
UNIVERSIDAD DE GUANAJUATO

CAMPUS IRAPUATO-SALAMANCA
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puntuales, su visión cŕıtica y su ejemplo de integridad académica fueron determinantes para

dar forma a cada etapa de esta investigación. Gracias por abrirme espacios de discusión, por
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Abstract

By the time when our predecessors learned to walk upright, a human evolution process

began and the social context get stronger until the Homo sapiens evolved and interacted

in social events. This social behaviour affected the biology of the humans’ brain until

presented a drastic change in the subcortical limbic structure emerging new capacities for

the nervous system. Nowadays, human emotions significantly influence individual and social

interactions, becoming crucial in medical, security, psychological, psychiatric, and educational

environments. In this study, an emotion recognition approach is proposed by using a modify

Quaternion Signal Analysis algorithm following the bicomplex quaternion form introduced by

Cayley-Dixon. This Bicomplex Quaternion Signal Analysis (bQSA) is developed by taking

the electroencephalogram (EEG) information of five different emotion recognition databases.

Following a channel selection method to find the top-four effective channels per dataset,

the bQSA is constructed in order to propose a novel EEG signal processing method and

computing their statistical features to feed several machine learning models and testing the

performance in two quaternion produc types: (1) the bicomplex and (2) the quaternion.

As results, this method highlights that bicomplex product is slightly accurate than the

quaternion form in three out of five tested datasets, achieving the kNN and Tree-based

kernels as the top classifiers in eight out of ten (two product types signal processing per

dataset) cross-validation models. A tree-way Analysis of Variance test suggested that the

interaction among product type, machine learning model, and dataset significantly affects

classification performance (p < 0.00001). Finally, prior literature typically emphasizes

fronto-temporal brain regions as crucial for emotion recognition, this approach identifies a

significant relationship among fronto-temporal-parietal regions based on the selected effective

channels. Numerical results followed a 10-fold cross-validation to increase the reliability of

the Bicomplex Quaternion Signal Analysis and positioning this electroencephalogram signal

processing method as one of the top approaches in the current state-of-the-art.
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Chapter 1

Introduction

A detailed understanding of the emotional brain has been made since Homo lineage started

to pronounce a complex consciousness (LeDoux and Brown (2017)). Communication and

decision-making are highly influential aspects of daily life that significantly shape human

behavior. In this regard, neurophysiological response plays an essential role in a survival

and evolutionary context (Gupta et al. (2019)). According to LeDoux and Brown (2017),

emotions like fear elicit a physiological response primarily centered in the amygdala in the

presence of threats. Accordingly, it is also important to emphasize that emotions are highly

affected by the psychological state of a subject, yielding negative or positive emotions. For

instance, Silard and Dasborough (2021) remarks that negative emotions are highly associated

with physical or psychological distress. In contrast, positive emotions are related to mental

states of high arousal and high emotional valence.

According to Egger et al. (2019), both non-physiologic —– words, facial expressions, vocal

tone, and body language –— and physiologic modalities — as heart rate, skin conductance,

retinal motion, and brain activity — reflect emotional states that can be measured with

sensors and cameras, among others. Non-psychological modalities have been broadly used in

Emotion Recognition (ER) applications due to their capacity to capture humans’ superficial

behaviour; accurate applications have been developed in fields such as computer vision

(Naga et al. (2023)), speech recognition (Singh and Goel (2022)), and motion analysis

(Ahmed et al. (2020)). However, physiological modalities have been limited due to their

complexity by capturing Central Nervious System (CNS) and Peripheral Nervious System

(PNS) information. In a neurological sense, Šimić et al. (2021) remarked the influence of

CNS and PNS; the former remarks the importance of a continuous physiological collection,

1



Chapter 1. Introduction 2

processing, and integration of the internal body state of humans — temperature, heart rate,

blood pressure, among others — to keep homeostasis internal behavior to survive. The latter

is responsible for sensoring information such as pain, heat, or cold to trigger and transmit

those stimuli to the CNS. Here, the Somatic Maker Hypothesis (SMH) by Damasio (1996)

where it is mentioned that the amygdala is the key place where CNS triggers somatic states —

bodily conditions in response to emotional stimuli — to produce more accurate emotions than

just the primary ones. In the words of Ekman (1992b), the primary emotions theory is based

on a culture and demographic independence; anger, fear, joy, sadness, disgust, and surprise

are the somatic states listed in Ekman’s theory and expressed in the first six months of a

newborn’s life. These primary emotions considered the following distinctive characteristics:

(1) emotions must be instinctive; (2) people in the environment present the same emotions;

(3) people express these basic emotions similarly; finally, (4) the physiological pattern remains

in dissimilar people when one of the primary emotions is triggered. Consequently, analyzing

physiologic signals is essential due to their ability to record central and peripheral nervous

system changes. In this regard, Electroencephalogram (EEG) signals have been used to

classify accurately the primary and primitive emotions with Machine Learning (ML) and

Deep Learning (DL) applications (Hosseini et al. (2021)) by recording the neurophysiological

bioelectrical potential for human’s brain using, typically, a 10-20 electrode scalp.

In order to create a novel approach to studying human emotions, two types of ER model

frameworks have been introduced: the primary and primitive. The former is presented above

— such as happiness and fear emotions — and the latter involves the hedonic pleasantness or

unpleasantness of emotions — valence — and the physiological arousal at the stimuli response

(see Jackson et al. (2019)). In general, primitive emotion techniques are based on classifying

the subjects’ self-assessed magnitude of valence and arousal stimuli, and some other studies

propose operating the stimuli subjects’ domain. Recently, Işık et al. (2023) suggested a

Valence-Arousal-Dominance (VAD) classification space for analyzing unbalanced feature data

for denoising EEG. Besides, Doma and Pirouz (2020) chunk the EEG record into four sets

per minute, improving the classification results in a VAD space. Similarly, Islam et al. (2021)

performed a channel correlation matrix based on the α, β, and γ EEG sub-frequency bands of

the Pearson coefficient to reduce the feature matrix dimension and computational complexity

in a 2-D space Valence-Arousal (VA) DL architecture. In close connection, Fang et al. (2021)

analyzed the novel tendency to use raw EEG as input to a deep forest classifier, concluding

that such a framework does not substantially increase the accuracy rate, suggesting a prior

feature extraction from EEG to feed the deep forest architecture. These studies were designed
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and validated using the Database for Emotion Analysis Using Physiological Signals (DEAP)

dataset (developed by Koelstra et al. (2012)). Conversely, the Affect, Personality, and

Mood Research on Individuals and Groups (AMIGOS) dataset by Miranda-Correa et al.

(2021) recently performed similar studies to record EEG signals from 40 subjects to measure

emotional activity and become the baseline for recent research. Employing this dataset, V.

and Bhat. (2022) highlighted the advantages of using ResNet-18 as a feature extractor to

target a 3D classification space for VAD using T7, T8, F7, and F8 electrodes as input to

the AdaBoost Decision Tree (EBT). Similarly, Topic and Russo (2021) in the VA space,

highlighting the use of topographic and holographic spectral distribution images from EEG

in future applications for people with disabilities and neuroimaging.

In a similar context to primitive emotions, primary or discrete emotions are triggered and

modulated by the amygdala and hippocampus, avoiding the degree of self-assessed stimuli in

primitive emotions. In this regard, Yang et al. (2020) showed a high correlation of the γ band

(> 30 Hz) with increased brain activity in EEG. This Gamma Band Activity (GBA) is highly

correlated with the amygdala, Orbitofrontal Cortex (OFC), and ventromedial Prefrontal

Cortex (vmPFC) in affective studies. Indeed, the amygdala showed an increased magnitude

in the γ-band during the emotion stimuli (Sonkusare et al. (2022)). Besides, Bechara and

Damasio (2005) used the SMH to emphasize the amygdala’s role and vmPFC in generating

secondary emotions. Hence, the subjects’ experience is based on physio-psychological previous

events and provides information to develop a more accurate emotion than the primary ones.

Alternatively, Albert et al. (2010) established the importance of the FC1 and CZ electrodes

scalp in EEG for emotional stimuli detection.

All these previous ER techniques provides a specific research goal based on different

ER-EEG databases, signal processing, feature extraction, and Artificial Intelligence (AI)

approaches. In this respect, this research introduces a novel signal processing technique

based on the quaternion algebra proposed initially by Hamilton (1844), denoted as {q ∈ H},
where q = a + bi + cj + dk, with {a, b, c, d ∈ R}, and {i, j, and k ∈ C} following up

the classical complex variable algebra. To mention a couple of quaternion approaches,

Contreras-Hernandez et al. (2019) proved the Quaternion Signal Analysis (QSA) performance

by computing the q(t) and q(t+∆t) quaternion sequence as well as performing a rotation to

classify three different induction motor failure states. Similarly, Batres-Mendoza et al. (2016)

achieved high binary classification using an efficient feature extractor based on the quaternion

rotation for the left and right motor imagery experiments. In this order of ideas, this protocol

takes the Bicomplex Quaternion Signal Analysis (bQSA) product criteria proposed by Ell



Chapter 1. Introduction 4

et al. (2014), following the Cayley-Dickson form, by using a subset of four Effective Channels

(EC) of an emotion recognition dataset. The method will be explained widespread in the

following sections.

This brief introduction to ER will be taken in extensive in the following background

section, where sociology, neuroscience, signal processing, and AI influence to ER will be

discussed. In this respect, the justification, hypothesis, and research objectives are outlined

below.
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1.1 Justification

In recent years, the number of individuals experiencing emotional or mental disorders has

significantly increased. To overcome the limitations of non-physiological signals, such as facial

expressions, motion, or voice recognition –— which are susceptible to subjects’ self-production,

lack accurate physiological information, and research bias –— primary human subject-based

emotion recognition studies using EEG focus on analyzing peripheral and central nervous

system information. This approach provides more reliable data for mental or emotional

disorders, stress, and anxiety early diagnosis. Conditions like Alzheimer’s and Parkinson’s

disease, which can alter emotional and brain activity, may also be detected and studied

using electroencephalograms. Emotion recognition applications extend beyond healthcare.

For instance, monitoring students’ emotions can help to improve and personalize learning

tasks, preventing disengagement and frustration episodes from an early age. Similarly,

adaptive media and brain responses to music, videos, virtual reality, or gaming experiences

can be optimized based on emotional feedback. High-security applications, such as biometric

authentication, lie detection, and deception detection, also stand to benefit significantly from

emotion recognition technologies.

These examples highlight the need for emotion-recognition scientific tools to identify

the emotions that a person genuinely experiences under specific conditions or scenarios.

Consequently, developing more accurate emotion recognition technologies is essential to

reduce personal or social risks.

1.2 Hypothesis

The combination of digital signal processing and quaternion algebra techniques applied

to EEG signals will improve the machine learning performance of emotion recognition in

comparison to the state-of-the-art methods.
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1.3 Objectives

1.3.1 Overall objective

Develop and design a methodology based on digital signal processing and quaternion algebra

applied to electroencephalogram signals and a machine learning or deep learning model to

classify human emotions.

1.3.2 Specific objectives

1. Find and use an EEG database that models human emotions based on the acquisition

of brain’s bioelectrical potential activity in test subjects.

2. Find a reduced set of electroencephalogram channels to construct a quaternion-based

signal processing algorithm for emotion recognition databases.

3. Identify the most relevant brain’s lobes according to the channel selection method and

encompass the results with the literature information.

4. Adapt and apply the digital signal processing and quaternion algebra to a set of EEG

signals in the context of human emotions recognition.

5. Evaluate the performance of digital signal processing and quaternion algebra in multiple

artificial intelligence algorithms.

6. Evaluate and perform the feature extraction on EEG signals using time-frequency

domain features or CNNs.
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1.4 Background

Discussing human evolution encompasses events before sociology. Initially, hominids moved

using arms and legs. Later, an upright stance was needed to see prey and predators, which

eventually led hands-free to pick up, hold, and carry food. Then, the Turner (1996) research

unveils that, after years of evolution, the neocortex presented a dramatic size increasing and

complexity, developing a limbic system, where emotions are activated as a rapid response

to social interactions. According to Turner (2000), once social environments became part of

hominids’ daylife, their brains suffered subcortical limbic structure changes to learn a wide

variety of emotions. Taking a crucial advantage from other hominids and evolving to the

Homo lineage.

Then, moving forward in time to more recent years, in the last century Ekman (1992a)

described a theory of six basic emotions based on facial expression studies: happiness,

surprise, fear, sadness, anger, and disgust, as the primary ones. However, before introducing

this primary emotions in Ekman’s theory, more topics are needed to board related emotion

recognition theory.

First, people use the words “emotions” and “feelings” in the same way and, even if they are

related, are not the same. According to Pace-Schott et al. (2019), there are some important

definitions and differences between both; the former has been defined by Damasio and

Carvalho (2013) as programmed neural response evolved as an adaptive function to trigger

changes in the brain. An emotion shapes as feeling, stimuli, cognition, or cognitive process.

The latter is referred to as a subjective experience perception of a particular emotion that

comes from afferent information triggered by peripheral receptors (temperature, pain, among

others). In the same order of ideas, Hansen (2005) pointed out emotions as primitive, fast, and

unconscious mechanisms that controls individual stimuli-responses to different situations. In

contrast, he established feelings as cognitive perceptions to describe a non-cognitive emotional

stimuli. Another confusion comes when “emotion” and “mood” are called; here, Pace-Schott

takes the Kaplan et al. (2016) theory, remarking that their main differences is the duration

and magnitude, bearing emotion as a phasic (fast and concise) response. However, it is not

possible to compute a threshold between them. In short, emotions are fast, intrinsic, and

unconscious emotional perceptions; meanwhile feeling is the term that can be associated with

a conscious perception and an easier nomenclature for describing them.

Now, if the language and culture is taken in count, the emotion, feeling, and mood terms

take a higher context. As introduced previously, cultural evolution outperforms the emotional
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context, yielding a robust meaning for that kind of stimuli. Hence, related to culture

expansion, the language influence is remarkable, making language promising for analyzing

how similar or different the emotional experiences are for different subjects. Jackson et al.

(2019) introduced a study based in colexification — instances where two or more concepts are

expressed with the same word —– showing a global colexification network. The study found

that words like “joy,” “happy,” “love,” “sad,” “worry,” “fear,” “surprise,” and “anxiety” have

stronger network connections, indicating that several cultures or linguistic families possess

a higher degree of colexification associated with these emotional terms. Also, their findings

suggested that most family languages worldwide differ in emotions in a concept of valence

and activation (arousal) — known as primitive emotions.

Primitive emotions reflect the neurophysiological response to an stimuli. The valence

and arousal are the principal approaches when a scientist is introduced to ER, and EEG

is one of the most used methods to capture that neurophysiological response. According

to Hosseini et al. (2021), EEG is a non-invasive method, which is safe and painless as it does

not penetrate the body, for testing or recording the brain’s bioelectrical potential, presenting

high non-Gaussian, non-stationary, and non-linearity properties. EEG are commonly used

in eHealth applications in treatments like neurological diseases, epilepsy, sleep disorders,

tumors, and depression (Subha et al. (2008)). Firstly discovered by Richard Caton in 1875 by

studying the monkey’s and rabbit’s brain activity, the EEGs are taken by placing electrodes

on the scalp, achieving a bioelectrical pattern that can be fragmented into different frequency

bands:

→ δ (0.5-4 Hz): associated with deep sleep and brain’s slow activity,

→ θ (4-8 Hz): linked to relaxation, creativity, drowsy, and light sleep,

→ α (8-13 Hz): relaxed and calm state,

→ β (13-30 Hz): associated with active thinking, problem-solving, physical motion, and

focus,

→ γ (> 30 Hz): related to cognitive and emotion processing or higher mental activities,

then, one of the first pre-processing tasks for every scientist in ER is the noise and artifacts

reduction in EEG signals. In this regard, Dadebayev et al. (2022) suggested that the most

common techniques are based on the Fourier Transform (FT) and Wavelet Transform (WT).

Moreover, Torres et al. (2020) conducted a comprehensive study from 2015 to 2020, evaluating

several spectral analysis techniques for feature extraction, yielding FT and WT as the top

ones. In particular, Xie and Oniga (2020) mentioned the contribution of wavelet transform

and decomposition of EEGs. Consequently, He et al. (2020) used a wavelet decomposition to
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reach the δ, θ, α, β, and γ sub-frequencies, achieving significant noise reduction and leveraging

these sub-frequencies for feature extraction.

One of the first ER-EEG developed datasets is introduced by Soleymani et al. (2012) —

A Multimodal Database for Affect Recognition and Implicit Tagging (MANHOB-HCI) —

where a multimodal study of 27 subjects (µage = 26.06, σ2
age = 2.09), collected the EEG, face,

body, eye, and audio stimuli responses. According to the Web of Science Core Collection

(WOS), MANHOB-HCI has received 961 cites (WOS = 961), positionating it as a well-known

multimodal ER dataset. By the same time, Koelstra et al. (2012) published the DEAP dataset

(WOS = 2960) — also multimodal — where CNS and PNS different signals where collected

and recorded from 32 subjects (µage = 27.19, σ2
age = 19.77).

The main approach in ER based on primitive emotions is to classify VA/VAD space;

then, based on Koelstra’s study, multiple techniques have been developed. Mentioning a

few, the combination of Empirical Mode Decomposition (EMD), Intrinsic Mode Functions

(IMFs), Discrete Wavelet Transform (DWT), and ML in Zhuang et al. (2017) framework

showed a higher performance through EC selection along the electrode scalp perimeter.

Published in 2017, this approach demonstrated its effectiveness in binary classification by

using dedicated models for each primitive emotion, showcasing significant advancements in

classification accuracy and model efficiency considering the publication year. After that,

several publications increased the performance of ER by using EEG signals. For instance,

Farashi and Khosrowabadi (2020) found that V is more related to γ EEG band, while A

is more related to α, achieving a higher accuracy rate in comparison with the former one,

following the binary classification method per primitive emotion. Hence, a multimodel ML

approach is proposed by Doma and Pirouz (2020) where EEG raw is segmented into four

sets per minute. After feeding a Principal Component Analysis (PCA) with a set of features,

the study concluded that the [30 − 45]s segment, combined with Support Vector Machine

(SVM), achieved a superior classification performance into VAD space. These approaches

are based on binary classification, where the primitive emotions are classified independently.

Accordingly, AMIGOS is a novel VA dataset approach introduced by Miranda-Correa et al.

(2021). However, ER is not limited to these type of models; The SJTU Emotion EEG

Dataset (SEED) dataset by Zheng and Lu (2015) focusing on Positive, Negative, and Neutral

(PNN) emotions explore a multimodal dataset for these three classes, which for this document

proposes, will be categorized as primitive emotions. Then, more recent and robust datasets

are developed for multiclass classification; one of the most reliable was developed for the same

authors of SEED, they named it SEED-V (Liu et al. (2022a)). This dataset, also multimodal,
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is highlighted as one of the first datasets to get close to primary emotions, including:

“happiness,” “sadness,” “disgust,” “fear,” and “neutral” emotions (classes). Music, video,

image, or gaming modalities are some of the main approaches to trigger an emotion stimuli

in subjects to create a more robust dataset, the previously mentioned datasets, along with

additional ones, will be discussed in detail in the following chapter.

One of the main challenges in ER is the noise and artifacts in EEG signals. The recent

framework by Javidan et al. (2021) proposes a novel channel selection technique to reduce

artifacts and classification noise by computing a top EC by measuring each feature and

channel significance, highlighting the FC2, F7, F8, T7, T8, and P7 in a Positive and Negative

classification task. Following the same method, they found a pair of electrodes with higher

performance, F7 and F8, suggesting that the frontal lobe is the main region for emotion

processing. In contrast, a Particle Swarm Optimization (PSO) algorithm is applied to a

set of spectral features in Yildirim et al. (2021). The method fusioned the Hilbert-Huang

Transform (HHT) and Phase Locking Value (PLV) to classify the VA space, highlighting

the FP2, AF4, F3, F4, FC5, T7, C3, CP2, PO3, O1, and O2 electrodes, must be located in

the frontal lobe. Based on spectral analysis techniques, Bagherzadeh et al. (2024) explored

a binary classification performance (“happy” and “sad” classes only) in the SEED datasets

series (IV Zheng et al. (2019), V Liu et al. (2022a), GER Liu et al. (2022b), and FRA)

by fusing the Synchosqueezing Wavelet Transform (SSWT) and ResNet-18, DL approach,

achieving a pair of EC electrodes, T7 and T8 are the most significant for the four datasets.

However, the limitation of a binary classification presents a lack of EC generalization for

multiclass classification. Finally, a reliable classification task is detailed in Ma et al. (2025)

by testing binary or multiclass models using the DEAP and SEED-series datasets. The

study remarks the multimodal performance by fusing EEG with peripheral signals — such

as Electrooculogram (EOG), Electromyogram (EMG),Electrocardiogram (ECG), Galvanic

Skin Response (GSR), among others — to achieve a higher classification rate. The proposal

achieved a higher performance in multiclass models than the binary ones, suggesting that

binary architectures are unsuitable for multiclass classification.

The studies mentioned above introduce some examples of the state-of-the-art in ER to

avoid noise and artifacts in EEG signals. Nevertheless, only a few experiments have studied

the synapses, structure or signal energy distribution in human’s brain, and their influence

on EEGs. It has been proved that some specific EEG frequencies have a special role in

emotion processing and decision-making, being necessary to process the information in a

deep sense. For instance, Celeghin et al. (2017) stabilized that the co-activation of brain
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structures may change the emotional response depending on the current activity of a subject.

This inner response produces a two-way effect in the amygdala: in the former, the stimuli are

categorized as negative or positive (in a valance sense); in the latter, the stimuli activate the

SMH to produce more accurate emotions than just the primary ones. The SMH by Bechara

and Damasio (2005) established that the amygdala is the key place in the CNS where all

secondary emotions are produced.

According to above, the following studies supported Damasio (1996) theory where given

supraliminal or subliminal stimuli — perception in shaping an individual consciousness of

emotion — the amygdala is connected to primary emotions and Somatic states, which

subsequently activate the vmPFC to generate secondary emotions. Similarly, Šimić et al.

(2021) revealed that emotional stimuli are processed as external factors in different brain

regions, where their meaning and relevance are evaluated by the Autonomic Nervious System

(ANS) to determine an appropriate response. Under the SMH, Damasio (1996) theorized that

primary emotions are triggered in the amygdala, latterly supported by Pessoa (2017); Phelps

and LeDoux (2005). Consequently, a musculoskeletal and visceral connection to emotional

reactions theory suggested a two-way process in emotional evoking: firstly, primary emotions

arise from physical experiences, while a secondary process involves the vmPFC activating

SMH derived from bodily information, triggering secondary emotions. Furthermore, McRae

et al. (2011) suggested that the amygdala, vmPFC, and hippocampus form a generative

network that processes emotional stimuli through a bottom-up approach. Additionally, Bechara

and Damasio (2005) reported that the vmPFC is the only frontal lobe region associated with

the ANS and is thus interconnected with the hippocampus and amygdala. Supporting these

findings, Sterling (2012) described the amygdala as playing a feedback role within the PFC,

influencing subsequent decisions and planning actions.

The Guex et al. (2020); Sonkusare et al. (2022) studies, based on emotional theory,

have proposed that the amygdala can be stimulated by using audiovisual, words, and facial

expression modalities. Meanwhile, Sander et al. (2003) emphasized the amygdala’s role in

assessing the significance of events, suggesting that its response may adapt to human behavior

based on personal goals or needs. Analyzing the amygdala’s pattern, Pourtois et al. (2010)

confirmed a trigger response to a current behavior based on the cognitive significance of

the stimuli. Moreover, studies with EEG scalp in subjects reported an emotional stimuli

response at around 300ms (Albert et al. (2010)), particularly in frontocentral areas (FC1

and CZ). Complementarily, Berboth and Morawetz (2021) showed that the prefrontal region

and the amygdala have a reciprocal connection. In addition, Sonkusare et al. (2022) showed
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neural activity in the amygdala, Orbitofrontal Cortex (OFC), and medial Prefrontal Cortex

(mPFC) by emotional response to elicited images. In addition, the Gamma Band Activity

(GBA) presented an increased activity for positive and negative stimuli. Meanwhile, a

high Beta Band Activity (BBA) is shown in negative emotional valence stimuli associated

with depressive behavior. These studies concluded that emotions interact profoundly with

the CNS, with the amygdala playing a pivotal role. Moreover, its activity is intricately

connected to specific regions of the PFC, highlighting its integration into broader emotional

and cognitive networks.
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1.5 Research achievements

In order to achieve the objectives of this work, the emotion recognition task followed several

implementation and testing tasks to accomplish the research goals. The first task was to

explore the must common datasets and get familiar with them. Then, the digital signal pre-

and post-processing and the classification task were very important to explore the limitations

and research gap in the ER field. The following task bring us to the channel selection and

conflict learning to find the most relevant EC in the EEG signals. In this order of ideas,

the bQSA signal processing was possible. Here, the published research papers in JCR high

impact journals, and conference papers, that support the research work presented in this

document are listed:

Research

REGEEG: A Regression-Based EEG Signal Processing in Emotion Recognition

https://doi.org/10.1109/JBHI.2025.3543729. IEEE Journal of Biomedical and Health

Informatics, 29(7), 4748–4757.

Authors: Oscar Almanza-Conejo∗, Juan Gabriel Avina-Cervantes, Arturo Garcia-Perez, and

Mario Alberto Ibarra-Manzano

IF: 6.8, JFI-RANK: Q1, 92.83 (19/258), 91.71 (15/175), 3/67 (3/67), 92.71 (4/48)

Research

A channel selection method to find the role of the amygdala in emotion recognition avoiding

conflict learning in EEG signals

Authors: Oscar Almanza-Conejo, Juan Gabriel Avina-Cervantes, Arturo Garcia-Perez, and

Mario Alberto Ibarra-Manzano∗. Engineering Applications of Artificial Intelligence, 126(106971),

106971.

https://doi.org/10.1016/j.engappai.2023.106971

IF: 8.0, JFI-RANK: Q1, 91.6 (8/89), 88.0 (25/204), 91.7 (31/366), 97.4 (5/175)

Research

Emotion Recognition in Gaming Dataset to Reduce Artifacts in the Self-Assessed Labeling

Using Semi-Supervised Clustering

Authors: Oscar Almanza-Conejo, Juan Gabriel Avina-Cervantes, Arturo Garcia-Perez, and

Mario Alberto Ibarra-Manzano∗. IEEE Access: Practical Innovations, Open Solutions, 12,

52659–52668.

https://doi.org/10.1109/ACCESS.2024.3387357

IF: 3.6, JFI-RANK: Q2 64.1 (93/258), 65.2 (128/366), 58.8 (50/120)
Research

Emotion recognition in EEG signals using the continuous wavelet transform and CNNs

https://doi.org/10.1109/JBHI.2025.3543729
https://doi.org/10.1016/j.engappai.2023.106971
https://doi.org/10.1109/ACCESS.2024.3387357
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Authors: Oscar Almanza-Conejo, Dora Luz Almanza-Ojeda, José Luis Contreras-Hernandez,

and Mario Alberto Ibarra-Manzano∗. Neural Computing & Applications, 35(2), 1409–1422.

https://doi.org/10.1007/s00521-022-07843-9

IF: 4.5, JFI-RANK: Q2 73.9 (52/197)
Research

Emotion Recognition Using Electroencephalogram Signals and a 1D Local Binary Pattern for

an ML-Classification-Based Approach

Authors: Oscar Almanza-Conejo, Juan Gabriel Avina-Cervantes, Arturo Garcia-Perez, and

Mario Alberto Ibarra-Manzano∗. In Lecture Notes in Networks and Systems (pp. 13–23).

Springer Nature Singapore.

Proceedings of Eighth International Congress on Information and Communication Technology

https://doi.org/10.1007/978-981-99-3043-2_2.
Research

Emotion Recognition Using Time-Frequency Distribution and GLCM Features from EEG

Signals

Authors: Oscar Almanza-Conejo, Dora Luz Almanza-Ojeda, José Luis Contreras-Hernandez,

and Mario Alberto Ibarra-Manzano∗. In Lecture Notes in Computer Science (pp. 201–211).

Springer International Publishing.

14th Mexican Conference on Pattern Recognition 2022

https://doi.org/10.1007/978-3-031-07750-0_19

https://doi.org/10.1007/s00521-022-07843-9
https://doi.org/10.1007/978-981-99-3043-2_2
https://doi.org/10.1007/978-3-031-07750-0_19
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1.6 Thesis outline

Emotion recognition encompasses a wide spectrum of understanding the human brain and

its response to certain environments or stimuli. Researchers are challenged to develop

novel and accurate methodologies that satisfy human beings’ social, psychological, and

physiological needs. In this regard, a novel and exhaustive study about the ER based on EEG

signals, focusing on digital signal processing and quaternion algebra to improve classification

performance is proposed. This document results from deep research and multiple experiments

published in three peer-reviewed indexed journals. Based on these findings, the thesis is

structured as follows:

• State-of-the-art in emotion recognition: A comprehensive review of several studies

based on ER and EEG signals is provided in this chapter. Here, the reader is introduced

to a robust collection of methodologies oriented to the pre- and post-processing of ER

data. This section includes the most popular or well-known datasets, several noise, and

artifacts reduction techniques. Also, some AI oriented approaches to classify primitive

or primary emotions according to different ML, DL, or Fussion Learning (FL) models

are presented and discussed.

• Methodology: Chapter three introduces the digital signal processing and quaternion

algebra methodology to outperform the classification performance in ER. The methodology

can be divided into three main tasks: (1) the noise reduction using the wavelet transform

and the channel selection method to find the EC by adapting the Minimum Redundancy

Maximum Relevance (mRMR) algorithm to compute a relevance scores vector associated

to each EEG channel per used dataset, (2) adapt the top-four EC to the quaternion

algebra and bQSA product criteria to (3) classify the binary or multiclass primitive or

primary emotions using a ML or DL models.

• Numerical results: Here, statistics and charts collection modeled by the results of

the experiment are presented, considering the classification task by applying the bQSA

product criteria to four different datasets: DEAP, AMIGOS, SEED-V, and Force,

EEG and Emotion-Labelled (FEEL) datasets. The results are compared with the

state-of-the-art to validate the performance of the proposed methodology by measuring

the accuracy, precision, recall, F1-score, and p-value metrics. This chapter discusses the

results obtained in the previous one, highlighting the advantages, limitations, principal

findings, and research gap of this proposal. Some limited and closely connected references

are compared and discussed directly with the research work presented in this thesis.
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• Conclusions and future work: The sixth and final chapter summarizes all the

previous chapters and provides a comprehensive conclusion of the leading research

proposal, including the future work to improve the methodology or the classification

performance in ER based on EEG signals.



Chapter 2

State-of-the-art

As the previous chapter introduced, the existing literature on ER is extensive, with a little

bit of emphasis on primitive rather than primary emotions. In this regard, a considerable

amount of literature has been published related to ER. Here, this document explores several

approaches related to physiological and non-physiological signals and their contribution to

the area.

Over the past two decades, Affective Computing (AC) overarching the terms used for

emotion recognition, sentiment analysis, or similar. The term, initially proposed by Prof.

Piccard in 1997, is introduced to make a reference to the emotions or feelings interpreted by

computers to identify, express, or respond to human stimuli. Thus far, Wang et al. (2022)

highlights the contribution of non-physiological and physiological data; the former describes

a portion of 55% of emotions expressed through facial, 38% voice, and 7% for text:

• Textual Emotion Recognition (TER): surveys, such as the one conducted by Deng

and Ren (2023), have summarized the principal benefits of text analysis for emotion

recognition as its (1) marketing through customer reactions, (2) security for personal

or social risk’s prevention, (3) psychology and psychiatry in social media for suicide

prevention or political decision-making and statistics elections, among others. A binary,

ternary, and multiclass primary or primitive datasets are also recompiled and discussed

in Deng and Reng’s paperwork.

• Speech Emotion Recognition (SER): real-life and time problems like call center,

automatic response, spoken dialog, pain and depression recognition are interesting areas

for SER researchers. In Ahmed et al. (2020) review, the Berlin Database of Emotional

Speech (EMODB) Burkhardt et al. (2005), Interactive emotional dyadic motion capture

17
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database (IEMOCAP) Busso et al. (2008), and The Ryerson Audio-Visual Database

of Emotional Speech and Song (RAVDESS) Livingstone and Russo (2018) datasets are

highlighted for speech recognition, establishing the former one as the most balanced

in classification performance and use. In the same order of ideas, Wani et al. (2021)

review concluded the same regarding the balance of classification performance and

usefulness of the EMODB and IEMOCAP datasets. However, EMODB is a German

speech dataset, which may limit its research applications and scope.

• Facial Emotion Recognition (FER): as the second most useful data after EEG,

FER has been introduced in widespread applications. As result, lot of reviews and

surveys have been published; however, only a pair of them are mentioned. According

to Mehrabian (1968), 93% of the emotional context is partially distributed as: 55%

facial, 38% vocal –— the way the voice conveys the message –—, and 7% is verbal —–

the context –— expressions. This outlines with Ekman’s theory about the six primary

emotions and their uncultural variation. FER concerns two types of image encoders:

dynamic and static. The former is related to a sequence of images, like GIFs of video

formats, and the latter to a single image spatial information. According to Guerdelli

et al. (2022), to address the limitations of current FER systems, limited by research

bias and subject’s lacks, the micro- and macro-FER studies were divided. Both dataset

collections can be stored in three types of datasets: act, spontaneus, and in-the-wild.
– Macro-FER:

Table 2.1: FER Macro expressions datasets (extracted from Guerdelli et al. (2022) survey. See

extended in the paper.)

≤ 50 TAVER, RAVDESS, BAUM-1, OPEN-EmoRec-II, BP4D-Spontaneous,

DISFA, RECOLA, CCDb, MAHNOB Laughter, DEAP, SEMAINE,

MAHNOB-HCI, UNBC-McMaster, CAM3D, B3D(AC), MMI-V, AVLC,

AvID, AVIC, VAM-faces, ENTERFACE, MMI, MIT, EmoTV, UA-UIUC,

4D CCDb, FreeTalk, IEMOCAP, SAL, iSAFE, ISED

∈ [50, 100] GFT, SEWA, BioVid Emo, MAHNOB Mimicry, AVEC’14, PICS-Stirling

ESRC, 3D Face Database, Belfast induced (Set2 and Set3), Hi4D-ADSIP,

DD, RU-FACS, AAI, Smile dataset

Number of

Subjects

Macro-Expression Datasets

Continued on next page
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Table 2.1: FER Macro expressions datasets (extracted from Guerdelli et al. (2022) survey. See

extended in the paper.) (Continued)

∈ [250, 500] SFEW, Aff-Wild2, AM-FED+, BAUM-2, AVEC’13 AViD-Corpus, DynEmo,

AFEW, UT-Dallas

Number of

Subjects

Macro-Expression Datasets

its existing datasets are categorized according to subject’s number, age, ethnicity,

camera frames per second, and amount of data. The average time duration

for these emotions in facial expression is from 0.5 to 4 seconds. The datasets

labels for this FER-type are strictly necessary for the training-validation-testing

tasks in act and spontaneous datasets. However, in-the-wild collections requires a

ground-truth and experienced annotators to assess the tasks.
– Micro-FER: related to unconscious emotional stimuli, micro-expressions are difficult

to hide and act. In consequence, capturing with a low-cost camera is challenging
due to their fast and spontaneous occurrence (0.04 to 0.2) covering a voluntary
and involuntary expression triggering (Zhou et al. (2022)). A summary of datasets
is shown in the following table.

Table 2.2: FER Micro expressions datasets (extracted from Guerdelli et al. (2022) survey.)

≤ 50 SAMM, CAS(ME)2, MEVIEW, CASME II, CASME, SMIC-E, SMIC,

YorkDDT

≥ 100 RAF-DB, AffectNet, Aff-Wild, EmotioNet, FER-Wild, FER-2013, HAPPEL,

HU-MAINE

Number of

Subjects

Macro-Expression Datasets

However, these approaches presents a lack of accurate emotion stimuli detection in act or

spontaneous macro-expressions results. In consequence, researchers have decided to board

deeply the FER information due to their influence in ER. However, despite their own computer

vision applications, multiple studies have proved that physiological information provides an

accurate ER study, avoiding subjects’ lack in self-assessed stimuli.

In close connection, basic emotions expressed in the first six months of life in newborns

are associated with specific facial expressions. The study in Matsumoto and Ekman (1989)

suggests that emotion culture invariance is possible due to the culture homeostasis in the

context of pattern, instinct, and stimuli propagation between different subjects in the same
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environment. Consequently, there is a clear influence from visual, auditory, and tactile

bio-sensorial information in the trigger of an emotional fight-or-flight response (see Damasio

(1999)).

In a formal context, the emotion generation involves a parallel processing task; since

a rapid activation-action response through complex CNS responses. Based on Šimić et al.

(2021) study, as earlier detector stimuli response, the amygdala is the motor and a key part of

the limbic system — amygdala, hippocampus, thalamus, hypothalamus, and cingulate gyrus,

among others — which plays a crucial role in emotion regulation and memory formation.

Also, Guex et al. (2020) suggested that the amygdala evaluates and reevaluates the input

stimuli from the environment to produce a two-way response, the early and late activation

process:

• Early activation (≈ 130ms): is the initial phase as automatic response. This

“bottom-up” — considered as the non-conscious deliberation process — implicates a

fast sensory information response to low-level brain structures, including the amygdala.

As consequence, Quadt et al. (2022) theorized that changes in heart rate, blood pressure,

skin conductance, and other physiological signals are triggered — ANS responses — to

help humans to “feel” the emotion, producing a late activation response.

• Late activation (≈ 220ms and beyond): after the early one, the late response is

triggered around 220ms or later. It has been theorized that the late activation goal is

to act and modify the behaviour. In this process, the amygdala’s activity is modulated

by the prefrontal cortex, which sums contextual information to outperform an accurate

stimulus context and response — referred to as “top-down” response.

In this context, Stolicyn et al. (2024) highlights that the “bottom-up” and “top-down”

(early and late responses) are refered to which nervous system is activated first; central, for

a fast and unconscious, or anatomic, for an accurate and contextual responses, respectively.

The following section introduces a deeper biological context about how human emotion

processing is a whole-brain and whole-body task.

2.1 The physiological emotion processing

As it was anticipated above, the human emotion processing is a complex and parallel involved

task that outperforms several biological assignments. Here, a brief introduction to the most

relevant neuro and physical parts in the emotional processing are sumarized.
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• Amygdala — Thread detector and arousal trigger: Located in the anterior

sections of the medial temporal lobe, the amygdala is the primary neurological component

in emotion generation and regulation, particularly in fear and anger responses (see Elvira

et al. (2022)). According to Kirstein et al. (2023), several major depression desorders,

and structual and functional anomalies have been associated with amygdala’s activity;

bipolarity, anxiety, epilepsy, schizophrenia, and Alzheimer’s disease are some of them.

• Hippocampus — Contextual information: As Ekstrom and Hill (2023) wrote,

the hippocampus is the central part in memory information and spatial navigation

located in the medial temporal lobe. In emotion processing, the hippocampus plays an

important role in providing a deeper context to the amygdala’s response, see Roesler

et al. (2021). What stands out in the hippocampus is the function in helping to

distinguish whether a stimuli represents a real threat or merely resembles an experience.

This disambiguation process plays a pivotal role in preventing excessive fear-related

responses to situations that are similar to negative past experiences but are not actually

threatening. Based on Ben-Zion et al. (2024) study, it can be concluded that dysfunction

in this hippocampal mechanism may lead to exaggerated responses in individuals with

post-traumatic stress disorder (PTSD) or anxiety disorders, impacting their quality of

life.

• Thalamus — Sensory information relay: is a subcortical structure located in

the center of the brain, it gates all sensory input information to the cortex (except

olfaction). Additionally, it relays the information between cerebellum, spinal cord,

and cerebrum, see Klein et al. (2009). In simple words, the thalamus acts as a relay

station that filters information between the brain and body, activating ANS to provide

a deeper context in the amygdala (even avoiding the fear-related fast response). A

deeper context of the thalamus and hypothalamus can be found in Moini and Piran

(2020) study.

• Hypothalamus — Hormonal response: is a subcortical structure located below the

thalamus and capping the brainstem. Bhagavan and Ha (2015) established that even if

the hypothalamus is smaller than the thalamus, its homeostatic functions are crucial

for the CNS and ANS. Pointing out some of its functions, Moini and Piran (2020)

summarized that the hypothalamus is related to memory, emotions, body temperature,

food intake, sleep-wake cycles, and regulation of water balance and thirst (see its

Table 8.1 for a deeper context). A non-optimal function of the hypothalamus can

lead to important mental health disorders, such as depression and anxiety, affecting
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the emotional hub of a person, Bao and Swaab (2019).

• Prefrontal Cortex (PFC) — Appraisal and response modulation: is the

cortex that receives projections from the mediodorsal nucleus of the thalamus and

is located in front of the motor and premotor cortices in the frontal lobe, see Rolls

et al. (1996). In Etkin et al. (2015) it is mentioned that the vmPFC, dorsolateral

Prefrontal Cortex (dlPFC), and OFC are strongly implicated in emotional processing

and regulation, complementing the response of the amygdala. The PFC initiates a

multimodal activation across the CNS to attenuate fear-related responses, effectively

reevaluating the environment as safe and “halting” the amygdala’s threat detection,

see Delgado et al. (2008) experiment. From a global brain perspective, neural saturation

within the PFC influences whole-brain signal propagation, modulating multisensory

integration, emotion recognition, motor execution, memory retrieval, and higher-order

cognitive processes, as described in Sherfey et al. (2020). A notable example of PFC and

amygdala co-activation network is detailed in De Silva et al. (2012), where they explored

the emotional and motivational aspects of several previous studies that suggested an

input stimuli triggered by a top-down signal behaviour such as the feeding satiety

scenario.

• Insula — Interoception and subjective feeling perception: is a subcortical

structure associated to high-order functions, as the integration and analysis of gustatory,

auditory, and olfactory signals. In addition, Siegel and Sapru (2006) wrote that it

plays a pivotal role in memory and emotion processing, suggesting an important role

in the complex cognitive and affective processing. The insula is a crucial hub for the

regulation of interoception — the internal body signals sense — and internal feeling

states. According to Scott and Plata-Salamán (1999), insula connects hypothalamus,

OFC, and limbic system. In this order of ideas, it is correct to assume that the ANS

and CNS are directly connected and related by the interoception of insula’s response.

In short, a summarized overview of the brain’s regions involved in emotion processing is

presented in Table 2.3.

To date, no neuroscience and neuropsychology studies have accurately performed a theory

that determines or locates the exact spatial coordinates of where multiple emotions are

processed by the same distinct group of subcortical nuclei of the brain’s region. However, in

the review by Lim et al. (2024), they set out to explore the activations of the brain regions

associated with the stimuli from the primary emotions of different data modalities. Based

on the information above, a complex and robust network of brain regions is involved in
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the process of emotion generation and regulation. In order to make an approximation, ER

researchers have developed EC techniques to reduce the computational and time processing,

achieving a reduced subset of channels that are more effective in emotion recognition tasks.

The following section introduce a brief overview of the EEG databases and statistically

effective channels in the state-of-the-art.

Table 2.3: Brain regions and their influence in the emotion recognition process

Amygdala Threat detection

and arousal

trigger.

Generates a fast and bottom-up

response to emotion stimuli.

Main role in fear and anger

responses to link the survival

instincts.

Anxiety, depression, bipolarity,

schizophrenia, epilepsy, and

Alzheimer’s disease.

Hippocampus Context and

memory-related

processing.

It helps to differentiate

between a real and fake

threat according to the

contextualization of previous

experiences, modulating

amygdala’s response.

PSTD and anxiety.

Thalamus Sensorial

information.

Its primary function is the relay

of input sensorial information.

Feeding the amygdala with a

deeper context to avoid a fast

and unconscious response.

Hypothalamus Hormonal and

homeostatic

response.

Manage critical bodily

functions, including the

hormonal emotion-related

responses. Temperature,

hunger, thirst, sleep, and wake

cycles are also included in its

functions.

Depression, anxiety, and

hormonal dysfunctions.

PFC Appraisal,

decision-making,

and emotional

response

modulation.

Re-evaluates the environment

modulating the threats

identified by the amygdala,

activating a top-down response

and enabling complex bodily

functions.

Social and psychological

disorders.

Brain region Role Functionality Associated disorders

Continued on next page
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Table 2.3: Brain regions and their influence in the emotion recognition process (Continued)

Insula Interoception and

subjective feeling.

Integrates the bodily signals,

sensorial information, and

emotional responses. It hubs

the hypothalamus, PFC, OFC,

limbic system, ANS, and CNS.

Corrupts the sensorial

and emotional modulation,

impacting the social behavior

and autonomic function.

Brain region Role Functionality Associated disorders

2.2 Emotion recognition databases

Several ER datasets have been published in the last decade, in order to provide a deeper

context and understanding of the human brain. As established, according to the goals of

this thesis, the EEG emotion recognition datasets are the most relevant to claim a specific

emotion recognition model. Actually, several ER datasets have been published since 2010,

being DEAP and MANHOB-HCI some of the old and most used ones. Those datasets

are developed in the order of the primitive emotion recognition. The primitive emotions,

according to Dadebayev et al. (2022), valence is the primitive emotion that reflects the

pleasantness or unpleasantness of a stimulus, while arousal is defined as the capture of the

intensity of the emotional response. Some authors also propose or consider dominance as a

third dimension that evolves the emotional domain in response to an stimuli. A representation

of the VAD space is shown in Fig. 2.1. One of the characteristics of these datasets is that

the primitive emotions are usually self-assessed by the subjects of the experiment. This

method presents a wide range of applications, as the detection of changes in the emotional

state or the frequency of pleasantness. However, the self-assessed method presents a lack of

reliability in the data if the idea is to use the EEG or multimodal information to develop an

EEG emotion recognition. For the purposes of this study, two primitive emotions datasets to

test this approach in primitive and primary datasets are considered: (1) DEAP (see Koelstra

et al. (2012)) and (2) AMIGOS (see Miranda-Correa et al. (2021)).

The context of primary emotions was firstly introduced by Ekman (1992a) where he

proposed the six basic emotions: happiness, sadness, fear, anger, surprise, and disgust. These

emotions are considered culture-invariant and universal. In this context, several datasets are

developed multimodal data to capture the CNS and ANS in response to an audiovisual,

image, or sound stimuli. These stimuli material is chosen to produce the primary emotion

reaction in the human brain. Hence, the primary emotions in EEG or multimodal information

present an advantage in contrast to primitive for the ER studies. This study proposes, the
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(1) SEED-V dataset (see Liu et al. (2022b)), that accomplished multimodal information of

subjects in reaction to audiovisual stimuli material, (2) SEED-VII which stored a set of the

six primary emotions and a neutral one (developed by the same research team as SEED-V),

and (3) the FEEL dataset (see Cang et al. (2024)) are used too. This last one presents the

self-assessed labels modality; however, is a good material to test the presented approach due

to the relation and difference between the captured emotions and the self-assessed labels in

a big set of emotional targets.
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Figure 2.1: Valence-Arousal-Dominance emotion space.

In this regard, an overview of the datasets is detailed in Table 2.4. Almost all datasets
follow the 10-20 system (see Fig. 2.2), which is a standardized method for placing electrodes
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on the human scalp to record electrical activity from the brain. The number of cites of a few
ER datasets until June of 2025 is plotted in Fig. 2.3. The number of cites is extracted from
WOS database by searching the title of the publication paper-work of the dataset.
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Figure 2.2: 10-20 system diagram of elctrodes positioning.

Table 2.4: EEG-ER datasets

DEAP (Koelstra

et al. (2012))

2888 32(16/16) 27.19± 19.77 32 40 VAD6 128

MAHNOB-HCI

(Soleymani et al.

(2012))

1018 27(16/11) 26.06± 02.09 32 20 VAD 256

SEED (Zheng and

Lu (2015))

1430 12(6/6) 23.08± 04.08 62 15 PNN7 1000

DREAMER

(Katsigiannis and

Ramzan (2018))

593 23(9/14) 26.65± 07.29 14 18 VAD 128

SEED-IV (Zheng

et al. (2019))

657 15(8/7) 21.32± 02.45 62 3×24 Happy, Neutral, Fear,

Sad

1000

Dataset (Year) Cites SN(F/M)1 Age (µ± σ2) CN2 NSS3 RS4 fs
5

Continued on next page
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Table 2.4: EEG-ER datasets (Continued)

MPED (Song et al.

(2019))

175 30 () 62 28 Joy, Funny, Anger,

Fear, Disgust, Sad,

Neutrality

1000

GAMEEMO

(Alakus et al.

(2020))

91 28(9/19) 23.11± 04.69 14 4 Boring, Calm, Happy,

and Fear

128

AMIGOS

(Miranda-Correa

et al. (2021))

361 40(13/27) 28.32± 17.82 14 4 HVHA, HVLA,

LVHA, LVLA

128

FEEL (Cang et al.

(2024))

0 16(8/8) 19-34 64 ≈ 13 Anxious, Frustrated,

Dread, Satisfied,

Hopeful, Accomplished,

Alert, Cautious,

Curious, Resigned,

Threatened

1000

SEED-GER (Liu

et al. (2022b))

38 8(1/7) 22.25± 03.92 62 20 PNN 1000

SEED-FRA (Liu

et al. (2022b))

38 8(2/5) 22.50± 07.73 62 21 PNN 1000

SEED-V (Liu et al.

(2022a))

167 16(10/6) 21.62± 01.62 62 3×15 Happy, Disgust,

Neutral, Fear, Sad

1000

Dataset (Year) Cites SN(F/M)1 Age (µ± σ2) CN2 NSS3 RS4 fs
5

1 Subjects Number (Female/Male), 2 Channel Number, 3 Number of Samples per Subject, 4 Recognition Space, 5 Sampling

Frequency, 6 Valence-Arousal-Dominance emotion space (up to 8 classes), 7 Positive, Negative, and Neutral classes.

Based on these datasets, accurate and effective signal processing, feature extraction, and

classification models have been developed in order to achieve a ML or DL model to outperform

primary or primitive emotions. Meanwhile, Fig. 2.4a introduces a statistical estimation based

on the age of the subjects per dataset. Additionally, Fig. 2.4b shows a statistical subjects

distribution (top) and the number of stimuli (bottom) per analyzed dataset, beign those

exploded slices the ones that are used reliably in this work. In this regard, the following

sections introduce a brief overview of the most effective channel selection and AI techniques

in the state-of-the-art.
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DEAP

MAHNOB-HCI

DREAMER

SEED

AMIGOS

SEED-IV

GAMEEMO

FEEL

SEED-FRA

SEED-V

MPED

Publication year

DEAP 2888 MAHNOB-HCI 1018

DREAMER 593 SEED 1430

AMIGOS 361 SEED-IV 657

GAMEEMO 91 FEEL 0

SEED-FRA 38 SEED-V 167

MPED 175

Figure 2.3: Number of cites per year for the most used datasets in emotion recognition.
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2.3 Emotion recognition

The main discussion in this work is the principal advantages, limitations, and challenges in

the ER field using EEG as input data. As introduced, EEG signals are complex to interpret

and even more challenging to incorporate into the study’s proposal. However, the reliability

in the acquisition and model performance in order to model the changes in the CNS is

unquestionable. Then, the growing interest in the ER field is presented in Fig. 2.5, where

the number of publications per year since 2010 is shown. The data was extracted from Web

Of Science, and the search was performed using the keywords “EEG” and “ER” in the title,

abstract, or keywords. The search was limited to articles published in English and indexed

in the Web of Science database.

Figure 2.5: Number of publications per year since 2010 in the ER field (extracted from Web
Of Science). Indexing: Refine results for emotion recognition EEG and Preprint Citation
Index (Exclude – Database) and 2025 or 2024 or 2023 or 2022 or 2021 or 2020 or 2019 or
2018 or 2017 or 2016 or 2015 or 2014 or 2013 or 2012 or 2011 or 2010 (Publication Years).

Based on that TreeMap chart, is unquestionable that the COVID-19 pandemic influenced

in mental health and ER research. In this context, neuroscience, psychology, psychiatry, and

computer science journals lead the ER field (see Fig. 2.6). Then, the interest to explore EEG

signal processing in the ER field is to provide an understanding of the brain’s influence or

response as a consequence an input emotional stimuli. Since here, this document explores
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the principal ER frameworks that have a strong impact in the field and introduces several

methodologies or strategies to improve the artificial intelligence performance in order to

provide newer and accurate models.

Figure 2.6: Number of publications per area in the ER field (extracted from Web Of Science).
Indexing: Refine results for emotion recognition EGG and Preprint Citation Index (Exclude
- Database) and Neurosciences Neurology or Psychology or Psychiatry (Research Areas) and
2025 or 2024 or 2023 or 2022 or 2021 or 2020 or 2019 or 2018 or 2017 or 2016 or 2015 or 2014
or 2013 or 2012 or 2011 or 2010 (Publication Years).

2.4 The computer science and artificial intelligence in

emotion recognition

In the previous chapter, the ER field is introduced to give you, the reader, a brief overview of

different methodologies developed to create and tune algorithms to reduce the gap between

the human brain and computer science. Several algorithms aim to provide an accurate and

effective model to detect primary or primitive emotions. In this regard, preprocessing EEG

signals can be split into three main steps: (1) noise reduction, (2) a novel or improved

processing algorithm, and (3) feature extraction. The former can perform some additional

tasks, such as frequency decomposition (e.g. EMD or Wavelet Decomposition (WD)) and
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channel selection (EC). Both methodologies have shown a substantial impact on classification

performance, reaching evaluation metrics as high as the one that can be achieved using all

available channels. The middle one has a higher impact and research interest in science.

The possible novel or combination applications of the preprocessing task will determine the

performance of the proposal methodology. Many applications have been proposed since

the last decade, as seen in Fig. 2.5. At last, the latter is also dependent on the research

approach; statistical, time-domain, spectral, and entropy features are the most used ones. In

this respect, this research documents several methodologies that have proposed interesting

applications or algorithms to improve the preprocessing or classification task. The following

sections introduce EC, frequency decomposition, feature extraction, and classification methods

that strongly impact the ER field. Here, three tables summarize the information provided

in each section: (1) the EC and frequency decomposition methodologies, (2) the machine

learning, and (3) the deep learning-based models, Tables 2.5 to 2.7, respectively.

2.4.1 Channel selection

A channel selection method, also known as EC, is a technique that effectively reduces the

computational complexity in a dataset, significantly improving the processing tasks. It is

important to remember that EEGs are a very complex and low signal-to-noise ratio signals.

Hence, the EC approach is a key factor to reduce the lack that could be present in datasets

by reducing the noise in classification methods, and, in beyond, helping to instrument new

and lighter electroencephalogram devices to make the acquisition task more comfortable. In

the discussion of the following reviewed frameworks, a statistical approach will be presented

to make an inference of the brain regions that locates the major EEG information in response

to an emotion stimuli. In this regard, Gupta et al. (2019) explored a subset of 12 channels,

chunking the EEG input signals by the first 30 seconds of the recorded data, in the DEAP and

SEED datasets. The reported performance in a channel-dependent model showed a notable

improvement in classification by the use of ML models and highlighting T7 and T8 channels

as the top ones, for both datasets. In the study conducted by Zhuang et al. (2017), half

of the channels used in Gupta et al. (2019) study were identified. The former proposes the

DEAP’s EEG input signals with a five-level IMFs decomposition, associating each IMFs level

with a EEG frequency decomposition. In this context, IMF1 showed the higher performance,

related to γ-band activity. Then, extracting the IMF1 to a channel’s subset (FP1, FP2,

F7, F8, T7, T8, P7, and P8), produced almost the same classification performance than the
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one yielded by the use of all DEAP channels available. In close connection, V. and Bhat.

(2022) suggested the pool location of electrodes in the fronto-temporal region, using the

AMIGOS dataset. Here, authors modify the input EEG signal by applying a variational mode

decomposition (MVMD) to decompose the input signal, as EMD and WD do, and compute a

spectral 2D image distribution to feed a ResNet network to use the extracted features as input

matrix to ML algorithms. The model’s performance showed a very low accuracy variance

by using a subset of two or eight effective channels — both T7 and T8 for the two-channels

model and T7, T8, F7, F8, FC5, FC6, AF3, and AF4 for the eight-channels model. A very

popular method since the beginning of this decade is to use spectral analysis techniques to

convert EEG signals to spectral distribution images and be processed as input images to

feed a Convolutional Neural Network (CNN)-DL model. In a self-collected dataset, Zheng

et al. (2020) found a 10 EC subset that outperformed a very close accuracy rate to the

all-channels performance. Here, the statistics showed a 0.44 ± 0.20 mean and variance

difference in a subject-dependent classification. Here, Zheng et al. also reached almost the

same classification performance using a single discriminant feature, which they called “The

1st,” than with a bigger dimension feature matrix. In a similar way to the last, experimental

results in Seal et al. (2020) extracted a set of 10 Time-Domain Statistical-Energy features

from δ, θ, α, β and γ wavelet decomposition from a self-conducted EEG signal acquisition

dataset. The model assesses the effectiveness of four pairs of electrodes and the sub-frequency

bands. The study concluded that FP1-F7 pair of electrodes are accurate in combination

with the γ-band. In Table 2.5, a summary of the channel selection and sub-frequency band

performance is detailed. Using the ternary SEED-series dataset, Wagh and Vasanth (2022)

tested the positive, negative, and neutral emotions stimuli performance using three different

ML models. The method is tested considering the frontal lobe only, assessing five pairs of

EEG channels and decomposing the input signal using the Daubechies (db) wavelet-based

method. The quantitative evaluation performance suggested that using only two EC (FP1

and FP2) the classification performance overate the 70%. Additionally, they tested the

frequency decomposition performance, yielding the γ-band as the most effective one in the

use of the ten frontal lobe channels.

One of the most effective works in the ternary evaluation models is developed by Liu et al.

(2022b) where the cultural influence in ER is tested in Chinese, German, and French subjects.

Here, three experimental models are performed: (1) intraculture subject dependent, (2)

intraculture subject independent, and (3) cross-culture subject independent. The performance

achieved for the former model indicates that Differential Entropy (DE) feature is highly
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superior to other spectral features for the three cultures datasets and the SVM model the top

one. Then, a new evaluation is proposed by outperforming the δ, θ, α, β, and γ classification

using the DE and SVM as base for the classification. Results showed that β, and γ bands

are the most effective ones. However, the combination of the five sub-frequencies achieved

a superior performance. Additionally, they proposed a Deep Neural Network (DNN) to

contend with ML models using DE as a feature base, obtaining a superior performance in

evaluation metrics compared to ML models. These results highlight the importance of the

intraculture subject dependent model, where SVM and DNN outperforms the best using

the DE as single input feature to the models and concluding the former task of this study.

The middle one, the intraculture subject independent model, the Leave-One-Subject-Out

Cross-Validation (LOSO-CV) is performed for the three cultures, and the model is evaluated

with the single DE feature. The results showed the same bias as the former model. Here,

the test is performed using the EEG and EOG signals, showing that EOG information is

more effective in the French and German cultures than in the Chinese one. Finally, the

cross-culture subject independent model evaluates the influence and performance of EEG in

ER by mixing the three cultures. Here, Chinese subjects are used to train the model and

German and French subjects are used to test the model, achieving a very low performance in

EEG but a superior performance using the EOG. Then, from German to Chinese and French

subjects, the performance is very variable; the EEG is superior in German-Chinese and lower

in EOG, for the German-French performs as inverse. The bias in the French-Chinese and

French-German is the same than in the previous one. The study remarks that German and

French share culture-related emotional patterns, in contrast with the Chinese subjects. Even

so, they suggested that the lack in the number of test subjects could affect this inference. This

study is essential to understand and highlight the cultural influence in the neural patterns for

ER in mixing cultures and can take an indirect impact in Ekman’s theory of basic emotions.

The use of binary or ternary models in ER is prevalent, particularly for applications like

detecting low-valence low-arousal states, or monitoring the frequency of negative emotions in

security applications. Additionally, positive emotions and high-valence/high-arousal (HVHA)

states are frequently studied to evaluate consumer responses within advertising and marketing

domains. Nonetheless, when model architectures rely on stimulus-dependent structures —

employing separate models for valence and arousal — achieving real-time emotion recognition

becomes substantially more difficult due to the change and frequency of primitive modeling

for recognition. Consequently, employing a multiclass approach is crucial to effectively

detect rapid and involuntary emotional changes in the brain. Therefore, the multiclass
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primitive and primary are some of the most effective AI models to predict the EEG input

in emotion recognition. In this type of models, the frequency of chance and the lack of

emotional identification is avoided. As a result, the framework introduced by Wu et al. (2022)

evaluated binary, ternary, and multiclass classification performances using the DEAP, SEED,

and SEED-V datasets, respectively. Their findings indicated a general trend: classification

accuracy decreased as the number of classes increased. In this work, Wu et al. explored the

functional connectivity between brain regions highlighting the strength feature as the best

EEG connectivity feature in ER. Here, authors reduced the original set of 62 EEG channels

to 18 (the list of channels is not provided) suggesting that the latter subset of channels

is sufficient to provide the most relevant brain connection information in the SEED series

dataset. The semi-supervised learning in the context of EEG-based emotion recognition has

been rarely studied; developing an algorithm that clusters the complexity of EEG signals is

a challenging task. Using three SEED-series and AMIGOS datasets, Zhang et al. (2022)

tested a semi-supervised clustering algorithm to classify binary, ternary, and multiclass

classification models. By evaluating the clustering performance for a set of Sτ = {Cτ | ∀τ =
{1, 3, 5, 7, 10, 25}} pre-loaded labels per cluster, showed up a significant performance by

increasing the labels in the primary emotions dataset; meanwhile, the primitive dataset

showed a less sensitive performance by increasing the number of labels per cluster. Recent

trends in AI have developed novel and highly accurate deep learning classification techniques

for ER. One of the most recent contributions is presented by Dong et al. (2024), who

introduced and evaluated an emotion perceptron—a spatial feature-processing unit comprising

normalization, softmax, and feed-forward layers—and a temporal causal network composed

of four interconnected blocks with multi-feedback mechanisms and activation functions (see

original publication for details). Here, authors found that the extracted spatial adapter

features are validated with the literature about the changes in happy and fear emotions

and activation in a distribution map (similar to topography) processed by the spatial unit

network. The classification results for the SEED-V dataset showed a precise recognition

model with a 94.28 ± 07.51 performance. In the context of brain connections, Valderrama

and Sheoran (2025) found that attention weights in some emotions have a strong influence

in different brain regions. In general, (1) sadness showed a higher weight in the middle

parietal and occipital regions, while (2) neutral is dominant in the right frontal, temporal,

and parietal areas. Authors analyzed the SEED-IV and SEED-V datasets, where fear,

disgust, and happiness have greater weights in frontal and temporal regions compared to

sad and neutral. However, in SEED-IV, fear is stronger in the left temporal-parietal, and
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happiness in the right frontal-temporal. Meanwhile, in SEED-V, fear dominates the right

frontal-temporal, and happiness the left temporal-parietal.

2.4.2 Frequency decomposition

Using the MAHNOB-HCI, DEAP, and SEED datasets, Li et al. (2019) suggested the feature

extraction per θ, α, β, and γ band. The classification performance suggested a competitive

ML model using DE-EEG based Network Patterns (ENP) features (see paper for details).

The top performance is achieved in the SEED db with the γ band. In DL approach, Ma

et al. (2025) includes the ANS contribution instead of using only CNS data. Here, authors

made a robust and complex feature extraction by using binary and multiclass classification

models, reaching the top accuracy by the use of θ-band in combination with peripheral

feature extraction for multiclass models. In the test of binary models, the top performance

was reached by the α+peri and β+peri (for feature extraction details go to the research). In

a semi-supervised context, Peng et al. (2023) explored that some spatial-frequency patterns

are shared across emotions, each emotion exhibits unique patterns, e.g.,: fear and happiness

both activate the occipital region, but with different band distributions. Findings remarks

that γ band is the most descriptive for the SEED-V dataset, while in a spatial context,

prefrontal, temporal, and parietal regions are the most discriminative ones.

A seven-target classification model was developed by Song et al. (2019) by creating their

own dataset with: (1) joy, (2) funny, (3) anger, (4) sadness, (5) fear, (6) disgust, and (7) anger

emotional stimuli. Here, authors conducted an experimental self-assessed protocol to select 28

different content types of audio-visual stimuli ([4× 7], four trials per emotion) in order of 30

Chinese subjects. Using this dataset, Multi-Modal Physiological Emotion Database (MPED),

authors conducted three different classification experimental models: a binary, ternary and

multiclass. The former compared the performance of positive and negative emotions (joy V

anger, joy V fear; funny V anger, funny V fear, and more). The middle assessed a ternary

classification clustering negative emotions (anger, sad, disgust, and fear) and positive ones

(joy and funny), keeping neutral alone. Finally, the latter performs a subject-dependent

multiclass classification. For these models, the feature extraction technique is based on fusing

the extracted time-frequency features in order to five Butterworth frequency bands. The

performance per model is shown in Table 2.5. An FPGA implementation for the SEED-IV

dataset was implemented on an Altera DE2 where a low-resource CNN model was developed

by Ezilarasan and Leung (2024). Here, authors reached a significant performance by using the
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whole 62 channels and extracting the δ, θ, α, β, and γ time, frequency, and time-frequency

features per band-rythm. Hardware implementation suggested a low resource consumption

and a high performance, only requiring 25% of the LUTs and 35% of the DSP units, suggesting

a powerful implementation for real-time applications.

Fusion learning combines the use of DL architectures as a feature extractor and ML as the

fitting model. In order to extract feature maps from topo- and holo-graphic EEG spectral

images, Topic and Russo (2021) created a FL subject-dependent model that outperformed

primitive emotions. Here, fusion feature maps are also tested by appending the topo- and

holo-graphic CNN features in a single input to the ML, suggesting that the fusion features

are not always a better approach, in consequence a higher noise is introduced to the fitted

model.

Table 2.5: Effective channels for emotion recognition in the state-of-the-art.

Author Dataset Effective channels N Dominant

lobe

Effectiviness

Zhuang et al.

(2017)

DEAP FP1, FP2, F7, F8, T7, T8,

P7, and P8

8 Frontal,

temporal,

and parietal

V: 69.10±06.951,d,∗

A: 71.99±07.771,d,∗

Gupta et al.

(2019)

SEED

DEAP

T7 1 Temporal 93.462,a,⋆

72.072,a,•

Zheng et al.

(2020)

Self

DEAP

FPZ, AF4, F4, FP1, FC4,

O1, PO3, FP2, FZ, and F8

10 Frontal 91.23± 06.401,b,∗

Seal et al.

(2020)

Self FP1-F7 2 Frontal 94.722,c,•

Javidan et al.

(2021)

DEAP FC2, F7, F8, T7, T8, and

P7

6 Frontal

Yildirim et al.

(2021)

DEAP FP2, AF4, F3, F4, FC5, T7,

C3, CP2, PO3, O1, and O2

11 Frontal

Wagh and

Vasanth (2022)

SEED series FP1 and FP2 2 Frontal 71.521

Wu et al.

(2022)

SEED-V NP 18 NP 84.51± 05.111,a,•

Channel selection

Continued on next page
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Table 2.5: Effective channels for emotion recognition in the state-of-the-art. (Continued)

V. and Bhat.

(2022)

AMIGOS T7 and T8

T7, T8, F7, F8, FC5, FC6,

AF3, and AF4

2

8

Temporal

Frontal and

temporal

V: 95.49

A: 95.41

D: 95.49

V: 94.56

A: 94.81

D: 95.32

Bagherzadeh

et al. (2024)

SEED series T7 and T8 2 Temporal

Frequency decomposition

Author Dataset Decomposition N Dominant frq Effectiviness

Li et al. (2019) MHCI

DEAP

SEED

Butterworth 4 γ 88.00± 07.00

Song et al.

(2019)

MPED Butterworth 5 δ+θ+α+β+γ 38.74± 07.752,c,•

Seal et al.

(2020)

Self Daubechies 8 DWT (db8) 1 γ 94.722,c,•

Wagh and

Vasanth (2022)

SEED series Daubechies 6 DWT (db6) 10 γ ≈ 70.001

Wu et al.

(2022)

SEED-V Butterworth 5 β + γ ≈ 60.00± 10.001,a,•

Peng et al.

(2023)

SEED-V Butterworth 5 δ+θ+α+β+γ 81.90± 07.071,c,•

Ma et al. (2025) DEAP

SEED-IV

SEED-V

Butterworth 5 α

β

θ

V: 73.67± 07.071,b,∗

A: 77.03± 03.771,b,∗

41.65± 01.021,b,⋆

71.86± 10.901,b,•

Channel selection

1 Subject dependent model, 2 Subject independent model.

a Cross-Validation model, b Leave-One-Subject-Out model, c Hold-Out Training model, d Leave-One-Trail-Out model.

∗ Binary classification model, ⋆ Ternary classification model, • Multiclass classification model

The following tables introduce a brief overview of the most effective ML and DL models,

some of which are listed in this EC section. However, the analysis is focused on the AI

context, advantages, and limitations.
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Table 2.6: Machine learning emotion recognition approaches.

Binary classification

Zhuang

et al.

(2017)

DEAP EMD Spectral SVM V: 60.10± 06.95,

A: 71.99± 07.77

p = 1

Gupta

et al.

(2019)

DEAP

SEED

FAWT Information

Potential

RF V: 79.99,

A: 79.95,

PNN: 90.58

Farashi

and

Khosrowabadi

(2020)

DEAP MST GCF SVM V: 81.25,

A: 88.28

Doma and

Pirouz

(2020)

DEAP PCA SVM V: 63.43,

A: 73.75,

D: 67.18

V: 77.62,

A: 84.73,

D: 77.66

Zheng

et al.

(2020)

Self WD Statistical,

entropy,

and energy

SVM HS: 91.3081,a,∗

Javidan

et al.

(2021)

DEAP EC Magnitude

Squared

Coherence

Estimate

SVR 67.45

Yildirim

et al.

(2021)

DEAP PSO HHT+PLV RF 60.15± 08.94

V. and

Bhat.

(2022)

AMIGOS TF ResNet NB V: 94.562,a,∗,

A: 94.812,a,∗,

D: 95.322,a,∗

V: 93.712,a,∗,

A: 93.992,a,∗,

D: 93.912,a,∗

Işık et al.

(2023)

DEAP DWT Statistical

&

frequency

RF 100 100

Ternary classification

Author Dataset Method FE

Technique

Classifier Acc (%) F1 (%)

Continued on next page
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Table 2.6: Machine learning emotion recognition approaches. (Continued)

Liu et al.

(2022b)

SEED-CHN

SEED-GER

SEED-FRA

Butterworth Differential

entropy

SVM 83.44±11.101,c,∗

65.47±16.931,c,∗

64.84±13.641,c,∗

p < 0.001 effects

of cultures and

classifiers

Multiclass classification

Ezilarasan

and Leung

(2024)

SEED-IV Time and

Frequency

WD CNN 87%

Gupta

et al.

(2019)

DEAP FAWT Information

Potential

RF 71.43

Seal et al.

(2020)

Self WD Morpho

and

Statistical

NN 94.722,c,• 94.71

Author Dataset Method FE

Technique

Classifier Acc (%) F1 (%)

1 Subject dependent model, 2 Subject independent model.

a Cross-Validation model, b Leave-One-Subject-Out model, c Hold-Out Training model, d Leave-One-Trail-Out model.

∗ Binary classification model, ⋆ Ternary classification model, • Multi-class classification model.

Functional Analytic Wavelet Transform (FAWT), Random Forest (RF),

Table 2.7: Deep learning emotion recognition approaches.

Binary classification

Song et al.

(2019)

MPED STFT Time and

frequency

LSTM 72.93±13.191,c,∗

Topic and

Russo

(2021)

DEAP

SEED

DREAMER

AMIGOS

db5-DWT Spectral CNN +

SVM

V: 74.91± 01.93,

A: 75.44± 02.71

73.11± 03.02

V: 81.25± 01.73,

A: 85.10± 02.62

V: 79.54± 01.26

A: 85.07± 02.04

Author Dataset Method FE

Technique

Classifier Acc (%) F1 (%)

Continued on next page
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Table 2.7: Deep learning emotion recognition approaches. (Continued)

Wu et al.

(2022)

DEAP Brain

functional

connectivity

network

EEG+EOG

Connectivity

network

features

DCCA V:86.61 ±
03.761,a,∗

A:85.34 ±
02.901,a,∗

Zhang

et al.

(2024)

DEAP

AMIGOS

TorchEEGEMO CNN 88.942,a,∗

90.242,a,∗

Ma et al.

(2025)

DEAP

HCI

Multimodal Statistical

& Spectral

C2PCI-Net V: 75.00 ±
06.141,b,∗,

A: 77.33 ±
03.061,b,∗

V: 78.78 ±
17.401,b,∗,

A: 75.38 ±
05.441,b,∗

V: 71.24 ±
06.951,b,∗,

A: 73.59 ±
03.041,b,∗

V: 72.39 ±
09.031,b,∗,

A: 70.17 ±
07.441,b,∗

Ternary classification

Song et al.

(2019)

MPED STFT Time and

frequency

LSTM 71.571,c,⋆ 67.741,c,⋆

Liu et al.

(2022b)

SEED-CHN

SEED-GER

SEED-FRA

Butterworth Differential

entropy

DCCA-AM 92.79±08.211,c,∗

88.63±10.871,c,∗

80.71±13.091,c,∗

p < 0.001 effects

of cultures and

classifiers

Wu et al.

(2022)

SEED Brain

functional

connectivity

network

EEG+EOG

Connectivity

network

features

DCCA 95.08±06.421,c,⋆

Bagherzadeh

et al.

(2024)

SEED-GER

SEED-FRA

SSWT Spectral

images

ResNet-18 81.25

75.00

Zhang

et al.

(2024)

SEED TorchEEGEMO CNN 83.792,a,∗

Author Dataset Method FE

Technique

Classifier Acc (%) F1 (%)

Continued on next page
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Table 2.7: Deep learning emotion recognition approaches. (Continued)

Valderrama

and

Sheoran

(2025)

SEED NN

Extractor

Temporal,

spatial,

and

spectral

DANN 79.30±05.801,a,•

Multiclass classification

Song et al.

(2019)

MPED STFT Time and

frequency

LSTM 38.74±07.751,c,⋆

Wu et al.

(2022)

SEED-V Brain

functional

connectivity

network

EEG+EOG

Connectivity

network

features

DCCA 84.51±05.111,a,•

Zhang

et al.

(2024)

SEED-IV TorchEEGEMO CNN 65.922,a,∗

Bagherzadeh

et al.

(2024)

SEED-IV

SEED-V

SSWT Spectral

images

ResNet-18 76.66

78.12

Dong et al.

(2024)

SEED-V STFT DE Emotion

perceptron

94.28±07.512,c,•

Valderrama

and

Sheoran

(2025)

SEED-V NN

Extractor

Temporal,

spatial,

and

spectral

DANN 60.70±15.301,a,•

Ma et al.

(2025)

SEED-IV

SEED-V

Multimodal Statistical

& spectral

C2PCI-Net 71.94±08.801,b,•

84.83±01.051,b,•
70.82±09.921,b,•

84.79±01.031,b,•

Ghous

et al.

(2025)

SEED-V

MPED

Spectral

and

Temporal

Transformed

features

Transformed

model

90%

79%

90%

79%

Author Dataset Method FE

Technique

Classifier Acc (%) F1 (%)

1 Subject dependent model, 2 Subject independent model.

a Cross-Validation model, b Leave-One-Subject-Out model, c Hold-Out Training model, d Leave-One-Trail-Out model.

∗ Binary classification model, ⋆ Ternary classification model, • Multi-class classification model.
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The reviewed literature highlights the effectiveness of ER in the use of EEG signals in the

context of binary, ternary, and multiclass classification models. In order of the Table 2.5, the

top used channel is the T7 and T8, which are located at the temporal lobe. However, the

most used lobe is the frontal one, followed by the temporal (see Table 2.8). Moreover, the

γ band resulted as the most effective rhymth in the context of ER in EEG signals, followed

by the β and α bands. Finally, in order of classification performance, the DL performance

usually overcomes the ML models, however ML models are more effective in the context of

real-time applications due to their low computational resources. The DL models are more

effective in the context of high-performance applications, where the computational cost is not

a limitation. Now, in the context of preprocessing techniques based on Wavelet or Fourier

transforms, the former one is the most effective, which is consistent with the literature that

suggests that the Wavelet transform is more effective in the context of EEG signals. The use

of DWT and db are the most used techniques in the context of ER.

In close connection, the reviewed neuroscience literature highlights the early and late

amygdala’s activation process (see Guex et al. (2020)). The formed is related to a “bottom-up”

process, where the amygdala is activated by the stimuli and then the ANS is activated.

This “bottom-up” is an automatic response in the trigger of the fight-or-flight scenario

(see Damasio (1999)) and is presented ≈ 130ms after the stimuli. The “top-down” response

is activated in 220ms or beyond after the stimuli input. In this process, the amygdala is

modulated by the CNS and ANS is order to provide a deeper context to the amygdala,

generating an accurate emotional response. According to this theory, Guex et al. (2020)

observed that the response to emotional stimuli appears between 100 and 200ms, while Šimić

et al. (2021) proposed the low-road, where activation occurs between 40 and 140ms.

Table 2.8: Channel frequency analysis (information taken from Table 2.5).

T7 7 Temporal T8 5 Temporal F7 4 Frontal

F8 4 Frontal FP1 4 Frontal FP2 4 Frontal

AF4 3 Frontal PO3 2 Parietal O1 2 Occipital

FC5 2 Frontal AF3 2 Frontal F4 2 Frontal

P7 2 Parietal FC4 1 Frontal FPZ 1 Frontal

FZ 1 Frontal C3 1 Central CP2 1 Central-Parietal

Channel Count Dominant Lobe Channel Count Dominant Lobe Channel Count Dominant Lobe

Continued on next page
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Table 2.8: Channel frequency analysis (information taken from Table 2.5). (Continued)

F3 1 Frontal O2 1 Occipital FC6 1 Frontal

Channel Count Dominant Lobe Channel Count Dominant Lobe Channel Count Dominant Lobe

2.4.3 Quaternion Signal Analysis

Based on the reviewed frameworks, this work introduces an adapted version of the quaternion

signal processing model that have been used as preprocessing technique. The quaternion

algebra was introduced in 1834 by W. R. Hamilton, and it is proposed as an extension of the

traditional algebra of complex numbers, given as

H = {q|q = a+ bi+ cj + dk, ∀ {a, b, c, d} ∈ R} , (2.1)

where [1, i, j, k] is the basis for this algebra. The elementary Hamilton multiplication rules

for this quadruple are defined as

i2 = j2 = k2 = −1,

ij = −ji = k, jk = −kj = i, ki = −ik = j.
(2.2)

In Lian (2018) framework, a deep quaternion-based signal analysis, where a hyper-complex

Fourier transform treats multi-channel signals as a quaternion compound was presented. Such

a theory establishes the formal mathematics to prove that the two-sided Quaternion Fourier

Transform (QFT) is a robust and reliable signal processing method to extract discriminant

features. Formally speaking, QFT is defined by

F (u, v) =

∫

R2

e−2π(ixu+jyv)f (x, y) dxdy, (2.3)

where f ∈ L1 (R
2,H). Accordingly, Bhat et al. (2022) proposed a novel Fourier framework

based on windowed signal processing to test the uncertainty principle in the method referred

to as the Quaternion Windowed Quadratic-Phase Fourier Transform (QWQPFT), conducting

near applications on Wigner distributions.

QSA applied to engineering has shown reliable performance in classification tasks. For

instance, Contreras-Hernandez et al. (2019) proved the QSA performance by computing the

q(t) and q(t + ∆t) quaternion sequence as well as performing a rotation to classify three

different induction motor failure states. Similarly, Batres-Mendoza et al. (2016) achieved high



Chapter 2. State-of-the-art 44

binary classification rates using an efficient feature extractor based on the quaternion rotation

for the left and right motor imagery experiments. The proposed framework, a novel approach

in the field, reached an accurate ML model with 30 samples per quaternion window, offering

a fresh perspective on EEG signal analysis and emotion classification. Likewise, Javidi

et al. (2011) suggested including multiple EEG channels into a quaternion form to develop

a quaternion Fast Independent Component Analysis (q-FastICA), obtaining a substantial

reduction in EEG/EOG signal artifacts.

In this context, the presented work proposes an adapted quaternion signal processing by

exploring the pre-processing performance using a bicomplex form by applying quaternion

and bicomplex product criteria, following the mathematics established in Ell et al. (2014).

Hence, the bQSA proposed is adapted to EEG signals for emotion recognition.
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Material and methods

In the preceding sections, an overview of emotion recognition is provided to set a context for

the reader, addressing research from neuroscience, biology, data analysis, signal processing

(both pre- and post-signal), and AI classification models. With this introduction, this

document outlines the principal approach of this study. After extensive experimentation

and overcoming several challenges, a highly effective signal pre-processing technique that

extracts essential information from EEG signals was developed. Referred to as bQSA, this

method provides a pattern that only with statistical features can classify up to six primary

emotions (and a neutral one) with 100% of accuracy rate and up to thirteen self-assessed

emotions with over 90%.

Well, maybe I should start the previous sentence with a spoiler alert, sorry about that.

Before discussing the bQSA method in detail, it is imperative to describe the materials and

methods employed in this study. The greatest tasks in this study are the datasets, the

channel selection method, and bQSA signal processing, as the general diagram of this work,

displayed in Fig. 3.1. The following sections provide a detailed description of each of these

components.

3.1 Database description

In the first six months of life, newborns develop six basic emotions based on a stimuli-response

that influence their commitment to specific goals. This study delves into the intricacies of

neuroscience and emotion recognition technology. To provide a reliable and robust evaluation

of the bQSA method, the V- and VII-SEED series, AMIGOS, DEAP, and FEEL datasets are

45
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Figure 3.1: General method diagram of the bQSA signal processing.

used. The data is pre-processed with complex techniques, such as Wavelet noise reduction

and bQSA, to capture the relevant information of the data. Consequently, the statistical

feature extraction is applied to the bQSA signals to achieve an ML model for classifying five,

four, and thirteen primary, primitive, and self-assessed emotion stimuli, respectively. The

data structure per dataset is summarized as follows:

1. SEED-VII is the newest and most recent emotion recognition dataset developed by Jiang

et al. (2025), the dataset accomplished the physiological impulse response of 20 subjects,

where each one accomplished 4-folders of 4 tests, evoking five emotion stimuli per

test, randomly choosing five out of seven emotional targets per each stimuli. EEG

information was collected using a 62-electrode scalp. Same as in the SEED-V dataset,

the protocol followed the same four emotion stimuli and neutral material to accomplish

in the new subjects the same stimuli, completing the six primary emotions, inspired by

Ekman’s theory, with the anger and surprise emotions. Data storage sums a total of

Ξsvii ∈ R99200×n.

(a) Twenty test subjects.

(b) Four folders per subject.

(c) Four times test per folder



Chapter 3. Material and methods 47

(d) Primary emotions: happy, surprise, sad, disgust, neutral, anger, and fear.

(e) Sixty-two electrode scalp.

(f) A total of 99, 200 EEG signals.

(g) Sampling frequency, fs = 200 Hz.

2. The SEED-V dataset is a data collection in which an audiovisual movie clip was used

to stimulate the test subjects. The signal length varies per sample, and the brain

bioelectrical potential is recorded with a 62-channel electrode scalp. This dataset

stores several emotion stimuli, making it an ideal resource for this research. Sixteen

subjects participated in this experiment following three different trials. Besides, each

trial contains 15 different stimuli movie clips, three per emotion. In short, a total of

Ξsv ∈ R44640×n samples are recorded, where n is the signal length. Each emotion label

τ stores the same number of samples, i.e., Ξτs ∈ R8928×n is the EEG emotion dimension.

(a) Sixteen test subjects.

(b) Tree tests per subject.

(c) Tree-times trial per emotion.

(d) Primary emotions: happy, sad, disgust, neutral, and fear.

(e) Sixty-two scalp electrodes.

(f) A total of 44640 EEG signals.

(g) Sampling frequency, fs = 1.0 kHz.

3. AMIGOS dataset was developed as a minor data collection tool using popular movies

as emotional stimuli. As in SEED-V, EEG’s length differs per sample according to the

duration of stimuli. In practice, AMIGOS used an EMOTIV-Epoch scalp electrodes

with 14 EEG channels and 40 test subjects. The bioelectrical potential for the four

primitive emotions is recorded in four different trials. In summary, a total of Ξa ∈
R8960×n samples is recorded for Ξτa ∈ R2240×n per primitive emotion.

(a) Forty test subjects.

(b) Four times per trial.

(c) Primitive emotions: HVHA, HVLA, LVHA, and LVLA.

(d) Fourteen scalp electrodes.

(e) A total of 8960 EEG signals.

(f) Frequency sampling, fs = 128 Hz.

4. DEAP is a collection of EEG signals using popular music videos as an audiovisual

emotion stimuli. Scalp electrodes with 32-EEG channels records the brain’s bioelectrical

potential for 32 subjects and 40 music videos. Self-assessed labeling was introduced
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following the SAM Mannequins to visualize ratings for Valence and Arousal (V&A)

primitive emotions. DEAP contains a sum of Ξd ∈ R40960×n of EEG emotion stimuli

samples. Classification targets and frequency sampling are the same as in AMIGOS.

(a) Thirty-two test subjects.

(b) Forty stimuli videos per subject.

(c) Thirty-two scalp electrodes.

(d) A total of 40960 EEG signals.

(e) Frequency sampling, fs = 128 Hz.

5. FEEL accomplished the EEG data recorded while subjects played video games. Geodesic

Sensor Net, 64-EEG channels, read the neurological activity for an extended set of

subjects’ self-assessed labeled classes. Here, FEEL developers proposed timestamps

with 5 seconds of duration after each timestamp to achieve the emotional stimuli. In

sum, a Ξf ∈ R1356×n is stored in the FEEL dataset.

(a) Sixteen test subjects.

(b) Approx. thirteen stimuli videos per subject.

(c) Sixty-four scalp electrodes.

(d) Frequency sampling, fs = 1000 Hz.

3.2 Channel selection method

The first part of this methodology is the noise- and lack-reduction processing. Here, the

channel selection method by using the WD, Local Binary Pattern (LBP), a statistical,

time-frequency, energy, and morphology feature extraction, and the mRMR is introduced.

The following subsections describe these methods.

3.2.1 Wavelet decomposition noise reduction

One of the first pre-processing tasks for every scientist who works with non-periodical signals

is noise and artifact reduction. In this regard, Dadebayev et al. (2022) suggested that the most

common techniques are based on the FT and WT. Moreover, Torres et al. (2020) conducted

a comprehensive study from 2015 to 2020, evaluating several spectral analysis techniques for

feature extraction, yielding FT and WT as the top ones. In particular, Xie and Oniga (2020)

mentioned the contribution of wavelet transform and decomposition of EEGs overates the

Fourier-based noise reduction techniques. Those examples remark the wavelet advantage in
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non-periodical signals. Assuming an x(t) ∈ R as input signal, which in this case could be any

input signal from any of the datasets described above, the wavelet noise-reduction method

can be applied by

W (s, τ) =
1√
s

∞
∫

−∞

ψ

(

t− τ

s

)

x (t) dt. (3.1)

where ψ
(

t−τ
s

)

represents the complex conjugate kernel transform; s and τ represents the

scales and time shift factor. Based on the proposals of this document, the wavelet noise

reduction is performed with the wdenoise MATLAB-wavelet toolbox function. According to

the documentation, the algorithm outperforms the

s(n) = f(n) + σe(n), (3.2)

where n is the dimention space of the f(n) input signal; e(n) is the Gaussian white noise

N(0, 1) and σ is the noise level. The denoising procedure consists of three steps:

• Decomposition: Select a mother wavelet and a decomposition level σ. Perform a wavelet

decomposition of the s (n) signal at σ level.

• Detail Coefficients Thresholding: For each level from [1, σ] choose a denoising method

for detail coefficients (see documentation for possible args).

• Reconstruction: Reconstruct the signal using the original approximation coefficients

from level σ and the modified detail coefficients from levels 1 to σ.

Then, by using the wavelet kernel, the wavelet filters are split into several scales to

outperform the σ-th decomposition level, computed by the σ = ⌊log2 (n)⌋ criteria, based on

the fs scalar — [4, 2) Hz, [8, 4) Hz, and suchlike until [1000, 500) Hz for fs = 1000 Hz —

as shown in Fig. 3.2a. Additionally, a representation of the EEG wavelet decomposition is

shown in Fig. 3.2b — a wdenoise(x, σ, NoiseEstimation = LevelDependent) criteria is

employed for each decomposition.

3.2.2 The local binary pattern

Following theWD, the One Dimensional Local Binary Pattern (1D-LBP) algorithm is adapted

to input data. According to Khan et al. (2020), the combination of EEG-WD-1D-LBP

preprocessing techniques produced an accurate performance in ML models. Similarly, in Kılıç

et al. (2021), a multimodal input data is processed by computing histograms and features

https://www.mathworks.com/help/wavelet/ref/wdenoise.html
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Figure 3.2: Wavelet decomposition.

from the resulting 1D-LBP. In this order of ideas, the 1D-LBP can be expressed as

LBP (t) =
τ

∑

p=1

s (δ) ∗ 2p−1, (3.3)

s(δ) =







1, if ξ (t+ τ) ≥ ξ
(⌈

t+τ
2

⌉)

0, otherwise
, (3.4)

where in this context τ is the window’s lenght for analysis the 1D-LBP, taking the ξ
(⌈

t+τ
2

⌉)

central value of the ξ (t+ τ) current window as threshold. The 1D-LBP maximum and

minimum values will be dependent on the τ length. For the purposes of this study, the

classical 8-bit configuration; therefore, min = 0 and max = 255 is computed. This process

is repeated for each window in the input tensor. An example of the 1D-LBP processing is

shown in Fig. 3.3.
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Figure 3.3: EEG 1D-LBP processing.
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3.2.3 The 1D-LBP feature extraction

Following the 1D-LBP processing, a statistical, time-frequency, energy, and morphologic

feature extraction is computed for each xi ≡ LBP (t) produced per input tensor as defined

in Table 3.1.

Table 3.1: 1D-LBP Feature extraction.

µ 1
n

n
∑

i=1
xi ABS

n
∑

i=1
|xi| NRE − 1

2
log2

(

n
∑

i=1

(

xi

n·x̄

)3
)

AAC 1
n−1

n−1
∑

i=1
|xi+1 − xi|

σ2 1
n−1

n
∑

i=1
(xi − x̄)2 MOB

σ(∆x)
σ(x)

FLX
n−1
∑

i=1
(xi+1 − xi) MAV 1

n−1

n−1
∑

i=1
|xi+1 − xi|

ς 1
n

n
∑

i=1

(

xi−x̄

σ

)3
EC

(

n
∑

i=1

√

|xi|

)2

MAD 1
n

n
∑

i=1
|xi − x̄| HMO 1

n−1

n−1
∑

i=1

1
1+|xi+1−xi|

κ 1
n

n
∑

i=1

(

xi−x̄

σ

)4
RMS

√

1
n

n
∑

i=1
x2
i

CLR
max(x)−min(x)

EC
GME exp

{

1
n

n
∑

i=1
log (|xi|+ ε)

}

SPE 0.85
n
∑

i=1
xi SF RMS/ 1

n

n
∑

i=1
|xi| CF

max(x)−min(x)
RMS

GHO

(

1 +
n−1
∑

i=1
|xi+1 − xi|

)−1

Name Function Name Function Name Function Name Function

µ (mean), σ2 (variance), ς (skewness), κ (kurtosis), MAD (mean absolute deviation), RMS (root mean square), MAV (mean

absolute value), HMO (Homogeneity), SPE (spectral power energy), NRE (nonlinear energy operator), EC (energy concentration),

FLX (signal flux), and GHO (Hjorth complexity). The n is the number of samples in the input tensor xi.

Then, z ≡ [n× f ] ∈ R is the produced feature matrix, where in this context n and

f are the number of samples and features extracted, respectively. Then z is resized to

zς ≡ [ρ× η] ∈ R where ρ is the number of features times the number of samples per dataset

and η the number of channels or input sources per dataset, e.g. for SEED-V dataset the

initial {z ≡ [44640× 13]} ⇒ {zς ≡ [4320× 62]}.

3.2.4 The minimum redundancy maximum relevance algorithm

(mRMR)

After data management and performing pre-processing to get the z feature matrix, the

mRMR algorithm (see Ding and Peng (2005)) is adapted to obtain the most relevant input

sources based on the extracted features, e.g., the electrode signals in EEG input tensor per

dataset collection. The mRMR introduces the

I (a, b) =
∑

{i,j}∈z

p(ai, bj) log
p (ai, bj)

p (ai) p (bj)
(3.5)
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criteria, where in this context, p (ai, bj) represents the joint probability distribution, while

p (ai) and p (bj) denote the marginal probabilities for each feature in the matrix z. In

consequence, the mRMR criterion is computed by

max
i∈Ωz

[

I (i,h)− 1

|z|
∑

i∈z

I (i, j)

]

, (3.6)

where h = [h1, h2, . . . , hk]
⊺ is the target class and |z| is the cardinality of the input feature

matrix z. The ηζ ∈ Rη×1 resulting relevance vector estimates a relevance scalar coefficient

per input source (e.g. EEG channels). Once the relevance vector is obtained, the top-four

references are used to compute the quaternion processing as described below. An example of

the produced mRMR scores is plotted in Fig. 3.4 bar chart.
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Figure 3.4: mRMR scores according to each channel in the SEED-V dataset.

3.3 The bQSA method

The channel selection is a very robust method to find the top-four references to construct

a quaternion. Before of the bQSA introduction, once the top-four effective channels are

selected, a translation offset is applied to the denoised signal (ξψ). The translation offset is

computed as

ξς(t) = ξψ(t)−
min (ξψ(t))

max (ξψ(t))−min (ξψ(t))
, (3.7)
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transforming the ξψ(t) → ξς(t) in order to reduce outliers and the bias generated by the

WD effect and preserving relative scales without compressing data spread as with min−max

normalization. As a very important fact, for this experimental protocol, the EEG channels

are used in order of the acquisition magnitude. Datasets as SEED and AMIGOS in the

MATLAB management-reading yields magnitude values in the order of ξ(t) × 100; however

the documentation details that values are in the order of ×10−6. For this experimentation,

each channel magnitude is returned to µV values by applying a ξ(t) × 10−6 scalar. This

process is made in order to accomplish all computations as close as the raw files as possible.

The following step is to compute the quaternion representation, denoted by

q = a+ bi+ cj + dk, q ∈ H, (3.8)

where q encompasses scalar and vectorial components, expressed as {q = S(q)+V (q) |S(q) ∈
R,V (q) ∈ H}. Therefore, the (3.8) form can change to a new expression consistent with the

effective channels proposal and the achieved top-four references as

q = ξς(η1, t) + ξς(η2, t)i+ ξς(η3, t)j + ξς(η4, t)k, {∀ξς(ηk, t) ∈ R} , (3.9)

where ξς(ηk, t)∈R. Then, (3.9) is addapted to bicomplex quaternion form

q= (q1, q2)≡







q1 = a+ ci = ξς(η1, t) + ξς(η3, t)i,

q2 = b+ di = ξς(η2, t) + ξς(η4, t)i.
(3.10)

Following this processing, a second quaternion is declared by applying a time shifting

to the first one. The time-shift follows a 250ms criteria as x(t − τ) where τ = fs
4
. This

criteria is justified based on the low- and high-road pathway response (see Chapter 2). For

instance, Guex et al. (2020) found that the emotional stimuli response is observed between

100 and 200 ms, indicating an early amygdala activation. Alternatively, Šimić et al. (2021)

established a low-road pathway with activation occurring between 40-140 ms, which bypasses

the level of consciousness and directly reaches the amygdala response. As consequence, the

q quaternion is rewritten as

q = ξς(η1, t−∆τ)+ξς(η2, t−∆τ)i+ξς(η3, t−∆τ)j+ξς(η4, t−∆τ)k, {∀ξς(ηk, t−∆τ) ∈ R} ,
(3.11)
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rewritting Equation (3.10) as

q= (q1, q2)≡







q1 = a+ ci = ξς(η1, t− τ) + ξς(η3, t− τ)i,

q2 = b+ di = ξς(η2, t− τ) + ξς(η4, t− τ)i.
(3.12)

and yielding p quaternion as

p = ξς(η1, t) + ξς(η2, t)i+ ξς(η3, t)j + ξς(η4, t)k, {∀ξς(η, t) ∈ R} , (3.13)

equally represented in the bicomplex form, yielding

p = (p1, p2) ≡







p1 = a+ ci = ξς(η1, t) + ξς(η3, t)i,

p2 = b+ di = ξς(η2, t) + ξς(η4, t)i.
(3.14)

The Cayley-Dixon form presented in Ell et al. (2014) introduces a dual approach by

considering both q and p quaternions to achieve a bicomplex q form and proposing the

quaternion product and the bicomplex product for signal processing, as:

q ≡ (q1, q2) ≡







qp = (q1p1 − q∗2p2, q2p1 + q∗1p2) ,

q ⊙ p = (q1p1 − q2p2, q2p1 + q1p2) ,
(3.15)

where {p, q} ∈ H, {q1, q2, p1, p2} ∈ C, and ∗ denotes the complex conjugated. Here, an

example plot of the quaternion and bicomplex product time-behaviour is shown in Figs. 3.5a

and 3.5b.

3.4 Feature extraction

The computational feature extraction method is based only on statistics. Once that bQSA

is computed, the mean, standard deviation, and variance are computed per q quaternion

product selection. The Re (q) and Im (q) are used to compute the basic statistical features.

In this study, the unbiased variance σ2 for N elements is computed by

σ2(q) =
N

N − 1
E
(

(q− E (q))2
)

, (3.16)
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where E (q) is the expected value of q, denoted by µ. A single feature matrix, as the one

obtained for the SEED-V dataset, is computed by the following expression

z
q =

[

z
q

1 , z
q

2 , . . . , z
q

N

]

⊺

(3.17)

where z
q

i is the feature matrix for the i-th sample, and N is the number of samples in the

dataset. The feature matrix z
q

i is computed by

z
q

i =
[

E (Re(qi,j)) E (Im(qi,j)) σ (Re(qi,j)) σ (Im(qi,j)) σ2 (Re(qi,j)) σ2 (Im(qi,j))
]

(3.18)

where i indexes the dataset samples, and j refers to the number of observations per second

in the bicomplex vector qi,j. Finally, the feature matrices zq

s ∈ R456736×12, zq

a ∈ R222248×12,

z
q

d ∈ R302080×12, and z
q

f ∈ R5424×12 are used as the input data for the proposed ML

classifier. The feature extraction method employed is straightforward and statistically based,

significantly enhancing computational efficiency and reducing processing time. In this study,

the classification results achieved are sufficiently robust, avoiding the need for a more complex

set of features.
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Numerical results

Over the past ten years, EEG signal analysis has increasingly supported recognition tasks and

artificial intelligence applications aimed at diagnosing neurological disorders such as epilepsy,

Parkinson’s disease, and Alzheimer’s disease. In affective computing, EEG has emerged as a

pivotal tool for elucidating brain activity related to emotional states. Then, the non-invasive

properties of EEG’s enable the effective capture in CNS and ANS activities, particularly the

emotion-related brain regions like the amygdala, hippocampus, and thalamus. Additionally,

multimodal studies examine physiological indicators such as variations in temperature, heart

rate, and skin conductance, reflecting ANS responses associated with emotional experiences.

Previous studies have indicated that brain bioelectrical potentials are good indicators of

emotional processing despite their complexity and interpretation to classify challenges. As

introduced in the previous chapters, preprocessing typically involves noise reduction, channel

selection, and feature extraction. In this document, recognizing the refined methodologies

reported in the state-of-the-art, a mathematical model based on the Cayley-Dixon theory that

uses both real and imaginary components for EEG signal processing is explored. However,

before getting there, it is essential to explore how the previous research results influence this

study. The following sections introduce a short overview of the published works.

57
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4.1 Background

4.1.1 Emotion recognition in EEG signals using the continuous

wavelet transform and CNNs

This approach addresses a methodology based on the Continuous Wavelet Transform (CWT),

an spectral distribution images, to feed a CNN (GoogLeNet) architechture to classify VA

(see Fig. 4.1a) and VAD (see Fig. 4.1b) emotion space. In here, authors suggested the

possibility to get four and eight discrete emotion classes for both VA and VAD, respectively.

Each EEG signal is transformed to a 2D image spectral distribution (as showed in the input

images example in Fig. 4.1c) by using the CWT method and the wavelet Morlet as mother

wavelet. The produced feature maps per class is shown in Figs. 4.1d and 4.1e. Here, the

performance exceed the 80%, however, the authors improve the performance by increasing

the number of images per class using a data augmentation method by adding white Gaussian

noise to the original images. The data augmentation method is a common technique used in

DL to increase the number of training samples by applying random transformations to the

original images, such as rotation, scaling, and flipping. This approach helps to improve the

generalization ability of the model and reduce overfitting.

This approach was our first step to understand how complex and difficult is to create an

overview to classify the EEG signals. From here, authors explored the idea to used another

dataset that as closely related to primary emotions instead of using a primitive one and apply

a discretization to the self-assessed labels to approximate to a primary one. As introduced

before, primitive datasets as DEAP, which this first approach was based on, presents a lack

of reliability if the idea is to classify a primary emotion model. As consequence, the authors

found the SEED-series as an option to avoid the self-assessed labels and increase the reliability

of the study.

4.1.2 A channel selection method to find the role of the amygdala

in emotion recognition avoiding conflict learning in EEG

signals

This paper was our first approach to two main tasks: (1) the channel selection process to

reduce the computational cost and the lack produced by noise and (2) the conflict learning.

The conflict learning is a re-labeling methodology for machine learning labels (see Ledesma
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(a) Sad, Angry, Relaxed, and Happy discrete
classes produced by the acva primitive emotion
space.

(b) Sad, Uncorcerned, Fear, Angry, Protected,
Satisfied, Suprised, and Happy discrete classes
produced by the VAD primitive emotion space.
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(e) The feature map produced by the GoogLeNet architechture
for the eight labels produced by the VAD emotion space.

Figure 4.1: The main performed tasks in our first published paper work to develop the VA
and VAD classification task in a multi-class model performance.
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et al. (2018) for details). As consequence of the channel selection, the authors found that

the top-two effective channels (FCZ and CP4) are the closest ones to those the literature

established as the most effective in capturing the amygdala activity (FC1 and CZ, according

to Albert et al. (2010)). In here, it is important to highlight that the channel selection method

is the same that is used in this study, as seeing in Sect. 3.2. The conflict learning method is a

re-labeling process where labels are redefined based on three metrics: (1) the Hamming, (2)

Tanimoto (see Rogers and Tanimoto (1960)), and (3) Dixon-Koehler (see Dixon and Koehler

(1999)). The conflict learning metrics follows the criteria:

D(θ2, θ2) =



































δHi,j (θ1, θ2) =
1
N

N
∑

i=1

(θ1 ⊕ θ2)

δTi,j (θ1, θ2) =







1 if θ1 = θ2 = 0

1−
∑

θ1 ∩ θ2
∑

θ1 ∪ θ2
otherwise

δDKi,j (θ1, θ2) = δHi,j (θ1, θ2)× δTi,j (θ1, θ2)

, (4.1)

where θ1 and θ2 are the current and displacement windows of the 1D-LBP pattern (the
displacement is performed only for a single sample in the input vector), as the one presented
in Equation (3.3). Once the entire input vector has been processed, a vector of δHi,j(•), δTi,j(•),
and δDKi,j (•) is generated. From this vector, the max and µ magnitudes of the δ vector are
computed, yielding:

D(θ2, θ2) =
[

max
(

δHi,j(•)
)

µ
(

δHi,j(•)
)

max
(

δTi,j(•)
)

µ
(

δTi,j(•)
)

max
(

δDK
i,j (•)

)

µ
(

δDK
i,j (•)

)

]

. (4.2)

Additionally, the conflict learning levels are achieved by ci,j = Ti,jW (δi,j) criteria, where

Ti,j = |τi − τj|, being τ the normalized targets per sample, and σ = 0.01, following the

description given in Ledesma et al. (2018). Next, the weighted function is defined by

W (δi,j) = exp

(

− δi,j

2σ2

)

, (4.3)

where δi,j could take all values from the µ and max coefficient per distance metric. Then,

the ci,j is computed as

ci,j = |τi − τj| exp
(

− δi,j

2σ2

)

, (4.4)
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and the conflict coefficient per sample is represented by

Ci =
1

N

N
∑

j=1
i ̸=j

ci,j. (4.5)

Finally, the full matrix C is obtained as

C =



















C1
max

H C1
µ

H C1
max

T C1
µ

T C1
max

DK C1
µ

DK

C2
max

H C2
µ

H C2
max

T C2
µ

T C2
max

DK C2
µ

DK

...
...

...
...

...
...

Ci
max

H Ci
µ

H Ci
max

T Ci
µ

T Ci
max

DK Ci
µ

DK



















, (4.6)

The authors first reported numerical results by taking the full set of EEG channels and

processed with the 1D-LBP and the feature extraction (see paper for math details attributes).

The classification result reached a 89.83% of accuracy rate in 10-CV and a ≈ 90.00% in

LOSO-CV cross validation. However, the channel selection showed that a single channel

(FCZ) was enough to classify these five primary emotions with 79.03 of accuracy. Then, the

top-two effective channels (FCZ and CP4) outperformed a 87.36%, the following performances

of effective channels are shown in Fig. 4.2a. Then, the mRMR algorithm is applied to get the

top of the features in the whole channels set, the results achieved the homogeneity, spectral

roll-off, and normalized Renyi entropy, which are the most effective features to classify the

five primary emotions. In conflict learning, the conflicts generated with the computed results

in C were removed, the classification performance improved for each conflict metric, however

the Ci
max

T was the top one. Classification stats can be seen in Fig. 4.2b, where the spatial

top-three features distribution are shown in Fig. 4.2c. As seen, the algorithm is able to

remove some correct features in the 3D images that are spliced with another class features

(the big gray circle). However, this method shows an aggressive removal of features as can

be seen in the bottom-left side of the image.

This framework proposes two main goals: (1) the top-two effective channels performed

with the channel selection are consistent with the information found in literature about the

reflection of the amygdala’s activity (see Table 4.1 for the complete order of scores per channel

in SEED-V dataset) and (2)stimuli conflict learning shows an outperformed classification,

however the metric trends to be agressive in some classes. Even so, the reduction produced
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by conflict learning does not suggested a great number of outliers (see paper for details).

Notably, these results are highly dependent of the feature extraction process. The research

performed in this paper introduces the influence of CNS to the emotion recognition task for

our future applications.

(a) The channel selection recognition
performance for five primary emotions.

(b) The statistical accuracy performance per
conflict learning metric by using .
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(c) The spatial top-three features distribution. The top of features is computed with the mRMR
algorithm. The comparation is shown to see the conflict learning performance.

Figure 4.2: The channel selection process and the conflict learning performance.

4.1.3 Emotion Recognition in Gaming Dataset to Reduce Artifacts

in the Self-Assessed Labeling Using Semi-Supervised Clustering

This work was developed to explore the performance of the FEEL (see Cang et al. (2024))

dataset. This multimodal dataset contains the electroencephalogram and motor joystick

pression information for 20 subjects. Initially, the dataset proposed a set of 13 labels

(emotional stimuli) for the study, however the subjects reported a full set of 45 classes in

order of their subjective interpretation of the felt stimuli. Here, the same conflict learning
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idea was applied to the data to find the index of the conflict labels and remove them. Authors

performed this idea to see the impact of the self-assessed subject’s labels. In the first trail, the

spatial distribution of features, shown in Figs. 4.3a and 4.3b, reduced the labels dimension to

22. This context is important to highlight the influence of the subject’s self-assessed lack of

reliability in identifying their own emotions or feelings. As in our previous work, the conflict

learning using the Ci
max

T metric outperformed as the best classification performance. Then, the

initial 45 labels were manually reduced to 30 due to the subjects reported a similar label with

the same suffixes. Then, authors applied conflict learning to these set of 30 labels, yielding

a reduced set of 19 labels. Then, a second task is a semi-supervised dendrogram technique

to cluster the complete set of targets. The main limitation of this work is that the original

targets are missed in the clustering of samples. Clustering results yield a seven-clustering

groups by δ1 = 2.6914 standardized Euclidean distance threshold, as seeing in Fig. 4.3c.

Here, the authors infer that this work outperforms an approximation to Ekman’s primary

emotions theory, and assess an approach that primary emotions are linked to secondary

emotions, which are generated by the previous experiences and ANS feedback.

Table 4.1: MRMR channel selection normalized scores. Here is shown only the scores for the
first 16 channels, the rest of them are lower than the O1 score.

Single channel 2-Channels 4-Channels 8-Channels 16-Channels

Channel Score Channel Score Channel Score Channel Score Channel Score

FCZ 1.000 CP4 0.8779 FC5 0.8734 C2 0.8425 CP3 0.7821
P1 0.8619 CP1 0.8084 FC2 0.7156

FC1 0.8047 CPZ 0.2324
F2 0.7914 CZ 0.1862

FP2 0.1746
TP8 0.1384
T7 0.1334
O1 0.1319

4.1.4 REGEEG: A Regression-based EEG Signal Processing in

Emotion Recognition

This study introduces A Regression-based EEG Signal Processing in Emotion Recognition

(REGEEG), a regression-based signal processing technique incorporating rotation matrices,

directional vectors, polynomial transformations, and statistical feature extraction. It is
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(a) The spatial distribution of the features in the FEEL dataset. The top-three features are shown
in the 3D image. The conflict learning removal of samples is shown in gray circles.
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(c) The clustering of labels in the FEEL dataset that outperforms eleven different clusters by
applying a dendrogram technique.

Figure 4.3: The three main contributions of this work: (1) the application of the conflict
learning to the initial full set of 45 labels, yielding a reduced set if 22, (2) the removal of
suffixes and application of the conflict learning achieving 19 labels, and (3) the clustering of
labels to find similarities in the self-assessed labels.
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evaluated using a robust EEG dataset to classify four distinct emotional stimuli: “Boring,”

“Calm,” “Happy,” and “Fear.” Specifically, REGEEG employs a set of pairs of EEG electrode

configurations based on orthogonality to map significant brain activity near the amygdala

and hippocampus—regions critical for emotional processing—during game-playing sessions

recorded in the GAMEEMO dataset. Initially, the extracted feature matrix assesses a set

of 28 machine learning classifiers, where the Subspace k-NN algorithm exhibited superior

performance, exceeding an average classification accuracy of 95%, verified through both

30-fold cross-validation and the LOSO-CV technique. The outperformed effectiveness of

REGEEG in noise reduction and improved feature discriminability highlights its potential

for EEG-based emotional analytics and manifold signal-processing applications. Although

REGEEG was initially developed for emotion recognition, suggesting that it can effectively

generalize to any signal-processing task involving at least a pair of related signals by modifying

the original input pattern and extracting polynomial and statistical features from the Singular

Value Decomposition (SVD) matrix. The methodology diagram is shown in Fig. 4.4.

Figure 4.4: REGEEG general methodology.

This work aims to explore signal processing based on an orthogonality approach. In the

context of the bQSA algorithm, imaginary numbers represent rotations of 90◦. Thus, while

the REGEEG method employs physical orthogonality —pairs of EEG channels arranged

orthogonally— this work also explores theoretical connections between physical orthogonality
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and orthogonality as represented by complex-number rotations.

4.2 bQSA method

Previous studies have demonstrated that ML methods typically achieve lower performance

compared to DL techniques. However, this study investigates a methodology based on

the hypothesis that the bQSA method, a digital signal processing approach applied to five

EEG datasets, can yield an ML-based classification model superior to existing primary and

primitive models. Accordingly, three ML classifiers — (1) Ensemble Trees, (2) k-Nearest

Neighbors (k-NN), and (3) Decision Trees — are employed to evaluate the performance of

the proposed feature matrix z
q

Φ. To validate the robustness of results avoiding overfitting,

experiments are performed following a 10-fold Cross-Validation (10-CV) and Hold-Out (80 :

20 ratio) strategies. Computations were conducted on hardware consisting of a Mac Mini

M2Pro processor (10 digital cores at 3.5GHz) with 16GB of RAM, running on MacOS 15.

Algorithm development and tuning were carried out using MATLAB’s Machine Learning

toolbox (version 2024b). Visual representations and figures were coded by using the TikZ

and PGFplots libraries in LATEX.

4.2.1 The channel selection process

As described in the previous chapter, the bQSA method requires four-channel inputs for

processing. The initial step involves selecting these channels according to the theory presented

in Sect. 3.2. Subsequently, the bQSA is independently applied to each pair of channels

resulting from EC. It is essential to note, for example, that if channels AF3, AF4, F7, and

F8 are identified by the mRMR method as the top four channels, they will be arranged as

follows: q1 = a + ci = ξς(η1, t) + ξς(η3, t)i, and q2 = b + di = ξς(η2, t) + ξς(η4, t)i, where

AF3 = a = ξς(η1, t), AF4 = b = ξς(η2, t), F7 = c = ξς(η3, t), and F8 = d = ξς(η4, t). The

statistical feature extraction is produced after each Sect. 4.2 pre-procesing task. Finally,

a robust set of ML algorithms are used to classify the produced feature matrix z
q

Φ. The

following sections will detail the numerical and graphical results.

The noise reduction in the SEED-V dataset

Each dataset contains different properties, like the number of channels, sampling frequency,

number of subjects and trials, and, of course a different EEG produced pattern because
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“cada cabeza es un mundo” (each head is a world). This last property is more related to

the hardware acquisition instead of the neural pattern; according to Ekman’s theory, the

neural pattern must be prevalent for the six basic emotions, avoiding the culture variance.

Lots of factors can affect the signal acquisition: research bias, the subject’s state of mind,

environmental noise, and the equipment used. In consequence, if optimal hardware and

environment conditions are considered, the noise added by the EEG scalp electrodes is

negligible. This is why the datasets perform a notch filter or a Butterworth filter, removing

the frequency of 50 Hz (60 Hz in the American continent) and a band pass filter between 0.5

Hz and 50 Hz.

The SEED-V dataset is a very useful dataset that accomplishes a set of four primary

emotions, with a neural class as a fifth class. The dataset consisted of a set of 16 subjects,

where each one of them performed the experiment 15 times (3 rounds per each of the 5

classes). The acquisition data was performed with a 62 scalp electrodes and a sampling

frequency of 1000 Hz. Since this point, a noise reduction algorithm is applied to each one of

the produced EEG signals. The wavelet-based noise reduction is introduced in Sect. 3.2.1,

as produced pattern, the Fig. 4.5.

The 1D-LBP pattern behaviour and feature extraction

As introduced in the previous chapter, one of the most important tasks to outperform the EC

selection is the feature extraction of the 1D-LBP produced pattern. This signal behaviour

outperforms the “periodicity” of a signal. A single example of the 1D-LBP produced is shown

in Fig. 3.3. The produced feature matrix contains a set of statistical and time-frequency

attributes. If the mRMR is applied to the LBP feature matrix, a relevance scores vector per

feature can be assessed. Then, according to the scores of relevances computed per dataset,

the Figs. 4.6a to 4.6d showed the spatial behaviour using the top-three relevance features per

dataset.

The channel selection

After achieving each feature matrix per dataset showed in Fig. 4.6, the z matrix is resized

in the zη = [n× η] where in this context n is the number of samples in the dataset and η

the number of channels per dataset, e.g. the SEED-V dataset acomplished a

{z ≡ [44640× 13]} ⇒ {zη ≡ [4320× 62]} , (4.7)
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(c) The wavelet-based noise reduction in the SEED-V dataset for Neutral class (randomly selected).
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Figure 4.5: The wavelet-based noise reduction in the SEED-V dataset. In the top the (a)
Happy and (b) Sad classes, at the middle the (c) Neutral. In the bottom, the (d) Disgust,
and (e) Fear classes. The original time behavior of the EEG is plotted as red line and blue
line the wavelet-based noise reduction.
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(a) LBP feature extraction using the (1) inverse difference moment, (2) power spectral estimate,
and (3) kurtosis features by the mRMR algorithm in SEED-V dataset.

(b) LBP feature extraction using the (1) inverse difference moment, (2) power spectral estimate,
and (3) energy concentration features by the mRMR algorithm in AMIGOS dataset.

(c) LBP feature extraction using the (1) mean absolute deviation, (2) inverse difference moment,
and (3) flux features by the mRMR algorithm in DEAP dataset.

(d) LBP feature extraction using the (1) harmonic mean oscillation, (2) mean absolute deviation,
and (3) inverse difference moment features by the mRMR algorithm in FEEL dataset.

Figure 4.6: Feature extraction to compute the most effective channels.
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matrix dimension. As achivement, this zη feature matrix feeds the mRMR algorithm to

compute the relevance score per channel. The four-top effective channels can be seeing

in Fig. 4.7 and table 4.2.

Table 4.2: Effective channels per dataset.

Dataset Effective channels Predominant lobe

a b c d

SEED-VII TP8: 1.00 CPZ: 0.65 FPZ: 0.62 CP2: 0.55 Fronto-parietal

SEED-V F4 : 1.00 CP2: 0.89 CZ : 0.89 CB2: 0.84 Fronto-parietal

AMIGOS F8 : 1.00 P7 : 0.31 AF3: 0.29 P8 : 0.26 Fronto-temporal

DEAP P7 : 1.00 C4 : 0.84 P3 : 0.84 OZ : 0.78 Tempo-parietal

FEEL 17 : 1.00 07 : 0.92 34 : 0.89 41 : 0.87 Fronto-parietal

4.2.2 bQSA

The aim of the previously outlined protocol was to select four optimal EEG channels to form

the bicomplex representation employed by the bQSA, described in Sect. 4.2. A significant

disadvantage of this channel selection approach is its dependency on the specific features

extracted in this protocol, particularly 1D-LBP and those features described in Table 3.1.

Consequently, altering these feature extraction methods significantly influences the resultant

relevance vectors for each dataset. Nevertheless, by following the methodology introduced

here, the channel selection has consistently provided accurate results, as demonstrated by

the classification performances detailed in subsequent sections. In order to assess the bQSA

approach, after the noise reduction, a translation offset is applied, the pattern behaviour is

qualitatively similar to the one achieved by the WD (see Fig. 4.5), however, the numerical

array suggested a change in the amplitude of the signal. The translation offset criteria follows

the function

ξς(t) = ξψ(t)−
min (ξψ(t))

max (ξψ(t))−min (ξψ(t))
. (4.8)

The bQSA algorithm that results by the (3.15), both quaternion and bicomplex product,

produced a bQSA pattern as those are shown in Fig. 4.8. Here, the qseed-v
happy and qamigos

hvha

presents a higher frequency pattern than those in qdeap
hvha and qfeel

satisf. However, the former

two achieved a higher accuracy rate than the latter two, as introduced in the following

section. The feature space for the E (Re (q)) ≡ [E (Re (qp)) ,E (Re (q ⊙ p))], and so on for
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Figure 4.7: Bar chart of the scores computed by the mRMR algorithm per dataset used.
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the σ2 (•) and σ (•) statistical features are computed and plotted in the Fig. 4.9. Notably,

here only the 3D feature space for the Re (q1) is shown; however following (3.18) the

feature space per samples is a vector of twelve elements. That is why the statistics to the

[Re (q1) ,Re (q2) , Im (q1) , Im (q2)] are applied to quaternion product. Then, the following

section introduces the ML training-validation performance. Training and validation tests

are performed following a 10-fold cross-validation and a (80 : 20) training ratio in hold-out

technique.

4.2.3 bQSA performance

The classification technique involves the performance of feeding a ML algorithm with a

z
q

i feature matrix, where each sample is composed of 12 statistical features, as introduced

previously. In order to carry out a robust classification method, this method proposed the use

of several ML kernels to achieve the top-three best performing models. In this order of ideas,

a 25-ML kernels for the FEEL in bicomplex product dataset are tested. The performance

is shown in Fig. 4.10 where notably the Ensamble-Tree, kNN, and Tree kernels are the

top-performance ones. Then, these ML kernels are used to test the feature classification

task.

The cross-validation results

As the main objective of this research is to provide a context of the performance of bQSA

algorithm, the time and spatial behaviour of the Re (•) and Im (•) on the figures above are

used to feed a 10-fold cross-validation technique, where the model is trained, validated, and

tested by using the ML toolbox of MATLAB.

The global classification results per dataset and quaternion product type is showed in

the Fig. 4.11 where performance was sorted as ascending. Classification results outperforms

DEAP as the low-performance and the SEED-V as the higher one. Analyzing the performance

in the context of the dataset, DEAP was achieved as the weaker in emotion recognition over

the three kernels, reaching only more than 50% of correct predictions in the Ensamble-Tree

kernel. Moreover, this DEAP performance is very similar in the quaternion and bicomplex

product.

As can be noticed in Fig. 4.11 the DEAP is the lower performance dataset. The Figs. 4.12a

and 4.12b reports the performance per class in this model, yielding the HVHA-class as the

best predicted one (almost 50%); however, this performance is very poor to any future
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Figure 4.8: Computed bQSA pattern achieved from the q = bQSA (ξς(η, t)).
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(a) The z
seed-v

= fextract (qp) statistical feature

extraction space following the (3.18).

(b) The z
seed-v

= fextract (q ⊙ p) statistical

feature extraction space following the (3.18).

(c) The z
amigos

= fextract (qp) statistical feature

extraction space following the (3.18).

(d) The z
amigos

= fextract (q ⊙ p) statistical

feature extraction space following the (3.18).

(e) The z
deap

= fextract (qp) statistical feature

extraction space following the (3.18).

(f) The z
deap

= fextract (q ⊙ p) statistical feature

extraction space following the (3.18).

(g) The z
feel

= fextract (qp) statistical feature

extraction space following the (3.18).

(h) The z
feel

= fextract (q ⊙ p) statistical feature

extraction space following the (3.18).

Figure 4.9: Computed bQSA statistical feature extraction.
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(b) Confussion Matrix (CM) of the testing
task in bicomplex product following the 10-fold
cross-validation criteria for the DEAP.

application. In consequence, an experimental protocol performed by the AMIGOS research

team can be performed if the principal aims follows the context of the primitive recognition

— see Miranda-Correa et al. (2021) for details. Analyzing the Confussion Matrix (CM) of

the DEAP dataset, the dispersion of the samples presented in the Tree model, corresponding

to the displayed CMs, tends to the high valence classes. According to the feature space

distribution, Figs. 4.9e and 4.9f, the statistical features derived from quaternion or bicomplex

representations may fail to encapsulate the key emotional or affective distinctions in DEAP,

which often has high inter-subject variability.

The FEEL one achieved globally a better classification behaviour in the bicomplex product;

however, the kNN model persists as the weaker kernel (and so on for the AMIGOS and

SEED-series datasets). Here, Ensemble-Tree showed a difference of ≈ 2% between bicomplex

and quaternion product, yielding quaternion as the lower-performance and higher variability

one; hence, both achieved more than 90% of accuracy rate. Then, the Tree kernel yields a

≈ 88%, yielding Ensemble as the top one with an approximate difference of 4% between both

kernels. According to the CM, indifferent and dread are the classes with the lower number

of examples in the testing task. In context, the dead is the lower precision class due to five

over 22 samples wrongly predicted. In contrast, the lower sample class is indifferent. In the

context of time-accuracy performance, the FEEL presents a higher classification performance
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Table 4.3: Average and std of the training time and F1 score per dataset, product criteria,
and ML kernel using 10-fold cross-validation.

Product Classes Ensemble k-NN Tree

Type N Time [s] (µ± σ) F1 (µ± σ) Time [s] (µ± σ) F1 (µ± σ) Time [s] (µ± σ) F1 (µ± σ)

z
q⊙p
s−v 5 363.45± 8.76 100∓ 0.00 0.46± 0.01 99.99∓ 2.0× 10−3 09.12± 0.15 99.99∓ 1.5× 10−3

z
qp
s−v 5 365.13± 5.09 100∓ 0.00 0.45± 0.01 99.99∓ 2.0× 10−3 09.16± 0.12 99.99∓ 1.5× 10−3

z
q⊙p
s−vii 7 1332.68± 18.69 100∓ 0.00 1.00± 0.06 96.86± 0.07 27.27± 0.79 99.99∓ 2.8× 10−3

z
qp
s−vii 7 1499.97± 62.04 100∓ 0.00 0.99± 0.01 98.21± 0.04 35.23± 0.85 99.99∓ 2.0× 10−3

zq⊙p
a 4 110.91± 6.11 100∓ 0.00 0.31± 0.09 79.53± 0.09 03.49± 0.07 99.99∓ 5.5× 10−3

zqp
a 4 095.15± 3.19 100∓ 0.00 0.23± 0.01 71.58± 0.16 02.82± 0.07 100∓ 0.00

z
q⊙p
f 13 003.79± 0.07 92.90± 0.68 0.04± 0.00 64.20± 1.83 00.19± 0.00 88.81± 1.55

z
qp
f 13 003.83± 0.13 90.94± 0.83 0.04± 0.01 62.81± 1.98 00.19± 0.01 87.30± 1.21

z
q⊙p
d 4 355.40± 5.64 46.70± 0.20 0.34± 0.02 43.00± 0.22 185.94± 3.34 36.02± 0.24

z
qp
d 4 361.59± 6.48 45.34± 0.24 0.32± 0.01 42.24± 0.22 190.97± 3.28 34.98± 0.23

over ≈ 4%. However, the ratio is ≈ 20.06× training time for Ensemble Tree against Tree

in the FEEL dataset, where real-time applications make a difference. The bQSA algorithm

performance in the FEEL dataset achieved good performance considering the 13 classes that

the models had to predict. The CM validation data is displayed in Figs. 4.13a and 4.13b

where both product types outperform 100% in indifferent class and more than 90% in large

subsets of classes, suggesting that both Ensemble and Tree kernels, in combination with

bQSA, outperforms accurately for small and large sample subsets of predicted classes.

This study found that both products yield similar average accuracy; however, bicomplex

product shows slightly higher performance consistency across a broader range of classes.

Moreover, the bicomplex product enhances classification for ambiguous or less distinctive

emotions, such as dead, frustrated, resigned, and satisfied. Both CM exhibit indifferent as

the accurate class; meanwhile, dread, frustrated, and satisfied outperforms the wider confused

classes in the quaternion-based model. The most significant finding in both FEEL models

if that qp product-type outperforms as fewer off-diagonal elements with non-zero values,

indicating more focused predictions. In contrast, q ⊙ p outperforms as a stronger model for

minority classes. In short, the bicomplex product might capture more nuanced dynamics

of emotionally similar classes (e.g., “alert” vs “anxious”), leading to better classification in

certain contexts but at the cost of more false positives; in contrast, quaternion-based is more

stable across diverse classes and are better at minimizing broad confusion. In this order of

ideas, further tuning combining both representations could leave that may use quaternion

for general emotion space and bicomplex for local discriminations.

In the same context than before, the bQSA signal processing in AMIGOS is totally
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following the 10-fold cross-validation criteria for
the FEEL.
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(b) CM of the testing task in bicomplex product
following the 10-fold cross-validation criteria for
the FEEL.

different than the DEAP one, even if both are developed in a primitive ER context. This

dataset achieved a 100% of accuracy rate in a single multiclass model. Both CM highlights

that q⊙p product outperforms slightly better than the qp one. The ER in a primitive context

is a very complex task, having a tendency to the development of a single binary class model

per primitive emotion (two for VA and three for VAD). Here, a single and accurate model

for amigos¸ dataset is introduced, where taking advantage of the bQSA algorithm, the four

out of six trained and validated models outperform close to 100% (see Table 4.3). In both

product criteria models, same as the FEEL above, bicomplex product (zq⊙p
a ) takes a few

seconds more to train and is slightly more variable in time-accuracy performance; however is

also slightly accurate than the quaternion product (zqp
a ). The resulting CM for both product

types are shown in Figs. 4.14a and 4.14b. Here, CM results are consistent with the average

information provided by the Table 4.3, where it is noticed that bicomplex is 0.001% less

accurate than the quaternion product in the tree kernel, which is displayed as outliers in

the Fig. 4.14b.

Interestingly, the quaternion product emerged as the best in training and validation

performance, surpassing the bicomplex product, but both achieve 100% performance in ML

metrics. The main limitation of this model, as well as the following SEED-series models

datasets, is the training time performance; taking time as the discriminative factor, the
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Figure 4.14: CM of the AMIGOS datasets in the quaternion and bicomplex product following
the 10-fold cross-validation criteria.

bicomplex in the Tree kernel is the best choice for real-time applications. The average

training time-performance ratio between Ensemble and Tree classifiers for the AMIGOS

dataset (across both product types) is ≈ 32.76× longer. An advantage of this model is

the single model recognition; in ER, a very considerable amount of models are developed

following the binary multi-models classification task, achieving a single model per primitive

emotion. However, hierarchical models are not the best choice for real-time applications.

If time-consuming is considered, security, psychological, and medical-related applications

require an outperforming and faster model. In this order of ideas, the bQSA algorithm is an

optimal solution to primitive ER tasks. As a disadvantage, a strict signal acquisition protocol

is needed to replicate the results, as the bQSA algorithm is very sensitive to the signal noise

and artifacts.

The SEED-series is one of the most popular datasets in ER in the primary emotion

space. The dataset was developed in a controlled environment, where Chinese participants

were asked to watch a series of audio-visual material to elicit five basic emotions: disgust,

fear, happy, neutral, and sad in the SEED-V dataset. Developers and researchers have been

working on this project for more than a decade, achieving different datasets approaches and

multimodal material in order to the emotion recognition. In this study, the bQSA approach
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only considers the V and VII SEED-series datasets. The former was published in 2019,

and the latter in 2025; a very recent dataset. The latter is the closer material to Ekman

(1992a) basic emotions theory, accomplishing a set of seven emotional stimuli: disgust, fear,

happy, neutral, sad, and surprise multimodal material. According to Jiang et al. (2025), the

SEED-V audiovisual stimuli were reused in the SEED-VII dataset, suggesting a controlled

stimuli detection in different subjects. In this order of ideas, the bQSA is applied to both

datasets, achieving 100% of accuracy rate for both V and VII material. The CM in the former

dataset is shown in Figs. 4.15a and 4.15b, where no outliers are detected in both product

types. This only suggested that the SEED-V dataset is a very controlled and well-designed

dataset, where in a single and multiclass model the bQSA outperforms perfectly. However,

training time-performance is very expensive. In the Ensemble kernel, the bicomplex product

is slightly faster than the quaternion product one, however the average ratio is ≈ 3.00×
longer than the AMIGOS one and ≈ 100× longer than the FEEL dataset. This ratio could

be attributed to the great number of samples of difference between the SEED-series datasets

and the FEEL dataset, e.g. the fewer subset of samples in the SEED-V dataset is 15554

for the happy class, in contrast lower one in FEEL dataset is indifferent with less than 10

samples in the class.

As introduced above, the SEED-VII dataset is one of the most recent and complete

datasets in the ER material. The dataset was developed following a four-session study,

where each session contained four different folders of a combination of five out of seven

basic emotions stimuli recorded using 62-channels scalp electrodes. The 20-subjects material

achieved a sum of [20× 4× 4× 5× 62] = 99200 samples, for details see Jiang et al. (2025).

Two main differences between both SEED-series datasets are the number of samples and

the number of classes; the former cardinality is |Ss−v| = 468, 096 samples, and |Ss−vii| =
1, 120, 316 for the latter. With more than twice of the number of samples the latter is a more

robust and complex dataset. The relation bewteen time-accuracy performance is the more

complex one due to Ensemble kernel takes ≈ 1500 seconds to train a model that is only ≈ 1.8

percent accurate than the kNN model; which takes only ≈ 0.99 seconds to train using the

quaternion product as base (see Table 4.3).

As Fig. 4.16 shows, AMIGOS, V- and VII-SEED remains as the higher performance

datasets. Probably, the FEEL one achieved ≈ 9% points less than the previous mentioned

ones due to the small number of samples (|Sf | = 5424) and the large number of targets. Now,

the reasons behind the notably low accuracy achieved by the DEAP dataset remains unclear,

particularly considering its large cardinality (|Sd| = 302, 080), similar to the AMIGOS dataset
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dataset.
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product using the Tree-kernel in SEED-V
dataset.
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(c) CM of the testing task in quaternion
product using the Tree-kernel in SEED-VII
dataset

Anger 30867
100%

0
0%

0
0%

0
0%

0
0%

0
0%

0
0%

Disgust 0
0%

32824
100%

0
0%

0
0%

0
0%

0
0%

0
0%

Fear 0
0%

0
0%

33867
100%

0
0%

0
0%

3
0%

0
0%

Happy 0
0%

0
0%

0
0%

31153
100%

0
0%

0
0%

1
0%

Neutral 0
0%

0
0%

0
0%

0
0%

23807
100%

0
0%

0
0%

Sad 0
0%

0
0%

2
0%

0
0%

0
0%

36148
100%

2
0%

Surprise 0
0%

Anger

0
0%

Disgust

1
0%

Fear

0
0%

Happy

0
0%

Neutral

0
0%

Sad

35388
100%

Surprise

Ta
rg

et
C

la
ss

Output Class

(d) CM of the testing task in bicomplex
product using the Tree-kernel in SEED-VII
dataset.

Figure 4.15: CM of the V and VII SEED-series datasets in the quaternion and bicomplex
product following the 10-fold cross-validation criteria.
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(|Sa| = 222, 248). The analysis of Figs. 4.8e and 4.8f indicates that the temporal behavior of

the DEAP-bQSA dataset differs from the other datasets. Specifically, the observed patterns

of Re(•), Im(•), and Abs(•) exhibit a constant and linear patterns, not found in the other

cases. This suggests a potential incompatibility between the data acquisition methods of

DEAP and the processing requirements of the bQSA technique. Despite this, four out of

the five datasets demonstrate a strong compatibility with the bQSA method for emotion

recognition applications.
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Figure 4.16: Boxplot of the validation normalized score per dataset and product criteria
using the Ensemble ML kernel by 10-fold cross-validation.

4.2.4 Analysis of Variance (ANOVA) performance

In order to the 10-fold cross-validation, a three-way ANOVA was performed to analyze

the performance of the bQSA algorithm across datasets (five levels), product types (two

levels), and ML kernels (three levels). On average, the dataset, product type, and ML kernel
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significantly affects the bQSA performance, as shown in Table 4.4. There are significant

main effects between the classifier kernel (p < 0.0001), product type (p < 0.0001), and

dataset (p < 0.0001). Moreover, the effect between Classifier × Product type suggested

that the best ML kernel depends on the product type used (p < 0.0001). This is consistent

with the reported performance in Table 4.3, where in most of the cases q ⊙ p product is the

reliable one. In addition, the relation between Classifier × Dataset (p < 0.0001) concluding

that SEED-series and AMIGOS achieved the best performance and, as discussed previoulsly,

yielding DEAP as the lower one. In Product Type × Dataset criteria, ANOVA results

interpretation suggested that the effectiveness of the product type is highly dependent on the

dataset used (p < 0.0001). At last, based on the three-way interaction, the inference where

Classifier × Product type × Dataset interaction is significant based on the bQSA method

is supported. Here, even if six out of ten models achieved 100% in performance metrics, a

deeper analysis is needed based on another physiological or non-physiological datasets.

One of the most important findings in this work is the slightly better performance of

the bicomplex product over the quaternion one. Noticing that (3.15) the Cayley-Dixon

quaternion form in the bicomplex product does not introduce the complex conjugate element

to the equation, which p value (P:D) is the middle one in the significance of the two-way

ANOVA performance.

Table 4.4: Three-way ANOVA results for the bQSA performance across datasets, product
types, and ML kernels.

Source F-value p-value Significance

Classifier 11184.42 2.13× 10−260 Classifier type significantly affects accuracy.
Product type 139.68 2.95× 10−26 Quaternion vs. Bicomplex has a significant impact.
Dataset 83897.63 0 Accuracy varies a lot depending on the dataset used.
C:P 34.71 3.84× 10−14 The best classifier depends on the product type used.
C:D 3704.17 4.29× 10−271 Classifier behavior changes drastically across datasets.
P:D 61.18 9.66× 10−37 Product type effectiveness depends on dataset.
C:P:D 65.98 3.77× 10−59 Interaction between C, P, and D is significant.

C: Classifier, P: Product type, D: Dataset. The p-values indicate the significance of each factor and their interactions. A
p-value less than 0.05 is considered statistically significant.

4.2.5 Previous works and research gaps

Previous studies have shown their own effectiveness in EEG-ER task based on different fusion

or novel techniques in the signal pre- and post-processing. As discussed in Chapter 2, no
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evidence of quaternion and ER fusion techniques has been found in the literature. However,

the Digital Signal Processing (DSP) and quaternion fusion techniques have been used in

other materials, such as the proposed by Batres-Mendoza et al. (2016); Contreras-Hernandez

et al. (2019); the former processed EEG signals in the motor imagining process, the latter

one introduced the quaternion theory to detect broken rotor bars in induction motor. In

this order of ideas, a strong evidence of the quaternion performance in ML applications with

periodic and non-periodic signals was found; however, none of these explored the bicomplex

product or the Cayley-Dixon quaternion processing. Even if the performance metrics for both

studies is consistent with a good experimental protocol, the introduction of bQSA algorithm

in another engineering areas is needed.

Prior studies have noted the importance of a single model that classify multi-targets in

emotion recognition tasks, where Doma and Pirouz (2020); Işık et al. (2023) achieved a single

model per primitive emotion in binary target’s space using the DEAP dataset as input data.

Both studies achieved a superior performance in contrast to the bQSA algorithm; however

they had to feed the ML model with the use of the hole electrodes information, which can

present noise and artifacts related to non-optimal feature extraction. Also, and consistent

with their approaches results, an inference where bQSA algorithm needs a more robust input

matrix based on the use of more than four electrodes information is proposed; nevertheless,

this contrast with our main approach where a reduced subset of electrodes is used to process

the bQSA. Furthermore, DEAP have presented a good performance in DL techniques; as

those porposed by Fang et al. (2021); Islam et al. (2021). Both approaches achieved a

70 − 80% of accuracy rate. The former employed a binary classification task, yielding a

trained and validated model per primitive above; menawhile the latter one achieved a single

multiclass model discretizing the VA space into four primary emotions and a neutral class. In

addition, ML techniques used by Topic and Russo (2021); V. and Bhat. (2022) achieved a good

performance in the amigos¸ dataset where the latter achieved a superior performance in VAD

space developing a single binary classification model per primitve emotion (see Chapter 2

for a deeper introduction). Furthermore, Wu et al. (2022); Zhang et al. (2022) chose to

use the SEED-V and AMIGOS datasets as input data to their research in fusion with DL

techniques. Authors in Zhang et al. (2022) reported a very close classification rate to the one

in this approach (the bQSA) for the DEAP dataset and a slightly superior performance to

the 70% in the SEED-V data. By the other hand, Wu et al. (2022) used a subject dependent

classification technique to achived a 72.63± 08.25 of accuracy rate in the SEED-V dataset.

One of the limitations of a single and multiclass classification model in ER is their complex



Chapter 4. Numerical results 85

and noisy nature of electroencephalogram signals. Sometimes, even if a Wavelet-based

algorithm to noise reduction is applied, the signal is still with artifacts, which can lead

to a misclassification for both primary and primitive classification. In addition, if a larger

targets space is introduced (as the one in SEED-V dataset), the classification task became

harder. That’s why some methodologies prefer to use a binary classification model to increase

the reliability of their results and, in consequence, the performance metrics. As example,

authors in Jiang et al. (2025) outperform a single model classification technique applied

to their SEED-VII data and concluding that different emotions activate different neural

patterns and regions. In consequence, following their own classification approach (which

is a multilayer adaptive and mixture transformer), classification results achieved a 33.98%,

50.70%, and 58.24% of accuracy rate performance using ML, DL, and transformer-based

kernels, respectively. The complete comparation performance between close related works

and the bQSA is reported in the Table 4.5; moreover, an extension and highlights of the

state-of-the-art is presented in Chapter 2.

4.2.6 Discussion

Advantages

The bQSA algorithm performance is slightly consistent with previous QSA approaches, such

as the one proposed by Batres-Mendoza et al. (2016); Contreras-Hernandez et al. (2019).

Both approaches, and the one introduced in this document, are trained using ML kernels for

the classification task, which shows a common pattern performance in the quaternion signal

processing, increasing the reliability of the method. In fact, binary and ternary classification

tasks were performed, respectively, in the former and latter approaches, achieving results close

to the 100%; however, the bQSA beats a more robust targets space, specially in SEED-VII

and FEEL. In addition, the reported results in Table 4.3 shows that Tree-based kernels were

the most reliable ones, even for a large number of emotions classification.

In early observations, the performance in Sect. 4.1.2 used only a subset of four channels

in the SEED-V dataset (five targets), achieving 87.12% of accuracy rate, following the

channels selection technique of noise reduction, feature extraction, and mRMR channel

and feature selection. Hence, the main hypothesis of this work introduced in Chapter 1

theorized that the combination between the DSP and quaternion algebra could improve the

classification in ER, where, based on the previous section results, the inference is justified.

This hypothesis was validated by outperforming the bQSA algorithm and using only three
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statistical features per complex signal (the bicomplex pattern) applied to the Re (•) and

Im (•) pattern. Moreover, Chapter 2 has shown that even with a reduced subset of channels,

performance metrics can be equal or even slightly better than using the whole set of channels

available. In consequence, the method is superior to all of those reported in Chapter 2

and sect. 4.1, even tested in several EEG datasets.

Table 4.5: Performance comparison between the state-of-the-art relevant results and the
proposed method, SPER b-QSA.

ER works in the state-of-the-art

Reference Dataset IA Approach EC Classes Accuracy [%] F1-measure [%] Kappa-score

Doma and Pirouz (2020) DEAP SI1-SVM-PCA 32 V & A 63.43, 73.75 77.62, 84.73 -

Fang et al. (2021) DEAP SI-DF2 32 AHSPN3 71.05 - -

Islam et al. (2021) DEAP SI-CNN 32 V & A 78.22, 74.92 - -

Işık et al. (2023) DEAP SI-kNN 32 VAD 98.94 98.9 -

Topic and Russo (2021) AMIGOS SD4-SVM 14 V & A
79.54± 01.26
85.07± 02.04 - -

V. and Bhat. (2022) AMIGOS SI-EBT5 4 V, A, & D
94.20, 98.71,
94.53 per PE

92.50, 98.61,
94.37 per PE -

Zhang et al. (2022)
AMIGOS
SEED-V SI-PARSE6 14

62
V & A
DFHNS7

≈ 58.77± 10.80
71.50± 14.05 - -

Wu et al. (2022) SEED-V SD-DCCA 18 DFHNS 72.63± 08.26 - -

Ma et al. (2025) SEED-V 62 DFHNS 71.86± 10.90 - -

Jiang et al. (2025) SEED-VII
kNN
RGNN
MAET

62 ADFHNSS8
33.98
50.70
58.24

32.86
49.55
58.08

-

Our approach

SEED-V
q ⊙ p

SI-10CV-Ensem 4 DFHNS 100.00± 0.00 100.00± 0.00 1.00∓ 0.00

SI-10CV-Tree 4 DFHNS 99.99± 1.60× 10−3 99.99± 1.54× 10−3 0.99∓ 2.01× 10−5

SEED-V
qp

SI-10CV-Ensem 4 DFHNS 100.00∓ 0.00 100.00∓ 0.00 1.00∓ 0.00

SI-10CV-Tree 4 DFHNS 99.99± 1.60× 10−3 99.99± 1.54× 10−3 0.99∓ 2.01× 10−5

SEED-VII
q ⊙ p

SI-10CV-Ensem 4 ADFHNSS 100.00∓ 0.00 100.00∓ 0.00 1.00∓ 0.00

SI-10CV-Tree 4 ADFHNSS 99.99± 2.83× 10−3 99.99± 2.84× 10−3 0.99∓ 3.31× 10−5

SEED-VII
qp

SI-10CV-Ensem 4 ADFHNSS 100.00∓ 0.00 100.00∓ 0.00 1.00∓ 0.00

SI-10CV-Tree 4 ADFHNSS 99.99± 2.01× 10−3 99.99± 1.93× 10−3 0.99∓ 2.35× 10−5

AMIGOS
q ⊙ p

SI-10CV-Ensem 4 (H/L)V(H/L)A 100∓ 0.00 100.00∓ 0.00 1.00∓ 0.00

SI-10CV-Tree 4 (H/L)V(H/L)A 99.99∓ 6.00× 10−3 99.99∓ 5.54× 10−3 0.99∓ 8.04× 10−5

AMIGOS
qp

SI-10CV-Ensem 4 (H/L)V(H/L)A9 100.00∓ 0.00 100.00∓ 0.00 1.00∓ 0.00

SI-10CV-Tree 4 (H/L)V(H/L)A 100.00∓ 0.00 100.00∓ 0.00 1.00∓ 0.00

FEEL
q ⊙ p

SI-10CV-Ensem 4 13 92.64± 0.51 92.89± 0.68 0.92± 5.90× 10−3

SI-10CV-Tree 4 13 88.22± 1.79 88.81± 1.55 0.87± 2.04× 10−2

FEEL
qp

SI-10CV-Ensem 4 13 90.82± 0.67 90.93± 0.83 0.89± 7.50× 10−3

SI-10CV-Tree 4 13 87.04± 1.34 87.30± 1.21 0.85± 1.49× 10−2

DEAP
q ⊙ p

SI-10CV-Ensem 4 (H/L)V(H/L)A 53.57± 0.17 46.69± 0.19 0.29± 2.36× 10−3

SI-10CV-Tree 4 (H/L)V(H/L)A 39.16± 0.33 36.01± 0.24 0.14± 3.26× 10−3

DEAP
qp

SI-10CV-Ensem 4 (H/L)V(H/L)A 53.34± 0.21 45.33± 0.24 0.28± 2.79× 10−3

SI-10CV-Tree 4 (H/L)V(H/L)A 38.28± 0.37 34.97± 0.23 0.13± 2.85× 10−3

1Subject Independent, 2Deep Forest, 3Angry, Happy, Sad, Pleasant, and Neutral, 4Subject Dependent, 5AdaBoost Decision

Tree, 6Pairwise Alignment of Representations for Semi-Supervised EEG Learning, 7Disgust, Fear, Happy, Neutral, and Sad,

8Anger, Disgust, Fear, Happy, Neural, Sad, and Surprise, 9High Valence - High Arousal, High Valence - Low Arousal, Low

Valence - High Arousal, Low Valence - Low Arousal.
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Principal findings

As discussed previously, the qp and q⊙p product are different only for the complex conjugate

in the quaternion product criteria. This little and important difference makes bicomplex

product suitable in three out of five datasets (even if the difference is only sensible in the

FEEL and DEAP datasets). Even more, the conclusion that Tree is highlighted as the

outperforming kernel due to its time-improvement in comparison with the Ensemble one is

justified with the information presented in Table 4.3 where 10-fold of Cross-Validation (CV)

was performed. Now, the effects of kNN kernel are noticed, however its advantages are only

noticed in SEED-V and VII datasets; for the rest of the datasets the performance remains

limited, yielding Tree as the best choice.

In the channel selection process, a set of four different effective channels were found,

according to statistical, time, frequency, and morphologic features. Based on these kind of

features, see Table 3.1, four out of five datasets presents a fronto-parietal effective lobes, only

AMIGOS achieved fronto-temporal information, which is consistent with the information

analyzed in Chapter 2. According to several authors, frontal and temporal lobes are those

commonly used with a high performance in ER, being T7 and T8 those used more frequently.

However, our channel selection results do not included any of both temporal channels,

see Table 4.2. Summarizing, the frequency of occurrence per brain lobe is: frontal (5),

temporal (5), parietal (8), and occipital (2), where parietal occurrence is presented two

times per dataset — except in AMIGOS. According to the discussion of He et al. (2021)

an strong evidence of emotional processing was found in the frontal, temporal, parietal, and

occipital lobe by eliciting positive and negative emotional faces in subjects. Moreover, Spence

et al. (1996), and more recently Hartikainen (2021), support the philosophy that establishes

an overall right hemispheric dominance for emotion, attention, and arousal. Hence, our

experiment is consistent with this theory, achieving nine out of sixteen electrodes located at

the right hemisphere, three at the central line, and four out of sixteen at the left hemisphere

(FEEL is not considered in this analysis due to the channel location information is private).

In sum, it can be assumed that 12 out of 16 channels are located at the right hemisphere. A

channel location per brain lobe can be seen in Fig. 4.17.

Limitations

A major advantage of this study is its superior performance using a single-model multiclass

approach compared to current state-of-the-art methods. Nevertheless, despite the primary
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hypothesis of this research being centered on emotion recognition, additional testing is

necessary to ensure the method’s reliability. Furthermore, prior successful implementations

of similar methodologies, such as QSA applied to motor imagery and induction motor

fault diagnosis, enhance confidence in the robustness of the proposed approach. Now, the

discussion of the channel selection method is a “double-edged sword” due to the sensitivity of

the method to the feature extraction and the main advantage of the reduction of the whole

set of channels per dataset. If one is taken off, the model changes the relevance weights,

and the effective channels will change. However, in order to complete the objectives of

this work, several changes were made off and, at least for the SEED-series and AMIGOS

datasets, only slightly changes were noticed. However, FEEL and DEAP presented a more

aggressive misclassification performance, achieving ≈ 37% of accuracy rate in the DEAP

dataset. Furthermore, in those test bicomplex product remains as the outperforming product

type model. Finally, it is important to explore the bQSA limitations in deeper analysis with

another type of data and even try to explore its performance even in image processing tasks;

however, that will accomplish a more robust work and future approaches.

Figure 4.17: EEG electrodes distribution according to the brain lobes location.



Chapter 5

Conclusion

In this study, an introduction to the Hilbert space in order of the quaternion algebra is

explored following the bicomplex Cayley-Dixson form of the quaternion processing applied

to electroencephalogram signals to increase the performance of the emotion recognition. To

explore the reliability of this method, the bicomplex Quaternion Signal Analysis (bQSA)

algorithm was tested in five different and multimodal datasets for emotion recognition that

includes the primary and primitive emotion space. The SEED-V, SEED-VII, AMIGOS,

FEEL, and DEAP datasets were used as input data to perform the bQSA proposed algorithm.

Each dataset presents a unique signal acquisition method, which includes the number of

subjects, age, gender, among others, and environment, which increases the robustness and

complexity of the proposed task.

In order to accomplish the use of the quaternion algebra in electroencephalogram signals,

a channel selection method was applied to the raw EEG signals by using the wavelet noise

reduction, local binary pattern, and feature extraction to achieved four discriminant electrodes

information to construct the bicomplex quaternion form and increase the emotion recognition

performance. This effective channels protocol achieved four different and relevant channels

per used dataset, yielding that effective information is concentrated in the fronto-tempo-parietal

lobes, which is consistent with the literature. Then, the bicomplex quaternion form is

constructed by following the Cayley-Dixon theory and using statistical features (µ, σ, and σ2)

to each Re (•) and Im (•) part of each component of the bicomplex form.

Experimental results highlights the bicomplex product as the accurate bQSA form, showing

a slightly increase in performance metrics in contrast with the quaternion product form

(±0.001%). Moreover, the three-way ANOVA test suggested that (1) the best classifier is
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dependent on the dataset used, (2) the classifier performance metrics change significantly per

dataset, and (3) that the product type (bicomplex or quaternion form) effectiveness depends

on the dataset. In addition, the 10-fold cross-validation increases the reliability of bQSA

effectiveness; however, only three- and kNN-kernels were concluded as the accurate ones

in the recognition process, whereas contrary to the state-of-the-art SVM is weaker for this

approach.

In summary, the bQSA algorithm was initially proposed as a signal processing method

for EEG-based emotion recognition. This constituted our hypothesis, which is supported

and justified by the obtained classification results. Moreover, the channel selection method

showed to include the fronto-temporal dependencies as the most relevant information about

the brain lobes and 75% of the electrodes located at the right hemisphere of the brain, which is

consistent with the evoking of the emotions in the literature. Finally, the bQSA construction

and temporal displacement showed a high performance using ML algorithms to validate the

method.

As future work, the bQSA methodology will be extended to analyze 2D and 3D pulse

patterns identified within each windowed segment, as accomplished in this study. A deeper

understanding of these pulses is required; however, preliminary analysis suggests that emotion

pulse responses are presented once or twice per second in the electroencephalogram activity.

Analyzing these patterns is pivotal for emotional processing theories. Furthermore, integrating

oculogram information captured by using a frontal camera could enable artificial intelligence

systems to detect physiological ocular responses and correlate these with specific neural

patterns, enhancing the accuracy and robustness of AI models in real-world applications and

providing an accurate psychological, psychiatric, and human behaviour understanding.



Acronyms

1D-LBP One Dimensional Local Binary Pattern

AC Affective Computing

AI Artificial Intelligence

AMIGOS Affect, Personality, and Mood Research on Individuals and Groups

ANOVA Analysis of Variance

ANS Autonomic Nervious System

bQSA Bicomplex Quaternion Signal Analysis

CM Confussion Matrix

CNN Convolutional Neural Network

CNS Central Nervious System

CV Cross-Validation

CWT Continuous Wavelet Transform

db Daubechies

DE Differential Entropy

DEAP Database for Emotion Analysis Using Physiological Signals

DL Deep Learning

dlPFC dorsolateral Prefrontal Cortex

DNN Deep Neural Network

DSP Digital Signal Processing

DWT Discrete Wavelet Transform

EC Effective Channels

ECG Electrocardiogram

EEG Electroencephalogram

EMD Empirical Mode Decomposition

EMG Electromyogram

EMODB Berlin Database of Emotional Speech
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ENP EEG based Network Patterns

EOG Electrooculogram

ER Emotion Recognition

FAWT Functional Analytic Wavelet Transform

FEEL Force, EEG and Emotion-Labelled

FER Facial Emotion Recognition

FL Fussion Learning

FT Fourier Transform

GBA Gamma Band Activity

GSR Galvanic Skin Response

HHT Hilbert-Huang Transform

IEMOCAP Interactive emotional dyadic motion capture database

IMFs Intrinsic Mode Functions

LBP Local Binary Pattern

LOSO-CV Leave-One-Subject-Out Cross-Validation

MANHOB-HCI A Multimodal Database for Affect Recognition and Implicit Tagging

ML Machine Learning

MPED Multi-Modal Physiological Emotion Database

mRMR Minimum Redundancy Maximum Relevance

OFC Orbitofrontal Cortex

PCA Principal Component Analysis

PFC Prefrontal Cortex

PLV Phase Locking Value

PNN Positive, Negative, and Neutral

PNS Peripheral Nervious System

PSO Particle Swarm Optimization

QSA Quaternion Signal Analysis

RAVDESS The Ryerson Audio-Visual Database of Emotional Speech and Song

REGEEG A Regression-based EEG Signal Processing in Emotion Recognition

RF Random Forest

SEED SJTU Emotion EEG Dataset

SER Speech Emotion Recognition

SMH Somatic Maker Hypothesis

SSWT Synchosqueezing Wavelet Transform
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SVM Support Vector Machine

TER Textual Emotion Recognition

VA Valence-Arousal

VAD Valence-Arousal-Dominance

vmPFC ventromedial Prefrontal Cortex

WD Wavelet Decomposition

WOS Web of Science Core Collection

WT Wavelet Transform
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