar field ϕ endowed with a scalar potential of the form V (ϕ) =

m2
ϕϕ

2/2, where mϕ is the mass parameter of the scalar field, and with it the

dynamics induced upon the visible brane through the topology considerations

shown in Eqs. (4.4). We will establish the conditions that lead to inflation in

both, visible and hidden, branes and the possible physical consequences of it.

To close the system of equations of motion, we must take into account the

conservation equation of the scalar field in the hidden brane,

ϕ̈+ 3H0ϕ̇+m2
ϕϕ = 0 . (4.64)

Also, the energy density and pressure for the scalar field is defined by: ρ0,m =

(1/2)(ϕ̇2 +m2
ϕϕ

2) and p0,m = (1/2)(ϕ̇2 −m2
ϕϕ

2). From here and with the scalar-

field, it is possible to study the brane dynamics in two main cases: when radion

effects are negligible and when radion play an important role in the dynamic.

4.6.1 Negligible radion in Brane Dynamics.

We start with the scenario in which the radion contribution is negligible, that

is κ2
(5)ρ0b0yc = κ2

(5)ρ0R ≪ 1. Physically, this limit corresponds to an epoch in

which the Hubble radius is much larger than radius of compactification, namely

H−1
0 ≫ R. Hence, Eqs. (4.60) can be written as

H2
0 = H2

c =
κ2
(4)

6

ρ20,m
λ0

=
κ4
(5)

36
ρ20,m. (4.65)
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Because we are dealing with a scalar field, it is convenient to rewrite the equations

of motion in terms of the new dimensionless variables:

x2 ≡
κ2
(5)

12H0

ϕ̇2 , y2 ≡
κ2
(5)m

2
ϕ

12H0

ϕ2 , s ≡ mϕ

H0

, (4.66)

and then, the equations of motion are now

x′ = 3x3 − 3x− sy, y′ = 3x2y + sx, s′ = 6sx2. (4.67)

Here a prime indicates derivative with respect to the e-foldings number N0 ≡
ln(a0) and should not be confused with d/dy from the last section. However,

variables x and y are subjected to the Friedman constraint x2 + y2 = 1, and

then it is appropriate to consider one more change of variables[86]: x = cos θ,

y = sin θ. Then, the equations of motion (4.67) can be reduced to the two

following dimensional system

θ′ = 3 cos θ sin θ + s , s′ = 6s cos2 θ . (4.68)

The critical points, together with their stability, of this dynamical system are

listed in Table 4.3. The stability was determined by calculating the eigenvalues

and eigenvectors of the Jacobian matrix

M(θ,s) =

[

3 cos(2θ) 1

−6s sin(2θ) 6 cos2 θ

]

. (4.69)

Critical point {θ, s}, n ∈ Z Eigenvalue Stability

{nπ, 0} {6, 3} Unstable

{(n+ 1
2
)π, 0} {−3, 0} Saddle

Table 4.3 Properties of the critical points of the dynamical system (4.68). All

critical points are unstable, but the saddle points are the source for inflationary

solutions.

Typical solutions of the dynamical system on the (θ, s) plane are shown in

Fig. 4.6. We observe that the points {θ = nπ, s = 0} (where the kinetic energy is

dominant) are unstable. However, it is possible to see that the system eventually

evolves towards the critical point {θ = π/2, s ̸= 0} (where the potential energy
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is dominant). The existence of an inflationary solution is guaranteed by the

condition ä0/a0 > 0. So, is straightforward to show

ω0 =
x2 − y2

x2 + y2
= cos(2θ) < −2/3, (4.70)

which implies that inflation occurs only in regions in the vicinity of π/2, more

precisely,

θ ∈
(

arccos
√

1/6 , π − arccos
√

1/6
)

. (4.71)

Figure 4.6 Numerical solutions of the dynamical system (4.68) on the θ−s plane.

Note that the points {nπ, 0} are unstable, whereas the points {(n + 1
2
)π, 0} are

saddle. We can see that the solutions rapidly evolve towards a potential domi-

nated epoch, but all eventually end up in an oscillatory regime at late times.

Slow-roll conditions ϵ, |η| ≪ 1 are supposed sufficient to obtain inflation, and

we can restrict once more the dynamical variables:

ϵ = − Ḣ0

H2
0

= 6x2 = 6 cos2 θ ≪ 1 , (4.72)

η =

∣

∣

∣

∣

∣

ϕ̈

H0ϕ̇

∣

∣

∣

∣

∣

=
∣

∣

∣
3 + s

y

x

∣

∣

∣
= |3 + s tan θ| ≪ 1 , (4.73)
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Inflation ends when ϵ = 6 cos2 θend = 1, so θend = nπ ± arccos
√

1/6. Subsituting

in η = 1, we have send = −3/ tan θend = 1.34164. Therefore, we expect inflation

occurs while s ≪ 1.34 and cos2 θ ≪ 1/6 ( See Fig. 4.7).

Figure 4.7 Shadow regions limits the possible values for θ and s which satisfies

ϵ, η < 1. Inflation occurs only in shaded region implying that only some partic-

ular conditions generates a sufficient and well behaved inflation. See the text for

more details.

The above equations restrict the variables θ and s to be θ ≈ π/2, s ≈ 0.

For sufficiently small initial values of variable s, the solutions move closely to the

saddle points, for which exists a natural exponential expansion in our (visible)

brane that satisfies the conditions for inflation[86]. Figures 4.9 and 4.10 show the

inflationary solution in the hidden brane when θi = π/2 and si = 0.1025. It is

possible to observe that quadratic SF (in a radion negligible limit), still be a good

candidate to inflation due to the topological effects generated by branes, giving

a new rich dynamic that extend its properties and the capability to obtain a well

behaved inflation, which could be in concordance with observations.

It is important to remark, that the last ideas must be studied taking in consid-

eration the observational probes of inflation and comparing with this. However,

the contrast with observations is not relevant for this thesis and it will be subject

of further works.
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4.6 Scalar field living in the brane

Figure 4.8 Numerical simulation of the initial conditions (si, θi) for the system

(4.68) which guarantee an exponential expansion during N0 = 70 e-folds. Note,

when θi ≈ π
2
, si ≈ 10−1, i. e. mϕ ≈ 10−1H0i. Red dashed lines limits the interval

(

cos−1
√

1/6 , π − cos−1
√

1/6
)

within which an exponential expansion occurs.

Figure 4.9 (Top) Numerical solutions for the SF variables x and y form Eq.

(4.67) (Bottom) for the effective equation of state, with initial values θi = π/2

and si = 0.1025. This values guarantee that the universe expands inflationarily

for about N0 ≈ 70 e−foldings before oscillating around the minimum of potential.
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4. THE MODEL

Figure 4.10 Plot of the slow-roll conditions for the system (4.67). Inflation is

maintained during N0 ≈ 70 e-foldings approximately to obtain the characteristics

of the observable universe. After this epoch starts the oscillatory behavior caused

by the scalar field potential and could be associated to the reheating epoch.

4.6.2 Effects of the radion in our visible brane

We now turn our attention to the full system of equations without neglecting the

contribution of the radion terms. The special case m = 0 is considered newly and

ρ0,m = 1
2
ϕ̇2 + V (ϕ) , and then Eqs. (4.60) becomes

H2
0 =

κ4
(5)

36
ρ0,m (ρ0,m + 2λ0)

[

1 + (2 + 3ω0)
κ2
(5)

6
(ρ0,m + λ0)R

]2 , (4.74)

H2
c =

κ4
(5)

36
ρ0,m (ρ0,m + 2λ0)

[

1− κ2
(5)

6
(ρ0,m + λ0)R

]2 . (4.75)

In order to write the above equations in a simplified form, we define the u, v and

C dimensionless variables, such that

κ2
(5)

6
Rρ0,m =

κ2
(5)

6
R

[

1

2
ϕ̇2 + V (ϕ)

]

= u2 + v2 , (4.76)

κ2
(5)

6
Rλ0 = C , (4.77)
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4.6 Scalar field living in the brane

and therefore Eqs. (4.74) and (4.75) are rewritten as

RH0 =

√
u2 + v2

√
u2 + v2 + 2C

1 + 5u2 − v2 − C
, (4.78)

RHc =

√
u2 + v2

√
u2 + v2 + 2C

1− (u2 + v2 + C)
, (4.79)

where RH0 and RHc are the dimensionless Hubble parameters for both branes.

Note, from Eq. (4.79), a positive expanding brane can be possible for u2+v2+C <

1. The evolution in time for the energy components is written as

du

dτ
= −3u

√

(u2 + v2)(u2 + v2 + 2C)

1 + 5u2 − v2 − C
− Fv , (4.80)

dv

dτ
= Fu , (4.81)

where τ = t/R, and F is a function which depends on the shape of the potential.

F =

√

12R

κ2
(5)

(

dv

dϕ

)

. (4.82)

As a generalization, we can consider the polynomial case V (ϕ) = λϕm
4−r
p ϕr,

where mp is the Planck mass and λϕ is a coupling constant for the SF. Then,

F = Av1−2/r with

A =
r

2

√

12R

κ2
(5)

(

κ2
(5)

6
Rλϕm

4−r
p

)1/r

, (4.83)

being a constant. Now, we turn our attention to study the case of a quadratic

potential due to its simplicity and the fact that in later epochs may be considered

as DM (see for example [47],[86],[65],[15],[63],[5],[64],[62])

4.6.3 Analysis for quadratic Potential.

An interesting case due to its fundamental properties, is the quadratic potential.

This is because this potential reproduce the DM behavior and even inflation. For

the quadratic potential case r = 2, we have

A =
√

2λϕm2
pR = mϕR, C =

√

−Λ5R. (4.84)
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To ensure that SF reproduces an inflationary epoch, the following condition must

be satisfied

R2 ä0
a0

=
(u2 + v2)(u2 + v2 + 2C)(1 + 35u2 − v2 − C)

(1 + 5u2 − v2 − C)3

+
12Auv

√
u2 + v2 + 2C − 6u2(u2 + v2 + C)

(1 + 5u2 − v2 − C)2
> 0. (4.85)

From the definition of the slow-roll parameters

ϵ = − Ḣ0

H2
0

, η =

∣

∣

∣

∣

∣

ϕ̈

H0ϕ̇

∣

∣

∣

∣

∣

, (4.86)

we obtain

ϵ = − 30u2

(1 + 5u2 − v2 − C)3
− 12Auv
√

(u2 + v2)(u2 + v2 + 2C)

+
6u2(u2 + v2 + C)

(u2 + v2)(u2 + v2 + 2C)
≪ 1 , (4.87)

η =

∣

∣

∣

∣

∣

3 +
Av(1 + 5u2 − v2 − C)

u
√

(u2 + v2)(u2 + v2 + 2C)

∣

∣

∣

∣

∣

≪ 1 . (4.88)

In terms of the e-folding parameter, N0 = ln(a0), we can use the following identity

d

dτ
= R

d

dt
= RH0

d

dN0

, (4.89)

to rewrite the system of Eqs. (4.80) and (4.81) in a more useful way:

du

dN0

= −3u− Av(1 + 5u2 − v2 − C)
√

(u2 + v2)(u2 + v2 + 2C)
, (4.90)

dv

dN0

=
Au(1 + 5u2 − v2 − C)

√

(u2 + v2)(u2 + v2 + 2C)
. (4.91)

The constants A and C are interrelated and its value depends on the number

of e-foldings and the initial values of vi and ui. In the next, we consider only

the situation ui = 0, vi ̸= 0, due that other cases are problematic in obtain an

oscillatory behavior for the SF which is the base to understand the scalar field

dark matter (SFDM)
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4.6 Scalar field living in the brane

4.6.4 Imposing conditions for inflation

As a first approximation, consider u2 ≪ v2, while the inflation occurs, and u is

maintained constant such that du/dN0 ≈ 0, then integrating N0 in the interval

[0, N0] the Eqs. (4.90) and (4.91) leads to

A2 =
3

2N0

[

(1 + C)(v2i − v2f )

(1− v2i − C)(1− v2f − C)
+ ln

(

1− v2i − C

1− v2f − C

)]

. (4.92)

Physically we expect vi > vf , during inflation. So, A → Amin when C → 0

A2
min =

3

2N0

[

(v2i − v2f )

(1− v2i )(1− v2f )
+ ln

(

1− v2i
1− v2f

)]

. (4.93)

On the other hand, C → Cmax for A → ∞, namely: Cmax = 1−v2i . The constants

A and C are bounded by 0 < C < Cmax and Amin < A < ∞. Fig. 4.11 shows

different curves in the (A,C) plane when inflation is maintained for N0 ≈ 70

e-folds and vf = 0.

Figure 4.11 Plot of the A and C constants relationship from Eq. (4.92) with

N0 ≈ 70 and vf = 0. The colored lines {brown, yellow, red, green, blue} cor-

responds with vi = {0.1, 0.5, 0.7, 0.9, 0.99} respectively. Each one of the plotted

point reproduces N0 ≈ 70 e−foldings, nevertheless only C ≪ A values gives an

oscillatory scalar field when inflation ends.

The free parameters, for an initial time, are the constants C, ui and vi, under

the restriction u2
i +v2i +C < 1. For practical purposes, we are interested in values
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for C ≪ 1. In the next Figs. 4.12, 4.13 and 4.14, we show the quadratic potential

case with initial conditions A = 1, C = 1.5 × 10−3 , ui = 0 and vi = 0.91.

In this analysis we are interested in values for C ≪ 1 to allow the system to

oscillate around the minimum of the potential. The oscillations are necessary in

models where reheating is required and with the aim of reproduce SFDM behavior

[5, 15, 47, 62, 63, 64, 65, 86]. Eventually the terms u2+v2 become subdominant in

comparison with C and Eq. (4.78) evolves in a standard-like form, but ω0 ≈ −1,

i.e. it behave as CC (see Fig. 4.12).

Figure 4.12 Plot of the ω0 parameter. Here we can note the brane is dominated

by a term with ω0 = −1, which is provided by the SF; note that when the

system reach 70 e−folds of inflation, the scalar field oscillates. Eventually the

SF contribution is subdominant compared with the C term and the parameter

ω0 newly behavest as a CC, but Eq. (4.78) ensures that the system enter in a

standard-like evolution.

4.6.5 Inherited cosmology in visible brane

In previous sections, we have studied the cosmology on the hidden brane, but

our interest is to recover a similar behavior in our brane, in which we expect to

obtain inflation. In order to demonstrate these assertions, first, we must write
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4.6 Scalar field living in the brane

Figure 4.13 3D plot of the kinetic and potential terms for the SF. We can see the

potential term is dominant until the system reach the 70 e−foldings. Finally the

system oscillates around the minimum of potential.
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4. THE MODEL

Figure 4.14 Plot of the inflationary conditions which are satisfied. We can note in

this example Hc and H0 are nearly of the same order and, as a consequence, the

evolution is similar in both branes. The left plot shows the number of e-foldings

in each brane is of the same order.
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4.6 Scalar field living in the brane

Nc as a function of N0 using Eq. (4.49) for m = 0

ac = a0

[

1−
κ2
(5)

6
ρ0R

]

= a0
[

1− (u2 + v2 + C)
]

, (4.94)

Nc = N0 + ln
[

1− (u2 + v2 + C)
]

. (4.95)

In a previous section, we have demonstrated ωc is written as

ωc =
ω0 + (m

6
− 1)(m

2
+ 2 + 3ω0)

κ2
(5)

6
ρ0R

1 + (m
2
+ 2 + 3ω0)

κ2
(5)

6
ρ0R

, (4.96)

and written the above equation in our new variables, we obtain

ωc =
u2−v2−C
u2+v2+C

− 5u2 + v2 + C

1 + 5u2 − v2 − C
. (4.97)

Finally, we can easily plot Eqs. (4.95) and (4.97) by using N0 as a parametric

variable. It is seen in Fig. 4.12 the parameter ωc = pc/ρc behaves as cosmological

constant during inflation. Later, when Nc = 70 e-folds are reached, the system

oscillates as if it were dominated by a scalar field. The previous statements,

demonstrate that the behavior in the hidden brane is inherited to the visible

brane (our universe), obtaining the inflation epoch and the oscillatory behavior

which is characteristic of this model.
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5

Discussion

Using previous results, for which the branes are connected by imposing topological

constraints and assuming a vacuum bulk, (with the aim of obtain an exact solution

for the metric coefficients), we study the behavior of SF in the hidden brane and

their visible effects in our brane at high energies. First, under the consideration

that the radion effects are negligible, we analyze the general solutions of the

equations of motion and in particular, the effects on inflation. Next we consider,

further, the case where the radion contributes with the brane evolution, and the

dynamical system is analyzed with the aim of study the inflation in this regime.

In order to be most explicit with the conclusions, we punctuated the main results

in the following way:

• The universe goes towards different epochs: the first one is dominated by

the kinetic energy of the field, the second one is dominated by the potential

energy, and the last one is oscillatory.

• The solutions that drive out the inflationary epoch, and that also satisfy

the slow roll conditions, are located near the saddle critical points. This

is always the case if mϕ ≪ H0, which generates an exponential expansion

that is typical of inflationary models.

• It is important to remark that it is possible to obtain an expanding solution

in the visible brane, as long as the effective (or apparently) energy density

rc is negative. But, it is possible to argue that this is a consequence of the

Z2 symmetry, as is also the case of RS models.
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5. DISCUSSION

• The long time expansion is recovered if we consider (as an example) A =

mϕR = 1, C ≪ 1, ui = 0 and vi ≈ 1. The value A and C are crucial for

understanding the transition from expanding to oscillatory ages, and if well

many of functional combinations (A,C) was probed, we show only one of

them.

• The effective parameter of EoS, ω0 behaves initially as CC, driving the

universe in an inflationary epoch, but when it finish, the SF oscillates around

the minimum of potential. Later, when the SF is subdominant, the term

C drives the brane into an standard-like evolution, while the ω0 parameter

behaves also as CC.

• A similar behavior is obtained in our visible brane, concluding that the

effects of inflation are due to a scalar field in a hidden sector of the bulk

unreachable for local experiments.

As we stated previously and for the results obtained during this work, we

demonstrate that brane inflation is richer than ordinary cosmological inflation

due to the extra terms that provide the topological configuration of the five

and four dimensional structure and its mutual interaction. The brane scenario

help us to alleviate many of the problems that suffers inflation and even, as we

show here, suggest a unified model for inflation, DM and DE only varying the

topological conditions. Despite of the extensive study, it is necessary to analyze

the perturbed dynamic equations as well as the growth of structure caused by

the primordial fluctuations during inflationary epoch, but this is not subject for

the present thesis.

A thorough analysis of the dynamics of the universe, as well as the comparison

with the recent cosmological observations, is required to test models that chal-

lenge the Λ-CDM and that try to change the current well stablished paradigms;

however there are many models that attempt to solve problems in cosmology but

they do it in an isolated manner and if well they solve some problems, they do

not solve others. This thesis only focuses on building a model that provides a

mechanism of interaction between two hypothetical branes, that although this is

a toy model, it shows some of the implications of having an invisible brane in a

region beyond our reach; although it has been shelved its utility to solve other
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important problems, such as the hierarchy problem, dark matter and dark energy

of formation or structure, to name a few, which is sure to fail. Because one of the

noblest purposes of toy models is to establish where theory is valid and where it

is not, the work that has gone into them should not be discredited: one cannot

solve everything in this lifetime.

Have multidimensional models been discarded today? While today are very

undervalued brane models ( which were very popular in the late 90’s and early

2000’s ), there is nothing to tell us why the universe necessarily has only 4 di-

mensions, although there is no confirmation of any additional dimension. Despite

the large amount of acceptance they have had in the scientific community, brane

world models seem to reach a point where the lack of corroboration lead to its ex-

tinction, but perhaps these studies, including that presented in this thesis, mark

a path to the conception of new fundamental theories under which in a few years,

other problems bigger than the current ones will be solved

Brane models open a range of possibilities to explore new five dimensional

phenomenology and although they arise new unknowns (such as stabilization of

the radion, the nature of the 5-D fields, other hierarchies, etc) they provide rele-

vant information on how the early universe could be if there is an extra dimension.

The amount of models depends largely on the number of hypotheses (which is the

case of this thesis, where exact solutions to Einstein ’s equations from a partic-

ular ansatz are obtained), and new information can be obtained for each model

in particular, so it sets a precedent for future work based on these models and

research.
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[72] JuanL. Perez, MiguelA. Garćıa-Aspeitia, and LuisA. Ureña-
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López, and Rubén Cordero. Cosmological solutions for a two-

branes system in a vacuum bulk. In AIP Conf. Proc. 1548, 263–269

(2013). AIP, 2013. Available from: http://dx.doi.org/10.1063/1.

4817055. iii

[75] Nutan Rajguru et al. CMB observations from the CBI and VSA:

A Comparison of coincident maps and parameter estimation meth-

ods. Mon. Not. Roy. Astron. Soc., 363:1125–1135, 2005. 9

[76] Lisa Randall and Raman Sundrum. A large mass hierarchy from

a small extra dimension. Phys. Rev. Lett., 83:3370–3373, 1999. 29, 52,

54

[77] Lisa Randall and Raman Sundrum. An Alternative to compacti-

fication. Phys.Rev.Lett., 83:4690–4693, 1999. 29

[78] V. A. Rubakov. Cosmology. In Proceedings, 2011 European

School of High-Energy Physics (ESHEP 2011), pages 151–195, 2014.

Available from: http://inspirehep.net/record/1359434/files/arXiv:

1504.03587.pdf. 7

[79] V. C. Rubin and W. K. Ford, Jr. Rotation of the Andromeda

Nebula from a Spectroscopic Survey of Emission Regions. 159:379,

February 1970. 21

[80] K. Schwarzschild. On the gravitational field of a mass point ac-

cording to Einstein’s theory. ArXiv Physics e-prints, May 1999. 11

[81] Douglas Scott and George F. Smoot. Cosmic microwave back-

ground mini-review. Submitted to: Rev. Part. Phys., 2006. 15

90

http://dx.doi.org/10.1007/s10714-014-1847-3
http://dx.doi.org/10.1007/s10714-014-1847-3
http://dx.doi.org/10.1063/1.4817055
http://dx.doi.org/10.1063/1.4817055
http://inspirehep.net/record/1359434/files/arXiv:1504.03587.pdf
http://inspirehep.net/record/1359434/files/arXiv:1504.03587.pdf


BIBLIOGRAPHY

[82] Tetsuya Shiromizu, Kei-ichi Maeda, and Misao Sasaki. The Ein-

stein equation on the 3-brane world. Phys.Rev., D62:024012, 2000.

62

[83] Ryden Barbara Sue. Introduction to cosmology. Addison-Wesley, 2003.

18

[84] Mark Trodden and Sean M. Carroll. TASI lectures: Introduc-

tion to cosmology. In Progress in string theory. Proceedings, Summer

School, TASI 2003, Boulder, USA, June 2-27, 2003, pages 703–793, 2004.

[,703(2004)]. 7

[85] Shinji Tsujikawa. Introductory review of cosmic inflation. In 2nd

Tah Poe School on Cosmology: Modern Cosmology Phitsanulok, Thailand,

April 17-25, 2003, 2003. 9

[86] L. Arturo Urena-Lopez and Mayra J. Reyes-Ibarra. On the dy-

namics of a quadratic scalar field potential. Int.J.Mod.Phys.,D18:621–

634, 2009. 66, 68, 71, 74

[87] Mukhanov V. Physical Foundations of Cosmology. Cambridge Uni-

versity Press, 73, 2005. 2, 16

[88] Anzhong Wang, Rong-Gen Cai, and N.O. Santos. Two 3-Branes

in Randall-Sundrum Setup and Current Acceleration of the Uni-

verse. 2006. 46, 50, 52

[89] Barton Zwiebach. A first course in string theory. Cambridge Univ. Press,

Cambridge, 2004. 4

91



 

Asunto: Revisión de tesis de doctorado   

León, Gto., Febrero de 2025 

DR. MODESTO ANTONIO SOSA AQUINO 
DIRECTOR DE LA DIVISIÓN DE CIENCIAS E INGENIERÍAS 
PRESENTE 

Por este medio le comunico que he revisado la tesis Cosmological solutions for a two branes system in a generalized 
Randall-Sundrumm model, escrita por el M. en F. Juan Luis Pérez Pérez, para efecto de presentarla para la obtención 
del grado de Doctor en Física en la División de Ciencias e Ingenierías de la Universidad de Guanajuato. 
  
El texto de la tesis se encuentra completo y se presentan resultados interesantes sobre el estudio de modelos 
cosmológicos con branas para modelar la energía oscura del universo. En mi opinión, las hipótesis de trabajo y el análisis 
teórico se conectan bien con los resultados presentados, incluso dentro del contexto numérico. Igualmente, he podido ver 
que el texto fue modificado por el autor para reflejar las sugerencias y comentarios que le fueron expresados durante la 
revisión. En mi opinión la tesis cumple con los elementos necesarios para ser defendida ante el comité sinodal asignado en 
la fecha próxima que sea acordada de manera conjunta.  

Agradeciendo su amable atención, aprovecho la ocasión para enviarle un cordial saludo. 

ATENTAMENTE 
“LA VERDAD OS HARÁ LIBRES” 

DR. LUIS ARTURO UREÑA LÓPEZ  
PROFESOR TITULAR C

Loma del Bosque # 103, Col. Loma del Campestre. León, Guanajuato, México. C. P. 37150 
Tel: +52 (477) 7885100 Exts. 8420 y 8421, Fax. Ext. 8410. 



       

 

DIVISION DE CIENCIAS E INGENIERÍAS, CAMPUS LEÓN      
Loma del Bosque 103, Fracc. Lomas del Campestre  C.P. 37150 León, Gto., Ap. Postal E-143 C.P. 37000 Tel. (477) 788-5100 ,Fax: (477) 788-5100 ext. 8410, http://www.fisica.ugto.mx 

  
 

        
León, Gto, 29 de enero de 2025 

 

Asunto: Carta liberación Juan Luis Pérez Pérez 

 

Dr. Modesto Antonio Sosa Aquino 

Director de la DCI 

 

Como sinodal del estudiante de Doctorado en Física Juan Luis Pérez Pérez, me permito comentar que 

he leído el manuscrito de su tesis Cosmological solutions for a two branes system in a generalized 

Randall-Sundrum model.  

 

Considero que el trabajo realizado está al nivel de un doctorado, por lo que le he enviado mis 

sugerencias y me permito recomendar que haga los trámites administrativos correspondientes para que 

se presente lo más pronto posible. 

 
 

 

 “LA VERDAD OS HARA LIBRES” 

 
 

Dr. José Socorro García Díaz 

Sinodal 



 22 de enero de  2025 

Asunto: Carta de revisión de tesis de Juan Luis Pérez Pérez 

Dr. Modesto Antonio Sosa Aquino 

Director de la División de Ciencias e Ingenierías, Campus León 

Universidad de Guanajuato 

Presente 

Estimado Dr. Modesto, 

En mi calidad de integrante del comité sinodal (oficio número SAC-148/2024) del 

estudiante de Doctorado Juan Luis Pérez Pérez (NUA: ), por este medio informo a usted que 

he revisado su tesis titulada “Cosmological solutions for a two branes system in a 

generalized Randall-Sundrum model“ que realizó Juan Luis con el fin de obtener el grado 

de Doctor en Física.  

El trabajo de Juan Luis posee el contenido y la relevancia necesaria como trabajo de 

investigación y Juan Luis ya ha considerado e implementado las correcciones sugeridas por 

un servidor. Considero que su trabajo de tesis está listo para ser defendido públicamente. 

Sin más por el momento, me despido de usted con un cordial saludo. 

________________________                                                 

Dr. José Luis López-Picón 

Departamento de Física 

División de Ciencias e Ingenierías, Campus León 

Universidad de Guanajuato 

email: jl_lopez@fisica.ugto.mx 

División de Ciencias e Ingenierías, León, Guanajuato, México. C. P. 37150, www.dci.ugto.mx 
       



 

DEPARTAMENTO DE INGENIERÍA FÍSICA 

Lomas del Bosque #103,  

Lomas de Campestre, León Gto. 

C.P. 37150 

(477) 788 5100 Ext. 8411 y 8462 

Fax. Ext. 8410 

www.depif.ugto.mx 

 

 

León, Gto., 5 de noviembre de 2024 

Director Dr. Modesto A. Sosa Aquino 

División de Ciencias e Ingenierías 

PRESENTE 

Estimado Dr. Sosa Aquino: 

Por medio de este conducto le informo que he leído y discutido detalladamente el 

trabajo de tesis del M. en F. Juan Luis Pérez Pérez titulado “Cosmological solutions for a 

two branes system in a generalized Randall-Sundrumm model”, dirigido por el Dr. Luis A. 

Ureña López, para obtener el grado de Doctor en Física. Estoy satisfecho con el 

contenido de la tesis, la contribución y el conocimiento obtenido y generado por Juan Luis, 

por lo que no tengo inconveniente porque el trabajo sea defendido en la fecha que resulte 

más conveniente. 

 Sin otro particular por el momento, aprovecho la ocasión para enviarle un cordial 

saludo y quedo atento a cualquier información requerida derivada del contenido de este 

documento. 

Atentamente, 

“La Verdad Os Hará Libres” 

 

 

Dr. Ramón Castañeda Priego 

Profesor Titular C 



 

División de Ciencias e Ingenierías 

 Loma del Bosque # 103, Col. Loma del Campestre. León, Guanajuato, México. C. P. 37150 

Tel: +52 (477) 7885100 Exts. 8420 y 8421, Fax. Ext. 8410. www.dci.ugto.mx 

 

 

 
 
 
 
 

Asunto: Revisión de Tesis  
León, Guanajuato, febrero de 2025  

 
 
 
Dr. Modesto Antonio Sosa Aquino 

Director 

División de Ciencias e Ingenierías, Campus León  

Universidad de Guanajuato 

PRESENTE  

 
Estimado Dr. Modesto Sosa:  
 
Por medio de la presente le informo que he revisado la tesis "Cosmological solutions for a two 

branes system in a generalized Randall-Sundrumm model" escrita por el estudiante del Doctorado 
en Física de la DCI, Juan Luis Pérez Pérez. En mi opinión la tesis esta lista para ser presentada y estoy 
de acuerdo que se proceda al examen recepcional, una vez que se cumplan los procedimientos 
administrativos correspondientes.  

 

Sin más por el momento, le envío saludos cordiales.  
 
 
 

ATENTAMENTE 
"LA VERDAD OS HARÁ LIBRES" 

 
 
 
 

DRA. ARGELIA BERNAL BAUTISTA 
 



  
 León, Guanajuato, a 6 de febrero de 2025 

Dr. Modesto Antonio Sosa Aquino, 

Director de la División de Ciencias e Ingenierías, 

Universidad de Guanajuato 

Por medio de la presente deseo manifestar mi aprobación para que el trabajo presentado por el alumno 

Juan Luis Pérez Pérez sea aceptado como Tesis para obtener el título de Doctor en Física.  El trabajo 

aborda el estudio de un modelos cosmológico que considera la existencia de  una quinta dimensión 

dentro del modelo de Randall-Sundrumm. Particularmente, se analizan las consecuencias e influencia 

de diferentes escenarios cosmológicos en la brana oculta, sobre la brana visible. El intercambio de 

dinámica de los campos involucrados abre la posibilidad de interpretar observables cosmológicos como 

resultado de la existencia de una dimensión extra. En ese sentido, el trabajo presentado por el 

estudiante de posgrado Juan Luis Pérez Pérez, posee las características necesarias para ser aceptado 

como tesis de doctorado en Física. 

Como miembro del comité sinodal he estado en contacto con Juan, por lo que me he asegurado que sus 

conocimientos y capacidades en la investigación están bien fundamentados.  Por todo lo anterior,  doy 

mi aprobación para que la tesis titulada “Cosmological solutions for a two branes system in a 

generalized Randall-Sundrumm model” sea considerada para continuar con el proceso de titulación. 

Sin más por el momento, aprovecho para enviarle un cordial saludo. 

Atentamente, 

Dr. Oscar Gerardo Loaiza Brito 

Departamento de  Física, 
División de Ciencias e Ingeniería, 

Campus León. 
Ext: 8459

c.c.p. archivo 

DEPARTAMENTO DE FISICA, DIVISION DE CIENCIAS E INGENIERÍAS, CAMPUS LEÓN    
Loma del Bosque 103, Fracc. Lomas del Campestre  C.P. 37150 León, Gto., Ap. Postal E-143 C.P. 37000 Tel. (477) 788-5100, Fax: (477) 788-5100 ext. 8410, http://www.fisica.ugto.mx


	List of Figures
	List of Tables
	1 Introduction
	2 Modern Cosmology
	2.1 Einstein's equations
	2.2 Chronology of the Big-Bang
	2.3 Standard Big-Bang Cosmology
	2.4 Composition of the Universe
	2.5 Inflation
	2.6 CMB
	2.7 The hierarchy problem
	2.8 M-theory and Branes
	2.8.1 ADD model
	2.8.2 Randall-Sundrumm overview
	2.8.3 DGP model


	3 Brane Cosmology
	3.1 Randall-Sundrum model
	3.1.1 RS1 model
	3.1.2 Solving the hierarchy problem

	3.2 Brane dynamics
	3.2.1 Field equations on the brane
	3.2.2 Modified Friedmann equations
	3.2.3 Inflation on the brane

	3.3 Two branes in a five dimensional bulk
	3.3.1 Topological constraints


	4 The model
	4.1 Cosmology for a two branes system
	4.2 First generalization and master thesis work
	4.3 5-D Einstein equations
	4.3.1 General solutions with separation of variables
	4.3.2 Exact solution

	4.4 Metric coefficients and modified Friedmann equations
	4.5 Brane dominated by a single component
	4.6 Scalar field living in the brane
	4.6.1 Negligible radion in Brane Dynamics.
	4.6.2 Effects of the radion in our visible brane
	4.6.3 Analysis for quadratic Potential.
	4.6.4 Imposing conditions for inflation
	4.6.5 Inherited cosmology in visible brane


	5 Discussion
	APPENDICES
	Bibliography

