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Introduction

This thesis explores the possibilities of forming compact dark matter ob-
jects as solutions to the Einstein-Klein-Gordon and Einstein-Proca field equa-
tions, as well as accounting for the mechanism of dark matter production
through gravitational particle production. According to quantum mechanics,
particles are subdivided into two groups: those with integer spin (bosons) and
those with half-integer spin (fermions). The former are capable of forming
particle condensates in the ground state, while the latter, limited by Fermi-
Dirac statistics, are forced to successively occupy higher energy levels. Here
we will focus on describing the equilibrium configurations of compact objects
of self-gravitating and self-interacting particles with spin s = 0 and s = 1,
which share similar characteristics to their counterparts, the compact objects
composed of fermions. On the other hand, one of the most notable results
of the semiclassical treatment of quantum fields on curved spaces predicts the
gravitational production of particles due to gravitational effects, in abundances
that could account for the dark matter bounds imposed by current observations
[4, B5]. Here we will focus on describing this phenomenon for quantum fields
with spin s = 0 and spin s = % at different orders of approximation. In both
objectives, we describe dark matter as a field that interacts only gravitationally
with the rest of the matter. Both objectives aim to address particular issues
(one intends to solve astrophysical and cosmological problems, while the other
intends to explain the mechanism of production of these particles); however,
they equally intend to account for the gravitational presence of dark matter
in the observable universe. In both cases, we will explore different regimes
of approximations for the bosonic or fermionic dark matter field according to
each chapter.

In Chapters [I] and Chapter [2, we study stable compact objects composed
of particles with spin s = 0 (boson stars) and s = 1 (Proca stars). In
these chapters, we characterize these configurations as equilibrium solutions
of the Einstein-Klein-Gordon systems (relativistic boson star), s = 0 Gross-
Pitaevski-Poisson (non-relativistic boson star), and s = 1 Gross-Pitaevski-
Poisson (non-relativistic Proca star), particularly for spherically symmetric
configurations. In each case, dark matter is modeled through a massive self-
interacting boson field that only interacts with the standard model of particles
through gravitational interaction. In Chapter [3] and Chapter [d] we explore
the mechanism by which non-interacting dark matter particles of spin s = 0
and s = 1/2, which only interact gravitationally with matter, can be pro-
duced, that is, the gravitational particle production mechanism. Throughout
each chapter, we explore different orders of approximation (e.g. relativistic
and non-relativistic) and analyze in which regimes a quantum field admits a
classical field description. These concepts will be reviewed throughout this
thesis.



Part 1

Self-gravitating Objects

Un estudiante a quien le expusieron los
sofismas de Zenon sobre la negacién del
movimiento juntamente con un ensayo de
refutacion y solucién, dijo: “Veo la
solucion, pero no veo el problema.” No
seremos demasiado infelices, si no viendo
completamente la solucién, vemos al
menos el problema.

Jean Wahl



|Chapter 1

Boson Stars: Relativistic and
Non-relativistic Configurations

1.1 Introduction

Compact objects like white dwarfs and neutron stars are part of the entities
that populate the universe and play a role in astrophysical and cosmological
observations. These are part of the family of compact objects made of fermions
and are part of the catalog of entities that conform to the universe. Parallel to
this family of objects are boson stars, which are hypothetical compact objects
made of spin s = 0 bosons, and Proca stars, which are compact objects made
of spin s = 1 bosons particles. These last ones, in their hypothetical nature,
could account for the dark matter of the universe: massive self-gravitating
(scalar or vector) fields can form stable astrophysical (or subatomic) objects
supported by self-gravity and Heisenberg’s uncertainty principle, and can pop-
ulate the universe. Although the Cold Dark Matter model (CDM), within the
framework of the standard cosmological model ACDM, has been surprisingly
successful in explaining the large-scale structure of the universe, it has en-
countered problems on galactic or sub-galactic scales: CDM simulations lead
to cuspy density profiles at galactic centers [6], while rotation curves signals
a smooth core density [7]. Also, the predicted number of satellite galaxies
around each galactic halo, is far beyond what we see around the Milky Way
[8]. If dark matter is composed of boson particles in a Bose-Einstein conden-
sate (like that of a boson compact object), these problems might be solved.
Boson and Proca stars phenomenology could alleviate the small-scale problems
of the CDM model, such as the cusp and the missing satellite problem [9].

A compact object is a collective arrangement of particles (that is, quantum
excitations of a quantum field) that forms a stable macroscopic object. In the
context of classical field theory, the seed idea of particles grouped together to
form compact objects comes from John Wheeler in 1955 [10], who proposed
stable solutions to the electromagnetic field within the framework of general
relativity, that is, solutions to the Einstein-Maxwell system of equations. These
objects called geons are unstable against linear perturbations. Conversely,
Proca and boson stars turn out to be stable solutions to the Einstein-Klein-
Gordon and the Einstein-Proca systems, respectively, for a complex massive
scalar field and a complex massive vector field. Boson and Proca stars are



stable and massive compact objects susceptible to astrophysical studies and
observations. These can be understood as a macroscopic arrangement in their
minimum energy state, forming a condensate of integer spin particles charac-
terized by a single macroscopic wave function W(¢, Z) (or U(¢, Z)). Boson and
Proca stars may have masses comparable to the mass of neutron stars, or even
larger. This makes them an interesting case for study like their counterparts,
neutron and white dwarfs, and plausible candidates for dark matter.

In this chapter, we will describe the equilibrium solutions of the Einstein-
Klein-Gordon system, the relativistic boson stars, and their non-relativistic
limit, the solutions to the s = 0 Gross-Pitaevskii-Poisson system, i.e. the non-
relativistic boson stars. Both solutions include the field’s self-interaction term,
parameterized in the action by a dimensionless coupling constant A. When
this coupling constant is negligible, the relativistic system reduces to the so-
called mini-boson star solutions, and the non-relativistic system reduces to the
Schrodinger-Poisson system. If the mass of the system is small, it will be pos-
sible to neglect relativistic effects and work with a Newtonian approximation,
that is, with the s = 0 Gross-Pitaevsky-Poisson system. However, when the
mass of the configuration approaches the Kaup mass My, = 0.633M 3 /m (for
non-interacting stars with field mass m), relativistic effects must be taken into
account. Above this maximum mass, there will be no equilibrium configura-
tions, similar to what happens for a fermion star [11]. As we shall observe,
the mass profile for a relativistic boson star M (o) exhibits the same damped
oscillation behavior as that of a fermion star [12]. However, stability, unlike a
fermion star where collapse is prevented by the Pauli exclusion principle, for
a boson star is prevented by the Heisenberg uncertainty principle. Also, as we
will observe, a boson star is a system that does not exhibit a typical perfect
fluid description, as its pressure is anisotropic. As we will see later, a self-
interacting boson star has a maximum mass given by M. ~ \/XMSI / m?2, for
strong coupling constant \ > m?/ Mgl, that depends on the mass of the field
m and the self-interaction parameter A, which can become comparable to the
maximum mass of a neutron star My ~ M;’l /m?. This makes self-interacting
boson stars particularly interesting compared to the free case where the mass
of the configuration is much smaller than that of fermion stars. The phe-
nomenology of a self-interacting boson star, relativistic and non-relativistic,
will depend only on its self-interaction parameter and its mass.

Because of their mass range, extension, and stability, boson stars could be
considered possible candidates to populate the universe in the form of dark
matter. Advances in the detection of gravitational waves and gravitational
lensing could help point towards considering boson stars and their growing
phenomenology as explanations for the abundance of dark matter. As we
mentioned above, the ACDM model has been incredibly successful in explain-
ing the dynamics of the universe at cosmological scales (> 10 kpc). However,
at galactic scales, this model presents challenges. To alleviate the tensions
between physics at cosmological scales, described successfully in the ACDM
model, and the physics of galactic scales, it is necessary to review the proper-
ties and nature of dark matter. Properties such as mass, spin, or the strength
of self-interactions can be traced to astrophysical observables. For example,
the phenomenology of a self-interacting bosonic field of wltra-light mass can
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be traced to galactic scales [13] and the ground state solitonic solutions of
the s = 0 Gross-Pitaevski-Poisson system can form the core of the galaxy
halos [14]. In addition, given that the occupation numbers within galaxy ha-
los are so high, the state of the boson field can be described as a classical
non-relativistic boson condensate, and, since the velocities of visible matter in
galaxies are non-relativistic and the mass range of a boson star (from 10~*2eV
to ~ M) allows solutions with astrophysical scale of de Broglie lengths, the
motivation to study the Newtonian limit is justified. Then, we can think of
a non-relativistic boson star as a Bose-Einstein condensate with wave func-
tion (¢, %), in which the excitations of the field represent identical particles
that can occupy the same ground state. This system is described through
the Gross-Pitaevskii equation for the wave function (¢, %), and the Poisson
equation for the Newtonian gravitational potential U(t, ). Equilibrium con-
figurations correspond to a balance between the effects of pressure due to the
self-interacting of the particles, the self-gravitational attraction of the fluid,
and the repulsion due to quantum pressure.

The literature on boson stars is abundant. The works of Kaup [15], Ruffini
and Bonazzola [11] are the pioneering works in the study of these solutions.
Subsequently, works where the scalar field has self-interaction [16], non-minimal
coupling to gravity [L7], or electric charge [I8] were considered, as well as the
analysis of its stability [19, 20] 21, 22, 23]. We recommend to the reader the
reviews of Visinelli [9], where the various properties of boson stars are studied,
particularly for the free (A = 0) and self-interacting (A # 0) cases, and the
work of Jetzer [24], where the non-relativistic limit of boson stars is reviewed
as well as the analysis of their stability, and the work of Ruffini [25], Lee and
Pang [26] and Liddle [27] where the mechanism of formation for boson stars
is reviewed. In [2§], the authors study the different possibilities of detecting
boson stars (e.g. gravitational waves and lensing), of which they provide a
detailed review. In [29], a special type of boson star, called ¢-boson stars, is
presented, formed by the collection of N non-interacting complex scalar fields
parametrized by an angular momentum number ¢ = (N — 1)/2. Finally, we
refer the reader to the work of Liebling and Palenzuela [30] where the different
boson stars and their various astrophysical signals are reviewed.

In this chapter, we will focus on the study of relativistic [9], 24 25, 26, 27,
28, 130] and non-relativistic [31], [32], 24, [33] boson stars, and we will postpone
the study of non-relativistic Proca stars to the next chapter. We anticipate
that, for these objects to be of astrophysical and cosmological interest, they
must persist for at least the Hubble time, so we demand these configurations
to be stable against small perturbations. Furthermore, if these configurations
are to play the role of dark matter, they must be weakly (or null) interact-
ing with the Standard Model, non-relativistic, and self-gravitating. Boson
stars, being objects that remain bound only by the effect of their gravity and
self-interaction, are candidates susceptible to study. In Section we study
relativistic boson star, their conserved charges and the particular case
of a relativistic spherically symmetric self-interacting configuration |1.2.3| and
their numerical solutions [1.2.4, The analysis of the stability of the relativistic
boson star is briefly introduced in the Section [1.2.5] In Section we study
non-relativistic boson stars and their numerical solutions for the spherically
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symmetric system and, finally, a brief introduction to the analysis of its sta-
bility in Section The mechanism of formation of these stars goes beyond
the scope of this thesis, so it will not be addressed here.

1.2 Relativistic Boson Stars

We can define a non-topological soliton as a localized, and time-persistent ob-
ject whose stability is guaranteed by a conserved Chargeﬂ see Ref. [35,9]. In
this sense, a boson star is a non-topological soliton that is supported by grav-
ity, and that is a stable and localized solution to the Einstein-Klein-Gordon
equations, described by a classical complex scalar field ¢(t,Z). In the frame-
work of general relativity, a classical complex scalar field ¢(¢, Z) with mass mq
and potential V' (|¢]?) is described by the Einstein-Klein-Gordon action of the
form

S0l = [ d'ov=g (ﬁfz " cM) | (1)

which consists of the Einstein-Hilbert action plus a matter term given by
Ly = =Vud" V") —mg|o* = V(|o]), (1.2)

where, as usual, g is the determinant of the spacetime metric g,,,, R is the Ricci
scalar, ¢*(t,T) is the complex conjugate of ¢(t, ), with |@(t, Z)|* its modulus
squared, and V' (|¢|*) the bosonic potential. This potential can consist of a self-
interaction term of the form A|¢[* or higher-order terms. Similarly to a fermion
star like a white dwarf, a boson star depends on the balance formed between
the gravitational force that compacts the star and the pressure gradients that
balance the self-gravity of the star. This self-gravity of the boson field is
generated by the geometric aspects of the covariant derivatives in the action
(1.1) and the dispersive nature of the Klein-Gordon equation provides the
pressure gradients that balance the gravitational field generated by the boson
field.

Variation of the action with respect to the metric leads to the Ein-
stein’s equations,

1
Ru, — =gwR = 87GT?

2 s

where R, is the Ricci tensor and T;f’u is the energy-momentum tensor of the
scalar field given by

(1.3)

T — _L&S_M
v Vg

Variation of the action (|1.1]) with respect to the scalar field ¢(¢, ¥) leads to the
Klein-Gordon equation

= V' Vid + Vb Vo = 9w [V'6 V0 + V([6])]. (1.4)

d 2
VIV, — mdp = —%cﬁ (15)

!Topological solitons do not require an additional conservation law, and boundary con-
ditions at infinity are topologically different from the vacuum [9] [34].
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The whole system is denominated the Einstein-Klein-Gordon system (EKG).
Solutions to this system that conform a stable object, in which an equilib-
rium between self-gravity and pressure exists, similar to a fermion star, are
denominated boson star.

1.2.1 Conserved Charges

Associated with the action there are conserved charges. It is easy check
that the action possesses invariance under the global transformation
® — ¢, with 6 a real constant. This invariance, according to the Noether
theorem,ﬂ give rise a conserved current given by

J,u = Z(¢*vu¢ - ¢Vu¢*)7 (16)

in such a manner that its covariant derivative vanishes, V,J* = 0 (for scalar
fields the covariant derivative coincides with the partial derivatives V,, — 0,).
The conserved charge associated to the current J* is given by

N = / P/ =g, (1.7)

where N can be identified with the number of boson particles present in the
configuration. Note that if the field ¢(t, Z) were real, the conserved charge N
would not exist. The requirement of a conserved charge N is essential to ensure
the stability of the star. These configurations, whose condition at infinity is the
vacuum, are what we have called above non-topological soliton. If the number
of particles is not conserved, the stability is not ensured because of possible
direct decays of the boson particles that constitute the star. In turn, if the
condition at infinity were not the vacuum, the energy of the object would not
be finite.

On the other hand, the mass of the star can be calculated using the Tolman
mass formula [9] 28]

M = /dm?’\/—_g[ZTOO —T,"]. (1.8)

1.2.2 Derrick Theorem

As we have already defined, a boson star is a compact object that is a so-
lution to the Einstein-Klein-Gordon system and is stable over time. In this
respect, Derrick’s theorem states the following: for a wide class of nonlinear
wave equations (e.g. the Klein-Gordon equation), there exist no stable time-
independent solutions of finite energy, see Refs. [37, 38]. The mathematical

2If a continuous symmetry transformation ¢ — ¢ 4+ D¢ only changes £ by the addition
of a four-divergence (i.e. DL = 9,W*") for arbitrary ¢, then this implies the existence of
a current Jy = II"D¢ — W#(x), where II* = (0L£/9(d,¢)) is the momentum density. If
¢ obeys the equations of motion then the current is conserved, i.e. d,J5 = 0. Conserved
currents are important because they give rise to conserved charges Qn = [ JydA,,. Here,
if ¢(z*) changes under a symmetry transformation by an amount A, then, an infinitesimal
transformation on ¢, induced by an infinitesimal d\, can be written as d¢ = D@dA where
D¢ = (0¢/0N)|r=0- In other words, if a system possesses some kind of invariance a quantity
related to this invariance will be conserved, see Ref. [30] for a detailed explanation.
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proof of Derrick’s theorem goes beyond the scope of the present work. How-
ever, the Derrick theorem can be circumvented: it is possible to find stable
and localized solutions of the Einstein-Klein-Gordon equation if we consider a
field with periodic time dependence, allowing the gravitational field to remain
time-independent. This allows us to write solutions of the form

o(t, T) = e'o(T), (1.9)

where w is a constant. It is important to note that the notion of a localized
solution refers to a star that has finite energy, that is, the scalar field ¢(¢, %)
vanishes at » — oo. For the spherical symmetric case, which we will analyze
here, we need to replace ¢(Z) = ¢(r).

1.2.3 Spherically Symmetric Relativistic Boson Stars

Now we will present solutions for case of a spherically symmetric configuration
with self-interacting potential V' = \|¢|* where ¢ is given by the harmonic
ansatz ((1.9) with ¢(Z) = ¢(r) a real radial dependent functionﬂ For spherically
symmetric configurations the spacetime line element take the forms

ds* = —eVdt* + e“dr® + r?dQ?, (1.10)

where v = v(r) and u = u(r) are only radial dependent functions and dQ)* =
df* + sin®@dp>. Note that although the elements of the metric are time-
independent, this does not guarantee that the field is time-independent, how-
ever, given that the energy-momentum tensor at Eq. only presents combi-
nations of ¢*(¢, ¥)¢(t, Z) and its derivatives V ,¢*(t, 7)V,¢(t, Z), the harmonic
ansatz guarantees that this is the case. These stationary spherically
symmetric boson stars are the simplest configurations possible. However, con-
figurations that include rotation (where the profile ¢(%) is radial and angular
dependent and the star has angular momentum) might be also of interest since
in nature these configurations might rotate.

In order to solve the Einstein-Klein-Gordon system, FEgs. -, we
need to calculate the energy-momentum tensor 7, , the Ricci tensor R, and
Ricci scalar R. Using the harmonic ansatz and the spherical symmetric
spacetime element , there are three non-trivial Einstein equations coming
from the Gy, G, and Gy components of the Einstein tensor, together with
the conservation equation of the energy momentum tensor V, 7% = 0, giving
us only a system of three independent equations. For the metric the
non-zero Ricci tensor components take the form

1, (e 1. o, 1 1
— Lpvu Z B — - 1.11
Ry 5¢ {@U + 2(&4}) zﬁrv&u + T@w} , (1.11a)
1 5, 1, 5, 1 1
rr — S| — Z\Ur =~ UrU0y —0Op y 1.11
R 2{ v 2(81}) +2808u+ravl (1.11Db)
Rgp = e [g(@,u — 0) — 1)] +1, (1.11¢)
Rgy = sin® 6O Ry, (1.11d)

3In principle, ¢(r) is a complex scalar field dependent on the radius r, given by ¢(r) =
or(r) + i¢s(r) up to an arbitrary phase. However, the two components follow the same
equation, so we can write @¢(t, T) = e~ “tpr(r) = e “Wip(r).
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and the Ricci scalar is given by
I 1 2 2 "
R=e"|0v+ - (8 v)? — §8Tv@u+ ;(@U—@ru) +ﬁ(1 —e")|. (1.12)

Using these identities and the energy momentum tensor (|1.4)) into the {t¢} and
{rr} Einstein equations (R, — % guwR =8nT),,) we get

L (v 1 1

(& (7 - 7’_2) + ﬁ = 87TGp¢, (113&)
WV 1 1

e (? + T’_Q) - ﬁ = 87TGp¢, (1.13b)

where the primes denote differentiation with respect to the radial coordinate r
and the effective energy density and radial pressure are given respectively by

po = €W +e () + V(D) (1.14a)
pr = €W e (¢) = V(g (1.14b)
pr = e W’ —e(¢) =V (¢, (1.14c)

where pr is the tangential pressure and V = m2|¢|? + V(¢?). Since the radial
pressure and the tangential pressure differ by one sign in the second term,
a perfect fluid (where pressure is isotropic) treatment will not in general be
possible when we deal with a relativistic boson star. So, a boson star is an
example of a configuration with an anisotropic fluid description.

Now, to calculate the Klein-Gordon equation we need to obtain the
d’Alembertian operator

1
\ v—q 8:6/‘

with \/—¢ = e(**)/2r25in% @ such that

D¢— _ 82+ a_2+ @_@ 2+2a
N ¢ ot? or? or Or)or ror
1 02 1 0?

o T r2sin2987521 ¢

O=g"V,V, = <\/_g’“’ > (1.15)

Finally, we can write the Klein-Gordon equation as

o0+ (2 U5 Yo = (G0 - emt)o. )

Together, equations (|1.13)) and ((1.16)) conform the relativistic spherical sym-
metric Einstein-Klein-Gordon system.

Now, if we define
2M(r
gt = — (1 - ( )) (1.17)

”
and we use Eq. (1.13]), we can recast this last as

dM(r)
dr

= 47 py, (1.18)
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with the finite-mass condition M = lim,_,,, M (r) where M is the total mass
of the configuration, given by .

Now, let us consider the potential for self-interaction given by V = mé| o+
A|@|*. The simplest case in which A = 0 is called mini-boson star configuration
[39], and the case for A # 0 is called a massive-boson star [40], with mq the mass
of the boson particles (the reason for these names will soon become clear). In
the particular case of a spherically symmetric configuration, and after rescaling
the radial function ¢(r) in units of the reduced Planck mass M2 = (87rG)‘1

as qﬁ ¢/ M, and the radial coordinate as © = mgr, we can recast Eqgs.

and (§ - as

-\ 2
1du 1—e ~ ~ do

_ 1 —v~2 ! 2 u 12 _r 11
o po + (140" + No)e'o +<dx> , (1.19a)

N\ 2

ldv  e"—1 0 ~9 1526 d¢
dzﬁg u 2 u 172\ 72 1d¢~) u 172 —v~2\ 7
2 = —<1+e —:ce(l—i—)\(b)(b)E%jLe(l—i-Q)\(b — e 'Q%)o,

(1.19¢)

where X' = AM?2 /m§ and & = w/mg. With this change of variables, we have
achieved that the mass of the boson mg does not appear explicitly in the
equations and therefore the configurations have no dependence on the mass of
the boson (it is absorbed in the numerical variables). In general, the value of
A plays a relevant role even for very small values of \. When A < 0 or A >0
we have the attractive and repulsive case, respectively.

To ensure that the solutions are regular, asymptotically flat and localized
we need to impose the following boundary conditions

or=0) = ¢, limo(r) = (1.20a)
u(r=0) = 0, Tlggo u(r) 0, (1.20b)
v(ir=0) = w, Tli—{?o v(r) =0, (1.20¢)
M(r=0) = 0, Tli_}rgo M(r)= M, (1.20d)

where vy and &0 are constants that we will call central amplitudes. We can
see from Eq. ( that the first term inside the parentheses is singular at

the origin unless ‘;—¢ = 0. Similarly, if e* = 1 the first term of Eqgs. (1.19a
and ((L.19b) is non-singular if u(r = 0) = 0. To ensure the condition that the
solutions are asymptotically flat we need that e* = e” = 1 at infinity r — oo.
Additionally, given that the solutions must have finite mass, it is necessary
to introduce the limit limT_moquS = 0, as we can see from the mass expression
. If we reduce the order of the differential equation , we will have
a total of four first-order differential equations and, therefore, to completely
determine the system, we will require the boundary conditions for u, v, o, and
¢, given by Eqs. , from which, the condition lim,_,, g?)(r) = 0 will allow

us to determine the unique value of @, for n =0,1,2, 3, ... number of nodes in
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qz~5(:v) that satisfies all the conditions (|1.20]) given a specific value of the central
amplitude ¢y. The only parameters that remains free are the central amplitude
®o, the scale determined through x = mgr by the value of the mass mq and the
self-interacting parameter A, hence the boson star configurations will depend
only on this values.

Now, if we analyze the asymptotic behavior of Eq. considering the
boundary conditions and a weak coupling A ~ 0, we can write the wave
equation of the field ¢ as

%ﬁ —(1-0Yp — ¢~exp{ <—\/nﬂ) r}, (1.21)

where if w < mg then the scalar field decays exponentially when r — oo and if
mg < w then the profile will have an oscillatory behavior. Therefore, to obtain
localized solutions, that is, configurations with finite energy, w < mg must be
satisfied.

On another hand, using Eq. (1.7)) we can calculate the conserved particle
number

N = 47?/ drrlwe’ ¢?, (1.22a)
0
and integrating Eq. (1.18) up to infinity we get the total mass of the star
M = 47‘[‘/ drr?p, = 47T/ drr®[(e ™ w? +m2 + Ao ¢? + e “(¢)?]. (1.23)
0 0

In terms of the variables =, gz~5 and @ the mass and particle number scales as
M ~ (Al/QMSI/m%)]\;[ (for large X' [28,[40] ) and N = (Msl/m%)N, respectively.

Additionally, it is important to introduce the binding energy Ep of the
star, defined as Eg = moN — M, that is the difference between the energy
of the gravitationally bound configuration (M) and the energy that the same
number of particles (N) would have if they were dispersed to infinity (see
Refs. [24] [40L [4T) [42]). We observe that if Eg > 0, the star is in a bound state,
so it will not be possible for the constituent particles to disperse to infinity,
the internal forces are sufficient to keep the system together. Stars with these
characteristics will remain stable. On the contrary, if Eg < 0, then it will be
possible for the star to disperse into its constituent particles to infinity. This
star will be possibly unstable.

Another important quantity to define is the radius of the star. Although a

boson star is certainly infinite in extension, an effective definition of his radius
is given by the Rgg radius. One can define implicitly the Rgg radius as

Rog
0.99M = 47?/ drr?pg, (1.24)
0

that is, the radius containing 99% of the mass of the boson star. Along with the
radius of the star, another useful quantity is the relationship between the mass
M and the radius Ryg called compactness C' = GM /Rgg. In this sense there is
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a limit for the size of the radio, that is, the Schwarzschild radius Ry = 2GM,
below which the solution no longer describes a boson star, since the system
collapses into a black hole. Another quantity is the kaup limit associated to
Kaup Mass Mi,yp, which is the maximal mass determined numerically of a
stable boson star, where Riaup > R .

Given the value of the central amplitude ¢g there are an infinite number of
solutions associated with the system , one for each possible value of the
frequency w, . However, if we characterize these solutions with the number of
nodes n that the profile ¢,, presents in the interval 0 < r < o0, it is possible to
associate the state of minimum energy with the solution with n = 0 number
of nodes and the states of higher energy with the solutions with n = 1,2, 3...
number of nodes. This characterization is analogous to the excited states in
an atom (see Boson stars-Gravitational atom II, in Ref. [43] or [44]). As we
shall see, excited states have a maximum mass M,,., greater than the ground
state, with M,,., increasing as n increases, with n the number of nodes.

Heisenberg Uncertainly Principle

In the semiclassical approach, gravity is sourced by the expectation value of the
energy-momentum tensor (N|7T . "|N) in the Einstein equations. For a boson
star, in their lowest energy state, the expectation value is given with respect
to the state number |N) which represents the state of N bosons in the ground
state n = 0. If the spacetime is asymptotically flat, the spherically symmetric
and time-dependent scalar field ¢(r,t) can be expanded in terms of the usual
creation and annihilation operators a, and a!, which satisfy the commutation
relations [ém,dl] = 0, and the functions ¢, which are orthonormal with
respect to a defined inner product. For this configuration, a boson star with
N bosons in its ground state n = 0 will be characterized by a unique value of
the frequency wqy for the eigenvector QASO. If we define a classical field ¢, with
the form

Oe = (wg)_1/2 N + %qbo(r)e_iwot, (1.25)

then the energy-momentum tensor of the classical configuration and the quan-
tum configuration are exactly the same (a complete description of the previous
treatment can be found in Ref. [45]). In this sense, it is justified to repre-
sent a boson star by a classical field. Another important consequence of the
quantization of the field ¢(t,r) is the appearance of the uncertainty principle,
which provides the “quantum pressure” that balance the gravitational field and
keeps the boson star in equilibrium. Heuristically, if we apply this principle
to a macroscopic boson star, the Heisenberg uncertainly principle of quantum
mechanics given by ApAx > h/2 can be written as

AdmovR > h, (1.26)

where we have assumed that the boson star is confined within some radius
Az = 2R with momentum Ap = mgyv. We can write the particle velocity
with a de Broglie wavelength A\gp ~ 2R = h/mgv as v ~ h/(2mgR). With
this, the total kinetic energy is K ~ N%?/(8moR?)~" (considering a free scalar
field, A = 0). If we neglect the binding energy Fp, we can make the approx-
imation moN ~ M, then the self-gravity potential energy is given by U ~
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—(3/5)GM?/R, and the total energy E = NRk*/(8moR?*)~' — (3/5)GM?/R is
minimized when Ry, ~ (5/6)(2Gm2M), where Ry, is the boson star radius. If
the mass M increases, the radius R, decreases. The maximum value of the
mass for which the radius Ry, reaches the Schwarzschild radius Ry = 2GM
is given by M4 mil/mo where mil = 1/G. As we will see in the next
section, for a non-self-interacting boson star (a mini-boson star), the maxi-
mum mass (or Kaup mass) is given by M., ~ O.63m§l /mg and for a self-
interacting boson star (a massive-boson star), the maximum mass is given by
M oz ~ \/Xmgl /m3, which is still inversely proportional to the mass mg, but
it is larger in magnitude (compared with a mini-boson star) and depends on
the coupling constant A. It is for this reason that configurations with A = 0
are called mini-boson stars and configurations with A # 0 are called massive-
boson stars. Note that the maximum mass M,,,, of the boson star is inversely
related to the mass of the constituent scalar field mgy (and in the case of a
self-interactive boson star depends also on the coupling constant A) in such a
way that the size and mass of a boson star can reach from astrophysical scales
to atomic scales.

1.2.4 Numerical Solutions
Mini-boson Stars

In the free case, A = 0, we can set the change of variables du/dx = (1/A)(dA/dz),
dv/dx = (1/B)(dB/dzx), e* = A(z), e’ = B(x) , ¢(x) = o(x), and recast the
differential equations ([1.19)) in the form

dA | (@ , 1 [do\?| A
dB e , 1 [do\’| B

dx?

d*c B 2 1 dB 1 dA\ do A w?
rz 2B dx 2Adzx

In order to solve numerically the system of equations we reduce the
wave equation to a pair first order differential equations. The resulting
system of four first-order differential equations must satisfy the boundary con-
ditions with the condition o'(r = 0) = 0. We can write the boundary
conditions as

o(r=20) = oy, Tli_}r(r}o o(r) =0, (1.28a)
A(r=0)=1, B(r=0)=DB,, (1.28b)
M(r=0)=0, rlirglo M(r)= M. (1.28¢)

The central amplitude oy and By are free parameters. However, we can observe
from Eq. that if we choose B — ¢B and @ — /cw, the system of
equations does not change. Therefore the equations are linear in B and the
structure of the configuration will be independent of By. Furthermore, the
condition at infinity for the field o(r — o0) = 0 ensures that the star is

Chapter 1 12



0.25 1 \ ©=0.79

—0.25

r

Figure 1.1: Mini-boson star configuration (A = 0). A, B, 0 and ¢’ as
functions of r for the case Ay =1, By = 0.2, 0y = 0.5 and o, = 0 with @ = 0.7
and n = 0. As we can observe A(r — o0) and B(r — oo) = 1 (remember
that it is always possible to rescale the value of B — aB and & — /a® to
ensure the boundary condition B(r — o0o) = 1). Also o(r — o0) = 0 and
o'(r=20)=0.

localized and has finite energy. This condition determines the value for @,
for each n = 1,2, 3... number of nodes in the solution ¢,(r). As we mentioned
previously, there are an infinite number of discrete values of w,, that satisfy this
system of equations. The state that minimizes the energy will be characterized
by the solution ¢,—¢(r) with n = 0 nodes. Solutions with a larger number of
nodes represent solutions with increasing higher energy and satisfies wy < @y <
Wa... < wy. Let us also remember that the condition w,, < my must be satisfied
for all n to ensure solutions with finite energy.

To determine the value of @,, that satisfies the boundary conditions
we use the numerical shooting method, reducing the boundary value problem
to finding the initial conditions that give a root. Given the value of the central
amplitude oy, we choose a seed value for w,, and solve the system accordingly.
For example, in the case of n = 0 number of nodes, if we have chosen wy very
large, then o’(x) will become negative at a finite value of the radius x = mgr
going through a inflection point, and if we have chosen @ too small then o’(x)
becomes positive at a finite value of the radius. We can observe this behavior
for a central amplitude of 0y = 0.1 in Figure left and right panels, in
both cases, the limit lim,_,, o(r) = 0 is broken. We must then choose a more
appropriate value for @y. We can do this by bisecting @avg = (Omaz + Pmin)/2
in a range [@pmin, Omaz| for a sufficient number of iterations until we have reach
the desired precision. In Appendix [B.1] we analyze a detailed example of this
numerical method applied to a non-relativistic stationary Proca star.

Figure [1.1| shows a sample configuration illustrating the functions A, B, o
and do /dr as functions of r = x/m for the case Ay = 1, By = 0.25 and 0y = 0.5
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Figure 1.2: Excited mini-boson star configurations. Mini-boson star
configurations (A = 0) for different excited solutions (n = 0,1,2,3). Left
panel: radial profile o, for n = 0,1, 2,3 number of nodes. Right panel: mass

profile M as a function of x = mgr for each one of the configurations on the
right. Here M ~ (M7 /mo)M and o = M.
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Figure 1.3: Shooting method for a mini-boson star (A = 0). We need to
find the value for wy that satisfies the appropriate boundary conditions
given the values for o(r = 0) = 0¢ and B(r = 0) = By. Left panel: if we choose
a value too small for w, then ¢’ becomes positive at a finite value of x = mgr.
Right panel: if we choose a value too large for w, the radial profile ¢ becomes
negative at a finite value of the radius going through a inflection point. In
both cases, the boundary condition lim,_,., o(r) = 0 is broken. In the central
panel we have chosen an appropriate value for wy in the range [Winin, Wmaz] t0 &
certain degree of precision for the approximate solution o(r). In this case the
boundary condition lim, ., o(r) = 0 is satisfied. Also, given the invariance of
the system under the rescaling B — aB and & — /aw, for By = 1, in
order to get B(r — oo) = 1 we need to rescale @ — y/1/4.1@ (note that this
ensure the condition w < my).
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with @ = 0.7. We can observe that A, B and o reach asymptotic values as
r — oo according to the boundary conditions . In Figure we show
M and mgN as functions of the central amplitude og. Let’s remember that
if the binding energy, defined as Eg = mqN — M, is positive Eg > 0, the
configuration is possible to be stable, otherwise it will be possible for the star
to disperse into its constituent particles to infinity (or more likely, the radiation
of some of the particles until the system reaches a stable state). In Figure
the second vertical line signals when the binding energy vanishes. When the
total mass of the configuration reaches its maximum value, the binding energy
is positive, but this is only a small fraction of the total mass M. Finally,
Figure shows the solutions to the system (|1.27)) with a central amplitude
value of 0 = 0.1 for n = 0, 1, 2, 3 number of nodes. We plot the radial profile
o and the mass M of the star as functions of radius x = mgr in the first and
second panel, respectively. We can observe that the value of the total mass
M = M(r — oo) grows as n increases. As we mentioned before, excited states
have a higher value of M with respect to the ground state n = 0. Actually, we
can observe that M is linear with respect to n.

0.6 \
0.5 Y
0.4
Z m/()N
£0.31
=
0.2
0.1-
0.0 F——" ——— Ep
0.0 0.2 0.4 0.6 0.8 1.0

0o

Figure 1.4: Total mass and particle number. The total mass M and the
particle number mgN as functions of central amplitude oo,. The first dotted
vertical line marks the point of maximum mass M,,... The second vertical line
marks the point where the binding energy Ep vanishes. When Eg is positive,
it represents only a small fraction of the total mass M.

Self-interacting Boson Stars

In the case in which the self-interaction term A is different from zero, we can
solve the system of equations in a similar way to the free case A = 0. To do
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this, let us write equations ((1.19) in terms of the variables A, B, @ and o, such

that
dA L[ s a1 [do\?| A
- = TA (E 1)0 + \No +Z T —;(A—l), (1.29a)
dB @ 1 (do\*| B
— = xzBA||— — 2_Not4 = — —(A-1 1.29b
dx v (B )J 0+A(dx> +x( ), (1.29b)
d*o 2 1 dB 1 dA\ do w?
e (R ) [y | e ) Y
dx? (x+23 dr 2Adx> dx {(B ) 0}07
(1.29¢)
and from Eq. ((1.18)), the differential mass equation take the form
AM(r) 1 ,|[&? ) 1 (do\?
= —+1 Not+—(—) |. 1.
dx 2" (B+ oA +A dx (1.30)
Let’s remember that \' = ZZ—% This self-coupling term may be important

even for small values of A. For the case of mini-boson star, Figure [1.4] shows
that the maximum mass M,,,, is reached for an approximate value of central
amplitude oy = 0.3, which in physical terms is given by ¢ ~ (0.3)M. If we
take the ratio between the mass term m2¢?2 and the self-interaction term A\
for this value of the central amplitude, we have Ag5/mgeoy = A(0.3)* M7 /mg,
so it will be relevant even for values on the order of A > m2/(0.3M,)? typically
small. For example, if we consider a boson mass mg of the order of the neutron
mass, we need that [A] > 1073, This implies that in general, the value of A
plays a relevant role even for very small values of A. Therefore, we can consider
that the coupling term plays a significant role in the configuration. The system
of equations represents a family of configurations characterized by each
of the values that A can take.

The method to solve Eqs., is the same described above for a mini-
boson star. Given the boundary conditions Ay, By, 0¢ and lim, ., o(r) = 0,
we use the shooting method based on bisection method to determine the value
of @,. This value of @, characterizes the solution o, (r) with n number of
nodes that satisfies lim, ,o, o(r) = 0. It is important to note that to solve
Eqgs. we need to choose values of X' that are sufficiently small. For large
values of X', the relative size of the terms in Eqs. differs by several orders
of magnitude and also their ratio varies with respect to the radius. Therefore,
it is not possible to systematically neglect specific terms in the equations.
However, it is possible to consider an approximate solution in the weak and
strong coupling limit (see the approximations to the strong limit in Ref. [40]).
In Figure [1.5( we present the profiles o with zero nodes, considering different
values of ), including the case of a mini-boson star \’ = 0. Also, we can see
that the value of the mass M increases as the value of the coupling constant
doesE| Figure shows the total mass as a function of the central amplitude

4Now it is clear that a self-interacting boson star is more massive than its non-self-
interacting counterpart, from which we derive the names mini- and massive- boson star.
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Figure 1.5: Self-interacting relativistic massive-boson star. Self-
interactive relativistic boson star for different values of the constant coupling
N = —1,0,10,15,20 and n = 0 nodes. Left panel: radial profile o for each ).
The profile widens as the coupling constant increases. Right panel: the mass
profile M for each configuration on the left. The total mass increases as the
value of the coupling constant increases.

og for the cases X' = 0,10, 15 and 20. For each case, the total mass increases
successively. The maximum mass increases as a function of \'.
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Figure 1.6: Total mass M as function of central amplitude o, for a
massive- and mini-boson star. The mass increases as a function of the
value of the coupling constant \'. Particularly, let us note that the value of
the maximum mass M,,,, increases as we increase the value of \.
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1.2.5 Dynamical Stability of Relativistic Boson Stars

The configurations we have studied so far, mini- and massive- boson stars,
are susceptible of instability against small perturbations. As we have already
mentioned, if Fg < 0, then there exists the possibility that the entire star
could be unstable and disperse to infinity. Otherwise, those configurations
for which their binding energy Ejp is positive cannot disperse completely to
infinity, therefore, these configurations could form stable stars over time. As
we shall see, there is a limit, within the range of configurations with Eg > 0,
beyond which stable stars cannot be formed in the presence of linear perturba-
tions. Certainly, configurations for which the value of the central amplitude oy
exceeds the point of the maximum mass of the configuration M,,,, (including
a region where Ep > 0) will be unstable, thereby either evolving into a black
hole or transitioning from an unstable state to a stable configuration.

A way to analyze the dynamical stability of boson stars is to study the time
evolution of infinitesimal perturbations around an equilibrium configuration,
while considering that the number of particles is conserved (see Refs. [20,
22, [40]). We can obtain the perturbed equations if we decompose the scalar
¢(t,z) and the metric field g,, (¢, z) into an equilibrium configuration ¢(©(x)
and gfg,) (x) and a small perturbation d¢(¢, z) and dg,, (¢, x), which are generally
dependent on 7, ¢ and 6. Here we restrict ourselves to the case of spherically
symmetric perturbations that depend only on r. In this case the functions
¢(r,t) and u(r,t) and v(r,t) can be written as

u(r,t) = uQ @) + ou(r,t), v(rt) =0O@) 4 dv(r,t), (1.31a)
o(r,t) = ¢ O + d¢r(r,t) +id¢;(r, t)]e ™", (1.31b)

where du(r,t), dv(r,t), d¢pr(r,t) and 0¢(r, t) are small time-dependent pertur-
bations. Here ¢(t,r) is a generalization of the ansatz (1.9)). By introducing the
perturbations into Einstein’s equations (1.3)), we obtain a set of inde-
pendent linearized perturbation equations. If we also consider that perturba-
tions conserve the number of particles IV, we can add an additional constraint
equation, counting a total of two second-order differential equations and one
constraint. Although obtaining these equations is a challenging task, they can
be consulted in Ref. [40]. However, the spirit of this section is to show the
general process that we need to apply in the relativistic and non-relativistic
limit.

The next step is to assume that all perturbations have a harmonic depen-
dence on time (see Refs. [40, 41} 46], 47]) as

5Q1(t7 f) = 5Qi(7n)ew\t7 with g € {U, v, (bRa ¢I}7 (132>

where A is the characteristic frequency of the system to be determined and
dqi(r) is a radial-dependent function. Once the ansatz has been intro-
duced, the system of coupled equations, along with the condition dNV/dt = 0,
defines an eigenvalue value problem for A and the eigen-functions dg;(r). These
system of equations can be written as

Lij0Gin = N M;0G; n, (1.33)
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with L;; a differential operator and M;; a matrix depending on the background
fields q§0)7 with q§°) c {u® v©@ ¢} see Ref. [40, 41, 46] for a detailed deriva-
tion. The eigen-equation yields a spectrum of solutions dg;,(r) with
their respective eigenvalues \,. As we will see, the sing of the eigenvalue \2
is crucial to determine the stability of the star. If A2 is negative, then )\, is
imaginary and the eigenfunction dg;,(r) grows exponentially with time and
the star will be unstable. Otherwise, if \? is positive, A, is real and the star
has no unstable modes, so will be stable. Actually, the system (1.33]) is self-
adjoint with real eigenvalues A2. Since A2 acquires a family of values given by
A2 < A7 < A% < ... it is only necessary to determine the sign of A2 to establish
the existence or absence of growing modes. Therefore, the critical value of A.
at which the star becomes unstable is given by A. = 0. The case A\, = 0, cor-
responds to a static perturbation according to Eq. . In particular, in the
case of static perturbations the perturbed functions defined in Eq. sat-
isfy the same equations as the equilibrium solutions u(®, v, ¢ - Thus if we
have an equilibrium configuration with 0((]0), the perturbed fields will describe
another equilibrium configuration with aéo) + 00y, for some infinitesimal dog.
We already know that the equilibrium mini-boson and massive-boson stars
configurations are parameterized with the only parameter oy, cf. Figures
and [L.6] that is, the central amplitude of the scalar field, as

M = M(cy), N = N(oy), (1.34)

with M the total mass and N the number of particles. Hence, in the static
case perturbed configurations must correspond to some central density og+dog,
and, since the perturbations conserve the particle number § N, we can establish
that only static perturbations exist when

dM(O'()) . dN(CTo) .
G = 0, P 0. (1.35)

In conclusion, the stable modes present in Eq. correspond to real
and positive eigenvalues A\? with A, = 0 the minimum value below which the
modes become unstable. When \. = 0, there exists an extreme value of the
mass M (0g), beyond which the star becomes unstable. The maximum value
of this mass corresponds to the value of the mass M,,,,. In the left panel
of Figure [1.7] we plot the relation between the total mass of the star M for
the relativistic case versus the value of the central profile gp. We can see
that there exists a value of oy for which M is maximized which is a critical
point of Eq. . The gray band indicates a sector of configurations whose
total mass is below the Kaup mass value and positive binding energy Eg > 0.
Configurations within this range could be stable against linear perturbations.
Therefore, My, signs the transition limit between stability and instability.
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Figure 1.7: Relativistic and non-relativistic mini-boson stars (A = 0)
for n = 0. Right panel: mass profile M, for a relativistic mini-boson star.
There is a region (gray zone) beyond which the star is unstable. The critical
mass value at this point is given by the Kaup mass (Myanp = 0.629). Left
panel: mass profile My for a non-relativistic mini-boson star. In this case,
there is no critical mass value since relativistic effects are not present.

1.3 Non-relativistic Boson Stars

1.3.1 Gross-Pitaevskii-Poisson System

In the non-relativistic limit, the action ((1.1)) takes the form

S, ] = / dt / d*x {#zmu

+ o <i2 + LA) _ 4%2)|¢|4 — mod|v2| (1.36)

ot ng
where we have introduced the scalar field as ¢(t,7) = ﬁe*imot@b(t,f) and

U(t,7) is the Newtonian potential. The first term describes the gravita-
tional field, the second and third terms describes the sector of matter, and
the last term describes the interaction of the matter field with the gravita-
tional potential. In particular, we will consider a self-interacting potential
V = A/ (4m?) with A a dimensionless coupling constant, which can take
the values A > 0 if the self-interaction is repulsive or A < 0 if the self-interaction
is attractive. When A = 0 we recover the case with no self-interaction, in such
a case the scalar field is only coupled to gravity. In Appendix [A.1], we analyze
in detail how to proceed to take the non-relativistic limit of the action (1.1]).
Now, varying the action with respect to the field 1), we obtain the

Gross-Pitaevskii equation

.0 1 A

za—qf = —Z—mOA@ZJ + 2‘—m‘%|¢|2¢ + moldtp (1.37a)
where the signs + refer to the repulsive (A > 0) and attractive case (A < 0),
and varying with respect to the Newtonian potential we obtain the familiar
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Poisson equation as
AU = drGmy |y . (1.37b)

The whole system and conform the s = 0 Gross-Pitaevskii-
Poisson system. If we restrict to the case A\ = 0, we recover the Schrodinger-
Poisson system. So, we can think of this system as a self-gravitating Bose-
Einstein condensate with wave function (¢, Z). As we expected, the system
does not contain temporal derivatives of the gravitational potential. In con-
trast to the self-interacting relativistic system , which depends on the
gravitational fields A(t,Z) and B(t, %), and the scalar field ¢(¢, %), the non-
relativistic Gross-Pitaevskii-Poisson system ([1.37]) only depends on the gravi-
tational field U and the scalar wave function (¢, Z). Beyond this simplifica-
tion, to solve the system , we follow a process that is entirely analogous
to the relativistic case.

We can recast the Gross-Pitaevskii-Poisson system (|1.37a))-(1.37b]) as an

integro-defferential nonlinear equation in the form

0y -
ZE = H()Y (1.38)
with the Hamiltonian operator
’ _ 1 AL e 2A—1(1,/,(2
H) = 5k g g0 4 anGmEAT (U, (189)
where . @
-1 N Y~ 3

Note that the Hamiltionian operator H[¢] is hermitian, i.e. (i1, H[th|1)s) =
(H[1]1)1,02)) and nonlinear in 1. Solutions to the system that minimize
the energy functional and conserve the number of particles are given by the
harmonic ansatz of the form Eq. and are called stationary states. Here,
we are interested in characterizing these configurations, particularly config-
urations spherically symmetric. In what follows, we will make an effort to
describe these solutions, and a brief review of the methodology for studying
their stability.

1.3.2 Conserved Quantities

Particle Number

The invariance of the Lagrangian in the non-relativistic action under
continuous shifts in the phase of the wave function ¥ (t, 7) = e~ (t, T), with «
a real constant, leads to the conservation of the “particle number”, N = [ d*xn,
where the number density n is given by n = (¢, ¥)|%. In the non-relativistic
case we have that the total mass of the configurations is given by M = mgN,
where the energy density is given by p = mg|y]2.

Note: Given the Lagrangian density

1

0
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the complex scalar field ¢ has internal U(1) symmetry. This means that
global transformations of the fields ¢ — € and ¥* — e *%)* have no
effect on the Lagrangian. According to the Noether theorem (see footnote
(2)), every symmetry yields a conserved current. To get the conserved
current associated to the U(1) symmetry, we write the transformation for
an infinitesimal change in the phase «:

Y =Y+ 0 =+ Dypda = ¢ + ipoa, D¢:%§ = i,
a=0
YT = YT+ 0Y" = Y7 + DYoo = Y — ipda, D¢“:i$k = —iy,
a=0

with DL = gm—ﬂg—ﬂa:o = (0. Given that the conserved current is given by

the expression Jy = II*(x) Dy — WH(x) with DL = 9,W* = 0, we have
Wt =0 and Jy = > II#Do where the sum is over the fields ¢ and *.
So, the conserved current is given by

Jy =) “Do =TI}, Dy + 114, Dy* (1.42)

g

with the conserved charge

N = /d?’xJR, = /d3:n|¢|2. (1.43)

See Ref. [36] for a comprehensive exposition of Noether’s theorem and
conserved charges.

Energy Functional

Analogous to the relativistic case, we can write the total energy of the system

for the non-relativistic action ([1.36) as

oL . oL . oL .

E:/d%[ ——p* + ———1) + .M—E], (1.44)
() o) o)

where dots indicates time-derivatives. Using the relations V(UVU) = VUVU+

UAU, p* Ay = V (*V1)) —Vp* V1, the Poisson equation ([1.37b)) and discard-

ing the boundary terms, we can recast this as

Al 1

1
elol = [ @ (G {VOP £ Dol 4 gmldlo ) (145

which, due to the invariance of the Lagrangian under time translations ¢ (¢, ¥) —
W(t — to, &), with ¢y a real constant, is conserved whereas the system evolves.
Properties of the Energy Functional

We are interested in characterizing equilibrium configurations that represent
perdurable solutions over time, that is, that are susceptible to stability against
perturbations. Equilibrium configurations correspond to critical points of the
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energy functional €[y that conserves the number of particles N E Given the
constriction N = constant, we need to perform the variation of the functional
EplY] = E[W]—Z(N — [¢*¢dV) with E a Lagrange multiplier associated with
the constraint that guarantees that the particle number remains fixed in the

~

variation. After the first variation of £[¢] we have 0€g = Re(H[Y] — Ev, 0v)).
A critical point is characterized by the criteria 0€g = 0 for the field dv; Then,
equilibrium configurations satisfies the eigenvalue equation E1 = 7:[1#. These
configurations are called stationary configurations, and they are given by the
solutions of the form

D(t, T) = e PleO (7). (1.49)

For these solutions, the energy functional allows us to shed light on the stability
of stationary configurations. In order to see this, we can recast the energy

functional ([1.45)) in the form

E[W] = T[] £ Fln] = D[n, nl, (1.50)
with n = [|?, and
1) = 5 [ Vel (1.51a)
Fn] = %g/n(f)?d?’x, (1.51b)
Dln,n] = 27Gm} / / %di”yd?’x. (1.51c)

Invariance of the particle number N with respect to the rescaled wave function
U, (t, %) = v3%)(t,vx) allows us to establish some properties of the energy
functional for stationary states (states that minimize E[¢]):

1. The first variation of £[1),| allows us to write the energy functional for
stationary states as E[¢] = —T[¢)] F 2F[¢].

2. The energy of a stationary state is always negative in the repulsive case.

3. In the attractive case, stationary states cannot be a minimum of the
energy function if the self-interaction term dominates over the kinetic
term T < 3F.

To perform the variation of the functional £[¢)], we expand the wave function as

U(t, 1) = O + edip(t, T) + §52¢(t,f) + O(é?) (1.46)

where 1(?) denote the background field and 6v(t, ), 621)(t, Z) denote the first and second
order perturbations, respectively. So, the n-th variation is defined as

e = %e[w] (1.47)

e=0

With this, integrating by parts and discarding the boundary terms, the first variation on
the energy functional e[¢)] take the form

Se = Re(H(¢), 6¢), (1.48)

where we have used the # definition 1) and we have defined the L2-scalar product
(¥, ¢) = [Y*¢d3x between 1 and ¢.
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Figure 1.8: Energy functional £ for stationary states as function of
the number of particles. Energy for a stationary state with n = 0 nodes in
the the free (A = 0), repulsive (A = 1) and attractive (A = —1) cases.

The first point allows us to write the energy functional for stationary states
without the need to calculate D. The second point indicates that excluding the
attractive case, the energy functional will always be negative and increasing.
The third point provides us with important information about the stability
of stationary configurations for the attractive case A = —1. The point at
which the quantity 7' — 3F transitions from positive to negative values, that
is, when T'[og] — 3F[op] = 0, marks the transition point from the stable band
of configurations to the unstable band. Particularly, the value at which this
transition occurs coincides with the point of maximum mass in the Figure [1.9]
right panel. We will replicate these demonstrations in more detail in the next
chapter for non-relativistic Proca stars.

1.3.3 Numerical System and Results
In order to numerically solve the system of equations (|1.37af)-(1.37b]), we can

make a change of variable to obtain a dimensionless system. If we define the
new dimensionless quantities

A M2 2 2
A= ‘27‘%’;[, R (1.52a)
0
1/2
phys _ N A phys
R T vl B (1.52b)
pl

where phys makes reference to physical quantities. In terms of these variables
we can write a dimensionless Gross-Pitaevski-Poisson system as

i%—f = (A Y +UN, (1.53a)
AU = [ (1.53b)
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where the coupling constant A is present in the dimensionless variables. Beyond
the relative simplification of the relativistic system @ , it is noteworthy
to observe that the Gross-Pitaevskii-Poisson system @ does not depend
on the strength of the coupling constant A. Therefore, the solutions will not
depend on how strong A is, but only on the repulsive or attractive nature of the
self-interaction. In the relativistic case, a similar situation arises when A > 1,
(see Ref. [40]). As in the relativistic case with strong coupling constant, A
plays only a role through the dimensionless variables and we have only
two differential equations to solve, however, in the non-relativistic case, these
are second order differential equations. The mass, similar to the relativistic
case, will scale as M = 4rAY?mg/M2AMP"* and the particle number scales
like N = 4w AY2mg /M2 NPhvs,

Spherically Symmetric Configurations

Now, let us study the case of a spherically symmetric stationary state with
a spherically symmetric gravitational potential U(r). Note that the spherical
symmetry in t(t,r) guarantees the symmetry of T* (¢,r) and therefore the
symmetry of U(r) through the Poisson equation (I is time independent, since
it is not dynamic in the non-relativistic limit). Given the stationary ansatz
Y(t,r) = e *Flo(r) and defining the shifted potential u(r) = E — U(r), the
dimensionless Gross-Pitaevskii-Poisson system is given by

d’c 2do

9 2008 1.54
dr? rar -0 T (1.54a)
d*u 2du

- = _Z__ 5% 1.54b
dr? rdr o ( )

In order to ensure regularity at the origin, we must impose the following
boundary conditions: ¢'(r =0) =u'(r =0) =0, 0(r = 0) = gp and u(r = 0) =
up. And to guarantees finite energy solutions we need impose lim, _,, o(r) = 0.
To solve the system of equations , we must reduce the equations to four
first-order differential equationsﬂ and proceed in a similar manner as we did
in the relativistic case. Then, we can solve the system for oy and ug through
the shooting-bisection method before described (in Appendix , we review in
detail this method applied to a non-relativistic Proca star), and determine
the ugy value that yields a solution with n = 0,1,2,... nodes and satisfies
the condition of finite energy lim, ,,, o(r) = 0. For a given value of the
central amplitude oy we get a discrete set of infinite values of u,, that satisfies
the boundary conditions whit successive solutions representing higher energy
regular solutions uy < uy < ug < ... < Uy,.

Additionally, we need to connect the numerical solution obtained for a
finite value of r (this value depends on the maximum precision achieved by

6System of equations ([1.54) reduced to four first-order differential equations for r > 0:

do dy 2y 3

= = A Y 1.

o v 0 —uo, (1.55a)
du dx 2x 9

_ = _— = —— — . 1.

o T, - = (1.55b)

When limr — 0 (using L’Hépital’s rule) we can write dy/dr = —oguo/3 and dz/dr = —a§ /3.
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the shooting method) with the asymptotic solution of o(r) and u(r) as r — oo.
At this limit, the equation 1) takes the form %(ra(r}) — |Elro(r) = 0
from which the radial profile take the form

o(r) ~ ge_mr, (1.56)
where C'is a constant of integration. To obtain Eq. we have used the fact
that lim, ,, o(r) = 0 and lim,_,, U(r) = 0. Since the gravitational potential
vanishes at infinity, the shifted potential is given by lim, ., u(r) = E—U(r) =
E. On the other hand, it is also possible to demonstrate, see Appendix C in
Ref. [48], that the asymptotic behavior of u(r) takes the form

M

with M the total mass given by M = moN = my [ 2o (r)*dr.

Figure [I.9] left panel, shows the radial profile with n = 0 nodes for the
attractive, free, and repulsive cases, and a central amplitude oy = 1.0. For
these configurations, the shooting method produces a value for the shifted
potential uyp = 0.56 (A = —1), up = 0.91 (A =0) and uy = 1.47 (A = 1). From
this value, it is possible to obtain the eigenvalue E; through the expression
. Let’s note that, as in the relativistic case (cf. Figure , the profile
shrinks or expands depending on the value of the self-interaction. When r —
00, the value of the profile approaches zero numerically, as we expect.

Finally, it is important to note that the numerical system is identical
to the system s = 1 Gross-Pitaevskii-Poisson for the case of a self-interacting
non-relativistic Proca star with linear(circular) polarization that evolves
harmonically with only one frequency E. We will solve these equations in the
next chapter.

Mass and Radius

The mass of a non-relativistic boson star can be computed as the product of myg
with the particle number defined in Eq. , which yields MPWs = mNPhvs
where N?Ms = M2 /(47AY?md)N, and N represent the number of particles
in the dimensionless variables , that in the spherically symmetric case is
given by

N = 4n / lo(r) rdr. (1.58)
0

Let’s remember that to calculate the total mass of the configuration o(r)
we need to make the integral in 4 [ drr?p with p = mglo(r)|* and to cal-
culate the radius of the star Rg9 we have to calculate the integral 0.99M =
4 fOR” drr?p with Rgy = 2v/2mm3/(|A\|V/2My)REyY®. In Figure , we plot
o(r) vs r for A = 1,0, —1, that is the systems Gross-Pitaevskii-Poisson (GPP)
in the repulsive (A = 1), free (SP, A = 0), and attractive (A = —1) case,
respectively, for a central amplitude oy = 1. We can see that, if we compare
with respect to the Schrodinger-Poisson (SP) profile A = 0, the profile of the
configuration expands if the self-interaction is repulsive A = 1 and shrinks if
it is attractive A = —1. Also, in the right panel of Figure |1.9] we have plotted
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Figure 1.9: Self-interactive non-relativistic boson star n = (0. Radial
profile o(r) for a non-relativistic boson star for different values of the coupling
constant A = 0,1,—1. We can observe that the profile becomes wider as
the value of the self-interaction increases. MggvsRgg for a non-relativistic self

interactive boson star for the attractive (A = —1), free (A = 0) y repulsive
(A =1) case. Myg is 99% of the value of the star’s mass contained within 99%
of the star’s radius. For the attractive case (A = —1), we observe that there is

a critical mass value similar to the one that appears in the relativistic case.

Mgy vs Rgg, that is, the relation between 0.99M of the total mass and Ry,
the radius of the 0.99M mass. In the free and repulsive case, the configura-
tions become more compacts as we increase the value of the central amplitude
09, whereas in the attractive case, the configuration reaches a maximum mass
Myg corresponding to a central amplitude oy'**. In the case of oy — 0, we can
see from Eq. that the self-interactive term is negligible with respect
to all the other terms. In Figure it is clear when o — 0 and the profiles

approximate the Schrodinger-Poisson solution.

Energy Functional

As we have seen, the energy functional £[)] plays an important role in deter-
mining equilibrium configurations, and for this reason, we analyze it separately.

From Eq.(1.45) the total energy is given by EPMs = md(27)%/2/(272|\|>/2 M) E

with Po(r)
B o(r 4l
&= —27r/ { 0 + o(r) } redr (1.59)
where we have used the relation, £[¢)] = —T[¢] F 2F[¢]. In Figure we

show the energy functional €[] as function of the number of particles of the
configuration N for the attractive (A = —1), free (A = 0) and repulsive (A = 1)
case. Note that for the free and repulsive case the energy is always negative
(in agreement with the point two above), contrary to the attractive case for
which the energy takes positive values at a finite value of V. For the repulsive
and free case the energy increases with the number of particles. Remember
that in the attractive case, stationary states cannot be a minimum of the
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energy function if the self-interaction term dominates over the kinetic term
T < 3F, that is, when T'— 3F' = 0 marks the point in which stationary states
with attractive self-interaction becomes instable. In Figure [I.8 the point at
which the energy reaches its minimum coincides with the state at which the
configuration reaches its maximum mass. We can also observe that stationary
states without self-interaction represent a state of lower energy compared to
those for which the self-interaction is A = 1. Naturally, the energy will increase
in value as we increase the value of n. The ground state configuration (i.e. the
lowest possible energy state that exists for a given particle number) is given by
nodeless (n = 0) spherically symmetric stationary states in the absence of self-
interactions. As we shall demonstrate in the following chapter, the s = 0 Gross-
Pitaevskii-Poisson system (|1.54)) is equivalent to the s = 1 Gross-Pitaevskii-
Poisson system with linear (circular) polarization. For stationary solutions
with A > 0, we find that the energy functional is bounded from below and
that, moreover, for spherically symmetric configurations, the system reaches
its minimum energy state. That is, stationary configurations with spherical
symmetry and A > 0 constitute the ground state.

Excited stationary configurations

With an harmonic ansatz of the form (¢, ) = e "P'o(F), we can write the
integro-differential equation ((1.38) in the form of an eigen-value problem as

Eo = H(o)o(Z). (1.60)

Given a value for the central amplitude oy, there are an infinite number of
possible eigenvalue solutions F, for n = 0,1,2,3... that satisfy the integro-
differential equation for the regular and finite boundary conditions. If
we characterize the solutions to Eq. in terms of the number of nodes n
present in the profile o(Z), it is possible to associate the ground state (that
is, the state with minimum energy) to the solution with the n = 0 number of
nodes and the states with higher energy to solutions with n = 1,2, 3... number
of nodes. With this, the association of the value of the constant w in Eq.
with the value of the frequency (energy) of the boson field is clear.

In Figure we can see the o(r) profile (right panel) in the attractive,
free (SP, A = 0) and repulsive case for the Gross-Pitaevskii-Poisson system
with n = 1 number of nodes and the 99% of the total mass My as function
of Rgg the value of the radius containing 99% of the mass (left panel). Solu-
tions to the eigenvalue problem with n = 1 number of nodes correspond to a
value F,_; given by Eq. . For this case, the shooting method produces
the values for the shifted potential given by uy = 0.91 (A = —1), ug = 1.2
(A =0), and ug = 1.66 (A = —1). Note that for a fixed value of Ry, solu-
tions with n = 1 represent more massive solutions compared to the solutions
without nodes. Also, as we observed for the stationary solutions with n = 0
(see Figure [L.9), the attractive case (A = —1) reaches a maximum value of
the mass Moy for a unique value of Rgg (or og). For oo — 0 the effects
of the self-interactions becomes negligible and we recover the non-interacting
Schrodinger-Poisson system. Figure shows these systems for n = 1 and
n = 2 solutions for A = —1,0, 1, in the first and second panels, and the value
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Figure 1.10: Self-interactive boson star n = 1.Left panel: radial profile
o(r) for a non-relativistic Boson star for n = 1 number of nodes and central
amplitude o9 = 1. In each case, these profiles represent excited states with
A= —1,0,1. In the right panel: MggvsRg9 for each case in the left panel.
Again, we can see that the attractive case (A = —1) has a maximum mass
value similar to the relativistic case.

of the total mass M for each case, in the third panel. Note that the total mass
M increases with the values of A and n. This is expected since configurations
with a greater number of nodes have greater energy. In each case, the solutions
are regular at the origin, localized (that is, lim,_,», o(r) = 0) and energy finite.
Finally, Figure [I.11{shows the energy functional £ as a function of the number
of particles N for the first excited state n = 1. For a fixed N, the energy is
greater than that corresponding to the state with n = 0, for each A = —1,0, 1.

1.3.4 Linear Stability

To study the stability of the Gross-Piaevskii-Poisson system (|1.37al)-({1.37b)
against small perturbations to the stationary solutions v (t, ¥) = e~"P'o(Z) that

we have studied so far, we propose the ansatz (see Ref. [49] for an exhaustive
analysis of the methodology described in this section) of the form

U(t, %) = e P [0 + eo(t, &) + O()] (1.61)

where € is a small positive parameter, o(®) is the background solution to eigen-
value problem and o(t, Z) is a complex function that describes the linear
perturbation. Note that in the relativistic case we have written the perturba-
tion with spherical symmetry as ¢(t,7) = ¢©ddg(r,t) + ¢©6¢;(r, ), which
is an analogous construction to the ansatz (1.61). In Ref. [40] they write the
decomposition for the relativistic case with spherical symmetry in the form
o(r,t) = e P p(r, 1) + ¢(t,7)M] in accordance with Eq. (1.61)).

Following the same procedure described in Section [1.2.5] we insert the
ansatz into the integro-differential Gross-Pitaevski-Poisson system, and
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Figure 1.11: Energy functional £ as function of the number of particles
N for n = 1. Energy functional £ as a function of the number of particles N
for the first excited state n = 1. For a fixed N , the energy is greater than
that corresponding to the state with n = 0, for each A = —1,0, 1.

Figure 1.12: First two excited state for a self-interactive boson star
n = 1,2. Left and center panel: radial profile o(r) for the two first excited
states (n = 1,2 number of nodes) of a non-relativistic boson star for the
attractive (A = —1), free (A = 0), and repulsive (A = 1) cases. Left panel: the
total mass M for each one of the profiles on the left.
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up to linear order in €, we get

Zaa—j = (7—2(0) — E) O'(t,f) + 20-(0)[% [U(O)RG(U(t7f)] 7 (162)

where
HO = A+ 6D L A1 (6®?) and K =+1+A"L (1.63)

Now, similar to the harmonic decomposition of the perturbation ([1.32)) in
the relativistic case, we can write o(t,%) as o(t,Z) = or(t,T) + o1(t,Z) =
2Im (B(Z)e™) + 2Re (A(Z)eM) or

o(t, %) = [A@) + B(T)] M + [A*(Z) — B*(7)] " (1.64)

where A(Z) and B(Z) are complex-valued functions and A (do not confuse
A with the self-coupling constant and A(Z) and B(Z) with the relativistic
gravitational potentials) is the characteristic frequency of the perturbation.
Here Eq. is equivalent to the system for the relativistic case, in
this case the only field to be perturbed is given by v (t,Z) through the fields
A(Z) and B(Z) in a way similar to that of d¢; and d¢r. Putting Eq.
into Eq. , and setting the coefficients in front of e’ and e*™* to zero, we
get

Ly X; =iAX; with X = (A(Z), B(Z))T (1.65a)
where
) 0 (10 - E)
L=1,. . (1.65b)
(’H“)) - E) + 200K [00)] 0

and K[o®]A acts as K [¢(@ A]. Note the similitude and simplification in form

with Eq. now with L containing both partial derivatives and background
equilibrium solution ¢(®. The system is a linear eigenvalue problem
for the constant A, such that, if Lisa self-adjoint matrix, then \ will be
real. In this last case o(t,7) = [Re{A(Z)} + Im{B(Z)}|e* ~ e, and the
perturbations grow exponentially with ¢. So, linear instability is determined
by the existence of solutions with positive real part of X\. In Ref. [49], the
authors demonstrate that stationary ground state configurations can have only
real or purely imaginary A and that real eigenvalues are excluded if these
configurations are a local minimum of the energy functional £[¢].

Spherical and Non-spherical perturbations

The background solutions ¢(® (r) that we have calculated are spherically sym-
metric, so the linearized equations can be decoupled into a family of
purely radial systems by expanding the perturbation functions A(Z) and B(Z)
in terms of spherical harmonics Y™ as

A@) =D Am(r)Y"™ (6, ), (1.66a)
B(Z) =Y _ Bin(r)Y"™(0, ¢). (1.66h)
Ilm
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For radial perturbations we need to consider [,m = 0. With these functions,
the eigen-value system ((1.65)) can be written in terms of

0 (}l}(’) - E>

Xi = (Alm, Blm) with I: = (0) ~
(#” - E) + 200K [0)] 0

(1.67)
where the operators H® and K are defined as

HO = A +0@? L A7 (0©?)  and K= +14 A7 (1.68)

with A, := (%%r) — (I +1)/r* and

1 o S/
AN = =g /0 7;51 f(7)idr, (1.69)
where - := min{r, 7} and 7~ := max{r, 7}.

We need to solve the system , with L and X given by Eq. , to
find the eigenvalues A and the eigen-functions A(Z) and B(Z) that satisfies a set
of appropriate boundary conditions. For this, we recast the system defining the
new rescaled functions a;,(r) = rAp,(r) and by, (r) = 7By, (r) which reduce
the perturbed system to

—iXag, = b +0©% 4 Uty (1.70a)
21+
: _ off 0)2 0 (0
—iMoyn = al, + Uty + 3092, — 200 (W — T) [U )alm] ,
(1.70D)

where U = 4@ — (1 +1)/r2, and the operator (d2/dr? —1(1+1)/r2)"" =
rA;'r~! denotes the inverse of A (r~!) with homogeneous Dirichlet boundary
conditions at » = 0 and r — oco. To determine the boundary conditions that
ensure regular and finite solutions, we need to analyze the asymptotic behavior
of the system and their behavior near the origin. We know that near
the origin 7 =~ 0, 0© ~ 0y, ul® ~ wg, so the dominant term in Eq. is
the centrifugal U™ term, and the system takes the form

() P (R )

r2 Im r2

- i 7 0, (1.71)
whose solutions are by, ay, ~ r/>F1/2vV4ED+ regylar at the origin. On the

other hand, when r — oo, we know that lim, . o(r)® = 0, and lim,_,, u(r)®) =
E, so the system ([1.70]) take the form

by, + Ebyn =0 aj,, + Eay, ~ 0. (1.72)

In order to have lim, (@, bym) = 0 we must choose the solution that van-
ishes at infinity, that is, when E < 0. This implies the following boundary
conditions

a(r=0) = 0, by,(r=0)=0, (1.73a)
lim apn(r) = 0, lim by,(r) =0, (1.73b)
T—00 T—00

Chapter 1 32



which means that the solutions are regular at the center and have finite total
energy. Also, note that Eq. do not depend on the quantum number m.
Particularly, in Ref. [49], the authors demonstrated that for large values of [,
there are no unstable modes.

Given the system of second order differential equations and the set
of boundary conditions (|1.73]), it is possible to find solutions to a;, and by,
that will be regular at the origin and will have finite energy. The procedure to
obtain these solutions goes beyond the scope of this thesis work, however, we
summarize it as follows: first, 1) we need to extend the range in r of the nu-
merical solutions to ¢ (r) and u(?)(r) obtained through the shooting method
using the asymptotic solutions and , second, 2) the extended ver-
sions of the stationary solutions agg(r) and uéﬂ{(r), the perturbed fields ay,
and by, and the differential operators rA;'r=!, A7 Ay and A~ are dis-
cretized in terms of Chebyshev polynomials using a standard spectral method,
which leads to a finite-dimensional eigenvalue problem.

It is important to mention the results obtained with the methodology de-
scribed above applied to the Gross-Pitaevskii-Poisson system developed by
Nambo et al. in Ref. [49]. First, for radial perturbations (I = 0) regarding the
ground state n = 0, the authors found that the configurations will be stable
if the self-interaction is repulsive, that is, A > 0. Furthermore, in the case
of attractive self-interaction, that is A < 0, there exists a maximum value for
the mass M,,,, beyond which the configurations transition to unstable states
under radial perturbations (I = 0). In Figure , we can verify that there is a
maximum value for the mass Mgy when A\ < 0. This behavior is analogous to
the relativistic case where the transition to unstable states is determined by
the value of the kaup mass Mjq.p, as we can see in the Figure . The differ-
ence with respect to the relativistic case is due to the fact that this maximum
mass arises from relativistic effects, while in the non-relativistic case, this limit
is caused by the effect of attractive self-interaction. Second, regarding excited
states under spherical perturbations (I = 0), Nambo et al. Ref. [49] found
that, if in general these are unstable, there exist configurations belonging to
the first excited states that remain stable under spherical linear perturbations
for repulsive case (A > 0). In particular, they found that, in the free and
attractive case, spherically symmetric excited boson stars are unstable under
radial perturbations. In Table we summarize these results for n = 0,1, 2.

For non-spherical perturbations (I > 0), regarding the ground state n = 0,
the authors found that the configurations will be stable if the self-interaction
is repulsive (A > 0). Furthermore, in the case of attractive self-interaction
(A < 0), there exists a common stability band (at least for [ < 6) for the
configurations in the range o9 < 1. Second, with respect to excited states,
under non-spherical perturbations (I > 0), Nambo et al. Ref. [49] found that,
if in general these are unstable, there exist configurations belonging to the first
excited states that remain stable under generic linear perturbations in the re-
pulsive case (A > 0). They found that, in the free (A = 0) and attractive case,
spherically symmetric excited boson stars are unstable under generic pertur-
bations. In Table [1.2] we summarize these results for n = 0,1,2. Although
in this thesis we only present a general outline of this methodology applied
to Boson stars and non-relativistic Proca stars, detailed future works on the
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stability analysis of non-relativistic Proca stars are in progress [2].

Spherical perturbations [ = 0 ‘
GPP Attractive SP (A =0) | GPP Repulsive

n=20

there exist a maxi- stable stable
ground state

mum mass Mpyax be-
yond which the con-
figurations are un-
stable

n=12 .

. unstable unstable | there exist con-
excite states

figurations that
remain stables

Table 1.1: Stability for a non-relativistic self-interacting boson star
(I = 0). For ground state configurations (n = 0) the repulsive (A = 1) and
free (A = 0) case are always stable under radial perturbations (I = 0). For the
attractive case (A = —1), there exists a maximum mass My, beyond which
the configurations transition to unstable states (for o9 > o). For excited
configurations (n = 1,2), the attractive and free self-interacting configurations
are unstable under radial perturbations, whereas the in the repulsive case there

exists values of g for which the configurations are stable.

Non-spherical perturbations [ > 0

GPP attractive SP (A =0) | GPP repulsive
" j Ot ¢ there exist an stabil- stable stable
grouna state ity band for o9 <1
n=172.

unstable unstable there exist con-
figurations that
remain stables

excite states

Table 1.2: Stability of non-relativistic self-interacting boson star (I >
0). Only configurations lying in the intersection of the stability bands for
all [ > 0 are stable with respect to generic linear perturbation. For ground
state configurations (n = 0) the repulsive (A = 1) and free (A = 0) cases
are always stable under non-spherical perturbations (do not exhibit unstable
modes (at least for [ < 12). For the attractive case (A = —1), there exists an
common stability band (at least for [ < 6)) for the configurations in the range
0o < 1. For excited configurations (n = 1,2), the attractive and free cases are
unstable under non-spherical perturbations, whereas the in the repulsive case
for (n = 1) there exists a very narrow band of stability for 1.55 < gy < 2.07
for which the configurations are stable.
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|Chapter 2

Non-relativistic Proca Stars: Spherical
Stationary and Multi-frequency States

2.1 Introduction

As we have already seen in the previous chapter, boson stars are regular,
finite energy configurations that do not disperse in time and are encountered
in massive, self-gravitating scalar field theories [15, 11l 46l 40} 43 [50} 51
52]. In this chapter, we will review similar solutions that arise when dealing
with self-gravitating massive spin-1 fields, known as Proca stars. Particularly,
we will study the non-relativistic effective theory of a self-interacting massive
vector field minimally coupled to gravity, and we pay particular attention to
spherically symmetric states and equilibrium configurations. This chapter is the
result of the research work Non-relativistic Proca stars: Spherical stationary
and multi-frequency states [1] from which the description below is derived. On
small scales, weakly interacting dark matter models, like the WIMP model,
have problems like the “missing satellite” and “cuspy core” problems discussed
in the previous chapter. By nature, boson stars might be able to mitigate
these problems in this way [53, [54]. Further, massive vector fields may be
especially relevant to ultralight dark matter models [55] (56| [57) [58], exhibiting
a richer phenomenology compared to spin s = 0 axion-like particles [59]. In
galaxies, these particles could form dark matter halos, whose global structure
is inherently Newtonian, and this motivates our focus on the non-relativistic
theory in this thesis report.

Proca stars were first introduced by Brito, Cardoso, Herdeiro, and Radu
in Ref. [60], where they constructed solutions of the Einstein-Proca equations
with both static spherically symmetric and stationary axially symmetric space-
time. This pioneering work triggered a surge in research on such stars that
includes theoretical investigations [61], 62, [63] 64], 65 [66, 67], numerical simu-
lations [68, 69, [70], and astrophysical applications [71l, [72] [73| [74], [75]. In the
non-relativistic regime, Proca stars have been explored by Amin, Jain, and
collaborators in [76] [77, [78], [79] [80] (see also Refs. [81], 82] 83, [84] [85]).

We can think of non-relativistic Proca star as self-gravitating condensates
of spin s = 1 particles, where matter is described in terms of a vector-valued
wave function 1/7(15, ¥) satisfying the Schrodinger wave equation and obeying
Poisson’s equation in terms of the Newtonian gravitational potential U(¢, ).
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Figure 2.1: Spherical Proca stars’ inventory: The normalized real part of
the vector field, JR(t, Z), and the normalized particle number density, n(¢, T),
in color gradient, of some representative equilibrium configurations at time
t =0. When A, # 0, all equilibrium configurations are stationary states, with
only linear, circular, and radial polarizations allowed in spherical symmetry.
When A\, = 0, in addition to the aforementioned stationary states, spherical
symmetry permits general constantly polarized stationary states and multi-
frequency states. At ¢ = 0, all constant polarization states look the same,

although they differ in their time evolution (see Figure 2.2 for details).
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When self-interactions are included, the Schrodinger wave equation needs to
be replaced by a Gross-Pitaevskii type equation with two coupling constants
A, and A;. We refer to these equations as the s = 1 Schrddinger-Poisson
system when A, = A\; = 0, and as the s = 1 Gross-Pitaevskii-Poisson system
otherwise, and to the resulting finite energy equilibrium configurations as non-
relativistic Proca stars. Let’s remember that a non-relativistic boson star could
also be interpreted as a non-relativistic condensate of self-gravitating and self-
interacting s = 0 particles, with scalar wave function ¢(¢, %), depending only
on the self-interaction parameters A\, and the mass of the particle my. In this
sense, Proca stars exhibit a more extensive phenomenology.

The spectrum of Proca star solutions depends on the spin-spin self-interaction
parameter As. When Ay # 0, which we henceforth call the generic sector of
the theory, the Proca star’s wave function evolves in time harmonically. As
in standard quantum mechanics, we shall refer to these equilibrium config-
urations as stationary (or single-frequency) states. However, when A\; = 0,
the effective theory acquires an additional (accidental) symmetry, resulting in
the symmetry-enhanced sector. In this sector, new types of equilibrium con-
figurations appear besides the stationary states in which the wave function
oscillates with two or three distinct frequencies. We shall call these configura-
tions multi-frequency states. This spectrum of configurations differs from that
of a boson star, where we only find stationary configurations that evolve har-
monically with a frequency. The spin term introduces this difference here. In
this sense, single-field boson Stars only constitute stationary (single-frequency)
equilibrium configurations.

By definition, equilibrium configurations are critical points of the total en-
ergy functional keeping fixed suitable constants of motion. It is relevant to de-
termine whether these points correspond to local or global minima or maxima,
or to saddle points, since this provides information regarding their stability.
We prove that, under certain conditions on the parameters A\, and \;, ground
state configurations (i.e. lowest energy solutions for fixed particle number)
exist. Moreover, when these conditions are satisfied, there exits a spherically
symmetric stationary state of constant polarization which has lowest possible
energy, regardless what sector of the theory we are exploring. In the free the-
ory, defined by A\, = Ay = 0, we show that the ground state is unique (up to
translations and rigid unitary transformations). Otherwise, even if there could
in principle exist additional states which minimize the energy, they must also
be stationary, spherically symmetric, and exhibit constant polarization.

In this chapter, we further concentrate on spherical configurations. In this
case, stationary Proca stars can be classified according to the node number
of their radial profile and their polarization vector, which can be constant or
radial, although in the former case the polarization has to be linear or circular
when Ay # 0. In contrast, multi-frequency Proca stars are classified according
to the node number of each component of the wave function J (t,7). Figure ﬂ
illustrates the classification of spherical equilibrium configurations that appear
in the different sectors of our effective theory, whereas in Figure we show
some features of their time evolution which will be discussed later.

It is worth noting that the equilibrium, spherically symmetric s = 1 Gross-
Pitaevskii-Poisson system is equivalent to other systems studied in the frame-
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Figure 2.2: Time evolution of spherical Proca stars: The normalized
real part of the vector field, JR(t,f), and the normalized particle number
density, n(t, ¥), of some representative equilibrium configurations at different
moments of time. In the first three rows, we consider stationary Proca stars of
unit central “amplitude”, g = 1, no nodes, n = 0, and different polarization
vectors € at times ¢, = 0, to = 5% and 3 = %. First row: Linear polarization

2B
along the x axis, € = é,. Second row: Circular polarization along the z axis,
e=eh = \/Li (é; +iéy). Third row: Radial polarization, é = é,. Fourth row:

A multi-frequency Proca star of central amplitude (0,0, 0y0, 020) = (1,1, 0) and
nodes (ng,ny,n,) = (0,1,0) at times ¢t; = 0, ¢t = 55 and f3 = £-. Apart
from radially polarized states, the spherical symmetry is only manifest in the
gravitational field trough n(t, Z), since in other cases the wave function selects
a preferred direction in space. This occurs because, in these cases, the field
transforms under a non-standard representation of the SO(3) group. Radially
polarized Proca stars are characterized by a “hole” in their center, which is
due to the regularity conditions at the origin. In all these cases we have
assumed repulsive self-interactions. To better visualize the time evolution of

these objects, we refer the reader to the movies provided in [86].
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work of multi-scalar field theories. The free theory possesses an internal global
U(3) symmetry and is identical to the N-particle s = 0 Schrodinger-Poisson
system studied in Refs. [87], specifically in the case where no more than three
orthogonal states are occupied. This system admits non-relativistic £ = 0 and
¢ =1 boson star solutions [87, [88], which in the context of Proca stars lead to
stationary states of constant and radial polarization, respectively, and multi-
state boson stars solutions [89], which in the present context correspond to
multi-frequency states.

When A, # 0 and Ay = 0, the theory retains the U(3) symmetry and
generalizes the theories discussed in Refs. [87] and [49] in several ways. On
the one hand, in the present work we include self-interactions, which were
not considered in Ref. [87]. On the other hand, the internal structure of the
vector field allows new configurations, such as the stationary states of radial
polarization and the multi-frequency solutions, which do not exist in the theory
with a single scalar field considered in Ref. [49]. In contrast, when A; # 0, the
spin-spin self-interaction term breaks the U(3) symmetry which forbids the
existence of multi-frequency states and removes the degeneracy of the constant
polarization equilibrium configurations.

Conversely, in the framework of relativistic vector field theories, the static
and spherically symmetric solutions reported in Ref. [60] correspond to sta-
tionary configurations of radial polarization in our classification of the equilib-
rium solutions. These configurations were subsequently recognized as excited
states of the Einstein-Proca theory [66], indicating the potential existence of
lower-energy solutions. In the non-relativistic regime, the works [76] [77] dis-
cuss the linearly and circularly polarized states. These studies were further
extended in Ref. [70], where the stability of linearly, circularly, as well as ra-
dially polarized Proca stars was investigated by means of 3 + 1 dimensional
numerical simulations in general relativity, and in Ref. [81], where stationary
non-spherical solutions were also considered. However, as far as we are aware,
multi-frequency states have not been reported in previous studies.

In Section we review the general scheme of relativistic Proca stars.
This scheme generalizes to a vector field that we have previously discussed for
a relativistic boson star. In Section [2.3] we study the main topic of this chap-
ter, the non-relativistic Proca stars. In Section we review the s = 1
Gross-Pitaevskii-Poisson system, in Section the symmetries and con-
served quantities of the system, and in Section we study the equilibrium
configurations and their general properties. In Section [2.3.4] we write the s = 1
Gross-Pitaevskii-Poisson system for an spherically symmetric equilibrium con-
figurations and finally, in Section we present the numerical results for
this system. Again, here we work in natural units, for which ¢ =h = 1.

2.2 Relativistic Proca Stars: a concise sum-
mary
As we already mentioned, relativistic Proca stars were first introduced by

Brito, Cardoso, Herdeiro, and Radu in Ref. [60]. These consist of one complex
Proca field, with mass my, that is described by the potential A*(¢,Z) and the
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“electromagnetic tensor” F' = V,A, — V,A,. The Einstein-Proca model is
described by the action

Slgs A, = / dy/=g (16in + EM) (2.1)

where R is the Ricci scalar, g = det(g,,) is the determinant of the metric
tensor and the matter sector term is given by
1 * v *
Ly = —5FF" = W (2.2)
Variations with respect to the metric g,, and with respect to the Proca field
AH*(t,Z), yields the Einsten and Proca field equations, respectively

G, = 81GT,, and V,F" =mjA", (2.3)

where the energy-momentum tensor takes the form

1 * * 1 *
TW:§<FWFVP+FWFVP) _ZFP’YF o
2

+3 (AuAi +ATA, - gWA*"’Ap) . (2.4)

If mg # 0 in the above system equations, and F*” is an antisymmetric tensor,
then the Proca equation must satisfy the Lorentz constriction V,A” = 0.
Additionally, global U(1) invariance of the action , that is, invariance
with respect to transformations A, — €'“A, with « a constant, implies the
existence of a conserved current

Jh = % (F* A, — FrAY) (2.5)

with an associated Noether charge ) given by
Q= /d3a:\/—gJ0. (2.6)

Similar to the treatment we performed for a relativistic boson star, the sim-
plest case is to first study a spherically symmetric configuration for a Proca
massive field. Let’s remember that a line element with spherical symmetry is
given by , and using a harmonic ansatz for the potentials A° = e~ f(r)
and A" = e~ ™“'g(r)7, it is possible to write the Proca and Einstein equations in
terms of the four functions u(r),v(r), f(r), g(r) that depend only on the radial
coordinate r. Similar to boson star case, the solutions u(r),v(r), f(r), g(r) to
these equations for each discrete value of the frequency w, must satisfy regu-
larity conditions at the origin » = 0 and finitude to r — oo in order to ensure
localized configurations with finite energy. Delve into this procedure goes be-
yond the purpose of this thesis report; however, we note that the procedure to
follow in order to determine the solutions is very similar to the one we already
developed for relativistic boson stars. In Ref. [60], the authors have found
self-gravitating solitonic solutions to these spherically symmetric configura-
tions. These solutions are stationary, regular, and asymptotically flat, forming
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a family of solutions labeled by the integer n for each frequency w,, similar to
the configurations we have studied for scalar fields. The stationary relativistic
Proca star share with boson stars the existence of a maximum value M4
for the mass beyond which the solutions are possibly unstable. In Ref. [60],
the authors have calculated, for spherically symmetric and axially symmetric
configurations, the maxima mass value given by M., =~ 1.O58M§l /my (for
spherically symmetric configurations) and M., =~ 1.568,2.337, 3.297]\/[51 /mg
(for axially symmetric configurations with m = 1,2,3), which are slightly
larger values than those for mini-boson star M., >~ 0.6M§1 /mg. Regarding
the stability of these free spherically symmetric configurations, a stability anal-
ysis like that we presented in the previous Chapter |1| for boson stars, Ref. [60]
has found that M., corresponds to a transition point beyond which the con-
figurations become unstable, similar to the case of a relativistic boson star.
Unstable configurations could collapse into black holes or migrate to stable
configurations of lower energy.

In Ref. [70], Wang and collaborators investigate relativistic Proca stars,
considering, in addition to the aforementioned radially polarized spherically
configurations, the cases of a linearly and circularly polarized vector field, and
numerically analyze the stability of these compact objects. They found that the
initial values of compactness (C' = M /Ry;) that lead to the formation of black
holes are larger for circularly polarized configurations (which carry macroscopic
spin angular momentum) compared to the compactness of linearly polarized
configurations, which in turn have a greater compactness than configurations
with radial polarization (values in range C' < 1, the object is non-relativistic,
C ~ 0.1 indicates a compact object like a white dwarf or neutron star and
C' — 0.5 indicate the limit of black hole formation).

Relativistic Proca stars with quartic order self-interaction term A(A*A%)?
are considered in Ref. [63]. There, the authors show that in comparison with
the case without self-interaction A\ = 0, the maximal mass M., and the
Noether charge increase for A > 0 and decrease for A < 0, considering only
radially polarized configurations. For a sufficiently large positive coupling con-
stant A > 1, the maximal mass and Noether charge for Proca stars is of or-
der O[VAM3 /mdIn (AM2/m3)] which is different from that of a boson star

O[\/XM]‘?I /mZ]. In Ref. [90], Herdeiro and Radu introduces self-interaction
terms up to sixth order, and, spherically symmetric self-interacting configura-
tions with radial polarization and charge (charged Proca stars) are considered
in Ref. [91]. There, the authors calculate the values of the maximum mass
Mo for Proca stars, charged Proca stars, Proca Q-stars, and charged Proca
Q-stars.

Finally, in Ref [68], Herdeiro, Radu, and collaborators report fully-non
linear numerical evolutions of spherically symmetric relativistic Proca stars for
A = 0, with the aim of exploring linear stability and the critical point beyond
which these configurations become unstable. Their results confirm the value of
the maximum mass M. as the point from which the configurations become
unstable and divides the configurations into bands of stability and instability.
Depending on the sign of the binding energy of the solutions, they find that
unstable configurations can either i) migrate to stable bands, ii) completely
disperse, or iii) collapse into a black hole. These results are similar to those
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we have reviewed for a relativistic boson star in Chapter

2.3 Non-relativistic Proca Stars

We have postponed much of the details concerning to the numerical methods
that we have described in the study of boson stars, both relativistic and non-
relativistic, to the analysis of non-relativistic Proca stars. This section will
describe the numerical and analytical methodology that we have followed to
find the solutions to the stationary and multi-frequency configurations and the
system of equations for the perturbations. In Appendix |B| will delve into the
shooting method that we have used to find the stationary solutions for the
boson Stars, now applied to non-relativistic Proca stars.

Numerical studies for the case of relativistic Proca stars can be found in
Ref. [60] [78] for the three types of polarization that we present here. In the
present study, we address these results now for the non-relativistic case and
report results analogous to these works along with other novel aspects. The
analysis of non-relativistic Proca stars allows a general understanding of the
methods we have already presented for boson stars. Thus, details in describing
these methods allow us to better understand both cases, as we will soon see.

We can anticipate that since the treatment is now for a vector field J (t,7)
with mass mg, the s = 1 Gross-Pitaevskii-Poisson system analogous to the
s = 0 Gross-Pitaevskii-Poisson system for boson stars will depend on the pa-
rameters that define the polarization of the vector field and the self-interacting
coupling constants, A, and A, related to the selt-coupling number density
n= w* @/} and the self-coupling of the spin density term § = —Z@/J* X @D With
this in mind, the level of complexity will be greater than that before reported
for boson stars, and the phenomenology of these Proca stars will be more
richer.

2.3.1 The s =1 Gross-Pitaevskii-Poisson System

Here, we present the effective construction of the non-relativistic action com-
patible with the symmetries of Galileo, from which we aim to recover the
physics related to galactic speeds and Newtonian scales. Constructed from
operators depending up to fourth order on the field @/7 (t,Z), this action should
naturally lead to the Poisson gravitational equation for the Newtonian po-
tential U(t, ), and to the Gross-Pitevski equations for a self-interacting and
self-gravitating vector field. We shall also observe, how it is possible to obtain
this effective action from the non-relativistic limit of the Einstein-Proca action
for the potential V/(A*) that includes the self-interaction terms Ay (A% A*)* +
Ao (A AR) (A5 AY). Also, writing the s = 1 Gross-Pitaevskii-Poisson system in
the compact form of the Schrodinger eigen-equation i@@[j /Ot = H [1/7, L[]z/_; will
allow us to talk about QZ in terms of a “wave function”.

Non-relativistic Effective Action

Our purpose is the construction of a non-relativistic, low energy effective theory
that describes a self-interacting vector field (¢, Z) coupled to the Newtonian
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gravitational potential U (¢, Z). This theory is expressed in terms of the action

SiU, v ] /dt/dV{—L{AU moldn

Ne

which consists of all operators of mass dimension 6 or lower that can be con-
structed from the field z/?(t, Z) and are scalars under the Galilei group. In this
expression, i = v/—1 is the unit imaginary number, G is Newton’s constant,
the star denotes complex conjugation, and dV and A refer to the volume el-
ement and Laplace operator, respectively, associated with three-dimensional
Euclidean space. As we mentioned, the variation with respect to the Newto-
nian gravitational field U(t, Z) leads to the Poisson equation and the variation
with respect to the vector field J(t, %) leads to the Gross-Pitaevskii equation.

We start with the Newtonian gravity in order to build the effective theory
shown by Eq. . This is expressed in terms of the action

1

The first two terms of this equation correspond to the “kinetic” term of the
gravitational field (¢, ¥) and its coupling with the mass density mon(t, Z), re-
spectively. Conversely, the last term of Eq. comprises the matter sector,
that for the purposes of this thesis consists of a vector field J(t, Z) of mass
dimension 3/2, i.e. [@/7] = [3/2 where E denotes dimensions of energy. Follow-
ing an effective theory approach, we write down the most general expression
for L£,, that is compatible with the allowed symmetries of the theory, that we
assume to consist of locality (i.e. all fields are evaluated at the same spacetime
point) and Galilean transformations [92]:

P(t, &) s e moT THsmod®) Ry g0 RTVE 4 Gt — ). (2.9)

In this equation ty, ¥y, ¥, and R are constant, with R an element of the
orthogonal group. With these assumptions, there is an infinite number of terms
that can contribute to the effective action, with higher-dimensional operators
being suppressed at low energies. For concreteness, in this thesis, we will
restrict ourselves to operators of mass dimension 6 or lower.|I|

The vector field transforms non-trivially under the Galilei group, Eq. (2.9)),
which implies that derivative terms must appear in combinations of the form:

1 \" -
/dt/dW/; ) ”(i—+2—mOA) 7 (2.10)

When n = 1, this leads to the standard Schrodinger operator appearing in
Eq. (2.7). At this point one might be tempted to include terms with n =

n natural units h = ¢ = 1 these operators have dimensions of [ES] ~ [m§] or less. For
example, for the self-interactive term we have [S] = [E|[T] ~ [T][L3][n?]/[m?], and since
[m§] ~ [E?], [L] ~ [T] and [E] ~ [T"], then [n?] ~ [E°] ~ [mg].
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2,3,4,... However, they involve operators of mass dimension 7 or higher, and
this is why we have excluded them from our effective theory.

Moreover, non-derivative terms must appear in combinations of the form:
Sy, ST, TSI by, 5T T, -, although
only the first three of this series are of mass dimension 6 or lower. The first
term in this list is equal to the particle number density, 6“1;1; = n, and is
already included in the first line of Eq. E| The second term of the list
gives rise to a self-interaction operator that depends on the number density
squared, 0“07FYivide = (Wi (¥5¢7) = n?, and it is also present in our
effective theory. Apparently, the third term is absent from Eq. , how-
ever, using the identity €™Ve, b = §%§7¢ — §%57% we can express this oper-
ator as dF§Ipip iy = (Mg M + §45TR bty = —sis' + n?, where
s™ = —ie™F)*), represents the spin density. Thus, in general, our theory
includes two self-interaction terms of mass dimension 6: one depending on
the square of the number density, n?, and the other on the square of the spin
density, 52 = 5- 3.

Non-relativistic Limit of a Self-interacting Einstein-Proca Theory

Now, we compute the non-relativistic limit of a massive vector field theory. Our
starting point is the Einstein-Proca theory for a complex—valuedﬂ vector field
Ak (t, T) of mass mg and quartic self-interaction Ay (A% A*)?+ Xy (A, A*) (A*;A”*)H
In natural units, this theory is described by the action which consists of
the Einstein-Hilbert term with matter sector

1

Lo = —5EF" —miA,A"
SAL(ALAR)? = Ny (A, AF) (A2 AT, (2.11)

where F), =V, A, —V,A, is the “electromagnetic” tensor.

To proceed, we will explore the non-relativistic limit of this theory at in-
creasing levels of complexity. First, we will focus on the free theory, which
excludes the effects of self-interactions and gravity. Subsequently, we will in-
corporate the self-interaction terms, and finally, we will consider the influence
of gravity. At the end of the presentation, we will arrive at an expression that
coincides with the effective action that we introduced in Eq. . Here, we
employ the (—,+,+,+) signature convention for the spacetime metric, and
for convenience we occasionally represent Newton’s constant G in terms of the
Planck mass, denoted as Mp, = 1/ v/G. We have followed this same procedure
in Appendix to obtain the non-relativistic limit of a boson star.

2An operator of the form Agmon (where \g is a dimensionless coupling constant) can
be absorbed into the second term of Eq. by redefining the gravitational potential as
U =U+ .

3For the non-relativistic limit of a real-valued vector field theory, see e.g. Ref. [T7].

4Recent works [93], 94] [95] have pointed out to a fundamental problem with relativistic
self-interacting vector fields due to the appearance of unstable modes that could render
these theories unphysical. However, the authors of Refs. [96, 97, [08] have argued that these
instabilities are not indicative of ghosts and/or tachyons, but rather of the breakdown of
the well-posedness of the Cauchy problem and the regime of validity of the effective theory.
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A. Free Theory

In absence of gravity, a non-selfinteracting complex-valued vector field A*(¢, %)
of mass mg is described in terms of the action

S = /d‘*[ —Fr P — gA;A“]. (2.12)

If we perform a 1 + 3 decomposition of the vector field A* = (A% A?) we can
write this expression in the form:

S = / d*z (A;AZ’ + 0 A0 Ag — 0, A30' AT — A0 Ay
— Qi AJA + QAT AT+ mE AT Ay — mgA;fAi), (2.13)

where the overdot indicates time derivative and indices are raised and lowered
with the flat spacetime metric.

Now, we express the time Ay (¢, ) and spatial A;(t, ) components of A, (t, Z)
in the form

1 )
Ap(t, @) = o e "M™tay(t, T), (2.14a)
0
1 )
Ai(t,T) = = e "Ml (t, T). (2.14Db)
0

This allows us to write Eq. (2.13)) as
- 2" 2" 2myg 2mg 00
Y S S B
~ GO0 = S0 — o0y + 0
2m0 J 2
1 * i
— SO+ O —) (2.15)

In the non-relativistic limit, the different quantities scale as 0; ~ emq, 0; ~
e'2myg, and ag ~ €'/?|¢);|, with € a small positive number, so to leading order
in € we can approximate:

S:/d4x(3¢:¢z 'g/} ¢z Z¢*az,¢}g ¢*aza0
(92 s+ Zw*aw + —aoao) (2.16)

Note that there are no time derivatives of agy in this expression, indicating
that this component is not dynamical and can be integrated out from the
action. In order to do that, we vary Eq. (2.16) with respect to ag, and obtain

i .
ag = EO j¢j, (217)
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which is a condition that must be satisfied by ag. Introducing the constraint ({2.17))
back into Eq. (2.16]), integrating by parts, and neglecting surface terms, yields

S = /d% [w; (i% + QLmOA) W} . (2.18)

This is just the Schrodinger action for a vector wave function v;(t, ) that
describes free particles of spin s = 1.

B. self-interactions

In presence of self-interactions, Eq. (2.15) requires the addition of the new
terms:

& { [ (aja0) + 2aaqi 0 — ()] (2.19)
0
b2 [ (agao)? + T + agal — ] } .
0

In the non-relativistic limit, the third and seventh terms dominate over the
other five, and hence the constraint in Eq. (2.17) is unaffected. If again we
integrate out the field ay, we obtain

0 1 . A A .
— 4 i 4 —— Ayl — L2 T8 o g 2.9
S /d x[w] <28t+2m0 )1/1 4m(2)n 4m%sjs], (2.20)

where n = ¢4 is the number density, s™ = —ic™¥1)¥1); is the spin density and
we have defined A, := A\{ + Xy and A\, := —Xsy. In order to obtain Eq. , we
have used some properties of the Levi-Civita symbol that we have previously
introduced. Note that the only difference with respect to the free theory,
Eq. , is the appearance of two self-interaction terms.

C. Gravity

Finally, we include the effects of gravity, which are codified in the spacetime
metric g, (¢, Z). For that purpose, it is convenient to decompose the spacetime
line element in the form [49]

ds? = — [1 4 20(t, @)] df* + [1 — 20 (t, )] §jpda’ da”, (2:21)

which has been expressed in the Newtonian gauge and codifies only the scalar
degrees of freedom of the gravitational field (vector and tensor modes do not
couple to non-relativistic matter and we have omitted them here). The func-
tions ®(t,¥) and V(t, Z) transform as scalars under spatial rotations and con-
stitute the gravitational potentials.

This introduces the additional terms

1
4 [ — JR—
/d x [SWG\IJA (20 — U) — mo®n (2.22)

into the action (2.20)), where we have taken into account that, in the non-
relativistic limit, ® ~ ¥ ~ € and [¢;] ~ /MZmee. Here, the first term of
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Eq. originates from the Einstein-Hilbert action, whereas the second one
from the kinetic term of the vector field. Note that the field ag is absent from
Eq. , and hence the constraint is not affected.

Combining Egs. (2.20) and (2.22)), we obtain

1

0 1 Y 2 As

+v; (z— + CT > P — 4m0 m3 s (2.23)
Varying this expression with respect to ¥ yields A(® — V) = 0, and assuming
that ® and ¥ vanish at infinity this implies that ® = W. Introducing this result
back into Eq. , we arrive at Eq. , where we have defined ® = U := U/
as the Newtonian gravitational potential. The action has the same
form as that of a non-relativistic self-interacting boson star, Eq. , with
the difference that the action (2.23) now considers the phenomenology of the
polarization of the vector field IE encoded in the parameter \,.

The s =1 Gross-Pitaevskii-Poisson System

The theory described by the action S|, 15], Eq. , is characterized in terms
of three parameters: the positive and non-vanishing field’s mass mg and the
dimensionless coupling constants A, and A E| The first term in the first line of
Eq. describes Newtonian gravity, the second line the matter sector and
the last term in the first line the interaction between gravity and matter. The
matter sector consists of the free Schrodinger action plus two short-range self-
interaction terms, one that depends on the partlcle number density, n := zp 1/1,
and the other on the spin density, §:= —z¢* X 1/1, which by definition are real-
valued.

Varying Eq. with respect to J we obtain a Gross-Pitaevskii type
equation of the form

81/1 1
(975 N 2m0 1/1 2m

(2.24a)

whereas varying it with respect to U(t, I) leads to the Poisson equation,
AU = ArGmgn. (2.24Db)

We will refer to Eqs. (2.24) as the s = 1 Gross-Pitaevskii-Poisson system.
Setting A\, = Ay = 0 the self-interactions vanish and Egs. (2.24) reduce to the
s = 1 Schrodinger-Poisson system.

Reformulation of the Dynamical Equations

In this section we reformulate the system (2.24)) in terms of a non-linear Hamil-
ton operator, which will bring more transparency for several of the discussions.

5In the effective theory, the parameters \,, and ), are in principle arbitrary and unrelated.
Compare this with e.g. Ref. [77], where taking the non-relativistic limit of a generic massive
real-valued vector field the authors obtain \g = —%)\n.
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The s = 1 Gross-Pitaevskii (2.24a) and Poisson ([2.24b]) equations can be ex-

pressed more compactly as:

2~ AU, (2.25a)
AU = 4ArGmqgn, (2.25D)

where, for fixed 1E and U, we have defined the Hamilton operator

A nd ]_ A A
H), U] == ——A + —5n +i=—=55 X +mold. 2.26
v, Ul 2mg 2m? 2m? 0 (2.26)
In this equation, §x represents the cross product of the spin density with the
vector-valued function that the operator H[y, U] is acting on. Furthermore,
by inverting the Laplacian in Eq. (2.25b)), one can eliminate the gravitational
potential U from Eq. (2.25a)), which yields a nonlinear integro-differential equa-

tion for the wave function ¢

O
iy = MY, (2.27)
with
H| = H[b, U = A (n)] (2.28)
1 An s 9 a1
= 2m0A + 2m0n + ZQm%S X +4rGmsA™ (n),

and where for a generic function f(Z) we have introduced the inverse Laplacian

A (@) = [ D)

A ) & — 2|

v’ (2.29)

It is worth noting that, for fixed 1/7, the Hamilton operator 7:[[2/7] is Hermitian,

e. (¢, 1Y) = (H[Y]er, ¥a), where (¢17¢2) = [(¥} - ¢)dV denotes the
standard L?-scalar product between @/)1 and ¢2 However, despite the apparent
simplicity of Eq.(2.27), the operator H[w] is non-linear, as all terms beyond
the first one in Eq. l} are quadratic in the field 1;

2.3.2 Symmetries and Conserved Quantities

In this section, we will study some conserved quantities in the temporal evo-
lution of the s = 1 Gross-Pitaevskii-Poisson system, which will be relevant in
the characterization of equilibrium solutions and the study of stability. These
quantities are associated with the different global symmetries present in the
action . As we have done for boson stars, we will observe that for Proca
stars the number of particles and energy are also conserved. Additionally, for
Proca stars, we will observe that the spin contribution will imply the conser-
vation of total angular momentum.

SWhile we refer to z/_;(t, Z) as the wave function, it should be noted that this is a classical
field. In particular, n = v* - ¢ describes the particle and not the probability density.
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Note: Given that the action ([2.7)) does not contain the time and the spatial
coordinates explicitly, the (canonical) energy-momentum tensor 7,” must
be conserved, that is 9,7,” = 0, where

oL oL oL
TV = —— 0 F i 0 U ,C5 v 2.30
K = 3@ 2t 5@, O T Baan Ut (2:30)

with £ given by

1 B
L= —UNU—moUn+i* (22 + —A) w—iﬁ— 5%, (2.31)

87TG 4mg 4mg

Here T, is the energy density, Ty’ is the j-component of the energy cur-
rent density, 7;° is (minus) the linear momentum density along the i-th
direction, and T}/ is (minus) the j-component of the linear momentum
current density along the ¢-th direction.

The non-relativistic action (2.7)) is invariant under time translations, which
means that Eq. is not affected by shifts in the time parameter, 1/7(15, Z) —
J(t — to, T), with ty a real constant. Associated to this symmetry is the con-
served total energy (the spatial integral of the 00 component of the energy-
momentum tensor) given by

An A ,
—_ dV 8 az — 0, * O j 2 S ; 7 )
& / [SG U Z/l—l— 81&81& m? m2 ]
(2.32)
Using the Poisson equation (2.24h|) and discarding the boundary terms, we can

express Eq. (2.32) as

1 712 An 2 /\s 32
_ [ An_ 00Ul av. 2.
£ /[Zmowwy + fon + £ | av. (23

In addition, one can also prove that the action (2.7) remains invariant
under rotations, ¥(t, ) — U(R)y(t, R-\F), with U(R) = R a rotation matrix
or U(R) = I the identity matrix. Consequently, one has conservation of the
total angular momentum

J— i / (0% x F)dV — i / # x (0 - Vi)V, (2.34)

where § = —i / (* x )dV is the internal (or spin) angular momentum and

L=—i [z x (" - V4)]dV is the orbital angular momentum. Both, S and L
are conserved individually.

Note: Given that the Lagrangian density is symmetric respect
to the transformation ¢ — * + eijk(?j ¥ there exist a conserved quan-
tity associated to this symmetry. For example, a rotation about the 3-
axis gives ¢' — ' + €5, 03F and D3yt = —p?, D3¢% = ¢! where the
symmetry from rotation around the b-axis is D%)%. Also, we have that
DL = (0L/0z")(0z*/08)=0 and W* = 0. So, the conserved current is
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given by
T = "T*D¥W — W+ — §6) = — / dr(pp® —p>yt).  (2.35)
Finally, generalizing we have

St = —i / e yEdis. (2.36)

Note: Given that the Lagrangian density is invariant under infinitesimal
Lorentz (Galilei) transformation

A, =00, + W, ot =t 4t = 2 + w O, (2.37)

where w*” is an antisymmetric tensor, we have a conserved current as-
sociated to this symmetry. Hence 6¢' = 9,9'w"z,0\] and Dy’ =
n

Ot /ON) amo = W2,0,0" = w,x?0**. So, we have that P’DL =
(1 n
i=1
Wt 0" L = 0,[g"" wpex’ L] = 0,W* and WH = g"w,,x? L. Thus, we can
write

T = TDy" — WH =w,, [ Y %279y — gz’ L]
= Woet TP = w,e(JH)P°,  (2.38)
where (j”)p” = z?TP*. There are six parameters in w”” and so there are

six conserved currents. Now, if we write (J#)?? = 2TH? — 27 TH where
(JH)Pe = (J#)P7 —(J*)?P and 0, (J")?? = 0, we obtain the conserved charge

QY = /d3x(j“)"p where — QY = /dxx(xiTjO —2IT%)  (2.39)

are the angular momentum components. Finally, using the expression
T = ipf '’ we get

J=q / dPz[ea’ vty (2.40)

Other conserved quantities associated with the Galilei group lead to the
fact that the center of mass follows a free-particle trajectory. However, we
will mostly limit ourselves to the study of spherically symmetric equilibrium
configurations which are centered at the origin, where these quantities do not
play a significant role.

Also, we know that the Eq. (2.7)) is invariant under continuous shifts in
the phase of the wave function, ¥ (t,¥) — ei%ﬁ(t, ¥), with a a real constant,
leading to the conservation of the “particle number” given by

N = /(J* -ap)dV. (2.41)
50
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where, in contrast with the relativistic expression , there not are time and
spatial derivates of the field.

Moreover, our theory features an “accidental” symmetry: in absence of
spin-spin self-interactions (A = 0), the action (2.7) is also invariant under
global unitary transformations, J(t,f) > U@Z(t,f), where U is a constant
unitary 3 x 3 matrixm This symmetry induces the conserved, self-adjoint,
second-rank tensoif

Q= /( [ @ 4)dV, (2.43)

with the following properties: N = Tr(Q) = N1 + Ny + N3 where for example
= [Pxytyy and § = —iTr(éQ), where ¢ is the third-rank Levi-Civita
tensor and in the last expression the trace denotes the contraction of the last
two indices of € with the two indices of Q The reason why the particle number
N and the spin angular momentum S are codified in the tensor @ is because
rotations and global phase factors are elements of the U(3) group. On the
other hand, the other components of Q are only conserved when A\; = 0,

In the following, we will distinguish between two scenarios: the symmetry-
enhanced sector of the effective theory, where Ay = 0 and the accidental U(3)
symmetry is manifest, and the generic sector of the effective theory, where the
two coupling constants A, and Ay can take arbitrary values, except A\; = 0. In
addition, we will consider two configurations, (¢, ¥) and ¥s(t, T), as “equiv-
alent” if they are related by a symmetry transformation (note that the notion
of equivalent configurations depends on the specific sector of the theory that
we are exploring). In this thesis, we will not distinguish between equivalent
configurations and will always use symmetry transformations for our conve-
nience. In particular, if \; = 0, we can use the U(3) symmetry to diagonalize
the operator Q, leaving only the diagonal elements non-zero.

G. Constant Polarization States

Now, we introduce some simple properties of constant polarization states,
which will be of interest later. Constant polarization states are defined as

—

U(t, ) = f(t, Z)e, (2.45)

7VYe can see, for example, that under the transformation U with UU = 1, the term
n = ¢* -9 is invariant since n’ = ¢ * ~J = (Uﬁ)*ﬁﬁ: U U™ by = 4* b = n. However,
the term § = —iz/_;* X 1; is not invariant since s’* = —ieiij]*mUklz/);wl #* —ieijkw;‘wk = s

8Since the Lagrangian is invariant to unitary infinitesimal transformations U (o) =
1+ iaD we have an induced a conserved current of the form

Jh =Y ™Dy = Q5 = / Py}, (2.42)

a

9The tensor Q evolves in time according to

-,

=2 [y e dav. (2.44)

dt  mj

If \s = 0, this tensor is conserved. If A\; # 0, however, only the anti-symmetric part of this
tensor and its trace are conserved.
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where f(t, ) is an arbitrary complex-valued function and € is a polarization
vector that is independent of the space-time coordinates and that, for conve-
nience, we have normalized to one, €* - € = 1.

Given that the wave function J(t,f) contains an arbitrary global phase,
we can parametrize a constant polarization vector in the form:

¢ = sin f cos ¢pé, + € sin fsin ¢, + "7 cos 0é,, (2.46)

where 0, ¢, 71 and vy, are 4 real constants and é,, é,, and €, are the Cartesian
unit vectors. Furthermore, given the symmetries of our effective theory, one
can always perform a rotation such that the polarization vector is contained
in the xy plane, and obtain

€ = cos ¢, + €7 sin ¢é,, (2.47)

which is the expression for a general elliptical polarization Vector.m

On the other hand, from the definition of the spin density § = —@'1;* (t,7) x
J(t, #), one has 5 = 2| f|? cos ¢ sin ¢ sin y; such that using the identity sin?(2¢) =
4 cos*(¢) sin?(¢), we have

52 = | f|*sin®(2¢) sin® v, (2.48)

which implies that |5] < [f|> = nff] Configurations with zero spin density
(71 = 0) are (up to a global phase factor) of the form é = cos ¢é, =+ sin ¢é,,
which after a rotation can be further reduced to

E=¢,1=é,. (2.49a)

In contrast, configurations which saturate the spin density (¢ = 7/4 and v, =
7/2), |3] = n, are of the form é = \/Li (é, £ ié,), which using a rotation can be
reduced to

~A A(+) L ]- ~ N

E=¢€") = 7 (€5 +iéy). (2.49b)
We call constant polarization states having € as in Eq. (2.49a)) linearly polarized,
and states as in (2.49b|) circularly polarized.

When the spin-spin self-interaction is absent (As = 0) the theory is U(3) in-

variant and all states with constant polarization are equivalent to each otherE
In particular, this means that when exploring constant polarization states in

the symmetry enhanced sector of the effective theory we can restrict ourselves

10This name takes on particular significance when the state is stationary, i.e. f(t,Z) =

e~ Pt (), and the real 5 and the imaginary ¥ parts of the vector ¢ evaluated at a fixed
point & describe an ellipse as time progresses.

HUNote that, in general, 52 = n? — |1/7 1E|2, so the inequality |3] < n holds true for any
wave vector ¥ (t, T)
12 Any elliptical polarization vector 1) can be expressed in the form é = Ué,, where

R cos ¢ —e M sing 0
U= [eMsing cos ¢ 0 (2.50)
0 0 1

is a unitary matrix.
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to the simplest case in which é = €,. In contrast, when A\, # 0, one can prove
that any solution of Eq. with constant polarization has either linear
(8% = 0) or circular (8% = n?) polarization, which in this case are different
to each other. To summarize, if we restrict ourselves to constant polarization
states, it is sufficient to consider the linear and circular ones, which degenerate
when A\, = 0.

Note: We can prove that when Ay # 0, constant polarization states sat-
isfying the field equations are necessarily linear or circular. To do so, we

substitute the definition (2.45)) into Eq. (2.24]) and obtain

igé = —(Af)e+ Ml fPfE+ NN FIPf(E x &) x e+ ATH(|f[?) fe. (2.51)
where the condition (€* x €) X € = é — (€ €)é* = C'¢ must be satisfied, with
C a complex constant. Taking the dot product with € on both sides yields
C(é-€) = 0. There are two solution to this equation: C'=0 and é-é = 0.
In the first case, the above condition leads to é = (€ - €)é*, which, together
with the normalization condition €* - € = 1, implies that € is real-valued
up to a global phase factor. This is the condition for linear polarization.
In the second case, if one writes € = €r + i€; (with ég and €; denoting
the real and imaginary parts of €, respectively) then the equation é-é =0
implies that |ég| = |é/| = \/Li’ ér - €7 = 0, which is the condition for circular
polarization in the direction ér X €;.

2.3.3 Equilibrium Configurations

Now, we identify the different types of equilibrium configurations that can
exist in our effective theory. For that purpose, we define an equilibrium con-
figuration as a critical point of the energy functional £ [@5] In practice, we
restrict ourselves to variations that keep conserved quantities fixed. As we will
demonstrate, the choice of which quantities are fixed might affect the location
of the critical points, and, ultimately, the equilibrium states that can exist in
the different sectors of the theory.

To proceed, let us first concentrate on the generic sector, where the two
coupling constants A, and A can take arbitrary values (except Ay = 0) and
the particle number N is conserved. In this case, the relevant critical points

are obtained from varying the modified energy functional

exti] = 101+ 38 (¥ - (@ dhav), (2.52)

where F is a Lagrange multiplier associated with the constraint that guarantees
that the particle number remains fixed in the variations[”| Remember that

the functionals & [1/7] and N [@/7] defined in Egs. 1) and depend on

13Let’s remember that when varying a functional subject to a constraint, we must use the
method of Lagrange multipliers. This method reduces the problem with n variables and k
constraints to one with n + k variables without constraints. In our case, the constraint is
given by g[ﬁ] = I(J* . ﬁ)dV = N, so the function for which we need to find the extrema is

-,

given by h[)] = E[¢] — AN — g[))).
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the field 7,/7 and its spatial gradients, but not on its time derivatives, and for
that reason we will treat SEM] as a functional of 1/7(97;’) alone, ignoring any
time evolution. Correspondingly, we assume that the Lagrange multiplier F is
time-independent.

The first variation of &g [7,/;] with respect to 1 yield

5Ep = Re(H[Y|Y — B, 60). (2.54)

A critical point is characterized by the condition that 6€r = 0 for all 51[7;
hence, equilibrium configurations ¢ (Z) must fulfill the nonlinear equation

- =

By = H[YJ, (2.55)

which must be solved subject to appropriate boundary conditions. Note that
if 1/7(:?) satisfies Eq. , then eiaﬁ(f), where « is an arbitrary phase in-
dependent of #, is also a solution to this equation. If we make this phase
time-dependent and introduce this expression into the dynamical Eq. ,
we obtain

O(t, T) = e Pt = 0, T), (2.56)

with 1(t = 0,Z) = (). In the context of quantum mechanics, these solutions
are usually referred to as stationary states. They have time-independent parti-
cle n(t, Z) and spin 5(t, ¥) densities, and, consequently, the Hamiltonian ([2.28)
remains constant in the evolution. Furthermore, stationary states are eigen-
functions of the Hamilton operator.

Next, we extend the study of the equilibrium configurations to the symmetry-
enhanced sector, where Ay = 0 and in addition to the particle number N the
charges Q associated with the accidental symmetry are conserved. In analogy
with the previous case, we define the energy functional

eolil =t + 51 B (Q- [Fedav)|. @D

with E a constant Hermitian transformation that plays the role of the Lagrange
multiplier associated with (). In this case, the first variation of Eq. 1} can
be expressed in the form

0 = Re(H[p]) — B, 09), (2.58)

and, therefore, imposing 6&; = 0 for all (51;, yields

- =

E = H[P). (2.59)

14T perform the variation, we expand the wave function 9 as

O(t,3) = §O(,T) + edi(t, 7) + §62u7(t, 7) + O(e’) (2.53a)

where (%) (¢, Z) denote the background field and 6v)(t, &), 624 (t, &) are the first and second

—. - —.

order perturbations. The n-th variation of [} is given by 0"E[¢)] = L-E[)]|c=o. Using
(2.53a)) and (2.33)) we have

SE[Y] = Re(HY ), 53)). (2.53b)
where (7,[71, @[72) = f(@[_;i* ~1/72)dV denotes the standard L2-scalar product between 151 and 1;2.
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Now, if 15(:?) is a solution of Eq. l) then U 15(:1_:’) also satisfies this equation,
where U = €' is a constant unitary transformation with A Hermitian and
commuting with £. However, if we allow A to depend on time, and substitute

this expression into the dynamical Eq. (2.27)), we obtain
D(t,T) = e Ehj(t = 0,7), (2.60)

where again z/?(t =0,7) = 15(3_5’) We will refer to these configurations as
multi-frequency states, given that they involve more than one frequency of
oscillation. These states maintain the particle number density n(t,Z) time-
independent, although, in general, the spin density s(¢,Z) depends on time.
Nonetheless, this does not affect the Hamiltonian 7—2[1;], which is independent
of the spin density when Ay = 0. Stationary states arise for the particular case
in which E is proportional to the identity matrix; however, in the following,
we will exclude this case when referring to multi-frequency states. Under this
assumption, we can conclude that multi-frequency states are not eigenfunctions
of the Hamilton operator.

To summarize, the equilibrium configurations of the generic sector of the
effective theory (where A, is arbitrary and A\s # 0), consist only of stationary
states . In the symmetry-enhanced sector (where A, is arbitrary and
As = 0), in addition to the stationary (i.e. single-frequency) states, one must
also consider the multi-frequency solutions .

General Properties of the Energy Functional and the Equilibrium Con-
figurations

Following Ref. [49], we discuss some interesting properties of the energy func-
tional and the equilibrium configurations that to a large extent can be deduced
from a simple scaling argument. To this purpose, it is convenient to express

Eq. in the form
E[0] = T ]+ AuFuln] + AF[5] — Dln,nl, (2.61)

where the functionals T, F},, Fs and D are defined by

1) i= 5o [ IV3@PaV. (2.620)
Fuln] = 4—;% / n(@)2dV, (2.62D)
F,[5] ::4—;% 5(7)%dV, (2.62¢)
D[n,n] := G;”g / / “glng)dv'dv, (2.62d)

and are positive definite.

Next, let v > 0 be an arbitrary real and positive parameter, and J(f) a
given wave function which does not vanish identically. Consider the rescaled
function

—

Uy (&) = v 2P(vi), (2.63)
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Figure 2.3: Parameter space of the theory: The shadow region (\g > 0)
represents the parameter space of our effective theory for which, when N is
fixed, the energy functional is bounded from below. Furthermore, in this region
there exists a global minimum of the energy functional, which is attained for
a stationary and spherically symmetric state of constant polarization (linear
if As > 0 and circular if A\; < 0) and negative energy. In general, we cannot
guarantee the uniqueness of the ground state, unless \,, = Ay = 0, in which case
the ground state is unique up to translations and rigid unitary transformations.

which leaves the particle number and the global U(3) charges invariant, i.e.

A >

N [Jy] =N [1;] and Q[Jy] = Q[¢] for all v > 0. Under the rescaling (2.63)), the
energy functional (2.61)) transforms according to

E[h)] = VT[] + VP A\ Fu[n] + v° A\ F,[3) — vD[n, n). (2.64)

Furthermore, the first and second variations of £ [@Zy] at J,,Zl = QE are given by

dilyg[qzy] = 2T[] + 3\ Fo[n] + 3A\FL[5] — D[n, n], (2.65a)
v=1

_d(fj?g (0] = 2T (] + 6M,Fu[n] + 6X,F,[3]. (2.65D)
v=1

A number of interesting conclusions can be drawn from these results.

A. Lower Bound of the Energy Functional

First, we claim that, for fixed N, the energy functional (2.61)) is bounded from
below if and only if A\g > 0, where

Ans if A, >0,
o { A = [Asl, i A <0, (2.66)
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see Figure for an illustration. Furthermore, the same holds true when
As = 0 and @ is fixed.

To prove this, we first assume that N = Tr(@) is fixed but allow the
trace-free part of Q to vary. Notice that if A\, > 0 and Ay > 0, then E[¢] >
T[] — D[n,n], which is known to be bounded from below when N is fixed
(see, for instance, Ref. [99]). In contrast, when A\, < 0 and A\; > 0, we can
choose 15 equal to a state of constant linear polarization, such that Fy[3] =
0, and then it follows from Eq. that €[¢),] can be made arbitrarily
negative by choosing v large, showing that the energy functional is not bounded
from below.ﬁ Finally, if Ay < 0, then the inequality |s] < n implies that
M Fu[n]+AsFs[S] > (An—]|As]) Fnln], with the equality sign for states of constant
circular polarization. Hence, in this case, the energy functional is bounded
from below if and only if A, — |As| > 0.

When A\; = 0 and Q is fixed it is easy to verify that one can apply the
same arguments as above to show that the energy functional is bounded from
below if and only if A\, > 0. It should be noted that in this case one cannot
always choose 15 to be a state of constant linear polarization since this requires
that Q has rank 1; however, this is not needed for the scaling argument since
the term A F[3] in Eq. is automatically zero when Ay = 0. Hence, one
can use again the particular variation defined in Eq. (which fixes Q) to
conclude that the energy functional is unbounded from below when A, < 0.

B. Energy Functional of Equilibrium States

Second, if 1/7(75, ¥) is an equilibrium configuration, then the first variation of the
energy functional vanishes, and Eq. (2.65a)) yields the relation

-

D[n,n] = 2T[))] + 3\, Fo[n] + 3\ F[3]. (2.67)

This expression is valid for any equilibrium state and allows one to express
the selfgravity term Din,n| as a function of the kinetic term 7'[¢)] and the
self-interaction ones F),[n| and Fj[5], similar to the usual virial relation. Ac-

cordingly, the total energy of any equilibrium state can be expressed as

-

5[15] = —T[Y] — 2X\. Fy[n] — 2A, F[3), (2.68)

which does not require the computation of the selfgravity term D[n,n]. Since

—

M Enn] + AsFg[S] > Mo Fn[n] and T[] and F,,[n] are positive definite, it follows
that the energy of the equilibrium states is always negative when A\ > 0.

15 An energy functional that is unbounded from below is considered ill-defined, as it implies
that an unlimited amount of energy can be extracted from the system, rendering the theory
non-physical. However, in the context of effective theories, this issue is expected to be
resolved by the ultraviolet completion, where higher-order operators not included in Eq.
should ensure that the energy functional becomes bounded. This is what happens, for
instance, with the well-known cosine potential of the QCD axion, where expanding in a
Taylor series reveals that the quartic term has a negative coefficient (indicating an attractive
self-interaction), while the potential remains positive definite.
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C. Discarding Local Minima of the Energy Functional
Third, Eq. (2.65b|) implies that a critical point at ¥ = 1 corresponds to a local

minimum of &[4, ] if T[1h] 4+ 3\, Fu[n] + 3A, F,[3] is positive and to a local max-
imum if it is negative. In particular, an equilibrium state (¢, ) cannot be a
(local) minimum of the energy functional with respect to arbitrary variations

that fix N (or Q if A, = 0) when A\, F,[n] + A\ FL[5] < =T[i)]/3.

Generic Sector: Stationary Solutions

In the generic sector of the effective theory, equilibrium configurations are
stationary states, which are characterized by the ansatz, c.f. Eq. (2.56)):

B(1,7) = e P50 (), (2.69)

where 7© is a complex vector-valued function of Z and the energy eigen-
value F is a real constant. As explained previously, these states have a time-
independent Hamiltonian, and consequently, they give rise to a static grav-
itational potential U(t,Z) = U(Z). Introducing Eq. into the integro-
differential equation yields the nonlinear eigenvalue problem:

EFY = H[70)F®. (2.70)

This equation determines the stationary solutions of the s = 1 Gross-Pitaevskii-
Poisson system, which will be solved numerically in Section under the
assumption of spherical symmetry.

However, before doing so, we ask ourselves whether stationary states can
arise as global minima of the energy functional. This question is particularly
relevant since such a minimum is expected to represent a stationary state that
is (orbitally) stable under small enough perturbations [100].

In order to formulate the question in a more precise way, let

Ay = {1/7 € H'(R®,C9) - /|1E(f)|2dv _ N} , (2.71)

where here H'(R? C?) denotes the space of wave functions @Zj : R® — C? such
that J and its first partial derivatives are (Lebesgue-) square-integrable. It
can be shown that & is well-defined on this space [99]. Thus, we ask whether
there exists a wave function 15* € Ay such that

El.) = inf E[W). (2.72)
YEAN
The first observation is that a necessary condition for the existence of such a
minimum is that £ must be bounded from below on Ay. As has been shown
in Section this is the case if and only if Ay > 0, with )y defined in
Eq. , so for the remainder of this section we shall assume that A\g > 0.
Next, we claim that a global minimum is attained by a wave function of
constant polarization and that, if multiple global minima exist, all share this
form. To show this, we first decompose J(f) according to

U(T) = f(D)E(T), (2.73)
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where f(Z) := |[¢(Z)| and é(Z) has unit norm. Using the fact that n = f2
and |[Vy|*> = |V f|> + n|Vé[?, and recalling the inequality A, F,[n] + A\ F,[s] >
Ao Fy[n], one obtains

-

g[ ] Z gscalar[f] = scalar[f] + )\OFn{n] - D[na n]7 (274>
where Ticatar f] := 50 [ |[Vf(Z)]?dV. Furthermore, equality holds only if on

the set of points W2h"é0re f > 0 the polarization vector é(Z) is constant and
satisfies A, + Xs|€* x €|> = A, which means that é(Z) has linear (circular)
polarization if Ay > 0 (A; < 0).

One can further decrease the energy functional by replacing f by its “sym-
metric decreasing rearrangement” f, (which, by definition, is spherically sym-
metric, nonincreasing, nonnegative and satisfies [ f?dV = [ fPdV forallp > 1;
see [99] and references therein). It follows from [99] that Eatar[f] > Escatar[f+),
with strict inequality unless f(Z) = f.(Z — %) with a constant vector 7.

As a consequence, any minima J* of the problem ([2.72) must lie in the
subset of Ay consisting of constant polarization states for which the function
F(Z) = |[¥(Z)| is radially symmetric (up to translations), nonincreasing, and
nonnegative and for which the polarization is linear for Ay > 0 and circular for
As < 0. The function f can then be found by minimizing the functional Eatar,
which is known to have a minimum [99, [101l [102] satisfying f(Z) = f.(Z).

In conclusion, global minima of Eq. exist, and (up to translations)
all of them are described by stationary and spherically symmetric states of
constant polarization that have the form (¢, Z) = e EloO(r)e, with o(© (1)
monotonically decreasing and positive, the polarization € being linear when
As > 0 and circular when Ay < 0. Whether or not the function ¢ (r) charac-
terizing the ground state is unique for A\g > 0 is an interesting open question
that will not be addressed in this thesis work.

Figure further illustrates the results of this section.

Symmetry-enhanced Sector: Stationary and Multi-frequency Solutions

In absence of spin-spin self-interactions (A, = 0), stationary configurations still
exist. Following similar arguments as in Section we conclude that, for
fixed N and \,, > 0, the energy is always minimized by a stationary and spher-
ically symmetric state of constant polarization and no nodes. Furthermore, in
the free theory (A, = Ay = 0), the ground state is unique, up to translations
and rigid unitary transformations [99)].

As explained in Section [2.3.3] in the symmetry-enhanced sector there also
exists the possibility of equilibrium configurations that are realized as multi-
frequency states. Expanding

3
Pt=0,2) =) 0 (@)éx (2.75)
A=1

in terms of an orthornormal basis €, of C? which diagonalizes the transfor-
mation F, Eq. 1) leads to the following expression for the multi-frequency

states:
3

P, 7) =) e B ()e,, (2.76)

A=1
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where Ug\o) are complex-valued functions depending on # and FE) denote the

eigenvalues of E which are real and correspond to the frequency of oscillation
associated with UE\O). As the stationary states, these solutions have a time-
independent Hamiltonian and gravitational potential. Introducing Eq.
into the integro-differential equation yields the nonlinear eigenvalue
problem:ﬁ

E,\U/(\O) = 7%[1/7]0&0). (2.77)

These equations determine the multi-frequency solutions of the symmetry-
enhanced sector of the s = 1 Gross-Pitaevskii-Poisson system, which will be
solved numerically in Section under the assumption of spherical symme-
try.

An open question is whether constant polarization states, which minimize
the energy functional for fixed IV, also minimize it for arbitrary fixed values of
Q We do not address this question in this thesis work.

2.3.4 Spherically Symmetric Equilibrium Configurations

Hereafter, we further specialize on equilibrium configurations which are spheri-
cally symmetric. As discussed in Section [2.3.2] our effective theory is invariant
under the rotation group, hence we expect spherically symmetric configura-
tions to play a relevant role in our discussion. Furthermore, as we have already
argued in Section for fixed N and )y > 0, all ground state configurations
are stationary and spherically symmetric (up to translations).

We define a spherically symmetric configuration as one that is invari-
ant under rotational transformations.m Recall that Eq. is invariant
with respect to any two of the following representations of the SO(3) group:
O(t,7) — Ri(t, R7'Z) and ¢(t, &) — (t, R"'E). Therefore, a spherically
symmetric configuration should lie in the trivial irreducible representation of
any of these two representations of the rotation group.

In the first case, one obtains a state of the form

—

U(t,Z) = .(t,1)é, (2.78a)

with é, the unit radial vector and v,.(, ) an arbitrary complex-valued function
of t and r = |Z|. In the second case, however, one gets

<
—~
\'@F
B

I
R

VAL, T)éx, (2.78b)

A=1

L6Recall that 7{[¢}] depends on ¢ only through the combination n = 37, |o\”[2, which is
independent of .

17Clearly, a spherically symmetric configuration should be associated with a radially sym-
metric gravitational potential. Through Poisson’s equation, this implies that the particle
density n should have the same symmetry. The question then is which wave functions
ﬁ(t,a‘:’) give rise to such densities and, at the same time, are self-consistent stationary or
multi-frequency solutions of the s = 1 Gross-Pitaevskii-Poisson system. While in this thesis
report we do not provide a complete answer to this question (since we do not guarantee ob-
taining all possible such wave functions), we nevertheless identify different families of such
states based on symmetry arguments.
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where the three components of @Z(t, Z) in an orthonormal constant basis é, of
C? are functions of ¢ and r only. Note that in both cases the particle density n
is radially symmetric, which, according to Poisson’s equation, guarantees that
the gravitational potential U also respects this symmetry. The spin density
§ vanishes in the first case, however, in the second one it may be non-zero,
although its three components are functions of ¢ and r only.

Next, we identify the different types of spherically symmetric equilibrium
configurations that can exist in our effective theory. For doing this, we combine
our definition of equilibrium configurations in Section [2.3.3] together with that
of spherically symmetric configurations in this section.

Stationary spherical solutions

Polarization A=0,2=0 A #0, A =0 An=0, A #0 A #0, A\g #£0

Constant: linear | ¢ =0 SP [87,49] | ¢ = 0 GPP [49] ¢=0SP [87,49] | ¢ =0 GPP [49]
circular | ¢ =0 SP [87,49] | ¢ = 0 GPP [49] ¢=0SP [87,[49] | ¢ =0 GPP [49]
arbitrary | £ =0 SP [87,49] | ¢ = 0 GPP [49] non-existent non-existent

Radial ¢=1SP [87] ¢=1GPP (new) | £ =1 GPP (new) | £ =1 GPP (new)

Table 2.1: The stationary and spherical s = 1 Gross-Pitaevskii-Poisson
system: The stationary, spherically symmetric s = 1 Gross-Pitaevskii-Poisson
equations as compared to other systems studied in the framework of multi-
scalar field theories. The comparison depends on the polarization vector €. A
general constant polarization (different from the linear and circular ones) is
prohibited in presence of spin-spin self-interactions. Self-interacting, radially
polarized Proca stars are not related with previously known solutions. SP
(Schrodinger-Poisson), GPP (Gross-Pitaevskii-Poisson).

For the following, it will be convenient to express the field #® (%) of the
stationary ansatz in the form &0 (%) = 0 (r)é(%). Here 0(® is a real-
valued function which, due to spherical symmetry, depends only on the radial
coordinate r and € is a complex polarization vector that, in general, depends
on 7 and is normalized to have unit length. Then, combining Egs. @
and (2.78al) leads to é(Z) = é,, whereas combining Eqs. and (2.78b
yields €(Z) = é(r).

In addition, the wave function zﬁ(t,f) needs to satisfy the s = 1 Gross-
Pitaevskii equation , and this puts a further condition on the possible
form of the polarization vector. Although we have not analyzed the full impli-
cations of this Conditionﬂ we identified three different types of polarization
vectors that are compatible with the structure of the field equations and lead
to stationary and spherically symmetric configurations:

i) A linear polarization vector, for which é(¥) = é,; see Eq. (2.49a)).

18However, when A\; = 0 one can prove that é(r) must be constant since in this case the
three components of & (Z) satisfy the same time-independent Schrédinger equation with
the same energy level E' and thus they must be proportional to each other according to the
Sturm oscillation theorem [103]. Further, we have proved that under the assumption that
€(r) is constant, only linear or circular polarizations are possible when A # 0, although in
this case we have not been able to demonstrate that the polarization vector is necessarily
constant.
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ii) A circular polarization vector, for which é(¥) = é£+); see Eq. (2.49D)).

iii) A radial polarization vector, for which é(Z) = é,, with é, the unit radial
vector.

The first two cases were already introduced in Section and represent (up
to a global symmetry transformation) the most general stationary states with
constant polarization. For A\, = 0, they degenerate; however, when A, # 0
they lead to inequivalent states. Furthermore, as discussed in the previous
section, when \g > 0 there exists a spherical and constant polarization state
that minimizes the energy functional. These solutions were previously explored
in Refs. [76, [77]. The radially polarized states can be obtained by substituting
71 = 7% = 0and 6 = ¥ and ¢ = ¢ into Eq. , where ¥ and ¢ repre-
sent the polar and azimuthal angles in three-dimensional space, respectively.
These solutions constitute the non-relativistic limit of the spherically symmet-
ric Proca stars originally reported in [60] (see also Ref. [70], which explores
radial polarization under the name of edgehog field configurations).

Introducing the ansitze i), ii), and iii) into the s = 1 Gross-Pitaevskii-
Poisson system ([2.25)), we obtain that the stationary and spherically symmet-
ric configurations of linear, circular and radial polarization must satisfy the
nonlinear eigenvalue problem

1 2 A A
Eo® — {‘_ (As - —7) 1 2 TOR 602 Lt | 00, (2.790)

2my 72 2m?
AU = 4xGmoo V2. (2.79b)
Here, A, := %%r denotes the radial part of the Laplace operator, and the

parameters v and o depend on the polarization vector € and take the following
values:

i) 7 =0, a = 0 for linearly polarized Proca stars,
ii) v =0, a =1 for circularly polarized Proca stars,
iii) v =1, a = 0 for radially polarized Proca stars.

It is interesting to note that linearly and circularly polarized Proca stars
are described by exactly the same equations as non-relativistic boson stars, c.f.
Egs. (32) in Ref. [49] (see also [14] [104] for previous studies of the equilibrium
configurations of the s = 0 Gross-Pitaevskii-Poisson system). As we clarified
earlier, in absence of spin-spin self-interaction, all constant polarization states
are equivalent to each other; therefore, when A\, = 0, elliptically polarized
Proca stars beyond the linear and circular cases also exist and are described
by Egs. (2.79) with v = 0. Non-selfinteracting (A, = As = 0) radially po-
larized Proca stars, on the other hand, are described by the same equations
as non-relativistic, £ = 1 boson stars, c.f. Eqgs. (41) in Ref. [87]. Finally, self-
interacting, radially polarized Proca stars satisfy the same system of equations
as self-interacting, £ = 1 boson stars; however, up to our knowledge, such so-
lutions have not been reported in the literature. We review the equivalence
between these different systems in Table 2.1]
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Equations must be complemented with appropriate boundary con-
ditions that guarantee that the solutions remain regular at the origin and
possess finite total energy. Near r = (0, we can expand the solutions in
power series of the form o©(r) = ogr® + o7t + goret2 + .. U (r) =
Upr? + urrPH + UpyrP2 + . with o9 # 0, Uy # 0, o and 3 taking constant
values positives values. Introducing this ansatz into Egs. we can write
this as

{ooa(a—1)r*? + oy(a+ Dar® ' + op(a + 2)(a + 1)r* + ...}
2
—1—77{00047’0"1 + o (a+ Dr* 4+ og(a+2)r*t + .}

2
—ﬁ{agro‘ + ot ot 4 Y+ {ogr® + )P
HUor® + . Hogr* + ..} =0.  (2.80)

Near r = 0 we can neglect the terms r** and r**%. Grouping the terms with
power 7%~2 and setting it to zero, we obtain a quadratic equation for o with
solutions « = —1,0 if v = 0 and o = —2,1 if v = 1. The only solutions
that are regular are given by the values a = 0,1. In a similar way for g
using the Poisson equation (2.79b|) we get the regular solution 5 = 0,1. When
we group the terms r®~!, we get o1,y = 0. So, when v = 0, they have
(o, 5) = (0,0) and («, ) = (—1,—1), where the second solution needs to
be discarded since it leads to divergences at the origin. For v = 1 the two
solutions have (o, 8) = (1,0) and (a, ) = (—2,—1), and again, the second
one leads to a divergent behavior at » = 0.
This suggests the following regular boundary conditions at the center:

cO(r=0)=(1-9)00, V@ =0)=r0,, (2.81a)
U (r = 0) = Uy, U (r=0) =0, (2.81b)

with ¢ and U, constants and where the primes refer to derivation with re-
spect to r. Notice that, at the origin, linearly and circularly polarized states
have a nonzero value and a vanishing first derivative. In contrast, for radially
polarized Proca stars, regularity implies that the wave function vanishes at
r = 0, whereas the first derivative at the origin does not vanish. Nonetheless,
we will sometimes refer to oy as the central “amplitude” of the configuration,
although rigorously this is only true if the polarization is linear or circular. On
the other hand, Egs. are invariant under simultaneous shifts of £ and
U(r), and we can use this symmetry to fix arbitrarily the value of Uy.

At infinity, we impose li_>m o (r) = 0, which is required for the solutions
to have a finite total energry. OoThis defines a nonlinear eigenvalue problem for
the frequency E, where, for each central amplitude of the configuration, oy,
there exists a discrete set of frequencies E,(0g), n = 0,1,2, ..., for which the
boundary conditions are satisfied. We discuss this problem in more detail in
Section [2.3.5], where we present our numerical results.

Multi-frequency Spherical Solutions

Next, we explore multi-frequency states, which are only possible in absence of
spin-spin self-interactions (As = 0).
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A=0,A=0 A #0, A =0 A =0, #0 A #0, A #0
(=0 (=0 (=0 (=0
multi-state SP [89] | multi-state GPP (new) | multi-state GPP (new) | multi-state GPP (new)

Table 2.2: The multi-frequency and spherical s = 1 Gross-Pitaevskii-
Poisson system: The multi-frequency, spherically symmetric s = 1 Gross-
Pitaevskii-Poisson equations as compared to other systems studied in the
framework of multi-scalar field theories. Self-interacting, multi-frequency
Proca stars are not related with previously known solutions. SP (Schrodinger-
Poisson), GPP (Gross-Pitaevskii-Poisson).

Combining Eqgs. (2.76]) and (2.78al), we find that the only possible states

are the stationary radially polarized solutions that were already discussed in
the previous section. On the other hand, combining Eqs. (2.76]) and (2.78b]),

we find
3

P(t,7) =Y e P (r)éy, (2.82)
A=1

where 0&0) are complex-valued functions depending only on r. As far as we

know, these solutions have not been previously reported in the literature of
Proca stars.
Introducing Eq. (2.82) into the s = 1, Ay = 0 Gross-Pitaevskii-Poisson

system ([2.25)), we obtain:

1 A
0 _ n (0) 2 (0)
Eol” = —2m0A3+2m%Zj:\aj 2+ mold | 0}, (2.83a)
AU = 4nGmg Y _ o2, (2.83b)
J

where, as in Eqgs. , A, denotes the radial Laplace operator, and without
loss of generality we have chosen the Cartesian basis €, = é; with ¢ = x, ,ZE
Furthermore, it is sufficient to consider real-valued functions o—§°) (r) and
from now on we will stick to this assumption.

It is worth noting that non-selfinteracting (A, = 0), multi-frequency Proca
stars are described by exactly the same equations as non-relativistic, multi-
state boson stars with two or three occupied energy levels in which the angular
momentum number ¢ vanishes, c.f. Eqgs. (9) in Ref. [89]. To the best of our
knowledge, the generalization of this system for A\, # 0 has not been reported
in the literature, with the exception of the relativistic scenario discussed in

Ref. [105).

9By applying a unitary transformation one can always map an arbitrary orthonormal
basis é, to the standard Cartesian one é;, which changes the original multi-frequency state
ﬁ(t,f) of Eq. to an equivalent one.

20Indeed, one can take the real and imaginary parts of Eq. and conclude that
Re(ago)) and Im(ago)) satisfy the same one-dimensional Schrodinger equation. As a conse-

quence of the nodal theorem, the imaginary part of the wave function must be proportional
(0)

i

applying a constant unitary transformation one achieves that all o

to the real part, which means that the functions o; "’ are real, up to a global phase. After

(0)

, ’s are real.
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To proceed, Eqs. (2.83]) must be accompanied by some appropriate bound-
ary conditions. Near » = 0, we demand that the solutions remain regular.

For this, we again expand the functions UEO) (r) and U(r) in power series

UEO) (1) = oior® + ourt 4 oprat2 4 UT) = UgrP + Ui+ UprPit2
and impose g0 # 0, Uy # 0, o; > 0 and B; > 0. Introducing this expansion
into Eqgs. results in eight solutions, although only the one for which
(i, B) = (0,0) and (oy1,U;) = (0,0) is regular. This leads to the following
boundary conditions at r = 0:

o =0)=04, o(r=0) =0, (2.84a)

)

Ur=0)=Uy, U(r=0)=0. (2.84D)

As for the stationary states, the system is invariant under common
constant shifts in £; and mel(r), and we can choose arbitrarily the value of
Z/{O-

Finally, to guarantee finite total energy, we impose ILm 01(0)(7“) = 0. This
defines a nonlinear multi-eigenvalue problem for the freqqleilocies E;, where, for
each combination of central amplitudes (0,0, 0y0,020), there exists a discrete
set of frequencies Eyp, (040, 040, 020), Eyn, (020, 040, 020), and E.,, (040, 040, 020),
Mg, Ny, n, = 0,1,2,. .., satisfying the boundary conditions.

For the interpretation of our results, the following observation will be im-
portant. According to the nodal (or Sturm oscillation) theorem (see [103] for
a pedagogical review), the eigenfunction 1, (r) corresponding to the nth en-
ergy level E, of a one-dimensional Schrodinger operator has exactly n nodes.
Once the nonlinear system is solved, Eq. (2.83a)) can be interpreted as
a Schrodinger equation for the wave functions O'Z-O (r) with a fixed effective

potential
An
om2 > "o\ + mold. (2.85)
0 .
J

Therefore, the frequencies E;,, can be ordered according to the node number
of the functions ai(o)(r). Consequently, two functions O'EO) (r) and a](-o) (r) with
1 # j are proportional to each other if they coincide in their node numbers,
whereas they are mutually orthogonal if they have different numbers of nodes.
In particular, this implies that a solution whose wave functions 01(0) (r), 1 =
x,y, z, have equal number of nodes are proportional to each other and satisfy
E, = E, = E; therefore it yields a stationary solution. Thus, for fixed central
amplitudes (0,0, 0y0,020), multi-frequency solutions can be labeled by their
node numbers (n,,n,,n,) with n, < n, < n, and not all n;’s equal to each
other.

In the next section, we numerically solve the nonlinear eigenvalue problems
belonging to spherically symmetric stationary and multi-frequency states.

2.3.5 Numerical Results

In this section, we provide numerical solutions of the s = 1 Gross-Pitaevskii-
Poisson system and discuss their properties. To proceed, we introduce the
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Figure 2.4: Stationary Proca stars of constant polarization: The nor-
malized real part of the vector field, ﬁR(t,f), and the normalized particle
number density, n(t, ), for three Proca stars of constant polarization, unit
central “amplitude”, oy = 1, and repulsive self-interaction, AP"s + a \Phvs > (),
at time t = 0. Left panel: No nodes, n = 0. Center panel: One node, n = 1.
Right panel: Two nodes, n = 2. Note the appearance of an additional “layer”

in the configuration for each increment of the variable n. Code variables use
the scale \, = | A2 4 a\Phvs|,

0.2 0.4 0.6 0.8 1.0

12

stationary (radial)

—12
—12 —6 0 6 12 —12 —6 0 6 12 —12 —6 0 6 12

Figure 2.5: Stationary Proca stars of radial polarization: Same as in
Figure but for the case of radially polarized Proca stars. The main differ-
ence with respect to the linear and circular cases, apart from the fact that the
vector points radially and does not pick a preferred direction, is the presence
of a “hole” in the center of the configuration. This is a consequence of the
regularity conditions at the origin.
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Figure 2.6: Stationary and multi-frequency Proca stars: Similar as in
Figs. and but comparing a stationary Proca star with multi-frequency
ones. Left panel: (040,040,0.0) = (1,0,0) and (ng,ny,n.) = (0,0,0). Cen-
ter panel: (040,040,0.0) = (1,1,0) and (ng,n,,n,) = (0,1,0). Right panel:
(020,040,020) = (1,1,1) and (ng, ny,n,) = (0,1,2). Although the stationary
constantly polarized and multi-frequency solutions are spherically symmetric
according to the representation ﬁ(t, z) — ﬁ(t, R™'Z) of the SO(3) group, this
symmetry is not manifest given the pattern formed by the vector field.
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Figure 2.7: Radial profiles of some representative stationary and
multi-frequency configurations: Radial profiles 02@ (r) of some configu-
rations reported in Figs. and . Left panel: The profiles ¢ (r) of
the three linear/circular configurations of Figure . Center panel: The pro-
files ¢(©(r) of the three radial configurations of Figure . Right panel: The

profile o (r), ol (r), and o (r) of the multi-frequency configuration in the

right panel of Figure
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dimensionless quantities:@

4 3 V i
= T e %f”h (2.86a)
A hys ne A T'phys
e VT om0
0
)\phys )\phys
Ao = S A= S (2.86¢)

where A\, > 0 is a characteristic self-interaction scale that we can choose at our
convenience. Note that the dimensions of E are the inverse of those of t.

In terms of the dimensionless variables, Eqs. (2.79) and ([2.83]) can be con-
veniently combined into a single system of the form

2
Agol? = ( Z + E :‘73('0)2 - “EO)) o, (2.87a)
T X
J

Asugo) = — Z a](-O)Q, (2.87b)
J

where Latin indices and summations range from 1 to 3 for multi-frequency
states and are omitted for stationary states. Here, v = 0 for multi-frequency
states and stationary states with constant polarization, whereas v = 1 for ra-
dially polarized stationary states. To simplify the numerical implementation,
we have also introduced u§0) (r) := E; —U(r) as the difference between the fre-
quencies E; and the gravitational potential U(r). (Although the uz(.o) differ only
by a constant number, for multi-frequency states we still find it convenient to
solve the three Poisson equations for the shooting algorithm described below.)
In addition, we have fixed the characteristic self-interaction scale of Egs.
to A\, = |\Phws 4 @A’S’hys] where o was defined in Section m The = signs
in Eq. make reference to the “repulsive”, AP + a\P™s > (), and the
“attractive”, \PhWs 4 o \PhWs < (), cases, respectively. These equations must be
complemented with the following boundary conditions at r = 0; c.f. Egs.

and (2:89):

a§°) (r

ugo) (r

) = (1 - 7)0-7307 U(O),O" = 0) = Y050, (2.88&)
) = Uio, U(O)/(T =0)= (2.88b)

)

0
0

e

To find the appropriate values of 0,9 and u;y, we use a methodology sim-
ilar to the one described in the previous chapter (based on Ref. [87]), where,

given o;q, the possible values for u;y are fine-tuned using a numerical shooting
(0)

method based on the conditions lim o,
=00

(r) = 0, which are required for the

2n this section, t, Z, U, ... denote dimensionless variables. Whenever needed, we will
label dimensionfull quantities by the superscript phys.

22In absence of self-interactions, when the polarization vector is linear or radial and
APhys — () or when it is circular and AP"Y$ = —\P"¥s the second term on the right-hand side

of Eqgs. (2.79a)) and (2.83a)) vanishes. In these cases, the second term on the right-hand-side
)

of Eq. (| should be discarded and the scale A, is arbitrary.
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Figure 2.8: Radially polarized Proca stars with no nodes: Stationary
and spherically symmetric solutions of the s = 1 Gross-Pitaevskii-Poisson sys-
tem with no nodes (n = 0) and radial polarization. Red (blue) lines correspond
to the repulsive (attractive) case, and we have included the solutions to the
s = 1 Schrodinger-Poisson system (black lines) for reference. Left panel: The
profile of ¢(©)(r) for oy = 1. Center panel: The effective mass of the configura-
tions Myg as a function of the effective radius Rgg. Right panel: The magnitude
of the energy eigenvalue |E| as a function of the central amplitude oq. The
dots in the last two panels correspond to the configurations of unit amplitude.
For og — 0 the effects of the self-interactions become negligible and we re-
cover non-self-interacting radially polarized Proca star configurations, which
are equivalent to ¢ = 1 boson star.

solutions to have finite total energy. This results in a discrete family of so-
50)(%0,7%; r), where n; = 0,1,2,... label the number of nodes of the
functions afo) (r) in the interval 0 < r < co. For the numerical integration, we
use an adaptive explicit 5(4)-order Runge-Kutta routine [106, 107, [108], which
requires rewriting the equations as a first-order system for the fields (JZ@), ugo)),
and for the shooting method we employ a technique based on bisection.

In Figs. and we plot some representative solutions of the stationary
and spherically symmetric s = 1 Gross-Pitaevskii-Poisson system for og = 1,
n = 0, 1 and 2, and different polarizations € at time t = 0. In addition,
Figure [2.6| presents a comparison between the constantly polarized station-
ary configuration defined by the parameters oy = 1 and n = 0, and two
prototypical multi-frequency states, where for concreteness we have chosen
(020,040,020) = (1,1,0), (ng,ny,n,) = (0,1,0), and (040, 0y0,0:0) = (1,1,1),
(ng,ny,n.) = (0,1,2), all of them evaluated at ¢ = 0. For completeness, in

lutions o

Figure we include the radial profiles O'i(o) (r) associated with some of these
configurations. It is important to stress that in all these figures we have focused
on the repulsive case.

Mass and Radius

The mass of a Proca star can be computed as the product of mgy with the
particle number defined in Eq. (2.41), which yields MP"%s = moNP"%*. Here
NPws = [1/(v/87tGA.my)|N, where N represents the number of particles in
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Figure 2.9: Radially polarized Proca stars with one node: Same as in
Figure but for the stationary and spherically symmetric solutions of the
s = 1 Gross-Pitaevskii-Poisson system with one node (n = 1).
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Figure 2.10: Phase diagrams for multi-frequency states: Multi-frequency
Proca stars with amplitude (o.0,040,0) and node numbers (n,,n, n,) =
(0,1,0) in the free theory (A, = Ay = 0). Left panel: The central ampli-
tudes 0,9 and oy that are consistent with N = 43.5 number of particles.
Right panel: The Mgg vs. Rgg plot. Contrary to stationary states (described
by the border lines), multi-frequency states correspond to a region instead of
a curve.
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the dimensionless variables of Eq. (2.86)), and is given by
N:ME:/UPWW. (2.89)

To simplify the presentation, we have chosen the same conventions as those
defined just below Egs. (2.87).

Formally, the size of a Proca star extends to infinity, and for that reason it
is usual to define an effective radius Rgg as the one containing 99% of the total

mass of the configuration, Mg, which in physical units is given by RPY* =

[VA/ (V8T Gmi)] Ryg.

First, we concentrate on stationary solutions. In Figs. and 2.9, we show
the profile ¢ (r) for oy = 1.0, the Mgy vs. Rgg plot, and the behavior of the
energy eigenvalue E as a function of the central amplitude oy, for radially
polarized Proca stars of zero and one nodes, respectively, in the attractive,
repulsive, and free theories. The corresponding figures for linearly and cir-
cularly polarized Proca stars, which coincides with those of non-relativistic
boson stars, can be found in Figs. 1 and 2 of Ref. [49]. In the limit oy — 0,
the attractive and repulsive branches of the radially polarized Proca stars con-
verge to those of the free theory (see the central and right panels of Figs.
and . This occurs because, at low densities, short range self-interactions
(which are cubic in the fields) become negligible and the Gross-Pitaevskii equa-
tion approaches the Schrodinger one. The same property has been observed
for self-interacting boson stars in Ref. [49] and thus it also holds for linearly
and circularly polarized Proca stars, and for all constant polarization states
when A\ = 0. In all cases, the numerical data suggests that the mass of a
stationary Proca star increases without bound as the radius of the object de-
creases, except when an attractive self-interaction is present. In this situation,
the objects reach a state whose mass cannot be exceeded.

For multi-frequency states, the situation becomes more involved, as the
configurations are labeled by the three independent amplitudes (0,0, 00, 020),
in addition to the corresponding number of nodes (n,,n,,n,). As a result,
we anticipate that each curve in the Mgy vs. Rgg plot belonging to stationary
states of fixed n transforms into a region when considering multi-frequency
states of fixed (ng, ny,n,).

To analyze this, we focus on the free theory (A, = A\; = 0) for simplicity.
In this case, the s = 1 Gross-Pitaevskii-Poisson system is invariant under the
scaling transformation

tes A e MNV2E U MU e A, (2.90)
where )\, is an arbitrary nonvanishing constant. This invariance is associated
with the arbitrary choice of the scale A, in Eqgs. , which does not affect
the eigenvalue problem (2.87)) when both A\, and A, vanish. This simplifies the
analysis of the free theory, since, for any node numbers (n,, n,, n,), configura-
tions (040, 0y, 020) that maintain the same ratio between the different o,y are
related to each other by a rescaling transformation.

In particular, we concentrate on the case where (n,, n,,n,) = (0,1,0),
which describes multi-frequency states with two components, (0,9, 0y0,0). In
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the left panel of Figure 2.10, we show the family of states corresponding to
a fixed particle number N = 43.5, i.e. Mgy = 43.1, leading to configurations
with sizes between 5.7 < Rgg < 24.2. Here, the number N = 43.5 is the one
obtained from the configuration with parameters 0,9 = 1 and o, = 0, which
represents a stationary state of linear polarization. As we just mentioned, this
family can be rescaled to any value of N using the transformation ([2.90]), where
every element in the family transforms according to Mgg ~ 1/Rg9. We show
the Moy vs. Rgg plot for multi-frequency states of (ny,ny,n.) = (0,1,0) in
the right panel of Figure 2.10] Note that the left border line of this diagram
corresponds to the Mgy vs. Rgg plot of the n = 0 stationary states of linear
polarization, whereas the right border to the their first excited states n = 1
(these border lines correspond to the black curves in the central panels of
Figs. 1 and 2 in Ref. [49]). As we anticipated, multi-frequency states fill whole
regions in the Mgy vs. Rgg diagram.

Angular Momentum

All states constructed in this thesis are spherically symmetric, which inher-
ently results in configurations of vanishing angular momentum, LPhws = 0.
This can be directly verified by substituting Eqgs. and into the
general expression for the orbital angular momentum. One can show that lin-
carly, circularly, and radially polarized Proca stars possess no orbital angular
momentum, L = —i [[Z x ( (" - V)]dV =0 .

Note: If we decompose the vector field in terms of spherical harmonics as

l

Y(t,E) =Y Y(0,0)00(r) (2.91)

m=—I

and we concentrate on the the z-component, we can write L* as

L =i [ ur ™ - yuidam) o =i

¢
X {/0(0) (r) [zaya(o)(r) — y@za(o)(r)} Z Y™, 0)* Y™ (0, p)dx

m=—/
/ Z YE™(0, 0)*0,Y V™0, p)dx
m=—/
/ Z Ym0, ) 0, Y ™ (8, gp)d?’x} =0, (2.92)
m=—/

where we have made use of
20,00 (r) — y0,6O(r) = 0, (2.93)

and following a similar argument to that at the beginning of Appendix A
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in Ref. [109]:
l
> YE™0, )" 8™ (6,0) = 0. (2.94)

m=—/{

Identical arguments for LY and L* allows to write L=0.

On the other hand, whereas the spin angular momentum vanishes for multi-
frequency states, for stationary states with circular polarization this is given

by 8P = [Mpy/(v/8TAmo)]S, with?
S=—i /(J* x )dV = aNeé,, (2.95)

where we have used €@ x ® = jaé,. And, for linear and radial polarization
we have

A [

S = —i/(wzwz—wzwy) d3x:—2? i o (r)ridr

X (/ Y100, o) Y0, 0)dQ — /Yl’l(Q,gp)*Yl’o(Q,gp)dQ) = 0.
(2.96)

and similar for the S¥ and S* components. From a quantum perspective,
the macroscopic spin angular momentum of circularly polarized Proca stars
originates from the intrinsic microscopic spin of the individual particles that
conform the configuration.

Global Charges

If the spin-spin self-interaction term vanishes, one can construct the charges
associated with the accidental symmetry, which are also conserved in the time
evolution. In physical units, Eq. l| can be expressed in the form QP =

[1/(v/87GAamy)]Q, with

J

e o =
0

where 0\”) are the Cartesian components of 7% (Z).

Given that we do not distinguish between unitarily equivalent configura-
tions, we can limit our study to states for which Q is diagonal, Q = diag
(Qm,ny,sz). Specifically, stationary, linearly polarized Proca stars have
Q = Ndiag(1,0,0), while stationary, radially polarized Proca stars have Q =
%diag(l, 1,1) (remember that in the symmetry-enhanced sector of the effective
theory linearly and circularly polarized states are degenerated). In contrast,
multi-frequency configurations allow the diagonal components of Q to be ar-
bitrary, with the particle number given by Tr(@) =N.

As an illustration, we compute the global charges of the configurations

that we have constructed in Figs. [2.4] 2.5 and 2.6 To do that, we assume

23In the absence of spin-spin self-interaction, general elliptic polarization states 1}
have § = N sin(2¢) siny,€,.
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Figure 2.11: Radial profiles of Q, N, and &: Left panel: The radial profile
of Qm, ny, sz, and N = TrQ for a stationary radially polarized Proca
star of Qm ny sz =40 and N = 120. Center panel: Same as in the
left panel but for a multi-frequency state with the same values of Qw, ny,
sz and N. In both panels, the insets correspond to the radial profiles of the
components of 7 (F) (remember that for a Proca star of radial polarization
o = 6O (r)sindcosp, o)) = oO(r)sindsingp, and o = O (1) cosd).
Right panel: The radial proﬁle of £ for both configurations. Note that the
radial Proca star has a lower energy than the multi-frequency configuration.
In all cases we have assumed A\, = A\; = 0. Given the rescaling symmetry of
the free theory we can extend these conclusions to arbitrary values of N.

As = 0. In particular, for the constant polarization states of Figure we ob-
tain Q = diag(85,0,0), Q = diag(134,0,0), and Q = diag(190,0,0), where
we have rounded the numbers to the closest integer. The radially polar-
ized states of Figure yield Q = 59 diag(1,1,1), Q = 81 diag(1,1,1), and
Q = 104 dlag(l, 1,1), whereas the stationary and multi- frequency states of Fig-
urehave Q= diag(80,0,0), Q= diag(79,18,0), and Q= diag(79,18,7).
In the first two panels of Figure [2.11| we present, for the free theory

(An = As = 0), the profiles Qy;(r) = 4x N O'Z(O)*O'](-O
of charge Q = diag(40,40,40), i.e. N = 120, although using the rescaling of
Eq. we can extend these results to an arbitrary /N: a stationary radially
polarized Proca star with oy = 1.0 and n = 0, and a multi-frequency star with
(020, 040,020) = (1.48,1.07,0.85) and (n,,n,,n,) = (0,1,2). Even though the
charge is distributed differently in these objects (the multi-frequency Proca
star being more extended than the radially polarized one), their total charges
coincide. According to Egs. and , when A\, = Ay = 0, the to-
tal energy is 5[1/7] = —T[zﬁ] = —1D[n,n], which shows that for fixed N, the
more extended objects have smaller values of D[n,n|, resulting in higher en-
ergies. This suggests that, for fixed Q proportional to the identity matrix,
(ng,ny,n,) = (0,1,2) multi-frequency Proca stars are more energetic than
n = 0 radially polarized configurations. The plots in the right panel of Fig-
ure and the findings in Section confirm this expectation.

124y for two configurations
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Figure 2.12: Energy functional of stationary states (symmetry-
enhanced sector): The energy £ of stationary Proca stars with A, = 0
as function of their particle number N and polarization vector €. Constant po-
larization states are indicated by red lines and are degenerated when A\, = 0,
whereas states with radial polarization are indicated by blue lines. When
the self-interaction is repulsive (A, > 0) or is absent (A, = 0) the ground
state configuration is provided by nodeless Proca stars of constant polariza-
tion and negative energy, £ < 0, in agreement with the analytical results of
Section When the self-interaction is attractive (A, < 0) it is not possible
to define a ground state configuration and the polarization of the lowest energy
stationary state changes with N.

0- Au >0, A=Ay 0 Au >0, Ay = —A,/2

—20 1 —20 1
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wW
—609 n=0 —60 1
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Figure 2.13: Energy functional of stationary states (generic sector):
Similar as in Figure but for the case in which A\, # 0. The spin-spin
self-interaction breaks the degeneracy of constant polarization states, which
are only possible for linear (red lines) or circular (orange lines) cases. Radial
polarization states are indicated in blue lines and represent excited configu-
rations. The left panel belongs to the shaded region in the first quadrant of
Figure 2.3 where A\g > 0, A; > 0, and a spherically symmetric ground state of
linear polarization exists, while the right panel to the shaded triangle in the
fourth quadrant of the same figure, where Ag > 0, Ay < 0, and the polarization
of the ground state is circular. For simplicity, we have only considered node-
less (n = 0) configurations. In this figure £7%* = [v/8rGm2|\2"*|~3/2]€ and

NPhs = [1/(v/87Gmo| \E2|1/2)] N.
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Figure 2.14: Stationary states as critical points of the energy func-
tional: The energy functional £[¢),] of the rescaled states 1, (&) associated to
stationary configurations 1,_(Z) of particle number N = 10, 19 and 25 (sce
Eq. ) First row: For A\g > 0, Ay > 0, there exists a global minimum
of the energy functional provided by a stationary state of linear polarization
and no nodes, where £ < 0. Second row: For A\g > 0, Ay < 0, there is also
a global minimum of the energy functional, in this case provided by a sta-
tionary state of circular polarization and no nodes, where £ < 0. Third row:
For \y < 0, Ay = 0, stationary states of linear and circular polarization are
degenerated and the energy functional is not bounded from below (this applies
to the radial case as well, although the maximum of the energy functional ap-
pears for larger values of v). In all cases, the energy functional has a critical
point at ¥ = 1, which is a global minimum if Ay > 0, and a local minimum,

a saddle point or a maximum if \y < 0, depending on the value of N. Here,
EPys = [\/SrGm2| A2 |73/2)€ and NPMWs = [1/(v/8tGmg| A2 [Y/2)]N.
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Figure 2.15: The energy spectrum of multi-frequency states: The en-
ergy of the same multi-frequency Proca stars as in Figure [2.10, The lowest
energy state is obtained for 0,0 = 1 and 0,9 = 0 (orange star), while the high-
est energy state is for 0,0 = 0 and o, ~ 0.2 (blue star). Both configurations
correspond to a stationary, linearly polarized state of constant polarization.
Multi-frequency states are represented by circle markers, with their energy
values indicated by color. In addition to the discrete set of stationary states
shown in the center panel of Figure 2.12] there exists a continuum of multi-
frequency solutions that connect the ground state with the first excited state.

Energy Functional

The energy functional plays a central role to determine the equilibrium config-
urations and deserves an independent discussion. Using Eq. (2.68)), the total
energy of a Proca star is given by P = [/8rGmi/\/N3|E, with

UL (o 20" L oual| o
5:—47TZ A EE G = ot rdr, (2.98)

- — - —

where we have use the relation e[y)] = =T [¢)] — 2\, F,[¢] — 2X:Fs[t], the fact
that in spherical coordinates we can write |[V)|? = /2 4 20'c© /r + (@2 /2,
the definition A, = |25 +a?\2"$| and we have discarded the boundary terms.

As before, we first focus on stationary states. For A\ = 0, Figure [2.12
shows the energy £ of Proca stars as function of their particle number N and
polarization vector €. In absence of spin-spin self-interactions, constant po-
larization states are degenerated, and this is the reason why for fixed N all
constantly polarized Proca stars possess the same total energy. Furthermore,
if A\, > 0, the ground state configuration (i.e. the lowest possible energy state
that exists for a given particle number) is given by nodeless (n = 0), spheri-
cally symmetric constant polarization states, irrespectively of the value of N,
as anticipated at the beginning of Section Similarly, when N and n are
fixed, radially polarized configurations have more energy than constant polar-
ization states, signaling that radially polarized Proca stars represent excited
states of the s = 1 Gross-Pitaevskii-Poisson system with A, > 0 and A\, = 0.
On the other hand, when the self-interaction is attractive (A, < 0), the energy
is unbounded from below (see Section and one cannot define a ground
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state configuration. Nevertheless, it is interesting to note from the right panel
of Figure that for some values of N, radial polarization states possess
less energy than constant polarization states whose energy can even become
positive. Note that these curves exhibit a spike-like behavior, signaling an
extremal point in the energy functional £ as well as the particle number N.
This feature signals the appearance of a zero mode, which is indicative of a
transition in the system’s stability. A more detailed discussion of this will be
presented in Ref. [2]. Finally, as we argued in Section [2.3.5) when N — 0 (i.e.
oo — 0), the effect of the self-interaction is negligible and we recover the same
results as in the free theory, no matter the value of A, (see the behavior of the
four curves in each panel of Figure close to the origin).

When A; # 0, the situation is more involved given that the characteristic
self-interaction scale \, = A\P"* 4 P that we have used to normalize phys-
ical quantities depends on the state of the system (o = 0 if the polarization
is linear or radial, and o = 1 if it is circular). To proceed, we will focus on
two cases: A\, >0, A, = \,, and A\, > 0, \; = —%)\n, both of which lie within
the region shown in Figure [2.3] where the energy functional is bounded from
below and a ground state exists. As is evident from Figure [2.13] the spin-spin
self-interaction term breaks the degeneration between the constant polariza-
tion states that is present when Ay = 0. This becomes more pronounced as N
increases and the effects of the self-interaction grow in significance. In partic-
ular, as we anticipated in Section [2.3.3] (see Eq. (2.66)), when \g > 0, A; > 0,
the ground state configuration is given by a stationary state of linear polariza-
tion, whereas when \g > 0, Ay < 0, the polarization of the lowest energy state
is circular. Moreover, in both cases radially polarized Proca stars represent
excited configurations.

We further illustrate this in Figure [2.14] where we study the behavior of
the energy functional under variations of the vector 1; which are consistent
with the rescaling of Eq. . As we demonstrated in Section when
Ao > 0, the energy functional is bounded from below. Furthermore, if Ay > 0,
there exists a global minimum of the energy functional that is provided by a
stationary and spherically symmetric state of linear polarization (first row of
Figure , whereas if A\; < 0 the polarization of the state that minimizes the
energy is circular (second row). This suggests the existence of Proca stars that
are stable under small perturbations. On the contrary, if A\g < 0, the energy
functional is not bounded from below, as can be appreciated in the third row
of Figure 2.14] Furthermore, for large N, the critical points turn into maxima,
signaling the onset of an instability.

To study the multi-frequency solutions, we again concentrate on the free
theory (A, = Ay = 0). In Figure 2.15] we show the same family of multi-
frequency states N = 43.5 that we introduced in Figure 2.10] Interestingly,
this family connects the linearly polarized stationary ground state (in the z
direction) with the first excited linearly polarized stationary state (in the y
direction). Also shown in Figure through the color bar is the energy of
each state in this family. As can be appreciated, the configuration with o, = 1
and 0,9 = 0 has the lowest energy, as expected, whereas the energy is growing
monotonously when moving along the family towards the state with o, = 0
and o, ~ 0.2. Finally, the right panel of this figure has been constructed
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from the family N = 43.5 using the rescaling , which implies that, when
An = As = 0, the energy £ and the particle number N are related through
E ~ N3. As we previously identified in Figure for the Mgyg vs. Rgg plot,
multi-frequency states with (n,,n,,n,) = (0,1,0) fill a region in the £ vs. N
diagram, which are delimited by the curves associated with then = 0andn =1
stationary states of linear polarization (see the center panel of Figure .

In the right panel of Figure[2.11], we compare the energy profile of a station-
ary nodeless state of radial polarization and charge Q = diag(40, 40, 40), with
the one of the multi-frequency solution of the same charge and (n,,n,,n,) =
(0,1,2), when X\, = Ay = 0. Again, this plot can be rescaled to any value of
N. As was anticipated in Section , for fixed Q, multi-frequency solutions
are more energetic than n = 0 radially polarized states.

2.3.6 Linear Stability

In this section, we will present the general aspects and directions for the study
of the linear stability of non-relativistic Proca stars, in the same way we did
in Section [1.3.4] of Chapter A comprehensive study of the stability of
non-relativistic Proca stars is given in the forthcoming research paper Linear
stability of non-relativistic Proca stars Ref. [2]. In order to study the stability
of the equilibrium configurations that we have described in the spherically
symmetric case, we follow the procedure presented in Refs. [48| [49], and we
consider the behavior of small deviations of J(t,f) from the ansatz ,
which we parametrize in the form

—

Gt 7) = e P [FO(2) + ed(t, ) + O(?)] . (2.99)

Here, (E,&’(O)) is a solution of Eq. and & is a complex vector-valued
function depending on (¢, ¥) that describes the perturbation to first order in the
small parameter e. Recall that E is Hermitian, and further it is proportional
to the identity when Ay # 0. Equation is completely analogous to the
ansatz now with ¢(® and (¢, Z) replaced by the vector functions &,
7(t,Z), and FE replaced by a Hermitian matrix E.

Substituting the expansion into Eq. and considering the first

order terms in € we obtain the following evolution equation for o
oo A .
i = [7—[(0) - E} 7 (2.100)

. s S N =
+ K [Re (9 - 3)] 79 +i=5Im (79" x ) x &,
Mg
with the linear (formally self-adjoint) operators H(© := #[7®)] and
. A,
K =2 +8nGmjA~". (2.101)
Mg

Again, as shown in [110], one can separate the time and space parts of & by
means of the following mode ansatz:

F(t,7) = [ff(f) + é(f)} M 4 [,I(:z) - é(.f)] s (2.102)
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Here A and B are complex vector-valued functions depending only on ¥ and

A is a complex number. Substituting Eq. (2.102)) into Eq. (2.100) and setting
the coefficients in front of e* and e** to zero one obtains

.- R VR
M = [HO - B B+i%5 x (A-B) (2.103a)
2mg
+5 {70 (A+B)+50 - (A-B)| } m 5
As o e .
+ = [0—(0)* x (A+B) — 30 x (A - )] x Re &),
2mg
— ~ A — >\S . — —
iINB = [H(O) - E} A =i 5 x (A B) (2.103D)
2mg
1 A~ d 2 — —,
+5 {K [5@* (A+B)+9 . (4- )} } Re 7
As S S
iz [5@* x (A+B)— 30 x (4 )} x Im &,
0
where 5, := —i7©* x 7 is the spin density associated with the background

solution. It is important to stress that in order to obtain Egs. we
have assumed that E is real-valued; hence, for multi-frequency states, these
equations are only valid in the basis that diagonalizes the operator E. Equa-
tions constitute a linear eigenvalue problem for the constant \, where
a nonvanishing real and positive part of A indicates the existence of a linear
instability of lifetime ty ~ 1/Ag, with Ag the real part of the eigenvalue A.

Spherical and non-spherical perturbations

Equations describe the evolution of a general linear perturbation around
an arbitrary equilibrium configuration of the s = 1 Gross-Pitaevskii-Poisson
system. Now, if we concentrate specifically on spherical equilibrium config-
urations, we can decouple the linearized equations into a family of
purely radial systems by expanding the perturbations in terms of (scalar or
vector) spherical harmonics, similar to what we have made in equations
for non-relativistic boson stars. The result is that for stationary states of lin-
ear, circular and radial polarization, as well as for multi-frequency states, the
linearized system can be cast into the following general schematic form:

Xim My My My, Xim
N Yim | = | MR ME ME Yim |, (2.104)
Zim Ml?#b Ml%r% Ml?i Zim

where [ refers to the total angular momentum number of the perturbation and
m to the associated magnetic quantum number where [ and m assumes the
values | = 0,1,2,... and m = —I,—(l — 1),...,l. The particular realization
of the variables X;,,,, Y}, and Z,,, and the matrix M;,,, which is a function
of the background equilibrium configuration, depend on the case of interest.
Equation 1} conform the eigenvalue system of the form LX = i\X similar
to the system l) with L;; = M;; and X = (Xim, Yims Zim). In Linear stabil-

ity of non-relativistic Proca stars [2], we solve numerically the system ([2.104]),
following a generalization of the methodology described in Section [1.3.4] for
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stationary Proca stars with constant, linear, and circular polarization, as well
as for multi-frequency Proca stars. We invite the reader to review the detailed
analysis described therein.
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Part 11

Gravitational Production of
Dark Matter

The idea of quantum field theory is that
quantum fields are the basic ingredients
of the universe, and particles are just
bundles of energy and momentum of the
fields. In a relativistic theory the wave
function is a functional of these fields,
not a function of particle coordinates.

What is Quantum Field Theory, and
What Did We Think It Is?
S. Weinberg
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|Chapter 3

Scalar Fields on Curved Spacetimes

3.1 Introduction

The prediction of the Schwinger effect is an example of the success of ap-
plying a semiclassical approximation to purely quantum phenomena. When
considering an external classical electric field, if it is strong enough, the pres-
ence of a quantized spectator matter field leads to the particle production of
electron-positron pairs from the vacuum. This effect was first predicted by
Heisenberg and Euler in 1936 [111], based on the work of Sauter in 1931 [112]
and fully understood in 1951 within the framework of quantum electrody-
namics by Schwinger [113]. Heuristically, an external electric field interacts
with a virtual pair of particles eTe™, accelerating electrons in one direction
and positrons in the opposite direction. If the external field is strong enough
to accelerate the particles to energies greater than their mass at distances
smaller than or equal to the Compton wavelength of the particle, that is,
|E| > |Euit| = m?/e, then the virtual particles can be “pushed out” of the
vacuum and propagate as real particles.ﬂ The production rate of these par-
ticles is given by exp{—7|Euit|/|F|}. One of the most notable lessons that
was left behind by the semiclassical treatment of the Schwinger effect is that,
within the regime of validity in which it can be considered, it was able to yield
a prediction that was subsequently confirmed exactly within the framework of
a complete quantum theory, namely, the theory of quantum electrodynamics.

Similarly, in the absence of a fully satisfactory quantum theory of grav-
ity that incorporates the gravitational interaction with the other fundamental
forces of the standard model (the electromagnetic and the weak and strong nu-
clear forces), a semiclassical treatment of the effects that occur in a quantum
field when it interacts with a dynamical spacetime allows us to shed light on
the large-scale effects we expect from a complete quantum theory of gravity.
In this semi-classical treatment, the quantum aspects of gravity are negligible
at effective scales, allowing for a classical description of the dynamics of the
gravitational field within Einstein’s theory of gravity (analogously to the way

'If the electric field exerts a force £ on the pair of particles ete™, and they move a
distance [ apart from each other, then they will receive an amount of energy le€ from the
electric field. In the case where the energy exceeds the rest mass of the particle pair, that is,
le€ > 2m,, the virtual particle pair becomes real and the particles continue moving apart.
For lengths on the order of the Compton wavelength 27 /m,, the probability of creating a
pair eTe™ is given by exp{—m2/e&}.
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we described the electromagnetic field in the Schwinger effect above). Mean-
while, the matter fields are treated fully quantum mechanically. When this
approximation is applicable, it enables us to account for important quantum
effects. The purpose of this and the following chapter is to describe the phe-
nomena that arise in the quantum treatment of scalar and fermionic fields on
curved spacetimes.

First, let’s consider that the quantum effects of gravity become relevant
when the length and time scales of a quantum process fall below the Planck
scales. The Planck time ¢, and length [, therefore, mark the boundary be-
yond which a complete treatment of a quantum theory of gravity is necessary.
When the scales of time and distance far exceed the Planck scales (e.g. at
cosmological scales), we can expect that the semiclassical treatment of gravity
can be applied without problem. However, when considering the nonlinear-
ity of Einstein’s equations, ignoring a complete treatment of quantum gravity
implies a more subtle analysis. Since all forms of matter and energy couple
equally to gravity, it implies that the graviton itself is subject to gravitational
effects, just like any other particle (or field), such as, say, an electron. There-
fore, when gravitational effects are significant (e.g. at cosmological scales), it
is not possible to ignore the effects that gravity exerts on gravitons. So, when
dealing with cosmological gravitational effects (or strong gravitational field),
we would not be able to satisfactorily apply a semiclassical approximation.

However, if we consider, according to a classical procedure in general rela-
tivity (see for example Ref. [114], Chapter 7), that we can describe the prop-
agation of a gravitational wave in a curved background spacetime separately
according to

G = 5g;w + Qum (31)

where 0g,, represents the wave (perturbation) and g, the background space-
time, it is possible to consider the wave as a null fluid like any other, and its
contribution to Einstein’s equations can be considered as part of the energy-
momentum tensor 7, that acts as a source. In other words, we can consider
the gmm’ton’ﬂ field as a linear perturbation over the background spacetime
through TWE| At one-loop level, the quantization of the gravitational field in
the background g, is equally as important as the quantization of the matters
fields [116], [117].

In this context, in curved spacetimes it will be necessary to consider a
renormalization process that yields a finite value for the vacuum energy of
the matter fields. For this, the number of counterterms to consider is finite.
However, regarding the graviton field, when perturbatively expanding the ac-
tion with respect to 6g,, about §,,, we find an infinite number of divergent
terms at each order in the expansion, so it will be necessary to consider an in-

2«Upon quantization, Einstein’s equation predicts spin-two particles called gravitons. We
don’t know how to carry out such quantization consistently, but the existence of gravitons is
sufficiently robust that it is expected to be a feature of any well-defined scheme. Since gravity
couples to energy-momentum, gravitons interact with every kind of particle, including other
gravitons. This provides a way of thinking about nonlinearity of Einstein’s theory.” Ref. [114]

3Let’s think about the photoemission by an atom that is immersed in a classical electric
or magnetic background field. Although the background field is treated classically, it is
possible to talk about the emission of quanta of this same field, namely, the photon [see
Ref. [115]].
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finite number of counterterms. This fact renders a quantum theory of gravity
non-renormalizable. Higher-order terms in the expansion of the gravitational
action in powers of dg,, produce Feynman diagrams of gravitons with multi-
ple loops. However, a theory truncated to a certain number of loops could be
considered renormalizable. At one loop, for free fields, this constitute the first
order quantum correction to general relativityﬁ This is the scenario we will
be considering in the present thesis work: a free scalar or fermionic quantum
field only coupled to gravity in an dynamical universe.

As we will see in detail in the subsequent chapters, there exist nontrivial
gravitational effects in quantum field modes for which the wavelength A is com-
parable with some length scale of the background spacetime (e.g. H). One of
these gravitational effects is the cosmological gravitational production of par-
ticles from the “vacuum state”. Heuristically, a pair of virtual particles being
pulled apart due to the expansion of the universe can become real particles. As
the spacetime expands the recessional velocity of the pair, e.g. eTe™, increases
with distance according with the Hubble law v = Hd. At distance equal to
m~!, the velocity would be H/m. When H > H.i ~ m the particles will
obtain relativistic velocities within a Compton length and particles creation
is possible. This is analogous to the Schwinger effect, and one might expect
particle production proportional to exp{—mHc;/H}. If there is a definitive
quantum theory of gravity, the gravitational production of particles due to
the expansion of the universe should be a prediction within the previously
mentioned regimes.

In the semiclassical approximation to gravity at one-loop, the Einstein
equations are given according to

G =81G (1)) (3.2)

where the gravitational field g,, remains classical and the matter fields are
quantum fields. Here, the important quantity to consider is the expectation
value of the energy-momentum (it is a more useful probe of the physical situa-
tion than a particle count through the particle operator) and how this evolves
when the spacetime is dynamical. As we have already mentioned, it is nec-
essary to consider an appropriate renormalization process that yields a finite
value for (7),,) by subtraction of a finite number of physical quantities (e.g.
Pauli-Villars renormalization). What are the different interpretation, in the
framework of semiclassical gravity, of the renormalized value of (7},,)? This
is an important question that play an important role in the cosmological con-
text. We often study cosmological phenomena in terms of particles, despite
assuming that the nature is described in terms of quantum fields and also, in a
cosmological context, we typically ignore the quantum nature of the fields and
treat them as classical fields (see, for example Ref. [118]). Dark matter models
consist of non-relativistic particles, or dark energy models consist of the dy-
namics of classical fields. However, we effectively assume that the right-hand
side of Einstein’s equations, Eq. , is the expectation value of quantum

4Even considering mutually-interacting (or sefl-interacting) matter fields, there exist a
large regime in which the one-loop level quantum gravity is still a valid approximation
whereas the condition [~2G < 1 is satisfied with [ a typical length scale of the system under
consideration.
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fields. In this thesis work, we explore the limits within which a quantum field
can be approximated, either by an ensemble of particles or by a classical field.
This is one of the important issues to be resolved in the present thesis work
focused on scalar and fermionic quantum fields on curved spacetimes. In the
following chapters, we will make an effort to describe the regimes of classical-
ity or “particle production formalism,” that (7),,) admits within the context of
gravitational particle production. Here, will assume that the spectator quan-
tum field does not have back-reaction on the dynamical geometry of spacetime
(that is, the particle production is a small effect at early times). However, it is
possible that the energy density of the “produced particles” becomes relevant
at late times.

Due to the absence of direct detections, a non-interacting dark matter
model [119] seems to be a model that gains strength over those in which dark
matter interacts with some sector of the standard model. If this is the case,
there should be a mechanism through which the relic density of dark matter is
produced. In this scenario, the phenomenon of gravitational particle produc-
tion can account for the abundance of matter required to explain the current
cosmological observations without the need to non-gravitationally couple dark
matter with any other field of the standard model. In semiclassical one-loop
gravity, cosmological transitions, such as the transition from an inflationary
universe to a radiation-dominated universe, can lead to the gravitational pro-
duction of particles in a quantity large enough to account for the present
observable universe [4] [5]. Therefore, in the context of an inflationary cosmol-
ogy, justifying when “particles” or classical fields play an important role, and
in which regimes it is possible to consider these approximations, is part of the
discussion we present in this thesis report. An approach in this direction was
made in Cosmic Energy Density: Particles, Fields and The vacuum Ref. [120]
for a quantum scalar field. Part of its results are presented in Chapter [3| In
Chapter [d, we extend this discussion to a quantum Dirac field.

The phenomenon of cosmological gravitational particle production has been
investigated through multiple studies over several decades. The first paper dis-
cussing the creation of particles in the expanding universe was Schrodinger in
1939 [121]. Schrodinger suggested that the expansion of the universe can mix
the positive- and negative-frequency mode solutions to the wave equations.
In the subsequent works of Parker [122] 123 [124] and collaborators (Fulling,
Ford and Hu [125] 126, 127, 128]) from 1968 to 1974, they emphasized the
importance of gravitational particle production in a FLRW universe assuming
a semiclassical approach. Also, in 1974, Hawking was developing the theory
of particle creation by black holes[129]. In the context of inflationary theory,
the formalism of gravitational particle production was applied to the quantum
fluctuations of the inflaton scalar field and the metric fluctuations, which led
to predictions about the density perturbations that account for the large-scale
structure of the universe and the anisotropies in the cosmic microwave back-
ground [I30]. Also, dark matter production is one of the main approaches that
this phenomenon has received and its application to explain the origin of the
relic density of dark matter in the present universe [131], [132] 133, [134]. The
text-books of Birrel and Davies [135], Parker and Toms [136], Mukhanov and
Winitzki [137] and Fulling [138], consist of excellent and comprehensive text
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of this literature. We recommend to the reader the excellent reviews by Ford,
[139], Kolb [140], and Jacobson [141].

The order of the present chapter is as follows: in Section (3.2, we will
develop in detail the formalism of quantum scalar fields on curved spacetimes
applied to a Friedmann-Lemaitre-Robertson-Walker (FLRW) universe, derive
the dynamic equations for the mode functions (which capture the evolution
of the field as spacetime evolves), explore the solutions for asymptotically flat
spacetimes, and introduce the Bogoliubov transformations. In Section we
review the construction of the number operator and the “number of particles”,
and in Section [3.4] we define an adiabatic vacuum state and asymptotically
adiabatic spacetime. In Section we introduce the in and out regions that
allow us to define a cosmological transition, and in Section |3.6}, we calculate the
energy density for an arbitrary quantum state. In Section we renormalize
through the Pauli-Villars renormalization process the energy density p™ of
the adiabatic vacuum state. Finally, in Section [3.8, we review the concept of
“particle” and classical field description and define in which regimes the particle
production formalism and the classical description are applicable. Here we use
the signature of the metric is (—, 4+, +, +) and the natural units ¢ = h = 1.

3.2 Formalism

Scalar Field Action

We are interested in the general behavior of a real quantum scalar field on ex-
panding curved spacetimes, particularly the behavior of the energy density of
this field through spacetime transitions. In a semi-classical context, where the
dynamic gravitational field remains classical and the spectator scalar field is a
quantum field, whose excitations consist of spin s = 0 particles, these condi-
tions lead to the cosmological gravitational production of particles. In partic-
ular, we will focus on the study of transitions given by an FLRW (Friedmann-
Lemaitre-Robertson-Walker) type expansion, between an inflationary universe
and a radiation-dominated universe.

For this purpose, we begin with the covariant action for a massive spin-0
scalar field ®(z) coupled to gravity through the metric field g, (x), given by

sfo(o).gu) = [ dw—[ Moip-Lo.ne >a“<1><x>—§m2<1><x)2—%gmmﬂ

(3.3)
where ¢ is the determinant of the metric g,,, m is the scalar field mass, &
is a coupling constant between the scalar field ®(z) and the Ricci scalar R
and M2 = (87G)~'/2 is the reduced Planck mass. In particular, we will
consider only the case when & = 0, that is, the case when the scalar field is
manimally coupled to gravityﬂ (for the case £ = 1/6, it is conformally coupled
to gravity, and for other nonzero value it is non-minimally coupled to gravity).

5Conformally invariant scalar quantum field on conformally flat spacetimes (e.g. the
FLRW spacetime, that is, the metric can be written down as g,, = Q%*(z)n,,) do not
react to changes in the expansion history. The same occurs for massless fermion fields on
conformally flat spacetimes, as we will see in the next chapter.
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In the context of inflation, ®(x) will represent a spectator field distinct from
the inflaton field. Here, the field ®(z) only interacts with gravity. As we
mentioned, a dark matter model in which dark matter only interacts with the
fields of the standard model through gravity is consistent with the absence of
direct or indirect observations. This motivates the form of the action (3.3).
Also recall that the bosonic fields of Chapter 1) and Chapters |2 that can form
compact objects of dark matter interact only with the standard model through
gravity.

Scalar Fields on FLRW Spacetimes

We will focus on a FLRW spacetime expansion, that is, an isotropic and ho-
mogeneous universe that expands uniformly according to the FLRW metric
given by

ds® = a(n)?[—dn® + dx'dz’ 5], (3.4)

where the time-dependent function a(n) is called the scale factor, such that the
Hubble parameter is given by H = a’(n)/a(n). Here we have used the conformal
time defined as adn = dt and the comoving spatial coordinates defined as
x, = a(n)z;. The primes denote derivatives with respect to conformal time 7
and 0; denote derivatives with respect to comoving spatial coordinates.

With the metric (3.4), we have that /—g = a*, ¢*° = —a™? and ¢" =
a26%, so after the change of variable ®(z) = a '¢(zr), we can write the
covariant action (3.3) as

/d”/dd V’Q (00" ——8t[¢27i]——meﬂa2¢2 (3.5)

where we have defined the effective mass as

i) =+ [¢ = 5| Riw (36)

and we have use R = 6(a”/a®) and H' = (a”/a) — H?. In the case of interest,
where € = 0, we have an effective mass of the form m®;" = m? — a”/a®.
From Eq. (3.5]), we can calculate the Hamiltonian according to the relation

H= fd?’x[g—g(gb) — L], such that

= [ [d)’ (0:0)? —¢H+§an[¢2m+§mzﬁa2¢2]. (3.7)

Since the above Hamiltonian expression depends explicitly on time through
the scale factor a(n), the energy of the scalar field ®(z) will not be conserved.
When we quantize the field @(w), the non-conservation of energy causes the
gravitational production of particles, whose energy is provided by the gravita-
tional field. We will study the details of this conclusion later.

After discarding the boundary terms and varying the action (3.5) with
respect to ¢(z), we have

¢" — Ap + a*mPzp = 0, (3.8)
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where A is the Laplacian operator for the comoving spatial coordinate. It’s
worth noting that a time-dependent effective mass accounts for the interac-
tion of the scalar field with the gravitational background. When spacetime
is static a =constant, we recover the Klein-Gordon equation for a scalar field
in a Minkowski spacetime.lﬂ So, all the information about the gravitational
influence on the scalar field is encapsulated into the effective mass mZ.

Field Quantization

Note that the action has explicit time dependence through the effective
mass m2ga®, so the energy density of the scalar field is not conserved. In
the context of quantum fields on curved spacetime this time dependence leads
to gravitational particle production supplied by the spacetime expansion. To
characterize this behavior, we need to quantize the scalar field ®(¢, z) keeping
the gravitational field classic. Canonical quantizationﬂ of the field imposes the
equal time commutation relations

~

[0(t, %), 7(t,5)] = i0(Z —7), (3.92)
t,

~ A~

[0(t, 7),0(t, )] = [7(t, D), 7(t,5)] =0,

where 7(z) = 0L/9(¢') is the conjugate momentum density.
Introducing the mode expansion of the field ¢(x) in terms of the creation
&L and annihilation a, operators we can express the scalar quantum field as

. &Pk .. R
@) = [ Grlatn b+l k)] @10
with Uz(n,z) = xx(n)e** and Vi(n, 2) = Ui (n, x), (3.10b)
where k = a(n)kP"™* is the comoving wave vector with magnitude k = |k|

and xx(n) is a complex time-dependent function called mode function. Here,
Ur(n, ©) and Vi(n,Z) form a complete and orthonormal basis that spans the
space of solutions to (3.8)), and satisfies the Wronskian condition:

/ Fr(UV — ViUl) = i(2n)8(F — ). (3.11)

Additional to the commutation equations (3.9)) the ladder operators a; and

dz satisfies the usual commutation relations

[ al] = (2n)%(k — @), (3.12a)
lar, 4] = [af,al] = 0. (3.12D)

A ladder operator is assigned for each complex function Ug(x) labeled by k.

Note that we have written de mode function xx(n) in terms only of k = \E|
because of the isotropy of the FLRW universe.

6n the case of a quantum fermion field we recover the usual Dirac field equations.

"Canonical quantization of the scalar field in action results in a system of “single
particles” that do not interact with each other. Here, we will work in the Heisenberg picture
in which operators evolve according to the Heisenberg equation of motion and states are
statics. See Ref. [36], for a comprehensive exposition of the quantization process.
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The Mode Equations
Introducing Eq. (3.10bf) into the Wronskian condition (3.11]) implies the rela-

tion

XeXk = XiXk = 0, (3.13)
and putting Eq. (3.10a)) into the wave equation (3.8)) leads to the mode equation
for xx(n) given by

Xr+wi(n)xe(n) =0, where w; = k* + a*m?q (3.14)

is the time-dependent comoving squared angular frequency for each mode k.

Since the mode equation is a second order differential equation for each k, it
admits a two-dimensional space of solutions. An important question is, Which
basis is the “good” basis for characterize the field evolution? To determine this
solution basis, additionally to the relation , we need another condition to
completely specify the form of mode function (7). In the next subsections we
analyze the conditions to give unambiguous solutions to the mode equations
(3.14). The choice of the appropriate mode functions is crucial to the particle
interpretation of the theory.

The Mode Function x(n)

In order to solve the mode equation (3.14) we need to specify the scale func-
tion a(n) for the FLRW spacetime and the appropriate conditions to determine
completely the mode function yy(n). For example, we are possibly interested
in the cosmological expansion characterized by a quasi-de Sitter a(t) oc e’at
phase of inflation followed by a radiation dominated period with a(t) oc t'/2. In
this case we need the conditions for the mode function x™(n) = lim,,_ x(n)
in the remote past and x°"*(n) = lim,_,o, x(n) in the remote future. For this
purpose, we begin by focusing on the simpler case of a Minkowski spacetime
with a(n) ~ constant followed by the case of an asymptotically flat spacetime.

Minkowski spacetime. For this case, we have m?; = m?, H =0, R =0 and

w? = k? +a2m? with a? a constant. With these relations, we need to solve the

differential equation X} + w?xx = 0, which are solved by the normalized pair
of solutions | .

— 6—iwkn and v* — eiwkn’

or any linear combinations of these vg(n) = axxx + Brx}. Solutions x; and x;

in Egs. (3.15)) are normalized according to the Wronskian condition (3.13]) and

are called, respectively, positive and negative—frequencﬂ modes. If we chose

Br = 0 and v, = x%, w can write Eq. (3.10a)) as
1 / d3k [
\/2wk (271')3

8These terminology is motivated only on historical considerations. Positive frequency
solutions refer to particles with positive energy wy > 0 and negative frequency solutions
refer to antiparticles with negative energy wy < 0.

(3.15)

~

o(t, ) =

&ke—i(wk)n—g.f) + &Lei(wkn—g-f)} ) (316)
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For this quantum field operator, we can construct a ladder operator a; that
allows us to postulate the existence of a vacuum state such that a |0) = 0 for all
k. The state |0) is interpreted as the vacuum state which minimize the energy.
It is important to note that to determine the mode functions v, unambiguously,
we must define a vacuum state that allows us to set 8y = 0. Both procedures
are equivalent. In the Minkowski spacetime all the inertial observers agree on
the absence of particles in this vacuum state and the presence of particles in
the excited states.

Contrary to the Minkowski spacetime, cosmological spacetimes like, for
example, the FLRW spacetime which evolves in time (expand or contract), is
generally not possible to define a positive-frequency solution, that is, in general
Br # 0. Thus, the notion of an empty state depends on the time at which each
observer defines the state. Therefore, the vacuum state defined by an observer
at time 7 is different from the vacuum defined by an observer at time 7 for
1o < 1. On the other hand, remember that energy is not conserved for explicit
time-dependent lagrangian as Eq. and it is not possible to define a state
that minimizes the energy at each instant of time.

Finally, let us emphasize that for Minkowski spacetime it is possible to
choose at all times the positive (or negative) frequency solutions and therefore
an associated vacuum state for which a; [0) = 0 is satisfied at all times. How-
ever, if the spacetime expands or contracts, it will not be possible to specify
the positive (or negative) frequency solutions at all times, but rather a com-
bination of positive and negative frequency solutions as x* = agxx + BeX}-
When S, # 0, ag(m) and ag(n2) will be different for 7, > 7:. As a consequence,
the vacuum states will be different at different times. This fact is essentially
the mechanism by which gravitational particle production occurs.

Asymptotically flat spacetimes. In this case, we consider spacetimes that
are asymptotically flat (e.i. Minkowski-like) at early and late times. Is such
way, we can write the scaler factor as

a™ wit when 7 — —o0,
a(n) = {a(n),wk(n) when — o0 <17 < oo, (3.17)
a®t, Wt when 7 — oo

where @™ and a°"" are constant and wi® and w™ are time-independent, real and

positive. In the asymptotical regions when n — +o00, the spacetime with scale
factor (3.17)) are approximately Minkowski-like and admits positive-frequency
solutions given by Eq. (3.15]). Then, we can write two solutions that satisfy

out

H 1 ;o oin
lim o = —.e_“”k 77, 3.18a
o X (1) /—QW}: ( )
1 £,0u
lim x3"(n) = ——=c K (3.18b)
n—00 2w0u

k

e.i., they are asymptotic to positive-frequency Minkowski solutions and are
related by the linear combination x*(n) = axx2™(n) + ka’,gout(n)ﬂ Using

9Remember that, if the spacetime is always dynamic, it will not be possible to specify
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these positive-frequency solutions we can construct the field mode expansion

[0 as

n d3k ~in _ in ~Tin _ xin ik-@
o(t, ) :/W[akx (n) + X" (n)] e

d3k ~out ., ou ~fout  xou ik-z
= [ Gl + i ] e (319)

where we have defined the corresponding ladder operators dik and a(’“t associ-

ated to the mode functions xi*(n) and x{™(n).

Bogoliubov Transformations

Eq. establishes a relation between the ladder operators d; and aZ“t
and their complex conjugates. Writing amx}j‘(n) + CLTH;XZIH(U) = a2 X" (n) +

k
~fout  xout

"> x;*"(n) and using the relation () = apx2(n) + Brx"(n) and the
normalization condition |ag|? — [Bx|> = 1, we have that

A% = a ak + ATul ks — dllzn = d%uta;; AT_OEt/B}L (3 20&)
&TE = amﬁk + aT"lozZ, — &gn = &metak ATOlltﬁk. (3.20b)

These relations allow us to define the linear transformation € SU(1,1)

—Br ag By ox)
(az —BZ) (az ﬁk)‘ﬂ’ (3:21)

that leaves the field operator unchanged and relates two different basis of
ladder operators and mode functions. So, this matrix transformation called
Bogoliubov transformation, relates a family of equivalent representations of the
field operator ¢(x). Each ladder operator a;" and g™ obeys the commutation

relations (3.12)).
out

Finally, using the relation x{* = apx™ + Bpx;°", we can write

ioe = WO ™), B = W™, X0, (3.22)

where W refers to the Wronskian condition ((3.11)).

3.3 Particle Number Operator

Given that the ladder operators &}c and a2 satisfies the canonical commu-

i
tation relations (3.12]) and allows the field operator representation (3.10a)) we
can define the “vacuum states” |0), and |0)_ . such that

' 0);, =0, and a2 |0),, = 0. (3.23)

out

the positive (or negative) frequency solutions at all times, but rather a combination of
positive and negatlve frequency solutions as x1"(n) = axxk(n) + Bex;(n) with x(n) a general
solution to Eq. ( . For two different times 71 — —oo and 12 — oo in an asymptotically
flat spacetime, we have X)) = X (n) + Brex o™ (n).
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With these definitions, we can construct a Fock space of multi-particle states.
So, we can talk about two definitions of the vacuum state: the in-vacuum
state |0),, and the out-vacuum state |0)_ ., whose excited states |n), and
In) . describes N, number of in-particles and Ny, number of out-particles,
respectively.

Since &}zn and d%”t are related by a Bogoliubov transformation , we
can calculate the expectation value of the number of out-particle operator
Vout — d%“tdlgom with respect to the in-vacuum state |0); . Using (3.20]), after
some straightforward algebra, we obtain

- 3k
0|NSU|0). = (27m)38(0)n, with :/— 2 3.24
(OINZ™0),, = (2m)°6(0)n,  with n (27r)3|ﬂ’“| (3.24)
where n is the comoving number density of particles that the out-number
operator measures in the in-vacuum. After integration with respect to the
angular variables, we have

1 [dk , k3
— [ —K1B]> with n, = — |6 (3.25)
k 27

n =
272
where ny is the comoving number density spectrum; also we can write

1 fdk d

n

where ny, is the comoving number density of particles per logarithmic wavenum-
ber interval. Note that, from Eq. , n is finite only if |B|* decays faster
than k=2 for large k. This condition also guarantees that we can express the
in-vacuum state as a normalized combination of out-excited states.

3.4 Adiabatic Vacuum

3.4.1 Physical Vacuum

As we have seen, the notion of real “vacuum” depends crucially on our election

for the mode functions x}* and x"*. For example, in the particular choice of

X in which 8, = 0 we have that xi* = x?"*, and, in this case, there exist
a preferred notion of the vacuum state, namely the Minkowski vacuum state.
However, in general §;, # 0 and there no exist a preferred notion of vacuum
and the physical vacuum acquire an inherent ambiguity.

We have learned from Eq. that in general the out-vacuum state
|0),., being a state without out-particles, nevertheless contain in-particles.
One way to see that the out vacuum state is populated by N, particles, is
to consider that the state that minimizes the energy at the time 7, at the
time 7 > n; will no longer minimize the energy if the frequency wy is time-
dependent. For these two instants 7; and 7, the mode functions are given by
the expressions (3.15), so it is possible to define the operators ay(n:) and ay (1)
that satisfy ay(n:)[0),, = 0 and ax(n2)[0),, = 0. In this case, it is possible to
calculate the energy density p,, with respect to the vacuum |0) m from which

we obtain p,, = (0,75 (12)[0,,) = [ d®kwi(n2)[5 + |8k|*]. Where we obtain
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a contribution to the energy coming from wy|Sx|?, that is, the energy of each
particle multiplied by the number of particles in each mode. Finally, we can
conclude, there is not a preferable choice of the mode functions to determine
an unambiguous vacuum state or an empty state for which there no exist in- or
out- particles. This is the essence of the cosmological gravitational production.

3.4.2 Asymptotically Adiabatic Spacetimes

For spacetimes that are not asymptotically flat as n — +oo the scale factor
a(n) is always growing and the identification is not possible, i.e., we can
not identify the positive and negative frequency modes and hence the particle
concept is not defined. However, in the case that the angular frequency wy
is slowly varying at early and late times, is possible perform a WKB-type
approximation such that

Xe = (2W)~1/2 exp{—i / ! Wk(n’)dn’}, (3.27)

where W), satisfies the non-linear equation
1 (W, 3W?
Win) =wi — 5 (—'“ - ——’“) . (3.28)

Since the spacetime is slowly varying, at zeroth order approximation we have
Wk(o) = w;. Using Eq. , by iteration we can construct the subsequent
orders of approximation with the adiabatic order given by the number of deriva-
tives of a(n). For example, the second adiabatic order approximation is written

as
2 1 .. . 2
(W) =z -1 (ﬁ _ §“’_§) | (3.29)

Hence, one solution of adiabatic order (A) is given by X,(cA) with Wk(A) given
by Eq. . When a(n) & constant as n — +00 we recover the asymptoti-
cally flat approximation (3.18]). However, if the spacetime is varying slowly, the
Minkowski solutions d the approximate solutions X,(CA) will be different
only by terms of adiabatic order higher than zero. Since the series obtained in
Eq. is asymptotic, the approximated solutions reach an optimum value
at one particular order (A).

Then, for spacetimes in which wy(n) is asymptotically slowly varying or
asymptotically adiabatic, that is when wp < wy as n — £oo, we can define the
positive-(and negative) frequency approximated solutions as

i . 1 —3 7win / ’
X = lim x(n) = XY = e T (3.300)
(A 23 (n)
. 1 —4 nwout / /
X)) = lim x(n) e xg) = e RN (3.30)
n—00 2wzu (77)

and these allows us to define an zeroth order adiabatic vacuum \O)l.(g) asso-
ciated to these solutions and the corresponding ladder operators &g and ELEH.
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Figure 3.1: a(n) vs n for different asymptotical adiabatic spacetime.

Black line: asymptotically adiabatic spacetime in the remote past as n — —oo
and lim, , o a(n) = e = constant with a a constant. Grey line: asymp-
totically adiabatic spacetime in the remote past and future as n — +oo and
lim, ,1o a(n) = a + btanh pn = constant with a,b and p constants. On an-
other side, scale factor in red line satisfies d"/dn"(a/a) — 0 as n — £oo for
n < 0 given a(n) = a® + b*n with a,b constants, therefore this spacetime is

asymptotically adiabatic in the remote past and future.

Consequently, it is possible to talk about “particles” and gravitational produc-
tion of particles. Note that, actually, |0), is an in adiabatic vacuum of infinite
adiabatic order \0)1(: ). As we have described before in the asymptotically flat
case, also for the asymptotically adiabatic case we can write the general solu-

out* where oy, and f3;, satisfy conditions aj, = 1 and

tion xx(n)™ = arx?™ + Brxj,
Br=0asn— —oo and |ag|? + |Bk[* = 1 for all time 7.

Ezamples. Let’s consider the example of a time-dependent frequency wy(n)

of the form w? = k? + a®>m?; with a(n) = 1 + tanhn, such that the condition
of adiabaticity wy > wy is satisfied in the regions where 7 tends to +oo,
The mode functions in these remote regions are given by

see Figure [3.1}
Egs. (3.30). This case constitutes an example of an asymptotically adiabatic
spacetime. Another example of spacetime that is only adiabatic in the remote

past is given by the case a(n) = e” with n < 0. However, the adiabatic
approximation applies not only to spacetimes that are asymptotically static

but also to those that vary slowly (e.g. a(n) = a® + b?n? with —oo < 1 < oo
and a, b constants), that is, for which ‘H < wy, is satisfied. In these instances,

the adiabatic approximation is really useful.

Chapter 3 95



3.5 Cosmological Epochs

Presumably, the universe has experienced multiple facets of uniform expan-
sion throughout its history, characterized by different epochs of domination.
The transitions between different epochs are accompanied by jumps in the be-
havior of the scale factor. In Figure [3.2) we draw a timeline representing the
different cosmological epochs that the universe has experimented until the ra-
diation domination. Initially, the universe experiences a period of accelerated
expansion (A domination) called inflation at time 7;, followed by a period of
decelerated expansion called radiation domination at time 7,, mediated by a
highly model-dependent period of reheating at n. < n < n,. Subsequently, the
universe experiments a period dominated by matter followed by a new period
of accelerated expansion up to the present day. We invite the reader to review
Baumman'’s excellent book [118], in which he reviews all these periods.

. inflation E . radiation domination

f > 17
ni Me NMr

Figure 3.2: Timeline characterizing the transition experienced by the universe
as it expands from an initial period of cosmic inflation at n; followed by a
period of radiation domination 7, mediated by a model-dependent reheating
period 1. < n < n,. In a sharp transition 7, = 7, and there is a discontinuity
in the second derivative of the scale factor.

To characterize these cosmological transitions in the context of gravita-
tional particle production, we will consider an initial in-region characterized
by inflation where a preferred notion of vacuum exists (the Bunch-Davies vac-
uum state, the ground state of the hamiltonian at the beginning of inflation)
and a subsequent out-region that is generally not asymptotically adiabatic.
With this in mind, we will immediately characterize both regions.

3.5.1 1in Region

This region is characterized by an initial period of inflation. It is known that
during this period we can choose a preferred notion of vacuum, since ‘H tends
to zero as n — —oo, that is wp < wg, and we can approximate the solution
X as the zeroth order adiabatic “positive frequency” solution

Xi(n) = L irednar (3.31)
2wi(n)

With this, it is possible to define an adiabatic vacuum and a concept of particles
associated with this preferred notion of vacuum.

As described in Ref. [120], inflation is not a period that extends endlessly
into the past. Therefore, for light or massless fields, it is necessary to introduce
the scale Ajr ~ Hir where Hg is the Hubble parameter evaluated at the
beginning of inflation n;. In Figure (3.3 we draw the order of this scale. It
is important to note that for superhorizon scales, there is no preferred notion
of vacuum, in the sense that it is not possible to make the positive frequency
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approximation . Additionally, for massive fields, that is for the case when
m > H, we have w;, > H and Ajg = 0.

Let’s remember that, once we have established the condition , we
will be able to construct the operator gg(x) given by Eq. for which it
is possible to define an in vacuum state that satisfies a'® |0m) = 0, in which
there is no presence of in “quanta/particles”. Also, we can construct a number
operator N = angaT for which the state Ai“ |) = Nj»Jb) contains N;»
number of ¢ quanta/ particles”. Again, note that only the states for which the
condition £ > Ay is satisfied allow us to define the notion of in vacuum.

Super-horizon modes

——
ot >k

Y

in vacuum state, yy"

Figure 3.3: Infrared scale Ajg ~ H; at the beginning of inflation. The modes
below this scale have an unknown state. Modes above Ajg are found in the
preferred in vacuum state set by inflation at ;. If the field is massless or
light, the state of the superhorizon modes at the beginning of inflation, is not
determined by inflation and remains unknown to us.

3.5.2 out region

As we have already mentioned, in general, the functlons XOUt( ) do not nec-
essarily satisfy asymptotically adiabatic conditions , and although we
explicitly refer to the out region, the function XO“t(n) can generally be an arbi-
trary function that satisfies the normalization condition and the mode
equation (3.14] - Assumlng that x¢"(n) and x9"*(n) are linearly independent,
it is possible to write x}'(n) as a combination of two solutions such that

Xi = anxi™ () + Bexi™ (n) (3.32)

where the Bogoliubov coefficients satisfies the relation |ag|* — |Bx|* = 1. Fur-
thermore, solving for a; and [, we can write

iy = xk“(n)xi‘“ (n)—x}?(n)xzm (n), (3.33a)
iBe = —xe X () + xe mx (n). (3.33b)

When n — —o0, we get ap = 1 and [ = 0, as expected.

Example. Asymptotically adiabatic spacetime. In the case where the space-
time is asymptotically adiabatic when 7 — %00, the mode functions x3"(n)
take the form given by Eq. m, and, substituting these solutions into
Eq. , we obtain the expression

in|2
X w in ]'
18e? = DG wn o (3.34)
w2 2

With the expression (3.34]), we can obtain the number of out particles that the
in vacuum contains calculating (10| N2"|05) = (27%)~" [ dkk?|Be[*.
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3.6 Energy Density

In the semiclassical approach to gravity, the gravitational field g,,(x) retains
its classical nature while the matter fields follow a quantum treatment. In our
formalism, we need to consider the relationship

pl

1 _
Ry — §R9;w = M? (Tow) » (3.35)

where the right side encodes the gravitational dynamics and the left side is the
expectation value of the stress-energy tensor for the quantum field ngS(a:) For
the scalar field action in , the associated stress-energy tensor (for £ = 0)
is given by

1 1
T,.,(t, %) = 0,80,® — ngaﬁcbaﬁcb + §m29w,<1>2. (3.36)

Given this expression, we are interested in analyzing the evolution of the expec-

tation value on the right-hand side in Eq. when the universe undergoes a

cosmic transition as described in the previous section (e.g. the evolution of the

energy density p = (Tpo) with respect to the adiabatic vacuum 0); configured

by inflation to a subsequent decelerated universe dominated by radiation).
Following the approximation in Ref. [120], we need to calculate

Mgk dp
p_p0+/0 T dlogk (3:37)

where we have separated the energy density p between the contribution of the
zero mode k = 0 and the contribution of the modes in the range 0 < k < A,
where we have introduced the cutoff A. After performing the integration, we
send A — oco. The zeroth mode component is given by

e N1 d o\ 2L o
p°_2a2v{(N°+2> Udn<a>‘ +m ol

d Xo ?
+ Ly (d—n;) +m*xg —l—c.c.} (3.38)
and
dp k3 1 d /xk\ |2
- i (v 3) [ ) ot
dlogk 47r2a2{( k+2> {dn a bl
d Xk ’
+ Ly (d_n?) + wixz —I—c.c.} (3.39)

is the “spectral energy density” (per logarithmic interval) for the k& # 0 modes.
Here, the expectation value is taken with respect to an arbitrary state and xy
are arbitrary solutions to Eq. . For the in adiabatic vacuum configured
by inflation we have that N, Ly = 0 and xi* = y;, from which we can write

dpw K d Xy
dlogk  4m2a2 dn a
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Modes in range 0 < k < Ag

- po o< 1/a®
' =0 ' massless case <tiff fAuid
Th.ls H%Ode admlt? light field ma < H
classical interpretation masive case stiff fluid + “ frozen field”

ma > H adiabatic approximation
pressureless fluid

These modes not admits
massless case . .
classical interpretation
Ar < ma non-relativistic

Ar > ma relativistic

O<k’<AIR

masive case

Table 3.1: Energy density for the range of modes 0 < k < Ajg and its behavior
in different mass regimes. For these states, there is no preferred notion of
vacuum, and their state is indeterminate. The first row corresponds to the
zero mode k = 0, which admits an interpretation in terms of a homogeneous
classical field. For the massless case, the energy density behaves like a stiff
fluid. For the massive case, if ma < H, in addition to the contribution of
the stiff fluid, there is the contribution of a frozen fluid, and if ma > H, the
density behaves like that of a pressureless fluid. The second row corresponds
to the 0 < k < Ajgr modes. For the massless case m = 0, these modes are
relativistic and do not allow for an interpretation in terms of a classical field.
In the massive case, however, when Ajr < ma, the modes are non-relativistic
and p; admits a classical interpretation.

In Table , we present the behavior of the spectral density for the
0 < k < Agr modes in the massive and massless cases. Recall that A ~ H;
is a characteristic scale at the beginning of inflation below which the state of
the field remains indeterminate or unknown to us. In Ref. [120] we can see
the treatment for each different case in Table in detail. Here we will limit
ourselves to presenting as an example the massless case for the mode k=0.1In
the next chapter, we will perform in detail the methodology summarized here
now for the case of a fermion field. To begin, let us consider the mode equation
(3.14) when m = 0 and k = 0, such that x{(n) +wixo(n) = 0 with w2 = —a/a.
The solutions of this equation take the form x7=° = iAa(n)+ Ba(n) [” % with
A and B two real constants. Putting these into Eq. with m = 0 we have

i 1\ [1/ d xo\ [ d xo\
— Ny + = & X0 Lo | [ X0
po 2a2V{( 0+2) ['(dna) o dn a
with (xo/a)" = B/a?, from which we obtain the energy density contribution
coming from the zero modes given by

B? 1 1

which behaves like a stiff fluid with equation of state w = 1. Now, if we
consider a classical homogeneous scalar field ¢ = 1/a(Aoxo + Boxg) whose
energy density is py = (|¢ul? + m2a?|¢q|)/(2a%), then we can identify the

+ C.c.} (3.41)
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energy density (3.42)) like a classical homogeneous stiff fluid if we can solve the
system of equations (|Ag|?+|Bo|?)/2 = (No+1/2)/V and AgBg = Lo/V. This
is the result presented in the first row for the massless case of the Table |3.1]

Note: Let’s briefly address the massive case (m # 0) for the zero mode
k=0 (corresponding to the first row of Table . For this case, we
distinguish two regimes. In the first case, when ma < H, that is, when the
field is light, we can expand the solutions to Eq. in terms of the mass
m, and progressively construct around the solution x77" to Eq. .
These solutions have the form x7=0 = iAa(n)+Ba(n) [" %. Neglecting the
term corresponding to B (which decays in an expanding universe for —1 <
w < 1) and using into py, Eq. , and py = (|da)? + m2a®|da))/(2a2),
we obtain that py = Dy=zs + m?Ey and pq = D=5 + m*E, with Dy, Ey, D
and E constants dependent on Ny, Lo, Ag and By. Therefore, pg admits
interpretation in terms of a homogeneous classical field ®,. On the other
hand, when the field is heavy, that is, when ma > H, we can use the
adiabatic expansion to first order, such that py ~ -3 and pg ~ %7,
so it is also possible to interpret py as the contribution of a homogeneous
classical field p.; as long as we can solve Ag and By in terms of Ny and L.

3.7 Pauli-Villars Renormalization

In the range of modes Ajg < k < oo, as the cutoff A goes to infinity, the
integral over all modes of Eq. (3.40) is divergent. We can see this using the
zeroth adiabatic order solutions (3.31]) for large &, such that wy ~ k, so the

integral
. Mdk kS d (i
= lim — — | ==
P= 0% A K o4m2a? ||dn \ a

is divergent as k* in the leading order term in k. To deal with these divergences,
we will use the Pauli-Villars renormalization procedure, summarized in the
following points:

2
+ wixin 2] (3.43)

(i) Since the mode functions x* are built in the adiabatic regime, it is pos-
sible to expand up to fourth adiabatic order the integrand in Eq. (3.43),

such that
A (0) (2) (4)
dk d d d
p= lim ar ( sz) +( pk) +( pk> ..,
A—oo Jy ok dlogk dlogk dlogk

(3.44)
and we can identify the subsequent divergent terms as A — oo after
performing the integrals. For example, integrating the zeroth order of
the adiabatic expansion of the spectral density, we have that

, A dk dpy () y 1 [A* m2AZ m? 191 4N*
A5 AIR? (dlogk> _Aggoﬁ[@—i_ 8a? +6_4( o8 aQ;ﬂ)}

(3.45)
where the right term is divergent as A tends to infinity. The same proce-

dure applies to the second and fourth adiabatic orders in order to find the
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divergent terms of the expansion. Terms with higher derivatives (sixth
and more time derivatives) remain finite as the cutoff A tends to infinity.

(ii) In order to remove these divergences, we introduce n Paulli-Villars Reg-

ulators ¢, of mass M, and Grassman parity o,, with r =1,,2... n, in
such way that we need to calculate Y ,_ (1¢)),, with i = 0,1,2,...,n,
such that
A (0) 2 4)
. dk dpk dp dpy
Pk AEEOZ:/AIR g [(dlogkz) +(dlogk Ndogr)

(3.46)
Then we use the relations [

Y oi=0, Y aM}=0, Y oM}!=0, (3.47)
=0 =0 =0

and we to apply the limit A — oo. For example, for the zeroth order,
using the result (3.45)), we have that

lim
A—oo

1 O'iA4 UiMz‘2A2 O—iM;l O'ZM14 4A4
Z 272 T a

1 . 3.48
Z, et | 8a2 64 32 °° aQMiZ} (3.48)
Now, using the relations (3.47) and applying the limit A — oo, we can
see that the divergent terms in the above expression disappear. So, if
Eq. (3.47) are satisfied, the theory is finite, but the expectation still
depends on the otherwise arbitrary regulator masses M,.. Certainly, the

expression (3.48]) still depends on the term

> o.M log M}a’ (3.49)

which diverges when we decouple the mass of the regulators as M, — oo.

(iii) Now, we decouple the regulator fields sending their mass to infinite M, —
0o. The only trace left are the divergent contribution stemming from the
logarithms terms. They act as counterterms. For example, in order to
counteract the divergence in Eq. as M, — oo, we introduce the
counterterm

L1 4 2 2 f
A= ﬁﬁ : O'TMT lOg MTCL -+ ((5/\) (350)

where f refers to a “physical” quantity that is left after the infinity sub-
traction.

(iv) Finally, we can express the normalized energy density

Pren = P — Psub> (351)

YHere, ", 00 = 00+ Y., 00, D, 0 M} = ooME + >, 0,M? and >, 0; M} = oM +
>, 0n M2, where 0y = 1 and My = m. This is possible because fermionic fields (o; = —1)
give loop contributions with the opposite sign as those of bosonic fields (o; = 1).
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where sub indicates the counterterms and the regulator fields contribu-
tion. Following the example of zeroth adiabatic order, we can express
this part of the renormalized energy density pre, as

A
dk [ d
© _ / _( pk) 3.52
pren 1m N

L [AY m2A? m* 4A*
D Sl _ 2 (1=
212 { 8t T 82 [5/\ 64 (1 2log a?m? )] }’

where, after the subtraction, when the cutoff A is sent to infinity, the
renormalized energy remains finite and cutoff-independent by construc-
tion. We can see the totally renormalized energy density pren in Eq. (2.35)
of Ref. [120].

In Eq. , dA/ is a finite quantity with physical significance that we asso-
ciate with the cosmological constant. The remaining counterterms coming from
the second and fourth adiabatic orders are associated with the Einstein-Hilbert
term and dimension four curvature invariants, respectively. This method
makes explicit the role of counterterms and also explains the origin of the
subtraction terms. It is important to emphasize that in the renormalization
of Pauli-Villars, the mass of the regulators is assumed to be much larger than
any accessible scale k, such that their contribution to the spectral density is
highly suppressed at cosmological distances. So, only in the ultraviolet do the
regulators play a role.

This procedure will be developed exhaustively in the following chapter.

3.8 Particle Interpretation

The expression (|3.40) allows us to calculate the energy density of the scalar
field ¢(z) in the in vacuum through the integral at any moment in cosmic
history. However, another possible Choice to obtain this expression is to use
the transformation ([3.32)) in Eq. , and express the energy density pi, in
terms of the arbitrary function XO‘“ (associated or not with the out region)
and the Bogoliubov coefficients a and ;. If we perform this calculation, it is
possible to identify two contributions to py, , one that we can identify as the
contribution of the out vacuum independent of 5, and another contribution
that depends on (3, which we can associate with the contribution of the particles
produced in the transition between in and out regions. With this in mind, we
can express pi as

Pin = Pout 1 Pp- (3'53)
where poyt is the out vacuum contribution and py, is the produced particle con-
tribution.

If the spacetime is asymptotically adiabatic as n — Z+oo, then we can
use the approximation (3.27) for ¢, applicable for massive fields or large
wavenumbers. Making this approximation, it is possible to demonstrate that

when w > H and |38| > 1 then the Spectral density is well approximated by

dpp 2(’%
3.54
dlog k 277 a3 155 (3:54)
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where |324| are the Bogoliubov coefficients in the adiabatic regime.
If we compare with the expression (3.25) for the number density of parti-
cles created, we can interpret the above relation in terms of particles, where
k3 /2m2a®| 32574k is the physical number density, the 1/a® factor accounts for
the physical volume of the universe and wy,/a is the particle’s energy. Here the
expression ([3.54)) was constructed by neglecting terms with a time derivative,
consequently |324| will be of zeroth adiabatic order.

Note: Here the spectral density for the in vacuum energy is given by

dpin o dpout + dpp _
dlogk  dlogk ' dlogk

k3 2 d XZHt(n)
nlggo 472qa 2{ (|Bk| ) [ dn ( a

2
d out(n) outn
+ oS (dﬁ X ) + w? (Xk B )> +C.C.} (3.56)

a

’ )|2
out n
Jrch Xk | ]

where (n) refers to the n adiabatic order of the adiabatic expansion for
the out mode functions x¢". From this expression is possible to relate the
contribution to pi, from the out vacuum energy - d” ew given by Eq. (3.40),
replacing in with out in that expression, and the contrlbutlon from the

particle production contribution given by the remaining terms d‘fé’;k. In
dpP

order to consider the approximation to Tiogh Siven by Eq. (3.54), it is
necessary to consider only the zeroth adiabatic order n = 0 given by the
expression , large frequencies wy > H, and an effective “particle
production”, that is, that |32¢|> > 1. Let’s remember that |ay|?>—|8|? = 1,
such that if |529] < 1, then |a2982d| ~ |324] and the relation is not
possible.

We must emphasize that the conditions under which Eq. (3.54)) is valid are

(i) the mode function x{" is in the adiabatic regime where the approxima-

tion 1) is valid, such that Wk(") > W,E"H) where n is the adiabatic
order,

(ii) the mode frequencies are long (wy > H),
(iii) and |824] > 1, that is, the “particle production” is effective.

In view of the above, we can express the energy density of the in vacuum in
terms of the “particle production formalism”. For this, let us rewrite Eq. (3.53))

Un the ultraviolet regime k — oo, that is, when A — 0, the expression for p,,, Eq. (3.56)
takes the form

A
dk d 1
lim o e _

ad|27.4 ad pad|7.3
ASoso Jy Kk dlogk  2m2at A—)oo/ IBR1RT + Mo Bi" k7 sin 2kn + ¢+ .] - (3.55)

where we have consider Wy, ~ wy = k. From Eq. (3.55) it is possible to conclude that |SBy|
has to decay faster that 1/k* according to the restriction for N} in Eq. (3.26).
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non-relativistic Ajg <ma relativistic
A
a) T > 00
AIR ma
relativistic
Ajr > ma ; )
b) | : > 0
ma AIR AR <k<o

Figure 3.4: Relativistic and non-relativistic modes. a) Modes in the
range Ajr < k < oo for which ma > A consist of modes that are relativistic
and non-relativistic. b) Modes in the range Ajg < k < oo for which ma < Ajg
consist of modes that are only relativistic.

as
out

Pren = Pﬁd‘i‘ pgd + (pad )rena (357)

where we have separated the contribution of the modes that are in the adiabatic
regime “ad” from those that are not “ad”. Regarding the modes that are
in the adiabatic regime, as we have already seen, we can express these as
Pad = Pog + (P25 )ren, where we have considered the contribution of the created
particles p?, and the contribution of the renormalized energy density of the
adiabatic vacuum given by (024" )ren = P25 — Psub-

Moreover, if we consider that the dominant modes in Eq. are those
that satisfy conditions i), ii) and iii), then we can write this as

ren ~° R o - - 3.58
P / k 21203 |ﬁk2 ‘ a ( )

Classical Field Interpretation

Let’s now briefly see if it is possible to identify pa,, <k, the contribution to the
energy density coming from the modes Ajr < k < oo, with the contribution of
an homogeneous classical field, as happens for the zero mode k = 0 and for the
modes in the range 0 < k < Ajg when these are non-relativistic (see Table[3.1]
second row). For this purpose, we consider dividing pre, for the modes in the
range Ajr < k < oo into the contribution from the non-relativistic modes and
the contribution from the relativistic modes (see Figure , that is, £ < ma
and k > ma, respectively, in such a way that

Pren = P<ma + P>mas (359>

where p.,,, refers to the energy density contributions from the modes in
Ar < k < ma and py,, to the modes from ma < k < co. The energy density
of these last modes needs to be renormalized according to the Pauli-Villars
renormalization procedure. Here, p2/"* refers to the renormalized energy den-

ren

sity of the in vacuum state (3.43)). With this classification, in Table we
summarize the conditions under which it is possible to apply the classical field
description for each contribution.

Chapter 3 104



Modes in range Ajg < k < 00

non-relativistic modes wi &~ m2a?, It admits classical homogeneous
pma AR <k <ma Xi R arxg™ + Bexg™ field interpretation
relativistic modes gradients contribute no admits classical
p>ma ma < k < oo to the energy density homogeneous interpretation

Table 3.2: Energy density for the modes in the range Ajg < k < oo, when
AR < ma. In the first row p<pm, is the contribution to p,e, from the non-
relativistic modes Ajg < k < ma, for which w? ~ m?a*®. These modes can
be interpreted in terms of a homogeneous classical field. The second row
corresponds to the relativistic modes for which ma < k < oo. These modes do
not allow for a classical interpretation.

As an example, we will briefly analyze the result shown in the first column
of Table [3.2. There, p., refers to the contribution of the non-relativistic

modes to the energy density pi . given by
" dk  dp
P<ma = / — . 3.60
< A K dlogk (3.60)

For these modes the dispersion relation is given by wy ~ ma since k < ma,
whose mode functions correspond to i ~ apxd"™ + Bex™*. Using these
solutions in (3.43) we have that

1 (™ dk 1 d /xoN |7
. ks 2, & _(_) 20 |2
pene =g || ] (188 +3) Ud" ) [y
* dXO ?
+ arfBy [(d—n?) +m?xg

When we compare this result with the zero mode expression , we observe
that it is possible to interpret this contribution to the energy density p.,,. as
that of a homogeneous classical field ¢ = 1/a(Agxo + Boxg) as long as we
make the identification

1 1 1 ma dk 1 L 1 ma dk
vz L lplez), 2= | Dsas
vV < 0 + 2) 277'2 /A L (lﬁk‘ + 2) ) % 2’7T2 A L akﬁka

" (3.62)
and if we are able to solve the system of equations (|Ag|* + | Bo|?)/2 = (N +
1/2)/V and AyBj = Lo/V. Let’s note that for Ny and Ly to be constant,
the integration between the limits Ajg < k < ma must be constant, which, in
general, does not happen. When the p~,,, contribution to p.e, is subdominant,

then is possible write Eq. (3.59) as

+ c.c.}. (3.61)

1 /.
Pren = 53 <’¢cl’2 + m2a2!¢d!2> - (3.63)

In the next chapter, we will extend this discussion to the case of a Dirac field.
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3.8.1 The Concept of Particle

As a final section, we will review the concept of particle according to the main
authors we have examined for this chapter, which will serve as the basis for
the study of fermion fields in curved spaces.

As we have already reviewed, according to Ref. [120], to discuss a particle
production formalism, it is necessary for the three conditions we have reviewed
in Section to be satisfied, that is, i) that the mode functions " is in the
adiabatic regime when the approximation is valid, such that W,ﬁ”) >
W,E”H) where n is the adiabatic order, ii) the mode frequencies are long (wy >
H) and iii) the particle production is effective (that is |Sx|? > 1). With these
conditions, and always that the adiabatic modes are dominant, we can consider
the particle production energy density as

1 *° Wi 2,9
P =753 T | Br|“ k= dE. (3.64)

On the other hand, according to Ref. [140], several conditions are re-
quired in order to talk about the number density of particles interpreted in
a Minkowskian context, that is, i) the spacetime is asymptotically adiabatic
(wk > wg) in the remote past and future (for intermediate times the particle
interpretation is ambiguous because positive and negative frequency solutions
are mixing), ii) the spacetime curvature must not vary across the spatial size of
the wavepacket of momentum k/a (in FLRW spacetime this implies k/a > H),
and iii) w? > 0, that is, the mode must be oscillatory (if this condition is not
satisfied the mode equation does not have oscillatory solutions).

Finally, according to Ref. [I35], the concept of a particle is associated with
the best possible description of a physical vacuum (also understood as the
absence of particles). Birrell and Davis associate the presence of particles with
what a quantum detector can register, therefore the concept of a particle is
tied to the state of the detector. Particles can register their presence in some
detectors but not in others, so they have an essentially observer-dependent
quality. However, if spacetime is asymptotically adiabatic, it is possible to
define the state of the detector unambiguously in the in and out regions and
associate |Bgx|* with the number density n; of the particles produced due to
the dynamics of spacetime.
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|Chapter 4

Fermion Fields on Curved Spacetimes

4.1 Introduction

In the context of semiclassical gravity, that we have outlined in the previous
chapter, a “spectator” quantum field in presence of a dynamic background
spacetime leads to the gravitational production of particles. As we have seen
for a quantum scalar field on FLRW spacetime, there are circumstances in
which it is possible to speak of a “particle production” interpretation and a
classical field description for the vacuum energy density of the scalar field. In
the present chapter, we explore whether these conditions hold when dealing
with a quantum field of spin %4. Since a fermion quantum field introduces the
condition of the Pauli exclusion principle, we will observe that a parallelism
with the scalar field is not immediate. This chapter follows the results derived
from the forthcoming research paper Cosmic Spinors and the Weight of the
Vacuum [3].

Given the absence of direct detections of dark matter and the growing cos-
mological and astrophysical evidence of its gravitational presence in the uni-
verse, a plausible line of investigation about its nature is to consider that dark
matter only interacts gravitationally with the rest of the universe. However,
a dark matter model with these characteristics faces the challenge of account-
ing for a production mechanism that yields the correct abundance to satisfy
observational constraints, as well as meeting the stability criterion (minimum
the age of the universe). It is in this scenario that the gravitational particle
production mechanism enters as a natural mechanism in the evolution of the
universe, depending only on the mass of the particle and the nature of its
coupling to gravity, without depending on how dark matter couples to other
sectors of the standard modelﬂ This is one of the main motivations for sys-
tematically exploring the behavior of the energy density, both of a scalar field
and a fermionic field, in a dynamical spacetime.

The gravitational production of particles has been studied in various con-
texts. For quantum scalar fields during inflation, this phenomenon has been
studied in Refs. [4, [142] [143] [144], as well as during the reheating period

! Different species of particles can be created by various mechanisms in the early universe.
For any spin number (integer or half-integer), the most familiar mechanism is through colli-
sions or decays of other particles. Also, in the case of spin-0 particles, they can be produced
through topological defects or through the oscillations of a scalar field.
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[145, [146]. In turn, for example, the gravitational production of particles
on spacetimes that depend on a particular equation of state has been studied
in Ref. [147], as well as for radiation-dominated universes [148]. For quantum
fermionic fields, gravitational particle productions have been studied in stan-
dard cosmology scenarios [149, 150, 151], and for the inflationary period of
expansion [144, [152, 5, [153), [154], [155] [156]. The renormalization of the energy-
momentum tensor in FRLW universes has also been studied in the works of
Navarro et al. [157, [158] (159, 160, [161] 162} 163, [164].

In the present thesis work, we focus on studying the phenomenon of grav-
itational particle production as a result of the expansion of a FLRW universe
for a Dirac quantum field that only interacts (minimally coupled) with gravity.
The fermionic field does not interact with the inflaton field nor with any other
field of the standard model. We set the initial conditions to those that cor-
respond to an early universe of inflationary expansion characterized by a De
Sitter spacetime followed by a post-inflationary universe dominated by radia-
tion. In general, our results can be applied to any transition that takes place
in a FLRW universe.

The main objective is to characterize the evolution of the energy density
of the Dirac field when a cosmic transition occurs in the universe. We analyze
the contribution of the modes for the ranges 0 < k < Ajg and Ajg < k <
oo where A is the characteristic scale at the beginning of inflation H; =
Ar. We also consider the contribution of the relativistic modes and the non-
relativistic modes, as well as the adiabatic and non-adiabatic modes, which
allows us to analyze the density energy according to the contribution of the
different modes. We also calculated analytically the solutions in a De Sitter
and radiation-dominated universe, as well as solutions for a massless field and a
homogeneous field, and we calculated approximate solutions when it is possible
to make an adiabatic approximation. We characterize the energy density with
respect to the in vacuum as p = pout + pp, Where poy is the contribution of
the out vacuum, which we will renormalize using the Pauli-Villars procedure,
and p, is the contribution of the “gravitationally produced particles”. We
found that in general it is not possible to consider p as the contribution of
gravitationally produced particles due to the restrictions imposed by the Pauli
exclusion principle. However, under certain circumstances, it is possible to
talk about the classical field description of the energy density.

The value of the mass m of the “produced particles” plays a central role
in the analysis. Depending on the value of m, these particles can account for
dark matter in the universe. For example, for a scalar field in the context of
inflation, it has been found that the density of the particles produced is given
by n ~ Hi?;lf if m < Hj,y where Hj,¢ denotes the Hubble parameter during
inflation. For the case of fermions, Chung et al. [5] have found that when the
mass of the gravitationally produced particles is much smaller than the Hubble
expansion rate at the end of inflation, i.e., m < Hiy, then ny = |B]? ~ 1/2
when k ~ ma(t), an identical result to the case of a conformally coupled scalar
field. Here we address the form of the number density ny = |8|* for different
orders of approximation and mode contribution. As we shall see, when the
fermionic field is massless, there is no gravitational particle production.

Regarding the process of renormalization of the expectation value of the
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energy-momentum tensor, we use Pauli-Villars renormalization based on the
adiabatic expansion of the mode functions (which contain information about
how the fermionic field evolves on time). In curved spacetime, the renormal-
ization process is more complicated than in Minkowski spacetime, as curvature
introduces new types of divergences. To identify and deal with these diver-
gences, we use the adiabatic expansion proposed by Barbero et al [159] based
on a WKB-type expansion of the mode functions. On the other hand, the
same authors have developed another method not based on a WKB-type ex-
pansion that overcomes some ambiguities of this expansion [164]. However,
both methods allow for the determination of the subtraction terms and pro-
duce the same results for the renormalized quantities. The subtracted terms
can be interpreted in terms of renormalization of coupling constants in the
gravitational action functional. In the present work, we used this methodol-
ogy to renormalize the energy density pi, and pressure p;, with respect to the
in vacuum and we calculated the value of the conformal anomaly. In the pre-
vious chapter, we summarized the Pauli-Villars renormalization process using
the work [120] as a reference.

The present chapter is organized as follows: in Section [4.2] we introduce
the formalism of spin %4 Dirac fields on curved spaces and derive the mode
equations for a FLRW spacetime. In Section [4.3] we derive exact and approx-
imate solutions for the mode functions in different regimes of approximation.
In Section 4.4, we define a cosmic transition and introduce the Bogoliubov
transformations. In Section [4.5] and [4.6] we calculate the energy density for
the modes 0 > k < Ajg and Ajg < k < oo, in the same way we did in the
previous chapter [3, and we calculate the renormalized value of p;, and p;, and
the trace anomaly. Finally, in Sections [4.7H4.8] we review under what condi-
tions (if they exist) it is possible to apply the “particle production formalism”
and the classical field description. We use the signature (4, —, —, —) and work
with natural units h = ¢ = 1.

Literature Review: In the work of Barbero et al. [165], the authors pro-
pose an adiabatic regularization method based on a WKB-type expansion of
the mode functions ug(n) and wug(n) (similar to that applied in adiabatic reg-
ularization for the scalar field @ ) to calculate the energy density pif and
the number density NV, of the gravitationally produced particles for a quan-
tum Dirac field 1&(1’) In our work, we recover the WKB-type expansion for
the mode functions introduced by the authors in this work. This regulariza-
tion method was applied to an expanding universe without regions that are
asymptotically Minkowskian. In this particular case, the integral of the num-
ber of particles density ny leads to divergences that need to be removed. This
calculation was extended to the energy density and pressure in a de Sitter uni-
verse during the inflationary expansion, not only during asymptotically static
regions. In particular, they confirm the adiabatic regularization method by
calculating the conformal anomaly and the axial anomaly. Subsequent works
extend the analysis to consider universes dominated by radiation in Ref. [159]
and Yukawa-type interactions with a scalar field using the same adiabatic
regularization process in Ref. [164]. Other proposals for adiabatic expansion
to regularize the energy density are given in later works by Suman Ghosh
[162, 161], similarly applied to a de Sitter and radiation dominated universe
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in the same framework as the previous works. In Ref. [164], they move away
from a WKB-like expansion, proposing an iterative method involving unitary
transformations. Regarding this, in Herring et al. [148], the authors propose
an expansion in the same spirit as Barbero et al. for adiabatic regularization
of the energy density. We will discuss these authors more specifically later.
Here, we use the original WKB-expansion of Ref. [165] for the Pauli-Villars
regularization of the energy density.

In Chung et al. [5], they analyze the gravitational production of spin % par-
ticles directly related to |3x|? for the heavy and light mass regimes compared
to the inflation scale. In this study, they do not perform the adiabatic regu-
larization treatment of the energy density or any other regularization method.
The main result of this work is that for light masses |3;|> — %. They ap-
ply the particle production formalism to a toy inflationary model with instant
transition from a de Sitter universe to a radiation-dominated universe. In a
numerical analysis of |S;|?, the authors confirm that most of the contribution
to |Bk|* comes from non-relativistic modes with light mass relative to the in-
flation scale. Chung et al. also perform an analysis of the particle production
resulting from the rapid oscillation of the inflaton after inflation. In Herring et
al. [148], they recover the same analysis by considering an adiabatic expansion
for mode functions beyond the zeroth order. On the other hand, the works
by Ema et al. [I54] perform a quite similar analysis to Ref. [5], recovering
the expression for n, in line with the latter. Similarly, they analyze particle
production due to the rapid expansion related to coherent inflaton oscillations
at the end of inflation. Unlike all previous analyses, Ema et al. [154] include
a study of gravitational production for vector fields. In a separate work Stahl
and Strobel [150], calculate the number of particles created in a de Sitter uni-
verse for an asymptotically adiabatic spacetime. Especially, they calculate Sy
through iterative integration, considering a WKB-like ansatz similar to that
used in Ref. [165].

In summary, all the previous works attempt to address whether a Dirac
field of dark matter can account for the observed dark matter energy density.
With the exception of Ref. [14§], the distinction between the concepts of field
and particle plays a rather superficial role, and the authors limit themselves
to using the expression for Ny ~ |Bx|? to account for the production of dark
matter particles through the expansion of the universe. A treatment that is
closer to distinguishing between the concepts of particle and field is found in
Herring et al [148]. As mentioned earlier, Ref. [148] follows a similar approach
to Chung et al. [5], with a particular emphasis on the concept of particle
production and adiabatic regularization through a WKB-like approximation
(different from the proposal of Refs. [164], [162]). In this work, they calculate
|8x|? as in [5], obtaining a spectrum close to Maxwell-Boltzmann and applying
it to the same toy inflationary model with instant reheating. In comparison to
previous works, our study aims to emphasize the more general conditions under
which the “particle production” formalism is applicable and when it is possible
to speak of a classical field description that can play the role of dark matter
(as in some axion dark matter models). It is also important to emphasize
that in this thesis we renormalize using the Pauli-Villars method, with the
original WKB-like adiabatic expansion proposed by Ref. [165], in order to
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identify divergences. Our goal is to analyze the behavior of a minimally coupled
and non-interacting Dirac quantum field, undergoing a cosmic transition as
mentioned above. In addition, we aim to determine under what conditions
the interpretation of particle production yields the correct estimated value of
energy density, and under what conditions the latter can be considered as the
contribution of a homogeneous classical Dirac field.

Pauli-Villars Regularization: In this work, we develop the Pauli-Villars
renormalization of the energy density of a spin 1/2 field in an expanding uni-
verse. In this regard, we differentiate ourselves from the previously mentioned
works. In those, the authors develop energy density regularization through
adiabatic regularization. The adiabatic method identifies UV divergences by
initially considering a slow variation of the scale factor, i.e., by considering a
slow expansion of the universe. The Pauli-Villars regularization adopts this
criterion to identify the divergences. For this purpose, it is natural to require a
WKB-like expansion of the mode functions. When the adiabatic regularization
method is applied to renormalize local expectation values, such as the energy-
momentum tensor, it is equivalent to the DeWitt-Schwinger point-splitting
method. This method has been extended to spin 1/2 fields in Ref. [166]. On
the other hand, in Ref. [167], the authors demonstrated that adiabatic regu-
larization is equivalent to n-wave regularization (which is essentially a variant
of the Pauli-Villars regularization method (see Birrel and Davis Ref. [135]).
Here, we make use of Pauli-Villars renormalization, supported by the work of
Weinberg [16§]. As mentioned earlier, Pauli-Villars utilizes a WKB-like ap-
proximation to analyze the divergences that are controlled by the introduction
of Pauli-Villars regulators.

4.2 Formalism

Our main purpose is to analyze the evolution of the energy density of a free
fermion field ¢ minimally coupled to gravity, through the action

Sy = / d%@{%[mﬂ(vm — (Vi)' — mww}, (4.1)

where v* are the global gamma matrices, related to the usual Minkowski ones
by the vierbein field e/ as y* = e#,7?, m is the mass of the field, 1)(z) denotes
Dirac conjugation of the field ¢¥(x) and V, = 0, + €, denotes its covariant
derivative (for the covariant representation of Dirac fields on curved space-
time see Refs. [169] 170} 171}, 172]). The global gamma matrices satisfy the
generalized Clifford algebra {v*(z),~"(z)} = 2¢"(x), where g, is a general
metric tensor and ¢ its determinant. We use the convention that Latin indices
a,b, ... are used to label local inertial coordinates and Greek indices pu,v, ...
for general coordinates. From here on, we will use the notation v* = e*,~°.
The covariant derivative is define in terms of the connection coefficient

Q, () for the spinor field ¢(z) which is given by

Q, = —%waby(x)aab, (4.2)
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where 0 = i[3,4%] /2 and the spinor connection (a generalization of the affine
connection) is
Waby = nacec,uegbl_wm/ + nacecuaueuby (43)

where 7,. is the Minkowski metric and I'#,, are the Christoffel’s symbols.
The spin connection is antisymmetric in the first two indices, i.e., wep =
—Wpay- The wvierbein and the inverse vierbein matrices (defined at point z# =
Xt by eto(X) = (0z"/0y*)|wn—xn and e, (X) = (9y*/0x")|snxn), which
diagonalizes the metric g, (x), obey the relations

Nap = €"e€"b9 and g, = eauebynab. (4.4)

The action (4.1 describes how a spinor field ¢ (z) is coupled to gravity.
If we assume the latter is governed by the Einstein-Hilbert action, then the
spinor field minimally coupled to gravity is given by the action

M2
S=8n+ Sy + Tpl /d4x\/—gR, (4.5)

where R is the Ricci scalar and S, [g,., 9] describes additional matter fields.
Here g,,(z) is regarded as a classical external field, whereas the Dirac field
Y(x), as well as the matter fields in the action of the standard model S,,, will
be treated as quantum fields. Gauge fields and massless fermion fields are
conformally invariant and do not react to changes in the expansion history.
After varying with respect to the field 1(z), the dynamical equation is provided
by a generalization of the Dirac equation to curved spacetime given by

i7"V, — mlib(a) = 0. (4.6)

4.2.1 Dirac Fields on FLRW Spacetimes

In particular, for the conformal FLRW metric
ds® = a*(n)[dn*® — 6;;dz"dx?], (4.7)

where 7 is the conformal time n = [dt/a(t) and a(n) is the scale factor, we
get according to Eq. the vierbein coefficients €% = e} = €%y = €33 = 1/a
(the vierbein inherit the same symmetry as the metric) and the Christoffel
symbols I = H, T = Hd;;, ['jo = Hd:. In these coordinates, the Hubble
parameter is H = a/a , which is related to the “physical” Hubble constant H
by H = aH, where from now on a dot represents the derivative with respect
to conformal time.

Inserting the above results into Eq. , these leads to the non-vanishing
spin connections wg;; = —HJ;;, and w;; = Hd;; (note that w,. depends on
the signature of the metric). Plugging these results in Eq. , we get §); =
%[3°,47] and Qo = 0. Noticing that 4 = e”,3°, then we can write

V' =(1/a)3’, A =(1/a)7, Y =(1/a)F, P’ =(1/a)F.  (4.8)
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Inserting the above results into Eq. (4.6) and multiplying with a7° from the
left, we get the Dirac equation in a flat conformal FLRW spacetime as

. P O~i TH g oo - -

100y +5°Y 0 + =57 (3", A1 — mAag = 0. (4.9)
Now, using the relation 7°727° — A°3P3¢ = 2naqb — 23 — 2jecabdy 35 where
e is the Levi-Civita connection, we can recast the commutator in Eq. (4.9)
and get

i7" (80 + %) + 7 0 — masp = 0. (4.10)

Finally, upon defining ¢ = a=3/2¢), we can obtain
A0 + i ) —ma =0 — i3 b — megth = 0, (4.11)

where mqg = ma is called the effective mass or conformal mass. So, the field
1; solves the regular Dirac equation with effective mass meg = ma.

Once we have written the Dirac equation in an FLRW spacetime, we pro-
ceed to quantize the field ¥ (x) and calculate the expectation value of the
energy-momentum tensor, which is the source of Einstein’s semiclassical equa-
tions. Our objective is to analyze the evolution of the energy density as the
universe experiments a transition between an in-region to a subsequent out-
region (similar to a scattering process in QFT) like, for example, from an in
region during which the universe accelerates exponentially (an inflationary pe-
riod) to a subsequent out region during which the expansion is decelerating,
namely, during the radiation domination era. In general, the in and out re-
gions refer to two different epochs of a transition and are not apriori related to
the “particle production formalism”. In the in region, the field v is considered
as a spectator field, which allows us to control the “initial” conditions for field
fluctuations.

4.2.2 Field Quantization

In the semiclassical treatment of gravity, the gravitational field remains classi-
cal while the other matter fields obey a quantum formulation. In order to quan-
tize the Dirac field v, we proceed according to the canonical quantization recipe
introducing the ladder operators for the creation and annihilation of “particles”

and “antiparticles”, denoted as aj, and ZA)%/\ , and their anti-commutation rela-
tions {d)\,lg7di/,];’/} = {b)\,l;’ bI\’,E’ = 5)\7)\/(5;]—&; and {(AIA’E7 bT } = 0. With these,

)\/7;;/
the Dirac field v can be written as

b= / @ g, Uz + B Vi (4.12)
A

2The annihilation and creation operators can be interpreted as creating particles and
antiparticles of comoving momentum k. Actually, these “particles-antiparticles” do not
represent localized particles, these are eigenvectors of the momentum operator.
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where the momentum expansion of the eigenspinors Ug, (x) and Vg, (x) are
given by

eiﬁ-f Ry euz.f Uy
Uq — _ o U—» = — 4 13
0~ Crapn (—5) o T T rapr (vm)’ (4132)

o—ik-& —UrEy o—ik-& v
Vo, = —— L Vo, = —+ kS=X 4.13b
o G (i) Vo G () (1)

where &) is the normalized two-component spinor stisfying 51,5 A = Oy and the
property ";—’,ff » = (A/2)&\ where A = 1 represents the helicity. Also Uz, and
Vz, are related by charge conjugation operation (e.g. Vi, = CUg, = sz];f)\gg]
with ug(n) and vg(n) two time-dependet functions known as mode functiond’|
In particular, because of the homogeneity and isotropy of the metric (4.7)), we
may assume that the mode functions only depend on k = |k|.

Note: To write the solutions (4.13)), we have used the ansatz of the form

wo-(E)e ()

where we have chosen the positive frequency solutions and (¢L> corre-

YR
spond to the Weyl eigenspinors of the helicity operator (l% -G /k)YrL =
£ g, which have two eigenvalues A = £1. This corresponds to the mas-
less Dirac equations zﬁ“k:uv,z = 0 with &, = 9, for ) = <$L) which have
R
the solutions v, = i - E/ka and Yp = —id - /;/kwL. With these, we can
write Eq. (4.14)) as

”ka,)\(x) = ( Uk<?7k.§>\>\) €iE'f, with £>\=:|:1 = wR,L- (415)

It makes sense that the helicity operator captures the spin information
(which is a conserved quantity) through the constant eigenspinors & (so-
lutions of the massless Dirac equation) since the time dependence comes
from the effective mass meg = ma in Eq. whose effect is captured
by the time-dependent functions wuy(n), vk(n). Finally, we have that the

31n order to obtain the expression Eq. 1} we need to take into account the expression

—io?¢% = A¢_ . For example, if we consider Eq. (4.16]) we can write —io?¢q = 1 where
. . 0 —i

we have used the Pauli matrix o2 = { OZ .

4Because the mode function Vz, arises from the charge conjugation matrix acting on
Ur, we can impose the Majorana condition on ¢ simply by setting b;;, = a,. It is hence
straightforward to extend our analysis to Majorana fermions. Weyl fermions (massless)
are also easy to deal with. In that case, we can set u = v, which effectively yields two
independent massless fields, one for each chirality.
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normalized spinors written are

£ = 1 <k+k3> and £, = 1 (—k1+ik2>
2k + k) \F1 ik T 2k(k + ks) \ ks,
(4.16)

with k = (ky, ks, ks) and €l&y = . When ky = ky = 0 we have

§y1 = (é) and {1 = (2)

The Dirac product on the solution 1 to equations (4.11]) is given by

() = /Z Iy (@)pnads, (4.17)

where the vector n, is the future-directed normal to the spacelike Cauchy
hypersurface Y, and d is the invariant “volume element” on X. It is easy to
calculate Eq. if we choose ¥ to be a slice of constant conformal time
n, then the future-directed normal vector n, has components (a(n),0,0,0). In
this case we have

(1) = /E i/ gdb. (4.18)

where ¢ = 1T3° is the Dirac adjoint and where the integration is over a con-
stant #° = 5 Cauchy hypersurface (d¥ = /—gd®za3d®z). Also we have use
the relations (7°)? = I and 7° = (1/a)7.

Finally, with the ansatz (4.12)) into Eq. (4.18) we have (Up,\|Ug,,) =
Vil V) = (5M/(5(3)(E — K ), which implies the normalization condition for
the mode functions as

u(m)|* + ()] = 1. (4.19)

This condition assures the standard anticommutation relations for the creation
. . . T o T <3 T T

ar‘ld annihilation operato?s given byﬁ {agy, ap,, b ={bz by} = 03 (K— K)o

with all the others combinations equal to zero.

4.2.3 Mode Equations

Now, we will derive the dynamic equations for the mode functions, uy(n) and
(1), which encapsulate the information about how the field ¥ (z) evolves as
spacetime evolves over time. From Eq. , we observe that the dynamic
evolution of the field depends on the mode functions ug(n) and vi(n). To

Here we have use the integral [, dPrei®F=F) = (27)353) (K — k') and the normalization
condition £l&y = 0,0

6These relations are established imposing the anticommutation relation for the Dirac
field {45 (x)wf\,(x/)} = 0(z — 2)dx,n. Using the Fourier decomposition , the solutions
(4.13)) and the normalization condition , the Dirac field anticommutation relation is
satisfied if {ag,, aEW} = {bz,, b;%w} = 83(k — k')dxn are satisfied. Also, we have used the
delta Dirac definition given by (1/(27)%) [ d®k exp[ik(z — 2')] = 6©) (z — 2').

Chapter 4 115



obtain their dynamical equations, we put Eq. (4.13]) into Eq. (4.11]) and using

the gamma matrix given by

o (1 0 L (0 o
A = (0 1 and ' = o0 (4.20)

we can write the Dirac equations as 1) + 1AV, - Eﬁ,\ — mauiéy = 0 and
—ibk)\f,\—iukﬁ-/;ﬁ,\—mavk)\/f,\ = 0. Now, using the eigen-equation (&%/k)f)\ =
A¢é, and the normalization condition for the eigen-spinors 5;5,\1 = 0y We get
the following first-order coupled differential equations

Uy + imauy, + itkv, = 0, (4.21a)
0.

U — imavy + tku, = (4.21b)

Next, multiplying Eq. (4.21a]) by v; and subtracting the complex conjugation
of Eq. (4.21b)) multiplied by ug, and using the normalization condition (4.19))
we get the Wronskian condition given by w,v;, — uiv; = —ik.

Finally, deriving equations (4.21a)) and using 0 = imavy — ikuy and iy, =
—1mauy —1ikvy, and similarly for (4.21b)), we obtain the following two decoupled
second-order equations for u; a and wvy:

iy + [wi 4+ imalu, = 0, (4.22a)
U + [wi — imajuy = 0, (4.22b)

where wy, = vVm?2a? + k2. Here, the expression w?, = w? + ima corresponds
to the frequency of the mode functions wuy, and vy, respectively, and w? is the
frequency of the fermion field ¢)(x). Note that a solution for vy can be obtained

from a solution for u; by the replacement m — —m. From now on, we will refer
to these equations as the mode equations of first (4.21)) and second differential

order .

It turns out to be convenient to recast Eq. as the Schrodinger equa-
tion for a non-relativistic spin-1/2 particle in a time-dependent magnetic field
B. Namely, setting by defining the two-component spinor ) = (uy, vy), equa-

tions (4.21]) can be cast as
i) = Hip, where H=B-& and B = (k,0,ma). (4.23a)

The latter admits the formal solution
t
Y(t) =Texp (—2/ de) Yo, (4.23Db)
to

which is particularly useful in the cases in which exact solutions are ready
found, namely, when £ = 0 or when m = 0.

Finally, we remark that for conformal fields on conformal spacetimes, there
is no gravitational particle production as gravity does not influence the dynam-
ical equations. In the case of a spin 1/2 field on a conformal spacetime (like
Eq. (4.7)), this occurs when the field is massless. If in the mode equations
@ , we set m = 0, these reduce to the trivial expression for Minkowskian
spacetime; therefore, gravitational effects do not exist in this case.
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4.3 Approximate and Exact Solutions

In this section, we will discuss approximate and exact solutions to the dy-
namical equations for the u; and v, mode functions. For the cases
of a massless m = 0 and homogeneous & = 0 Dirac field, and for a spinor
on inflationary and radiation dominated universe, we found exact solutions
that describes the evolution of ¢ on a FLRW spacetime. However, in general,
there are no exact analytical solutions to the mode equation , so we shall
rely on approximate solutions instead. We present high-frequency and low-
frequency solutions to the mode functions in the next two subsections. In the
first case, we will consider solutions for frequencies that satisfy wy > H, when
an adiabatic approximation of u, vy is possible. In the second case, we will
discuss the regime in which ma < H and k& < H, such that a small mass and
small momentum approximation is possible.

4.3.1 Exact Solutions
Massless Dirac Field

In the case of a massless Dirac field, the dynamical equations (4.22)) take the
form i, + k?ur, = 0 and ¥y + k?v;, = 0. The solutions to these equations are
given by
ul"=" = Cexp(—ikn) + D exp(ikn), (4.24a)
=" = Eexp(—ikn) + F exp(ikn). (4.24Db)

These solutions satisfy the normalization condition and the Wronskian
condition ,v; — ug0; = —ik. Putting Eq. into Eq. we find that
E =C and D = —F. If we choose the defined solution “positive frequency”
we obtain, after normalization, that at zeroth order in mass

1 1
up =" = —exp(—ikn), vl = ——=exp(—ikn), (4.25a)

V2 V2

and for defined solution “negative frequency”

1 1
ul=" = ——— exp(ikn), v~ = — exp(ikn). (4.25b)

V2 V2
This is equivalent to choosing initial conditions to determine the coefficients
C and D for the system of equations (4.24). Negative and positive frequency
solutions are related by charge conjugation. When m = 0, the Dirac field is
conformally coupled. In this case, the field evolves as in Minkowski spacetime,
and it does not experience the expansion of the universe, hence there is not
room for gravitational particle production.

Homogeneous Dirac Field

In this case let’s consider solutions to Eq. (4.22) with & = 0 and wy ~ ma.
One can also solve exactly the system (4.22)) with £ = 0 and arbitrary m. Two
linearly independent solutions are, for instance,

Up=0 = €XP (—i/ma dn) , Up—o = 0. (4.26a)
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and
Up—o = 0, Vp—o = exp (z’/ma dn) ) (4.26D)

Again, one solution is “positive-frequency” and the other “negative-frequency,”
and both solutions are related by “charge conjugation” When k£ = 0 the
Hamiltonian in equation (4.23a)) is diagonal and equation (4.23b)) immediately
leads to the positive frequency exact solution . As opposed to what
happens in the scalar case, such positive frequency solutions exist even when
the field is homogeneous. A negative frequency solution can be found by charge
conjugation of the previous solution, as usual.

Dirac Spinor in de Sitter spacetime

De Sitter universe is characterized by the scale factor a(t) = e where H is the
Hubble constant. In terms of the conformal time 1 we have a(n) = (—Hn)™*
and n = (—Hef")™'. Solutions to Eq. in a De Sitter universe that
satisfies the appropriate asymptotic conditions in the remote past are given by

u(z) = i%e’r“ﬂ]—]&)(z), (4.27a)
v(z) = %e”"/QHﬁ)(z), (4.27D)

where z = —kn, p = m/H, vy = +4 —ip and H,, (z) are the Hankel functions
of the first kind. See Appendix for details.

Dirac Spinor in Radiation Dominated Universe

A radiation dominated universe is characterized by the scale factor a(t) = agv/t
where ag is a constant with ¢ the cosmic time. In terms of the conformal time
n we have a(n) = ?n with n = % t and ag = a(ty) = a—j = Hp. Solutions
to Eq. in a radiation dominated universe that satisfies the asymptotic

conditions (4.29)) in the remote future are given by

k? -
up = exp (— S;LHR) D, (\/56””2) : (4.28a)

v o €i7r/4k o B 7rk‘2 D <\/§€iw/4z> (4 28b)
o V2mHp P SmHp ol ’ )

where 2 = VmHgn, a = —ik*/mHp and D,(z) are the cylindrical parabolic
functions. See Appendix for details.

4.3.2 High Frequencies Approximation

When the field frequency wjy is much greater than the Hubble parameter
wr > H, it is possible to rely on approximate solutions given by an adia-
batic expansion. We found in the literature a variety of approximate solutions
to the second-order differential equations , by adopting an “adiabatic”
expansion in the number of time derivatives of the scale factor. Similar to the
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case of a scalar field on curved spacetime, these solutions make use of a WKB-
expansion for the mode functions ug(n) and vg(n) (see for example Refs. [165],
[173] and [174]). Here, we use the first proposal given by Ref. [165], where the
authors propose an ansatz with the form

we = %wkmaexp (—i / Q(ﬁ)dﬁ) F(n), (4.292)
v = %2_—c(j’€mlexp (—2' / Q(ﬁ)dﬁ) G(n), (4.29h)

where wy = vm?a? 4+ k? and the time-dependent function Q(n), F(n) and G(n)
are expanded adiabatically as

Qn) = wp+ wlil) + w,(f) + w,(cg) + w,(f) + ..., (4.30a)
Fin) = 1+ FO 4+ F® 4 p® L p@ 4 (4.30Db)
Gn) = 1+GY+6® 460 "+ | (4.30c)

where the superscripts indicate the adiabatic order, that is F™, G™ and
w,(cn) are functions of adiabatic order n, i.e. they contain n derivatives of the
scale factor a(n). The time-dependent functions F(™ and G™ are complex
functions and we can write these like F(™ = fxn) +1 f;n) and G = gg(c") +
igysn) This expansion is generally applicable when wy > H, that is, for
short wavelengths modes or massive fields. Strictly speaking, the “adiabatic
regime” holds whenever expressions is a valid approximation of the mode
equation, no matter what the value of the frequency wy is. In general when
the mode frequency becomes small, w;, < H, the approximate solution (4.29))
stops working. Then the approximate solution for low frequencies (small mass
or long wavelength) is applicable. As an example of the procedure described in
Ref. [165], we will calculate the approximate solutions uy and vy, to first-order
adiabatic (in Appendix we calculate these solutions up to fourth-order
adiabatic). For this, it is useful to write the coupled differential equations for

u and vy, Eq. (4.21)), as

kuy, = 10, + mavy, (4.31a)
kvy = iu — mauy. (4.31b)

Now, substituting the ansatz (4.29) for u, and vy into Eq. (4.31a)) we obtain
the expression

(1) pe

"One more formal solution was given in Refs. [174] and [I75] overcoming the arbitrariness
in the adiabatic expansion of the mode function that is somewhat inconvenient. However,
all these works obtain exactly the same results for the renormalized expressions p; and pg.

+ maG, (4.32)

(%)G—mcué
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where Wy =,/ w’“im“ and similarly for Eq. (4.31b)). After some straightforward

algebra and recalhng that w? = k? + m2a?, we can write both equations as

(wg —ma)G = : ;) (md — mawk> F +QF +iF — maF, (4.33a)

2 (Wi + ma W

(wg +ma)F = ! (

2 (wy, —ma) \ w
F*F(wi +ma) + G*G(w, — ma) = 2wy, (4.33¢)

~.

mawy,

- md) G + QG +iG + maG, (4.33b)

where we have used the relation m?aa = wyw, and the third equation fol-

lows from the normalization condition (4.19)). By keeping only terms in first
adiabatic order in Eq. (4.33) and taking into account Eq. (4.30)) we obtain

. 1 :
(wr — ma)GY = (w, — ma)FY + w,(:) + 3—) <ma — mawk) ,(4.34a)

2 (wk + ma Wi
1 1 1 mawy, .
(wi + ma)FY = (wy, + ma)GY + WIE: ) 4 3o e < o ma) ,(4.34Db)

(wi + ma)(FY + FOY 4 (w), — ma)(GY + GW*) = 0.(4.34¢)

Now, using the decomposition F(©) = f; © —i— 1 f (0) and G g(o) + Zgg(, ), and
working the real part, we have (wk - ma)( — ) = wk : (wk + ma)(gé -
fx(l)) —wli , and (wy + ma)fm + (wg — ma)gé ) = 0, from which after some
straightforward manipulations we obtain f(l) = gg(gl) = w,gl) = 0. On other

hand, the imaginary part gives two dependent equations

(wp —ma)(gy? = fiV) =

Yy

(wr + ma)(gél) - ) = L ! (maa’uk - md) ,  (4.35b)

1ma
2w
biguity we can use the fact that ui(—m) = vk( )ﬁ that is equivalent to
F(™(—m) = G™(m). This fact implies that s ( m) — £ = +2% and from

To alleviate this am-

from which the solution is given by g(l) 351) =

here is necessary to write f;l)(—m) = — Z51)(m). From a direct manlpulatlon
we obtain ) _

1y ma ey _Mma 1.36

Ty 4w Ty 4w?’ (4.36)

With the results above is possible to write the adiabatic expansion (4.29)) up
to first order as

(1) wr +ma . N ma
= =TT - 1— 4.
uy, oo exp( z/wk(n)dn) { 4%3} : (4.37a)
1) Wy — ma ) o g~ ma
= —_— — 1+—1. 4.
0N 2o exp ( z/wk(n)dn) { + 4%%} (4.37b)

In Appendix[C.3] we write the complete expressions for u; and vy, up to fourth-
order adiabatic.

8This symmetry comes from the differential equation 1} under the change m — —m.
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4.3.3 Low Frequencies Approximation

In order to find approximate solutions to the system of equations when
ma < H and k < H, that is, when the field has small mass or small mo-
mentum, we can consider two regimes: in the first case we can consider m
as a perturbation in the Hamiltonian . In this case, we can search for
approximate solutions in which m = 0 is the lowest order of approximation
and proceed successively by searching for corrections in perturbation theory
around the mass m. In the second case we can consider k as a perturbation in
the Hamiltonian , from which it is possible to obtain corrections to the
approximate solutions in perturbation theory in a similar way to the previous
case.

First Case. We will develop the solution to Eq. with m = 0 as the
lowest order approximation when the mass of the field is sufficiently small. In
this case equations have solutions uf*=% and v"=?, and take the form of
Eq. (4.25). If m # 0 the relations is not a solution of the mode equation
(4.22). In this case Eq. can be regarded as solutions of the lowest order
to the massless mode equation at the limit of small mass, with corrections,

Auy, = u,(:) —u=0 and Ay, = v,g") — v"=Y given by

n

Aup — — / 4G (r:7) (mPatufl ™ + imau "), (4.38)
" 2 1

Avy, = —/ dnGs(n; 1) <m2a2v,(€n_ ) _ imdv,(fn_ )> , (4.38b)

where G 2(n; 77) is the Green’s function of the zero-mass equation, which can be
readily constructed as a linear combination of the two solutions exp(—ikn) and
exp(tkn). We obtain an explicit solution of the mode equation by recursively
expanding uy, v in powers of m. The n-th order in such an expansion thus
contain n powers of the mass m and is related to the next one by

low(n low
) ( )(77) = u) (0)(77)
n
- / dijG1 (175 7) [aQuLO“"‘%)+z'auz°w<"—”<ﬁ> . (4.39)

(n)

and similarly for v, where 4*¥(© = ¢"=0 and n > 1.

Small mass. In order to extend the exact solution (4.25) at m = 0 to
cases where m is non-zero but “small”, we shall treat the mass term in the
Hamiltonian as a perturbation,

H:H0+V, HQZICO'l, V:m(lO'g. (440)

Then, turning to the interaction picture, the “exact” solution (4.23b)) can be
cast as

Y = Uy(t)T exp <—¢ /t dtNVI) o, Uy =Texp (—i /t dfﬁo) o (4.41)

where V; = UJVUO is the interaction V in the interaction picture. It is
worth noting that, at least formally, Eq. (4.41) is still an exact solution of
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the Schrodinger equation (4.23al), so the validity of Eq. (4.41]) does not require
m to be small. When m is “small,” however, it ought to suffice to expand

Eq. to first order in the interaction V;. We shall deem the approxima-
tion “accurate” when the first order correction is much smaller than the zeroth
order term. Because both depend on the common but arbitrary initial vector
19, we hence arrive at the operator norm condition

t
|| / div|| < 1. (4.42)

The eigenvalues of the integrated interactions obey

A2 = m? [(/tdcos(Qkﬂdf)2 + (/tasm(%i)df)Q] < 2m? (/t&dgy

(4.43)
and, therefore, the condition for the validity of our small mass approximation
is ma < H, which, somewhat surprisingly, does not depend on the magnitude
of k, but on the size of the comoving horizon. As hinted above, this is because
our approximation does not rely on ma begin smaller than k, but, rather,
that the series in Eq. be correctly approximated by its leading term. In
summary, the zero mass approximation works when the field is light, that is,
when ma < H.

Second Case. In this case we consider an expansion around k, to solutions
for low frequencies, with k& = 0 the lowest order of the approximation, when
wr ~ ma. These solutions are given by Eq. . As before, we can obtain
corrections to these approximate solutions in perturbation theory. In the same
way, we can write the n-th order in such expansion that contain n powers of
k and is related to the next one by

low(n) low K ~ . 7 / / low(n—2)
uy, (n) =ug™(n) — drjexp | —i ma(n')dn’ | u, , (4.44)
low(n) low T : 7 / / low(n—2)
v () =vg" () — | dijexp (i [ ma(n)dn | v , o (4.45)

low ,,low low low

where ug™, vy = upY,, vy, n > 2 and we have used the explicit form of the
Green’s function. In this case, the solutions (4.26a)) and (4.26b]) correspond to
the case k = 0 of the zeroth order of the adiabatic approximation (4.29)).

Small Momentum. To find an approximate solution when the momentum

k is small, we employ again first order perturbation theory in the interaction
picture. Setting

Hy = maos, V = ko, (4.46)

and proceeding exactly like in the small mass case we arrive at the eigenvalues
of the first order correction

t t
/ dt exp (22’ / dfmd)

Hence, in this case the condition for the validity of the small momentum ap-
proximation is k < H, once more, regardless of how k compares to ma.

N =k < k*(n—mno)?. (4.47)
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Figure 4.1: Timeline characterizing the transition experienced by the universe
as it expands from an initial period of cosmic inflation at n; followed by a
period of radiation domination 7, mediated by a model-dependent reheating
period 7. < n < n,. In a sharp transition 7, = 7, and there is a discontinuity
in the second derivative of the scale factor.

4.4 Cosmological Epochs

4.4.1 in and out Regions

The notion of vacuum and the number of particles, associated with the number
of quanta for the number operator and the creation and annihilation operators
introduced by the expansion , depends on the particular choice we make
of the mode functions uy(n) and vg(n). In a spacetime that experiments a
transition from an initial ¢n inflationary region to a subsequent out region
where the universe expands as a FLRW spacetime, the in vaccum is determined
by the Bunch-Davis vacuum (see Figure . So, this in region is determined
by the existence of a preferred notion of vacuum. This is the case if the
solutions of the mode equations for any fixed k, that in the remote past
matches the adiabatic zero order of the expansion , are given by

u — mexp (—z’/wkdn> : (4.48a)
2wk

Y Sl (_Z- / wkdn) . (4.48D)
2wk

This condition is characteristic of a universe experiencing an early period of
inflation. With these initial conditions we can characterize the mode functions
ui® and vi", which in turn characterize a preferred vacuum, that is, the in adi-
abatic vacuum. However, we must rule out a scenario of eternal inflation, that
is, inflation is not expected to be past eternal. With this in mind, we cannot
consider that the conditions are determined by an in region that extends in-
definitely into the past. Taking this into account, it is convenient to introduce
an initial time 7; at which inflation starts characterized by H; = H(n;). With
this scale, if the field is massless or light we must introduce an infrared cutoff
such that Ajg ~ H;, since at these scales there is no preferred quantum state
for the modes that are higher than the horizon at the start of inflation. On
the other hand, if the field is heavy, we can set Ajg = 0. See Figure (4.2]).
Once we have determined the in initial conditions for the mode functions in
the decomposition 1) , it is possible to associate the ladder operators &%‘A and

lA)g‘A to those states corresponding to the in region. With this we can talk about
a number operator N g;n and N g;n associated with the mode k. The in vacuum
a, [0i) = 0 has no in quanta Ng/\m |0;m) = 0, while Ng;n 1Y) = N{™ [¢) can

be thought of as containing a definite number of quanta Ny™, and similarly
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for the operator N This is how inflation allows us to identify the quantum
state of all modes within the range Al < k < oo, e.i., the in vacuum.

Now we consider an out region that for example, contains a radiation-
dominated universe starting at n = 1, > 1., where e means the end of inflation
and r the begin of the radiation-dominated universe. To determine the mode
functions in the out region, we need to find the solution of equation (4.22))
that evolved through the transition from the one in the in region. Let u; and
v be arbitrary solutions to the equation . Since uy and vy are linearly
independent we can express the solutions u}* and v}* as a linear combination
of u; and v, as

w(n) = aguy, — By, (4.49a)
v (n) = vk + Bruy, (4.49b)

where a and [ are the Bogoliubov coefficient and u; and vy are arbitrary
solutions to equation that do not necessarily satisfy the initial condi-
tions set by inflation. In general, the solutions u; and v, are not necessarily
associated with the out region. At this point the nature of u; and vy are irrel-
evant, we only need these to satisfy the equation and the normalization
condition . If up = ul® and vy = v}* these equations imply that Sy = 0
and o = 1, as expected.

Expressions in Eq. are useful to define a two mode expansion simi-
lar to that Eq. , now with the out conterpart of the annihilation and
creations operators a%l/\ and bg; (see Appendix |C.6). These set of opera-
tors defines, re§pectivele, a number operator of ouf particles and antiparti-

: a _ gt Vbbb Thi
cles, given by NE/\ = Qg Ay and NE/\ = b;;,\bk/\' This set of number operators

Ng/\, N]’g)\, Ag/’\in and Ng;n allows define the in vacuum |0y,) which no con-
tain in particles and the out vacuum |Ouy) which no contain out particles.
But, when (. is nonzero, the in vacuum does contain out particles given by
<0in|N£b’Oin> = [ dk®|5]?. Note that the Bogolubov coefficients do not have
an independent meaning by themselves, since they are inherently linked to
the choice of the mode functions u; and v, through Eq. . Only in the
adiabatic regime do the Bogolubov coefficients acquire a context-independent
meaning. Then, in the adiabatic regime we can say that the mode functions
w3 and v2d are uniquely determined. If this approximation is applicable then
we can refer to these mode functions as “out adiabatic mode functions” and to
the vacuum state as “out adiabatic vacuum”. The exact solution to the mode
equation that matches with Eq. and its first derivative at any chosen
and fixed time 7 implicitly defines the n-th order adiabatic vacuum at that
time. As stressed in Ref. [I35], this defines a two-parameter family of vacuum,
characterized by the adiabatic order n and the time 7. In general, we are not
interested in determining the out mode basis functions. Only when we need to
renormalize the energy density of the out vacuum is that we must determine
the adiabatic mode functions up to order n > 4.

4.4.2 Transitions

Once the nature of the in and out regions is established, we must establish
the nature of the transition between the two regions. In a scenario determined
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Super-horizon modes

T

in vacuum state, "

Figure 4.2: Infrared scale Ajg ~ H; at the beginning of inflation. The modes
below this scale have an unknown state. Modes above Ajg are found in the
preferred in vacuum state set by inflation at ;. If the field is massless or
light, the state of the superhorizon modes at the beginning of inflation, is not
determined by inflation and remains unknown to us.

by the transition from an inflationary universe to a universe dominated by
radiation, the nature of this transition is determined by the relatively unknown
phenomenology of the period called reheating, see Figure [£.1] To describe the
inflationary period, we can use the parametrization a(n) ~ n? with p < —1
where the effective equaion of satate in such universe is wy = (2 — p)/3p.
Here, the slow-roll parameter ¢ = —H/(aHz) = p* +p. The case p = —1,
for example, correspond to a Cosmological Constant A dominated universe
and € = 0. After Inflation, in a radiadion dominated universe the scale factor
evolves as a(n) ~ n or a(t) ~ t'/2. In the following, unless a specific example
is required we will only assume that H, < H < H..

In order to determine the form of the in mode functions after a jump in
the derivates of the scale factor a(n), we need to find the solution of equation
that matches the one in the in region at the transition time n = ..
We use arbitrary solutions u; and v, to the mode equations, and we impose
continuity of the solutions and its derivatives at the future boundary of the in
region, that is 7. If the mode functions u* and v}* remains in the adiabatic
regime throughout the in region, and we assume that the mode functions uy
and v, are well approximated by the adiabatic expansion , the Bogolubov
coefficients in Eq. after such transition are given by

ol a1+ (W) (F~0 4 prO) ¢ prMp-0r 4 pr@p-@ 4 )

4 (W) (G~ 4 G+ 4 grOG- W 4 GHRG-Wr 4
(4.50a)

ad L3 [ (F"(l) — F+,(1)) + (G*’(l) — G"(l))

k 2w

+(GHO =W g OFtM) ] (4.50b)

where the plus and minus superscripts denote the limits in which n approaches
ne from above and below, respectively. The different terms are organized
by growing number of time derivatives. If F—> = p+0) Gg-0) = gH1),
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that is, there is no jump in the derivatives of the scale factor, and using
|F|*(wy, + ma) + |G|*(wr, — ma) = 2wy, then we have to a, = 1 and B = 0,
as we expected. From this, we infer that the scale factor must at least make

a jump in the first derivative of the scale factor to obtain a value of |fy| dif-
ferent from zero. At first adiabatic order we have 6,531) ~ (ikm/4wd)[a™ — a”]
and o\ ~ 1 — (ma/k)B"[at — a~] where [a* — 4] is always positive. Now,
taking into account that 0 < |agl,|Bk| < 1, and given that [a™ —a™] = [1 +
p/n-P71] & 1, we expect particle production to be effective when k ~ ma, i.e,
the fermion becomes non-relativitic. On the other hand, from the expression
Br = upvl® — v, evaluating uy, vy in the asymptotic region n — Neqg Where
Neq 18 the time at matter-radiation equality, 8 = u,vi® —vgul are given by the
adiabatic approximation to zeroth order in the late radiation-dominated
universe, and evaluating u}*, vi* in the asymptotic past determined by the early
inflation stage where u}®, vi* = \%e‘“‘?", \/iﬁeik", in the limit & — 0, we obtain
|Bk|> ~ 5. This result coincides with the result reported in Refs. [173] [176].
These formulas establish a link between the smoothness of the transition and
the behavior of the Bogolubov coefficients in the adiabatic regime. If the tran-
sition remains differentiable, the coefficients ;. vanish in the adiabatic regime,
as expected. As we have previously argued, the modulus square |S;]? is the
expected number density of out particles and antiparticles in that mode, and
particle and antiparticle production hence requires departures from adiabatic-
ity. Up to third adiabatic order the Bogoliubov coefficient are given by

3) km . i19km3agag .. . ikm ...
5k ~ S_w,‘i (Gin - aout) W(ain - Gout) - m( QGin — @ 0ut> + ...

(4.51)

4.5 Energy Density

We are interested in the evolution of the energy density of the quantum fermion
field Qﬂ as the universe experiences transition from the in to the out region,
as described in Section In the semiclassical approximation to gravity, the
energy density of the field ¢ is related to the expectation value of the time-time
component of its energy-momentum tensor as p = (T%), which acts as a source
for the classical gravitational field, c.f. Eq. . According to the action
the energy-momentum tensor is given by 777 = 5[0y, V.,)¥ — (V1))
where we are using de definition A;B;) = 1/2(A4;B; + A;B;). Now, using
Qo =0,7" = (1/a)3° and o = (1/a)7o, the 00-component of the stress-energy
tensor can be written as

1 = L (6900 — ") (152)

In order to calculate the vacuum expectation value (7)) with respect to the

vacuum state |0), we use the expressions (4.12)) and (4.13)) into Eq. (4.52)) (see

Appendix for details), and after some calculations we obtain

1 o0
p= —/ dkk? py., (4.53a)

2123
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where the spectral density is given by
Pk = . {u}f@ou}f* + v Opup ™ — uy " Oouy' — v Ogug | (4.53b)

On other hand, if we calculate (7)) with respect to an arbitrary state |¢)), after
some calculations, we can write the energy density expression p = (¥|T¢|1)
with the spectral density given by

LT, an\ ~ - % -k
PE= oo [2@ (2 = [n}, + ng]) Im{wptsj, + vyiy}

+ Qmi (upvy — ugpdy) + 2mi (upty — ukvk)] (4.53¢)

or, eliminating the time derivatives using the equations (4.21)), we can write

T, a1\~ [ . « X
Pk = % {2@ (2 — [nz + nk]) Jm{@ma(|uk|2 — |vk|2) + ik (ugvy + viuy)

+ 2mg (ik(ui — v}) — 2imaugvy) — 2mb (—ik(u}?® — vp?) + Qimau,’;v,’;)} :

(4.53d)

Here, the mode functions u; and vy are arbitrary solutions to the mode equa-

tions (4.21)) and we have defined (&2/)\,&,—59 = d(k — K')nS,, <&£’/,\/i)£’>\> =k +

FYmbo, (bytin) = S(k+E)msy, (b bl ) = (k—K)dx —3(k—K')nk,, where
ng = danSh M= 2o nlaly, mi = 30 me, o mp = 3, my,, see Ap-
pendixfor details. If [1)) is the vacuum state then n{ = n? = m{ = m¢ = 0.

In order to analyze the energy density p of the fermionic field it is convenient
to separate the contributions from the k=0and k>0 modesH Starting from
a sum over the modes in a volume V' and subsequently replacing it with an
integral taking the continuous limit V' — oo, we can write p as

1 oo
P = Pi—g + W/ dkk2pk, (454)

where p;:_, and pj_, are the zeroth and & > 0 mode contribution, respectively,
to the total energy density. Here, if the expectation value (T7) is respect to the
states |0) or [1), p is given in term of the spectral density (4.53b]) or (4.53b)),
respectively.

Finally, motivated by the discussion in Section (4.4.1)), we will divide the

integral in Eq. (4.54) in two pieces

Arr A
b = [ A and pone= [ a0
0 A

IR

where Ajg ~ H; is of the order the Hubble radius at the beginning of inflation
and plays the role of an infrared cutoff. Here p.j,, contains the contribution of

9Since for a free field the modes evolve in a decoupled manner, we can treat these sep-
arately. In particular, the zero mode k = 0 requires separate treatment. In the case when
0 < k < AjR, there is no preferred state for these modes.
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those modes in the interval 0 < £ < Ar, that were already outside the horizon
at the beginning of inflation and whose state remains undetermined. On the
other hand, modes in the range Ajg < k < oo do have a preferred state, though
we have limited their contribution up to those below an ultraviolet cutoff A
that we have introduced for convenience (in the integration process we will
apply the limit lim A — oc0).

Reformulation of pr. We can also recast the spectral energy density in
terms of the “state vector” . Using equation in order to eliminate the
time derivatives, we find that the energy of a single momentum mode (two
polarizations) is

= T 4.56
where H is the Hamiltonian above, c.f. Eq. (4.23a]). In other words, the Hamil-
tonian and the energy density are proportional to each other. The proportion-
ality factor contains the volume factor a®*V expected from a density, and the
additional redshift of the energy inversely proportional to a.

4.5.1 Adiabatic Expansion of the Spectral Density

Now, we will calculate the spectral density py for the in vacuum whose state is
characterized by the solutions u}* and v}", which satisfy the conditions .
To calculate the integral (4.53a)) we must expand its integrand (that is, the
spectral density pi*, Eq. (4.53b))) adiabatically. By dimensional analysis, we
need to calculate up to the fourth adiabatic order. So, once we get the adiabatic
expression for the mode functions u,(:) and v,(g”), up to adiabatic order n = 4, we
can obtain, after some straightforward algebra, the expression for p(™ putting

u” = ,/“’“m“ ZF )@ | exp (—z / Q(")dn/), (4.57a)

o = WM (—m), (4.57b)
into Eq. (4.53b)), with F™ G = F®)(—m) and Q™ given by Eqgs. (4.30).

For example, at the zeroth adiabatic order, the mode functions are given by

u](€0) — M exp (_i/wk(ﬁ/)dﬁl> 7 and U]go) (77) = u](;))<_m)’ (4.58)

Zwk
form which the spectral density p,(co), remaining at zeroth adiabatic order, can
be written as

] 2
A =[] =2 )
a Wi a

where (F' — G) refers to adding the first term by changing the functions F
for G = F(—m), or making the change m — —m. In the appendix ((C.5)), we
explain in more detail how to obtain the second and fourth adiabatic orders
of the spectral density py (the odd adiabatic orders vanish).
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Finally, using the equations (C.22)), (C.35)) and (C.36]), the full expression

for the spectral density p,(f) up to fourth adiabatic order is given by

0 1 2 3 4
pe o)+ o)+ 00 + o + ol (4.60)
where
0 2wy, 1 3
o = 0 ) =pd =0, (4.61a)
9.4 9 9
(g)z_ama a~m 4.61b
Pk 4wy + daw?’ (4.61D)
@ 105m8a®a*  63mbaa* 21m*a*  Tmba?a’a  Tmiald
P = g 320) | Gdaw] 8w) 8wl
m*ai?  m2a®  m*aad  mPad
L (4.61c)
16wy, 16aw;, Swy, Sawy,

4.5.2 Modes 0 < k < Ar

Now, let us consider the contribution to the energy density coming from the
modes 0 < k < A, that is, from those modes below the infrared cutoff A
at the start of inflation. As we already mentioned, these modes are outside
the horizon H; at the star of inflation and do not have a preferred state. We
will divide the discussion by analyzing separately the zero mode k =0 and the
modes in range 0 < k < Ag.

Zero mode. According to Eq. (C.33)), the spectral density for the zero
mode can be written as

B )
204V

0o (2 — [nb + nd)) (2iTm{ugt + vois})

+ 2mg (ugBy — votlg) — 2mg (uivy — viud) | (4.62)

If into Eq. we consider V' goes to infinity then pr—o — 0, since |ng|, [n3| <
1 and |mg|,|my| < 1. It may be useful to cast the energy density of the
zero mode as function of the critical density: it is of order (nd + n} —
1)(mH /M2)(Vy/V) where Vi is the Hubble volume. This is typically very
small. Otherwise, for the scalar field it is possible to obtain a macroscopic
Boson condensate as V' — oo. In any case, for a value of V' different from
zero, the energy density seems to coincide with that of a classical homoge-
neous Dirac field ¥y = >, [A)\Uo,\ + B,\VOA} whose energy density is pqg =
i/2a(V 7’0y Ve — 0¥y’ ¥y ), such that

Pcl = 2%t { (Z |B>\|2 - |A>\|2> (uotiy + voTy — uglio — Vo)
A

+ ) ARBos(vhig — uiig) + > A_aBi(ugto — votio) | (4.63)
A A
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Comparing the last expression with Eq. (4.62]), such a classical description
works provided that we are able to identify

DB - A = : [2— (”o+”0)1

A

ZA AB = ZA*B_A = (4.64)

and there exists a solution to the system. As long as there is a solution for
Eq. the classical description for W works, in the sense that there exists
a classical field configuration with the same energy density like Eq. . In
general, there is no preferential choice of the functions vy, ug. Any solution of
the mode equation for k = 0 is equally valid, such that the coefficients B), Aj,
ng, Mg, do not have a particular meaning for themselves.

On the other hand, we can see that if the field is massless, the zero mode
up and vy is described by the equation (4.25]) with k = 0 which have solu-
tions "0, u=Y = constant subject to Eq. (4.21). Then, the energy density
vanishes. If the mass is different from zero, on the other hand, there are two
different regimes. In the first case, if now we consider the “positive frequencies”
solutions with ma < H, that is, whereas the field remains light, we
have from Eq. that the energy density also vanishes.

After some time, when the field becomes heavy, ma > H, the frequency
approximation breaks down, then we need to make use of the adiabatic

approximation, that is, the equation (4.29). With these solutions, we can write

1 .
Pk=0 = 4V (nk 0 + nk 0 ) |:Q|Fk:0‘2 + jm(FF*)k:o] s (465)

from which the zero adiabatic order is given by pr—¢ = %[(n%zo—i—nzzo) —2] =
f{(‘/ [N — 2], that is, we obtain that, at zeroth order in the adiabatic approx-
imation, the oscillating zero mode behaves like a pressureless fluid, whose
overall density is proportional to the value of N2, where the superscript in-
dicates that we have chosen the mode functions in the field expansion
. As we discussed in Section this is precisely the behavior that would
be expected of N3¢ particles with zero space momentum.

In the case of a massless classical field, we obtain p,q = 0, and if the fields
is massive, we can write the classical energy density as p, = a%\TJO\IJO = pom/a®
where W, is a constant spinor. Since the expectation of the energy density of
the zero mode also scales like 1/a®, by a appropriate choice of ¥ we can

always cast it as that of classical field

m
P = — (Z 1B, — |AA|2> - (4.66)
A

If there exists a solution to Eq. , Eq. @ admits a classical interpre-
tation in terms of a classical field v, as Eq. (]@ But, as we have already
mentioned, given that ng n§ < 1, the contribution of the zero mode, for the
massive or massless case, is generally negligible. Otherwise, for the case of the
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scalar field, when V' grows N34 must grow so that its energy density approaches
a value other than zero. Of course in the case of fermions this contribution
tends to zero.

Continuum 0 < k£ < Aig . Now, let’s analyze the energy density pr<ay
which captures the contribution of modes 0 < k& < Ag whose state, like the
case k = 0, we also ignore. In the massless case, as long as Ajg < H, we can
set ug, vy & w0, v7"=0 like the solutions , u, v, ~ (1/+/2) exp{—ikn}
as discussed in Section , and substitute into Eq. we find

1 Ar 5 )
Ph<Am = W/o dkk? [(nf +ny) — 1], (4.67)

where the value of the integral is finite. Let’s note that if we express pr<a,
in the form py<p, = por/a*, we can conclude that the energy density
behaves classically like cosmological radiation. Later, in Section , we will
associate 2— (n¢+nl) = 2—4|5;|? for Alg < k < oo with the density number of
out particles plus the contribution of the out vacuum in the case of an asymp-
totically adiabatic spacetime in the out region. With these conditions, we can
associate pj_ Am = # fOAIR dkk?|By|* as the value of the density energy of
created particles whose behavior does not admit classical interpretation. Let’s
remember that 0 < |8;|* < 1, therefore p}_ Ay 18 always positve.

non-relativistic
L

W, = ma

ma

. o . o e . 1
non-relativistic relativistic !
1 I !

ma AIR

Figure 4.3: Relativistic and non-relativistic modes. a) Modes in the
range 0 < k < Ag for which ma > Ajg consist of non-relativistic modes. b)
Modes in the range 0 < k < Ajg for which ma < Ag consist of relativistic and
non-relativistic modes.

In the massive case, we need to distinguish between two possible limits.
When Ar < ma all the relevant modes are non-relativistic, so we can approx-
imate the dispersion relation wy ~ ma (see Figure [4.3] first arrow). When
ma < H, that is, when the field is light, the mode functions are well approxi-

mated by the expression (4.25a)), so from Eq. (4.53c)),

1 1 An 3(,a b

T2

which we can express as pr<p, ~ pr/a* with p, = %[fOAIR dkk*(ng +nf —1)].
Again, this is the cosmological classical behavior of relativistic matter. In
the second limit, when H < ma, the mode functions are well approximated
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by the adiabatic approximation and the energy density at zero adia-
batic order scales like non-relativistic matter as prep;, ~ Pm/ a® with p,, =
= fOAIR dkk?*(ng + n? — 1)], which admits a classical interpretation in terms of
the classical field ¢/. Since the comoving mass grows monotonically, we expect
Ar < ma to hold at sufficiently late times, and this is the relevant limit then.

If the mass satisfies ma < Ajg (see Figure second row), the modes in
the interval 0 < k < ma are non-relativistic, so their spectral density behaves
like that of the massive case just discussed above, with prema = pm(n)/a® =
5 [y dkk*(ng + n? — 1). Similarly, modes in the interval ma < k < A
are relativistic, and their spectral density behaves like that of a massless field,
Pma<k<im = pr(n)/a* = == f;\?(nz +nY —1). Note that the behavior of
the energy for these modes is that of a time-dependent classical cosmological
component, of non-relativistic and relativistic matter, respectively. But since
the boundary between the two regimes at £k = ma changes with time, we
cannot, in general, make definite predictions about the time evolution of pr<a,,
for these modes. Therefore, we will not study this case explicitly here, although

the methods we have presented so far could be similarly applicable.

Modes in range 0 < k < Ajg ‘

Pi—o massless case The energy density vanishes
These modes are negligible

. It admits classical interpretation as
. e masive case N 3
due to the exclusion principle. non-relativistic matter ~ pg ,/a”.

massless case . Lo .
It admits classical interpretation only as

P<Arm non-relativistic matter ~pg ,/a’.

masive case

Table 4.1: Energy density for modes in the range 0 < k < Ajg and its behavior
in different mass regimes. For these states, there is no preferred notion of
vacuum, and their state is indeterminate. The first row corresponds to the
zero mode k = 0, which admits an interpretation in terms of a homogeneous
classical field py—o ~ pom/a® in the massive case for heavy mass ma > H. For
the massless case, the energy density vanishes. The second row corresponds
to the 0 < k£ < Ajg modes. For the massless case m = 0, these modes are
relativistic and behaves like that of relativistic matter prcpa,, ~ pr/ a*, and
does not admit classical interpretation. In the massive case, however, when
Ar < ma, in the heavy mass regimes, the modes are non-relativistic and pg<a,,
behaves like that of a classical field for non-relativistic matter ~ p,,/a.

4.6 Modes in Range Ajg < k < o0

4.6.1 Renormalization of py

Modes in the range Ajg < k£ < oo find themselves effectively in Minkowski
space at the beginning of inflation, where a preferred choice of state exists:
the in vacuum. If, as opposed to a general state, the field is in the in vacuum,
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with solutions uj, = ul* and v, = v, then the energy density simplifies to

in 1 > 2 in
P>AR = —/ dkk=py, (4.69)
IR 271‘2&3 Arm
with

Let us remember that within the Heisenberg picture, the states remain static,
while the operators obey a dynamic equation. A system configured in the state
|0™) remains in this state all time. From now on, unless stated otherwise, the
energy density p-a,, and the spectral density p, will be those of modes above
the infrared cutoff Ajg in the in vacuum, but for notational simplicity, we shall
omit the labels “> Ar” and in form our expressions.

The Einstein gravitational semiclassical equations are given by the ap-
proximation MPQIGW = (T,w), where G, behaves classically, and T, is the

energy-momentum tensor associated with the s = 1/2 quantum field 1& In
this context, the expectation value of (7),,) is the quantity we are interested
in calculating. From this, we shall restrict our attention to the time-time com-
ponent to calculate the renormalized vacuum energy density. This 00 compo-
nent is the semiclassical “Friedman” equation H*/a*> = a® (0|T7|0) /3M). As
it stands, the energy density diverges in the ultraviolet regime, when
A — oo. This follows from the solutions , in the adiabatic regime, wich
implies that at large k the leading term in the spectral density is proportional
to k. Pictorially, this divergence arises from a Feynman Loop diagram in which
a particle is crated and annihilated at the same spacetime location.

In order to renormalize the integral (1/27%a®) [ dkk*p* in the range of
modes Ajg < k < oo, we will follow the Puilli-Villars renormalization proce-
dure that is described in Ref. [168], and as we have described in Section [3.7],
where it is possible to regularize this quantity while preserving diffeomorphism
invariance by introducing a set of Pauli-Villars regulator fields. The contribu-
tion of these regulator fields and the counterterms leads to the renormalized
energy density

Pren = P — Psub, (4'71)

where pgy, consists of the subtraction terms that leave the integral free of
divergences when A — oo, and the contribution of the counterterms coming
from the regulator fields as their mass is decoupled.

The first step is then to adiabatically expand the spectral density p, and
identify the divergent terms as the cutoff A tends to infinity. That is, we need
to calculate

A

. 4

p= A@;W/A dkk? (o) + i + pi + ), (4.72)
IR

and identify the divergent terms. This adiabatic expansion was given in the last
Section (4.61)). In the particular case of a fermion field in conformal spacetime,
the divergent terms come from the zeroth and second adiabatic order. Higher
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orders remain finite when A — oo. However, we will calculate up to fourth
order by analogy with the scalar case. These divergent terms are given by

—1[A*  Am? m* 1 2A
0 — - | — — —m*l — 4.73
P w2 [4&4 T T TR s (ma)} 7 (4.73)

p? = ﬁ{f log(2A>}. (4.74)

m2at 3 ma

Again, all the subsequent adiabatic terms are convergent as the cutoff A tends
to infinity. Next, in the second step (see Section , we shall regulate the
divergent p; integrand in Eq. through the introduction of a set of n Pauli-
Villars regulator fields ¢, of Grassmann parity o,, with the same couplings as
1, but with different masses M,., where r = 1,...,n. So, the actual expectation
that enters the 00-component of the energy-momentum tensor in equation
is p = >0 (I7);- At the end of the calculation we shall decouple
the regulator fields by sending their masses M, to infinity, leaving a finite,
renormalized theory behind. Remember, the adiabatic approximation is only
valid at large values of k or large values of M?. Hence, we shall only be able
to analytically recover the ultraviolet behavior of the original mode integral
(4.72), or the magnitude of p,.., when the regulators become sufficiently heavy.
Fortunately, these are the only regimes at which we shall need to renormalize
the divergences we shall encounter. Hence, we need to perform the integral

0 2
> 0= fim s 3o [ o (4.75)

i=0 Ar

Using the expressions (4.73) and - we obtain

—1[A*  A2MZ2 M1 2A
PV = ZO’Z — {— + ~M}1o g( )], (4.76a)

4a* 4a? 32 8 M;a
12 M2 4 2A
@ =3 R | 4.76b
p i 0-187TQCL4 |i 3+ Og(Mia>:|7 ( . )
and the convergent term
1 11 a* 1 aa? 1 a? 1 aa
@ - e 4.76
P 472 {240 #1047 10a® 20 @ ] ’ (4.76¢)

where p(© contains no derivatives of the scale factor, p® contains two, and
4 has four. Next, if the regulator masses and parities obey the relations

> oi=0, Y oM?=0, Y oM =0, (4.77)

as we send A to infinity the first three terms in Eq. (4.76a)) and the first term
in Eq. (4.76c|) disappear, however, they still depend on the regulator masses

M, through the terms 872" 0, M?*log (M) and ;Y 0,M?log (%>, and
T 7" o 8m T r I
hence the integral diverge when the regulators are decoupled M, — oo. How-

ever, if these surviving contributions are of the same form as those from the
additional counterterms

Set = / d*zy/—=g [6A + 0M7] (4.78)
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which are given by

. 1 4 M, !
N = g et (1) + 60 (4.79)
R 1 M,
SMy = 6872 o, M 10g< . ) + (OM3)7, (4.80)

T

the integral will be UV divergent. Here we have introduced the arbitrary renor-
malization scale 1, and 6A7 and 6(M2)7 are the finite pieces of the countert-
erms associated with a cosmological constant and the Einstein-Hilbert term,
respectively. On dimensional grounds, terms with a higher number of time
derivatives vanish as the cutoff A is sent to infinity. Finally, with the coun-
terterms given by the previous expressions, the one-loop “exact” renormalized
value of the energy density have the form

1 A
Pren = Alg{)lo{m/o dkk” py
AR My M (2

Tiea T ama TRt T 204
4 1 a? 1 a2 2A 1 a2

S D —EM2log (=) + — L (M)
3 872 at 0+87T26L4 0 Og(au>+ il )

1 {11 at 1 aa? 1 a? 1 d'd} }

472

4.81
240a® 10 a7 40 ab + 20 ab ( )

where My = m is the mass of the field ¢. Then after the substraction in
equation , Pren 18 UV divergent. Changes in the arbitrary renormalization
scale p effectively amount to changes in the finite values of these constants,
which are determined by appropriate renormalization conditions. In that sense,
observables that depend on the values of the counterterms are not predictions
of the quantum theory. Note that, the subtraction terms in Eq. arise
from an adiabatic expansion of the vacuum energy of the regulators. Leaving
the counterterms aside, it is in fact straightforward to check that, when the
field is massive, pgp is just the integral of the adiabatic expansion up to fourth
order of the vacuum integrand in Eq. (£.69).

Our regularization scheme reproduces and justifies the often employed adi-
abatic scheme, but it goes beyond it because it makes the role of the countert-
erms explicit and it also explains the origin of the subtraction terms. Yet, from
the perspective of Pauli-Villars regularization, the subtraction of adiabatic ap-
proximations to the spectral density is not fully justified [16§]. In Pauli-Villars
the masses of the regulators are assumed to be much larger than any accessible
scale k, so their contribution to the spectral energy density at long distances
is highly suppressed. For this reason, we shall not distinguish between the
unrenormalized and renormalized spectral densities, as long as cosmological
scales k are concerned. The regularization and renormalization afforded by
the Pauli-Villars regulators is only of consequence in the ultraviolet, and only
there does it play a role. Hence, we shall subtract pg,, from the energy density
only when the mode integral includes the contributions of the ultraviolet.
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4.6.2 The Conformal Anomaly

The trace of the energy-momentum tensor for a classical Dirac field is given
by T} = miyy. In the limit where m — 0 this trace vanishes. However,

after quantizing the field v, the renormalized value of (Th) = <m¢w) yields a
non-zero value. This phenomenon is known as the conformal anomaly. To see
this we need to renormalize the integral

1 o . .
(T2) = s | W10+ 301, with =

5203 u}fv}f* + u}cn*v}cn] (4.82)

3a [
and pi" given by Eq. (4.70a)). In order to renormalize the vacuum expectation
value of the trace, we use the Pauli-Villars procedure. For this, we need to
expand the expression pi* +3pi® up to fourth adiabatic order. We have already

calculated pi* up to fourth adiabatic order in Eq. 1} While pk , p(2) and

pgl) are given by

(0) 2k

- _ 4.83
pk 3awk7 ( a)
2, 9. 2 4 -9 2..92:9
(Z)Z_kma S5k*m*=aa k*m*a 4.83h
Pr 6w T 1207 12wia’ (4.83b)
@ Em2a®  7k2mtad? n E*m?a®  385k*mBadat
Pe = 24007 16w? 48w a 6413
359k2mSaa* N Tmtat Tk*mtaa®a
19211 128w% 12w9
k2m2a®q n 77k;2m6a2a2a 61k2m*a?a (4.83¢)
48w a 16wt 96w?

Following the same procedure in Section for the renormalization of the
energy density pi,, we cut off all momentum integrals to render them finite,
and introduce a set of massive regulator fields to keep the pressure finite as
the cutoff is removed. At zero, two and fourth derivatives, by also including
the contribution of all the regulator fields, we arrive at

A AME T M} A
© - _ — MY+ — 4.84
b Z 212 [6@4 62 a8 T (Mm)} ’ (4.84a)

FER 2 %  d 27
@ = — — ] — = - —1
b Z ) {(3@4 1241 % (Mm)) (9a3 6a3 ® (Ma))}

(4.84D)

@ _ o | 1lla a” o at  ava a‘a 1484
b 2 [ 57645 | 2400  96a° 4843 | 14dat)’ (4.84c)

which remain finite as the cut-off is sent to infinity, as long as equations (4.77

are satisfied. Just like what happens with p,(f), the integral of p,(f) in Eq. (4.82
is divergent and independent of m. Furthermore, as the regulators are decou-
pled, by sending their masses to infinity, the counterterms that were needed
to cancel the divergent contributions in the energy density, also cancel the
divergencies in the pressure. Finally, by collecting the contributions of the
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original spinor, the regulator fields and the counterterms we arrive at the final
renormalized pressure

1 2
Pren = {m/dkk Pk

N 1 [A* Am? N 7T . N m? 1 A
272 |6a*  6a® @ 48 4 8 pa

n m? a? a? | 2A 2a a | 2A
_ oo (22 ))) = (22 % 00 (22
272 |\ 3647 1241 % ja 963 6a> ® pa

1 11a4 a® a2 a®q 7a2a] (4.85)

- 1% {_ 57645 | 24002 96a° 4847 | 1ddda

With these results, the trace (4.82) in the massless limit m — 0 is given by

()@ (4.86)

1 a® 3@ 11a*  a®a  29a%
= —— 4 - - —

2r2a3 | 40a?  40a3  240a®  20a®  240a*
In the Wolfram Mathematica notebook https://www.wolframcloud.com/obj/
e330fbd3-e35b-4abf-bf98-£8974492f 127, the reader can review the previ-

ous calculations in detail.

4.7 Particle Production Formalism

Equation is sufficient to compute the energy density of the Dirac field
in the in vacuum at any time in cosmic history. All one needs is an in region to
single out the appropriate state of the field. Given the in region, we can set up
initial condition for the mode function «}* and v}* in the asymptotic past, and
equations then determines its evolution all the way to the asymptotic
future. However, the use of ul" and " in equation is only a possible
choice, and the energy density can be expressed in any other basis of mode
functions.

Spectral Density. In order to write the spectral density of the in vacuum
in terms of the arbitrary functions uy, vy, is sufficient to plug the expressions
4.49), that is ul® = apup — frvf and vi* = v + PBrul, into the equation
4.53b)). Clearly, by construction, the final result does not depend on the nature
of the chosen mode functions u, and wuyg, as long the state of the field remains
unchanged. After some algebra, and using the relation |ag|* + |B]* = 1, we
can to rewrite the spectral density as

Comparing the above result with the expression , reveals that the in
vacuum appears to effectively contain n¢+n? = 4|8.|? out particles that are not
in an eigenvector of the out number operator, and m¢ = a;3; and m? = ;4.
This formal similarity is behind what is referred to as “particle production”. In
this approach, we can consider the spectral energy density expression as
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the contribution of the out vacuum p,,; plus the energy density of out produced
particles py, such that py = pout + pj, where

Pout = (i/a) [ugtty, + vpf — ujig — vEiy] (4.88)
and

(4.89)

Note that the contribution of p} left over when S, = 0. The above expression
would associate the spectral energy density p; to the “produced particles”.
Hence, one could regard equation as the spectral density of the field
from which the spectral density of the out vacuum has been sub-
tracted. As a matter of fact, however, the out vacuum plays no role in our
analysis, first because it depends on the arbitrary choice of mode functions
ug and v, and second because we assume that the field is in the in vacuum.
Furthermore, since we are interested in the gravitational effects of the field,
there is no physical basis for the removal of the out vacuum energy density. In
the adiabatic scheme, if the field is massive, renormalization amounts to the
subtraction in the spectral density given in equation . But the latter is
the spectral density of the out vacuum only when the out adiabatic vacuum
is actually defined, in the adiabatic regime, and only up to factors of fourth
adiabatic order.

In any case, we shall no adopt adiabatic regularization here, and equation
(4.89) is not usually associated with particle production formalism. Instead,
see for instance Refs. [177, [178], the energy density is usually approximated by

4

e | CREwlBE = g [ BP0
where E, = wy/a is the energy of a particle in the out region and the four
factor come from the sum of particles and antiparticles, which neglects the
out vacuum contribution and assumes that the in vacuum is an eigenvector
of the out number operator, with eigenvalue |3x|?>. To explore the potential
applicability of equation it is useful to consider the spectral density when
the corresponding modes are in the adiabatic regime, and we can approximate
ug and vg by equation (4.29). This does not generally hold, but applies, for
instance, for massive fields at late times or sufficiently large wavenumbers.

Now, using Eq. (4.29)) into Eq. (4.89)) and using the fact that ax S} = o} Bk, we
can write Eq. (4.89) as

ot = 2| (50 (2inr + 2iom( )

WL — ma , 9 v Py
+ <—2wk ) <2ZQ|G\ 4 2i0m(C G)}

— 4iakﬁzjm{ (Z;’g“) exp (—m / Qdﬁ) FG
k L
+ 5 exp (-2@/9@) (FG . GF) } } (4.91)
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Which, up to second adiabatic order have the form

i , Com2a®
P = a{(—2|5k|2) (2%% + 21wy, 16w4>

- 4iakﬁ,’:3m[ (—/m;a) exp (—22’ / Qdﬁ)
2w;,
. 2\ i [kma  2ka*mPa
+ exp (—22/9d77) 2 { 3w ] } (4.92)

In the adiabatic limit, when frequencies are large w; > H, we can proximate
Qp ~ wg, F(n) =1 and G(n) = 1. In this approximation we can rewrite the

expression (4.91)) as

S %wlzsdﬁ + Ozkﬁz%—m;b sin (2/wkdﬁ). (4.93)
a 2w;;

In this expression the second term is doubly suppressed: first because opposed
to the first term proportional to wy, this is proportional to H, and second
because this rapidly oscillates with time. But adiabaticity and high frequen-
cies are still not sufficient to guarantee the validity of the particle production
formula . In the limit |324|2 — 1 when particle production is “effective”,
the second term in Eq. (4.93), is |a243;24] = 0. Therefore, we can only claim
that the terms on the first line in Eq. are necessary “dominant” if, in
addition, particle production is “effective”, |324|> — 1. So, if this is the case, in
the mode range in which these conditions are simultaneously met, the energy
density is well approximated by

4 o0
P / AkR2| 52 P, (4.94)
0

~on2qt

which possesses an interpretation in terms of particles, once we identify 4|3/
with the number density of the particles n, and the antiparticles n,; created in
the mode k. We are referring to Eq. whenever we invoke the “particle
production formalism”. For massless particles the dispersion relation is wy, = k,
and p) scales like radiation. For massive particles wy =~ ma at late times,
and p; would scale like dust. Those are the two behaviors usually attributed
to free particles. Although the meaning of the Bogoliubov coefficients oy
and Sy is tied in general to the arbitrary choice of mode functions w; and
vy, in equation (C.44), in order to arrive at Eq. (4.94) we have employed the
adiabatic approximation (4.29). Hence, the 529 in equation (4.94)) are uniquely
determined by that choice of mode functions. Since Eq. (]4__9—4[) neglects terms
with one derivative, it is inconsequential to calculate By beyond the zeroth
order adiabatic approximation. However, strictly speaking, even at the limit
of effective particle production |324|? — 1, it is not possible to neglect the
contribution of the vacuum py,; (unlike what we did for the scalar case), so
the approximation p,., =~ p” is not valid even at this limit. For this reason,
we have used quotation marks around the terms “effective” production and
“dominant” contribution. This is a consequence derived from Fermi-Dirac
statistics, so it is not possible, in general, to approximate p,e, ~ p, even when
the three conditions mentioned are satisfied.
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It is also worth pointing out that equation fails at small frequen-
cies even when the modes themselves are in the adiabatic regime and particle
production is effective, because to justify it we need to assume that w;, > H.
Conversely, since the validity of the adiabatic approximation demands that
Q,(:’) > Q,(C"H), F o> potl) g s G+D | for all n, it is conceivable for
one of these conditions to be violated even when frequencies are large.

In conclusion, the particle production formula is “well-justified” pro-
vided that

i) particle production is effective (|524|> — 1),

ii) the relevant modes are in te abiabatic regime (that is Q,ﬁ”) > Q,SIH),

F(n) > F(nJrl)’ G(n) > G(n+1))7
iii) the modes frequencies are large (wy, > H).

Even then one should recognize that the approximation does not
extend beyond the leading adiabatic order, since the terms that are neglected
in equation are of first order. Note that when particle production is
ineffective, that is |324|> = 0, the spectral density of the field is dominated
by that of the out vacuum equation (4.88]). Table lists the conditions
under which the various equations in this subsection are valid approximations
to the fermion field energy density. Again, we have used quotes around the
expression “well-defined” because even when the three conditions i), ii), and
iii) are satisfied, due to Fermi-Dirac statistics, it is in general not possible to
disregard the contribution of the vacuum poys, S0, in general, the approximation
p = pp is not valid.

The adiabatic limit of the out mode functions in the ultraviolet also allows
us to determine under what conditions the renormalized energy density after
the transition remains finite. By construction, the terms in equation (4.87))
that survive when |3 |? is set to zero give rise to a ultraviolet divergent integral
that is regulated and renormalized by the subtraction terms in Eq. .
Therefore, the remaining terms must yield a finite contribution to the energy
density. To estimate their behavior in the ultraviolet, we substitute the leading
approximation {2, &~ w; ~ k into equation . At leading order we obtain

Ama*H
2k

oL~ 1B+ oy e T i 2k + ), (4.95)
which implies that |3;|* has to decay faster than 1/k? in order for the inte-
gral to remain finite, since o &~ 1 in the ultravioleﬂ. On the other
hand, note that the expression for (5, the above implies that it is not
necessary for the second derivative of the scale factor a(t) to be continuous to
avoid divergences in p unlike the case for the scalar field. With |8g| ~ 1/k?,
the energy density is ultraviolet finite.

A look at Cosmological Gravitational Particle Production. Now, let’s con-
sider the expression for ﬁ,iad) up to first adiabatic order n = 1. Using the

10Given the normalization condition |ay|? + |Bk|? = 1, in the ultraviolet |Bx|?> < 1 and
ap ~ 1.
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expression and the first order solutions , we can we see that
ﬁ,il) ~ Z%’;[M” —a7)]. From this last expression, we can see that 5,&1) vanishes
when m i> 0, so we can anticipate that cosmological gravitational particle pro-
duction will be suppressed when dealing with spin 1/2 particles of light masses.
Also, let’s observe that B,(Cl) vanishes when k — 0, so we expect particle pro-
duction to be suppressed for long-wavelength modes. So, an effective particle
production requires considering the superheavy regime and short-wavelength
modes. We had already anticipated in previous sections that large modes
and light mass modes are suppressed in pg. In Ref. [176], the authors found,
within the framework of inflationary cosmology, that |8;|> ~ 1 if the field is
light H > m and k ~ ma, that is, for a small mass compared to the Hubble
parameter, particle production is significant. Gravitational production for spin
1/2 particles is typically more efficient for masses in the superheavy regime,
around the inflationary Hubble scale, m ~ Hi,s ~ 10"GeV. Finally, let us note
that this behavior is also expected for a conformally-coupled scalar field.

Energy Density. Even though the spectral density py is particularly con-
venient to study the contribution of the different modes to the total energy
density, it is not an actual observable. The Einstein gravitational equations
H?/a? = a’p/ 3M§ are sourced by the renormalized total energy density, which
is given by the integral of the spectral density once we have removed the sub-
traction terms pren = P — Psup- 1t is convenient to split p.e, in terms of those
modes which are adiabatic, that is, the modes for which the adiabatic out
vacuum is defined p,q, which we shall label by “ad”, and those for which it is
not p,q, which we shall denote by “ad”. The former are precisely those that
satisfy condition ii) above, whereas the latter typically include those beyond
the horizon when the field is light or massless. Then we can write

Pren = Pﬁd‘f‘ Pad (496&)

where
out out out

Pad = pzd + (pad )ren’ with (pad )ren = Pad ~ Psub (496b>

and

— 1 2 — 1 2 ut — 1 2
pﬁd:m/}ddkk pigv pgdzm/addkk prk)w pgd = 2203 /addkk Pout -

The energy density of the adiabatic modes is divided in two contributions,
one of “produced particles” pP; and the other one of the renormalized out
vacuum for these modes, (p4")ren. It is important to stress that the spectral
density that enters the energy density phy, here is the one in Eq. , since
only then is the quoted expression for p., in Eq. exact. Because |324)?
has to decay faster than 1/k?, the adiabatic energy density pY; is ultraviolet
finite, and we can directly set the cutoff A to infinity therein. On the other
hand, both p?{" and ps,p are ultraviolet divergent, and only the difference
between p°" and pe, remains finite as A — oo. The value of Paa does not
depend on our choice of mode functions, since it corresponds to the energy
density of the non-adiabatic modes in the in vacuum, and neither does the

sum p2; 4 (p25")ren, which is that of the adiabatic modes in the same state. In
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the last case the individual pP; and (p24")en do actually depend on the election

of mode functions, but adiabaticity singles out a “preferred” state, the out
adiabatic vacuum.

In the end, though, which of the three components in p,., dominates the
energy density, depends on the properties of the in vacuum and the evolution
of the universe since the beginning of inflation. But the applicability of the
“particle production formalism” requires the validity of conditions i), ii) and
iii). Just as we did above, it is hence useful to split the adiabatic modes into
those that additionally satisfy conditions i) and iii) from those that do not.
When the terms of p,, that satisfies these conditions are dominant, we can
approximate

4
ren N ———— dkk?| B, |? 4.
p 97204 /pp | Br["wr (4.97)

where “pp” denotes that the integral only runs over the modes that satisfy
condition i), ii), and iii), and only under those circumstances it is then justified
to write. With the integration range replaced by all modes, Eq. is the
“particle production” equation often used in the literature. However, since
one or several of the conditions stated above typically fails, the latter is in
general not a valid approximation to the field energy density. In general, it is
not possible to neglect the vacuum energy density pout, S0, in that case, the
expression (4.97) is not always applicable.

Combining Eq. (4.53b]) with Eqgs. (4.87)) and (4.89)) we obtain an alternative

expression for the effective particle number density that appears in equation

(.97) as
1
|B |2 ( aoum* + U;ﬂnaovm* 1n*aou m*ao ) Z (498)
wk 2

This expression is an adiabatic invariant, that is, it is a constant in the limit of a
constant scale factor. It is only useful when Eq. (4.97) is a valid approximation
to the particle pf, that is, when the three condition i), ii) and iii) are satisfied.

At this point it becomes clear that in most cases the particle production
formalism is just an approximation at best. As far as the spectral density
is concerned, equation (4.87) remains true no matter whether the notion of
particle exists, and regardless of how the mode functions u; and vy are chosen.
Furthermore if we knew the form of the in mode functions throughout cosmic
history, u}* and v}", there would be no need to go through the process of intro-
ducing Bogolubov coefficients and evaluating Eq. (4.87)) or its approximations,
Egs. (4.89) to ; it would just suffice to evaluate equations at any
desired time. The “particle production formalism” is useful in the adiabatic
regime and at high frequencies, where we can interpret the field excitations as
actual particles on top of the out adiabatic vacuum. However, it does not uni-
versally apply to all modes of the field, as it is sometimes implicitly assumed
in the literature, nor its use is restricted to asymptotically flat spacetimes, as
it is often presented in the standard monographs.
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4.8 Classical Field Description

In which cases can the classical field formalism be applied? We have already
seen that if there is a solution to equation , the excitation of the mode
with & = 0 is macroscopic and its contribution to the energy density can be
considered as that of a homogeneous classical field of Dirac when m # 0. We
have also seen that this treatment can be extended to the range 0 < k < A
when the modes are relativistic or non-relativistic or if the modes are light
or heavy, we can also talk about particle production. Let’s now investigate
whether it is possible to extend this treatment to the range Ajg < k < o0,
where the state of the field is assumed to be the in vacuum.

non-relativistic Ajp <ma relativistic

v .

a) ; i > 00
AIR ma
relativistic

Mg > ma ; L ]

b) | : » 00
ma AIR Ap<k<o

Figure 4.4: Relativistic and non-relativistic modes. a) Modes in the
range Ajr < k < oo for which ma > Ajg consist of modes that are relativistic
and non-relativistic. b) Modes in the range Ajg < k < oo for which ma < Ag
consist of modes that are only relativistic.

We consider for this purpose that pe, is given by Eq. (4.81]) such that, if
we split into the non-relativistic and relativistic modes, we obtain

Pren = P<ma + Pron s Where pit® = poma — poin® (4.99a)
and
_ 1 e Al _ 1 > 2
P<ma = W N kk Pk; P>ma = 27203 dkk Pk (499b)
IR ma

Note that there is no ambiguity in this decomposition, as the energy density
refers to that of the in vacuum, as opposed to that of the particle and out
vacuum in Eq. (4.96a)). In Eq. we have assumed that Ajg < ma, that
is, the modes in Ajg < k < ma are non-relativistic, see Figure 4.4, Remember
that in the relativistic case the dispersion relation is approximate by wy ~ k,
and in the non-relativistic case is approximate by wy ~ ma. So for p,,., the
energy density corresponding to the modes that are non-relativistic and their
dispersion relation is k-independent, their mode functions must be of the form
ul(n) & ajug + Brvg, vi(n) ~ kv — Brug. Substituting this into Eq. (4.70al),
we find that we can cast the energy density of the non-relativistic modes as
that of the homogeneous classical Dirac field, provided that

Do = L) M dikk? (1—2|B[) . (4.100a)

a3 203 Jpm
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Note that with n¢+n? = 2|8;|? these equation differ from Eq. only in the
integration limits. If we assume that the upper limit is constant, and if we make
the identification [30, [A\[* — [Ba]] = &5 [y dkk? (1 — 2[B;?), we can think
of the field as a homogeneous classical Dirac field with p<,,a = pm,o/a®. This is
the case where spacetime is asymptotically adiabatic, that is, ma ~ constant
and H < wp as n — oo. In particular, for a universe that experiences a
transition from an inflationary period to a radiation-dominated universe, we
have that a(t) = t'/2 and H — 0 as t — oo. In Ref. [I65], the authors have
calculated the renormalized energy density of the created particles for late
times ¢ > m™! in this particular universe. The result they report is analogous
to Eq. differing by the integration limits. There, the authors integrate
over all modes 0 < k < oo.

Now, let’s analyze the contribution p-,,,, that is, the relativistic contribu-
tion to the energy density. Since the contribution to the energy density psma
comes from the relativistic modes and their dispersion relation is approximate

by wy, & k we can use the approximated solutions uf"*® and v{*~°. With these
we can write
_ Pr,o(ﬂ) _ 1 - 3 2
poma =" =" | dkk (1 =287, (4.100D)

Again, note that if n{+n? = 2|8;|? these equation differ from Eq. only in
the integration limits. However, we can’t think of the this contribution as that
of homogeneous classical Dirac field of the form ps,q = pro/ a*, since massless
fields do not admit classical field interpretation. In Ref. [165], the authors
have calculated the renormalized energy density of the created particles for the

relativistic modes in a radiation-dominated universe at early times t < m™1,

where they report a behavior analogous to Eq. differing again at the
integration limits. When, Ajg > ma, the modes in the range Ajg < k < oo,
are relativistic (see Figure . In this case psma = o2 + pr.o/a* where poit
is the renormalized vacuum contribution and p,o/a* = (1/7%a*) [ dkk?|By|?
is the contribution of the relativistic created particles if conditions i), ii), and
iii) are satisfied. We summarize the previous results in Table [£.2]

So, when Ajg < ma and the classical contribution p.,,, are well defined
and dominant, we can approximate p,., like that of a homogeneous classical

field whose energy density is given by
Pcl = i/2a(@c17080\11d - 80\I/C1’}/O\I/C1) (4101)

with Uy = >, [AAU)\ + B,\V,\]. It is under these circumstances that the
classical field formalism becomes really useful. When the dominant modes are
adiabatic and non-relativistic and particle production is effective, the “particle
production” and classical field formalisms yield the same results. We conclude
by emphasizing that, although we have discussed the energy density of the
Dirac field within the specific context of cosmic transitions, many of the results
in Section are applicable to a much wider class of scenarios almost without
modification. All that is essentially needed is for a subset of the Dirac field
modes to be in a preferred state [0;,) such that @ [0;,) = 0. In Table E we
summarize the main results of this chapter.
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Modes in range Ajg < k < 00

. 9 9 9 These modes admits classical
p non-relativistic modes wi = ma’, field interpretation
<ma A k’ in ~ out out*
R < < ma ~ Qf + Pk 5
. These modes do not admit classical
p relativistic modes wi ~ k, field interpretation
>ma NP . t ~ Outx
ma < k < oo o a4 By
Xk X X p(n) = pro/a*

Table 4.2: Energy density for the modes in the range Ajg < k < oo, when
AR < ma. In the first row p.p, is the contribution to p,., from the non-
relativistic modes Ajg < k < ma, for which w? ~ m?a®. These modes can be
interpreted in terms of a homogeneous classical field. The second row corre-
sponds to the relativistic modes for which ma < k < oo. These modes does
not allow for a classical interpretation. When, Ajg > ma, the modes in the
range Ajg < k < 0o, are relativistic, see Figure (4.4).

‘ Mode ‘ state ‘ formalism

k=0 unknown negligible contribution
0 <k <A | unknown | particles: posibly at high frequencies (Sec. [4.5.2
classical field: non-relativistic modes (Sec. |4.5.2
Algr < k < A | in vacuum | particles: posibly at high frequencies (Sec. [4.7]
classical field: non-relativistic modes (Sec. |4.7

Table 4.3: Conditions under which the energy density of the different modes
of the quantum fermion field ¢/ admits a description in terms of particles or a
classical field. In the range Ajg < k < A the state of the field is determined
by the in a vacuum configured by inflation, so we can predict its contribution
to the energy density, which in some cases can be computed using the particle
or classical field formalisms, whichever is applicable. See the quoted sections
for further details.
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|Chapter 5

Conclusions

In Chapters[1| and [2| of this thesis, we have studied the equilibrium configura-
tions known as boson and Proca stars in the non-relativistic regimes. These
configurations constitute compact, self-gravitating, self-interacting objects of
finite energy that do not disperse over time and constitute minima of the energy
functional for a fixed number of particles, whose ground state (or minimum-
energy state) is given by spherically symmetric configurations. Due to their
non-interacting nature (i.e., being fields that interact only with gravity and
themselves, see Ref. [119]) and their mass and length ranges (that may reach
to astrophysical scales), they can serve as dark matter models that could allevi-
ate small-scale problems, such as the “cuspy” and “missing satellite” problems.
However, since they do not interact directly with any other field, these models
must account for the mechanism by which dark matter is produced. In this
vein, in Chapters|3|and [4| we study the gravitational particle production mech-
anism for scalar and fermion quantum fields undergoing a cosmic transition.
Within this framework, we make an effort to characterize the energy density
of the gravitationally produced particles and to distinguish their contribution
from the vacuum energy. To properly renormalize the vacuum contribution
of these fields, we introduce Pauli-Villars renormalization, which allows us to
handle divergences in the vacuum energy density. We also make an effort to
determine in which regimes it is possible to speak of a classical field description
for this quantum phenomenon. In Chapters 2] and [4] we recover the results
obtained in the published and forthcoming papers Nonrelativistic Proca stars:
Spherical stationary and multi-frequency states [1], Linear stability of nonrela-
tivistic Proca stars [2] and Cosmic Spinors and the Weight of the Vacuum [3].
Chapters 1| and [3| are intended to introduce the concepts and methodologies
used throughout the thesis, making its presentation more comprehensible.
The first part of the thesis, concerning self-gravitating objects, captures
the phenomenology of non-relativistic equilibrium configurations for massive,
complex, self-interacting scalar and vector fields (for boson stars, we have
introduced the relativistic treatment for illustrative purposes and briefly out-
lined the relativistic treatment for Proca stars). The parameter space for non-
relativistic boson stars is determined by the value of the field mass mg and the
value of the self-interaction constant \,. The configurations that minimize the
energy functional evolve harmonically in time and constitute stationary boson
stars. Depending on whether the self-interaction is attractive or repulsive, the
energy of these configurations may be bounded from below. For an attrac-
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tive self-interaction, the energy value is not bounded from below. Spherically
symmetric configurations constitute solutions that minimize the energy. For
non-relativistic Proca stars, the parameter space grows, and the spectrum of
configurations is more diverse. The spectrum of Proca star solutions depends
on the spin-spin self-interaction parameter \;, which captures the effect of the
spin of the field. When A, # 0 (called generic sector of the parameter space)
the Proca star’s wave function evolves in time harmonically with a single fre-
quency. These configurations constitute stationary (or single-frequency) Proca
stars. However, when A\, = 0, the effective theory acquires an additional (ac-
cidental) symmetry, resulting in a reduced parameter space called symmetry-
enhanced sector. In this sector, new types of equilibrium configurations appear
in addition to stationary states in which the wave function oscillates with two
or three distinct frequencies. These configurations constitute multi-frequency
Proca stars. This spectrum of configurations differs from that of a boson star,
where we only find stationary configurations that evolve harmonically with a
frequency. The important difference is the spin term introduced by the vec-
tor field theory. Analogously to a boson star, depending on the nature of the
particle-particle )\, and spin-spin A, self-interactions, the energy functional
may be bounded from below. We find that, for the cases when \,, \; > 0 or
An — |As] > 0 (with A, > 0 and A; < 0), the energy functional is bounded from
below. Furthermore, we find that spherically symmetric configurations with
constant polarization constitute the minimum-energy state (i.e. the ground
state configuration). When A, > 0 and A\; > 0, the state that minimize the
energy is spherically symmetric with linear polarization. When A, > 0, Ay <0
and A, —|As| > 0 the state that minimizes the energy is spherically symmetric
with circular polarization. Radially polarized and multi-frequency states rep-
resent higher energy solutions. All of the above results have been implemented
and verified numerically.

The second part of the thesis, concerning the gravitational particle produc-
tion of dark matter, studies the quantum phenomenon of cosmological particle
production for non-interacting scalar and fermion quantum fields as a result
of cosmic transitions in an FLRW universe. In the semi-classical formalism,
the gravitational field is treated classically, while the matter fields are treated
quantum mechanically. In this context, for scalar and spin-1/2 fermion fields,
we find that, given a cosmic transition from an in (inflationary) region to a sub-
sequent out (radiation-dominated) region, for asymptotically adiabatic FLRW
spacetimes, it is possible to characterize the energy density of the created par-
ticles, pP, as the integral of the energy per particle wy times the number of
particles NV for each mode k, distinct from the vacuum energy density that
we renormalized using the Pauli—Villars scheme. However, whereas for bosons
an indeterminate number of particles can occupy the same quantum state, for
fermions the number of particles is limited to two per state. This implies that
for a scalar field, it will be possible to neglect the vacuum contribution when
the number of particles per mode k is large, whereas for the fermion case, this
is generally not possible; instead, it will depend on how the vacuum energy
compares to pP. In any case, it is possible to interpret the energy density
Pren in terms of a classical field for non-relativistic modes if we can neglect
the contribution from relativistic modes. Finally, in both cases, for bosons
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and fermions, when the vacuum contribution is negligible and the dominant
modes are adiabatic and non-relativistic, the classical field interpretation and
the particle formalism may coincide, as might be expected in some dark-matter
models (as in some axion dark matter models).
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Appendix

Appendix Chapter I

In this appendix, we will review in detail the derivation of the nonrelativistic
action from the relativistic Einstein-Klein-Gordon action (|1.1)). For this, we
will carry out the analysis in three steps. First, we will analyze the non-
relativistic limit of the free theory, which excludes self-interactions and the
effects of gravity. Next, we will analyze the term with self-interaction, and
finally, we will analyze the part of the action corresponding to the gravitational
effects coming from the Einstein-Hilbert action and the kinetic term of the
scalar field. We will develop an identical process when dealing with the non-
relativistic limit of the Einstein-Proca action in Chapter [2]

A.1 Nonrelativistic Limit of the Relativistic
action

In the non-relativistic regime is convenient to write the spacetime line element
as

ds® = —[1 4 20(t, 7)]dt* + [1 — 2V (¢, T)]6; da"da? (A1)
and to assume the complex scalar field in the form
1 )
(b(t? f) = —eilmOtw<t7 5)7 (A2)

where ®(t,7) and (¢, %) are scalar gravitational potentials in the Newtonian
gauge (we have neglected the traceless strain tensor s;; and vector pertur-
bations w; since these do not couple to nonrelativistic matter) and (¢, Z) is
the wave function, whose role is clarified bellow. In the non-relativistic limit
the different quantities in the action scales like ®(t, %) ~ U(t,Z) ~ e,

P o~ ) Mimge and 0; ~ €20, ~ emy, with € a small positive number. In

order to explore the non relativistic limit of the action we will separate
the action into the free theory S,—g, which excludes the effects of the self-
interactions and gravity, the self-interacting terms S and the gravity terms
S¢ which are codified in the spacetime line element .

First, we analyze the free theory, that is when gravity and self-interactions
are absent. In this case we can obtain the system of equations by varying Sy—g
with respect to the wave function ¢ (¢, Z). The free theory is described in terms
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of the action

S)\:() = /dt/dgm |:L0 <2zm0ww* — Zmoao(w*lb)

2m
+ gt — [0 (¢ 0np) — w*Aw])} , (A3)

where we have expanded —8,¢*0"¢ — m3|$|* in terms of the wave function
Y(t, ) and their derivatives, lowered indices with the flat spacetime metric
N and use the relations dy(¢¥*h) = ¢*h 4+ ¥* and 8;(p*dub) = dp*h +
wawﬂ Now, discarding the boundary terms and keeping to leading order in
¢ (neglecting 11)*) we can approximate:

Sy=0 = / dt / d*x {M/J* (aow+ QLmOA) z/z]. (A.4)

This is the Schrodinger action for a scalar wave function that describes a
particle of spin s = 0.

Second, we analyze the self-interacting theory, which include the self-interacting
term

S\ = /dt/d?’x [w* <an + QLmOA + 4%2‘”’2)14' (A.5)
0

The only difference with respect to the free theory is the appearance of
one self-interaction term that depends of the particle density n = ||

Third, in the Newtonian Gauge and in the non-relativistic limit, the Ein-
stein equations take the form

AT = 47Gp (A.6)
(6, — 9,0;)(® — ) = 0. (A7)

where A is the three-dimansinal flat Laplace operator. The first equation is
the conventional Poisson equation for the static source p. Also, if we take
the trace of the second equation (that is, summing over ¢%/), we can write
2A(® — ¥) = 0. Since we are looking for solutions that ere non-singular
and well-behaved at infinity, then only these fields that are sourced by the
right-hand side will be non-vanishing. So, this enforces the equality of the
scalars potential ®(t, %) = U(t,t) = U(t,T) where U(t,T) is the Newtonian
potential. Note that in the Newtonian limit the the sources are static and the
time derivatives of the gravitational potential U vanish. It is also important
to note that we have discarded the vector and tensor modes of the metric for
simplicity, since in the non-relativistic limit, matter does not couple to these
modes. Next, we need to perform the kinetic terms considering the covariant
derivatives V,¢V*¢ in terms of the metric components in Eq. (A.I). The
procedure is a little more involved. We need to calculate \/—g in term of
the metric potential W (¢, ¥) = ®(¢,Z) = U(t,Z) at leading order in e, that is

!Note that in the absence of gravity, covariant derivatives V, are replaced by partial
derivatives 0,,.
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V=g =1+2¥ — 202 where the second term is of order [¢] and the third term
of order [¢?]. Expanding the kinetic term of the action ((1.1)) we obtain

SG :/dt/d?’xv—g{#UAU

mo

—u—auwm¢@w—wwAm—n@¢ﬁ+mMWFQ}

where we have use the fact that ¢"*V,¢*V,¢ whee ¢"° = [1 4+ 2U] and ¢" =
[1 —2U]6Y. Keeping with the lowest orders in €, and discarding the boundary
terms, we can write the gravity term of action as

1
_ 3.1 2
Sa = /dt/d x[&TGUAZ/I + Umg || } (A.8)

where the first term comes from the Newtonian limit of the Einstein-Hilbert
action.

Finally, adding the previous results, we can write the non-relativistic limit
of the action (|1.1)) as

S,y = / dt / d*x {%UN/{

.0 1 A
#07 (igy + g = a6 )0 = matdlo]. (19)
First term describes the Newtonian gravity, terms in the parentheses describe
the sector of matter and the last term describes the interaction of the field with
the gravitational potential. In particular, we will consider a sefl-interacting
potential V = A|¢|* with A\ a dimensionless coupling constant, which can take
the values A > 0 if the self-interaction is repulsive or A < 0 if the self-interaction
is attractive. When A = 0 we recover the case with no self-interaction, in
which the scalar field is only coupled to gravity. Variations with respect to
the gravitational potential U(t, ) produce the Poisson equation , and
variations with respect to the scalar field ¢ (¢, Z) produce the Gross-Pitaevskii
equation . Both equations constitute the s = 0 Gross-Pitaevski-Poisson
system (|1.37)).
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Appendix

Appendix Chapter II

B.1 Example: Stationary Proca Star of Con-
stant Polarization.

In this section we present the numerical construction for a stationary Proca
star with constant polarization é. This configuration is given by the system
(2.87) with Latin indices omitted and v = 0. Let us remember that this
configuration is characterized by only one frequency given through the shifted
potential u®) = E—(r). We will present the numerical implementation of the
shooting method for the first excited state configuration with n = 1 number
of nodes, in the repulsive, free and attractive cases A\, = —1,0,1 and central
amplitude ¢ = 1.0.

In order to solve the system numerically, we need to rewrite the system
as four first-order differential equation given by

Bo= 2 (B.1a)
i = )\[00]37“27—2(14-7)%—%00, (B.1b)
Bo= o (B.10)
fs = —[00]27"27—2%, (B.1d)
for r > 0, and
o= o (B.1¢)
f1 = [)\[00]37”27—U000]/(2’)/+3), (Blf)
d
L2 = %, (B.1g)
2,.2
fs = —[UO]TTW, (B.1h)

for r = 0, where we have use the ansatz ¢(®(r) = gor?, u(¥) = uy, L’'Hopital’s
rule and we have use the boundary conditions . We have characterized
this system through the function System_Stationary in the Python language.
Given the parameters Lambda and gamma and the Vector of the boundary
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values (0 (1), do @ /dr, u® (1), du(® /dr)|,—o, we solve the system of first-order
equations using the Scipy package called solve_ivp. Solving the value of
up(r = 0) that satisfies the boundary conditions will depend on the
shooting function Stationary_Shooting.

def System_Stationary(r, Vector, arg):

nun

##### System of equations (B.1) #####
[sigma(r), sigma'(r), u(r), u'(r)] ==> [sigma_0O, sigma_1, u_0, u_1],

r ==> radial coordinate,
u_0 ==> u_0 = E-V(r),
Lambda = -1 (atractive case), O (free case), 1 (repulsive case),
gamma = 0 (circular or linear polarization), 1 (radial polarization).
nnn
sigma_0, sigma_1, u_0, u_1 = Vector
Lambda, gamma = arg
if r > O:
f0 = sigma_1
f1 = Lambda*sigma_O**3*r**(2*gamma) -2*(1+gamma)*sigma_1/r-u_O*sigma_0
f2 = u_1
£3 = -r**(2*gamma)*sigma_O**2-2%u_1/r
else:

fO0 = sigma_1

f1 = (Lambdaxsigma_O**3*rx*(2xgamma)-u_O*sigma_0)/(2*gamma+3)
£f2 = u_1

£3 = -r*x(2*gamma)*sigma_0%%2/3

return [fO, f1, f2, £3]

We show the algorithm of the shooting method in the Python function Stationary
Shooting. As we have already explained in the previous Chapter [2] given the
boundary conditions ([2.88)) for v = 0, we must now determine the value of
u® = E—U(r) for Eq that satisfies these conditions. These values will
be given by an infinite number of discrete values for n = 0,1, 2... number of
nodes in ¢(®)(r). The state that minimizes the energy will be characterized by
the solution Ufl(zo(r) with n = 0 number of nodes. Solutions o,(r) for which
E, withn = 1,2, 3... different from zero will constitute states of higher energy.

Given the value ¢(®(r = 0) = 0y, we choose a seed value for 1y and we
solve the system 1) accordingly. If we choose g very large, then do(® /dr
becomes negative at a finite value of the radius, and if we choose wug very
small, do(r)/dr becomes positive at a finite radius, which causes the condition
lim, o, o(r) = 0 to be broken. Then, we most chose a more appropriate value
for the seed ug. We can do this by bisecting uy = (o maz + Uomin/2) in a
range [Uo maz, Uomin] for a sufficient number of iterations until that we reach
the desired precision. These iterations based on the number of zeros present
in the profile ¢(®(r) and its derivative o(®’(r) are encoded in the shooting
algorithm presented below.

def Stationary_Shooting(sigma_0O, u_max, u_min, Lambda, gamma, rmax_, rmin_, nodes,
sigma_1 = 0, u_1=0, met='RK45', Rtol=1e-09, Atol=1e-10):

nun

###### Shooting Algorithm #####

rmax ==> We must choose a maximum value for the radius r large enough so that
the code always stops due to the limit of numerical precision.
Events ==> The solve_ivp function can detect and respond to "events" in the

integration of a set of differential equations. One or more functions can
be provided in the events argument, which should return zero when the
state of the system to the event to be triggered. SEE [Learning Scientific
Programmming With Python, Christian Hilll. The functions for which we
are interested in finding the zeros are given by sigma(r) and sigma'(r).
For example, a solution that satisfies the boundary conditions for n=0
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will have O events in sigma(r) and 1 event in sigma'(r) given that sigma'(
r=0) =0.

UO = [sigma_O, sigma_1, uO_, u_1] ==> Values at the boundary with the seed u0O_

nun

arg = [Lambda, gammal

def Sig(r, U, arg): return U[O0]
def dSig(r, U, arg): return U[1]
Sig.direction = 0
dSig.direction = 0

while True:

u0_ = (u_max+u_min) /2
U0 = [sigma_0O, df0, uO_, duO]
sol_ = solve_ivp(system, [rmin_, rmax_], UO, events=(Sig, dSig),

args=(arg,), method=met, rtol=Rtol, atol=Atol)

# If the solution satisfies the condition sigma'(r) ==> [n] = nodes+l and
sigma(r) ==> [n] = nodes, we have found the sought solution. Here
t_events[1].size = [number of nodes] for sigma'(r) and t_events[0].
size = [number of mnodes] for sigma(r).

if sol_.t_events[1].size == nodos+1 and sol_.t_events[0].size == nodos:

print ('Found', u0_)
return u0_, rmax_, sol_.t_events[0]

# If sigma'(r) have [n]> nodes+1 and sigma(r) have [n]> nodes we have

chosee u_0 too much large. We need to reduce it u_mazx = uO_. If sigma
"(r) have [nodos]> n+1 and sigma(r) have [nodos]<= n we have chosee
u_0 too small. We need to increase it u_min = u0_.

elif sol_.t_events[1].size > nodos+1:

if sol_.t_events[0].size > nodos:

u_max = ul_

rTemp_ = sol_.t_events[0][-1]
else:

u_min = u0_

rTemp_ = sol_.t_events[1][-1]

# If sigma'(r) have [n]=< nodes+1 and sigma(r) have [n]> nodes we have

chosee u_0 too much large. We need to reduce it u_maz = u0_. If sigma
"(r) have [n]=< nodes+1 and sigma(r) have [n]<= nodes we have chosee
u_0 too small. We need to increase it u_min = u0_.

elif sol_.t_events[1].size <= nodos+1:
# si hay menos nodos aumentar la energia

if sol_.t_events[0].size > nodos: # dos weces por nodo
u_max = ul_
rTemp_ = sol_.t_events[0][-1]
else:
u_min = u0_
rTemp_ = sol_.t_events[1][-1]

# If we have achieved the mazimum precision:

if abs((u_max-u_min)/2) <= le-14: #le-14
print ('maximum precision achieved', uO_, 'radio', rTemp_)
return u0_, rTemp_, sol_.t_events[0]

Due to the numerical precision (about 16 decimal digits in our code), the

shooting method Stationary_Shooting only allows us to reach a finite radius.
Beyond this radius, we utilize the asymptotic solutions

Ci N

) o, VEF O g
0; (r)erﬂe ;o (1) EZ+47T7’ (B.2)

of Egs. (2.87), with C;, E;, and N constants, where E; and N represent the
dimensionless frequencies and trace of the Hermitian operator @), respectively,
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and C; is an amplitude scale. The value of F; and N are computed according

t]
Ei = uip — Z/ 0£0)2(r)7‘2”’+1dr, (B.3a)

N = 47TZ/ 0§0)2(T)r2(7+1)d7’, (B.3b)
0

whereas the C; coefficients are obtained using a linear fitting methodology.
The value of v is one for radial polarization and zero for all other cases. For
more details, see App. C in Ref. [87]. In the Energy function, we present the
algorithm to calculate the quantities and . Given the solutions
obtained through the shooting method, we interpolate and integrate o¢® using
the interpld and quad packages, respectively.

def Energy(r, sigma_O, gamma, VO):

nun

#### Mass and Energy ####

sigma_O ==> The solution sigma_O(r) that we obtained from Stationary_Shooting
and the solve_ivp package.

VO ==> Value at the boundary of the gravitational potential. This is the uO_

value obtained in Stationary_Shooting.
nnn

sigF = interpld(r, sigma_0, kind='quadratic')
#sigF: An interpolation of sigma_0O that we will use in the subsequent
integration.

Af = lambda r: rxx(2*gamma+1)*sigF (r)**2
# Af: Integrand in the equations (4.83a). To calculate the value of the
Energy.

Bf = lambda r: r**(2x(gamma+1))*sigF (r)**2
# Bf: Integrand into equations (4.83b). To calculate the value of the Mass (
m_0*N) .

# Integration Interwals.
rmin = r[0]
rfin = r[-1]

# Eq. (4.91a).
Energy = VO - quad(Af, rmin, rfin) [0]

# Eq. (4.91b).
Mass = quad(Bf, rmin, rfin) [0]

return Energy, Mass

Again, given that the numerical precision is limited and the shooting method
Stationary_Shooting only allows us to reach a finite radius, we need to use
asymptotic solutions given by Egs. . We present the implementation of
this concatenation in the extend function and in Figure (B.1f) we present the
radial profile o(®(r) for a starionary Proca star with constant polarization in
the repulsive, free and attractive case. In the same figure, we show the rela-
tionship of the effective mass Myg as a function of the effective radius Rg9 and
the relation of the energy eigenvalue |E| with the central amplitude oy.

def extend(gamma, r, sigma_O, sigma_1, u_0, u_1, Ext, Np=1000, inf=False, ptos
=400) :

! Alternatively, one can use the asymptotic form described in Eq. (B.2)) to obtain E;.
This alternative form to compute the energy eigenvalue was used to check the validity of

the results obtained from Eq. (B.3al).
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Figure B.1: Constant polarized stationary Proca star with n = 1 nodes:
Stationary and spherically symmetric solutions of the s = 1 Gross-Pitaevskii-
Poisson system with n = 1 nodes. Red (blue) lines correspond to repulsive
(attractive) case, and we have included the solutions to the s = 1 Schrodinger-
Poisson system (black lines) for reference. Left panel: The profile o (r) for
oo = 1. Center panel: The effective mass of the configuration Mgy as a func-
tion of the effective radius Rgg. Right panel: The magnitude of the energy
eigenvalue |E| as a function of the central amplitude og. The dots in the last
two panel correspond to the configurations of unit amplitude. For o9 — 0 the
effects of the self-interactions become negligible.

nun

### Extended solutions ###

We concatenate the asymptotic solutions with the solutions derived from
Stationary_Shooting.

nnn

# Parameters k and C in (B.2).

def parametrosS(r, S):
yri, yr2 = §[-2], S[-1]
ri, r2 = r[-2], r[-1]

k np.real(np.log(np.abs(yrixrl/(yr2*(r2)))))
s np.exp(-k*r1)/ri

C = yril/s

return C, k

# Asymptotic solutions (B.2).

def sigm_asym(r, C, k):
y = C*np.exp(-k*r)/r
dy = -(C*np.exp(-k*r)*(1+k*r))/rx*2
return y, dy

def U_asym(r, A, B):
y = A+B/r
dy = -B/r**2
return y, dy

# Extended radius
rad = np.linspace(r[-1], r[-1]1+Ext, Np)

# Calculating Parameters
En, Mas = energ(rD, sigma_O, gamma, u_0[0])
Ap, k = parametrosS(r, sigma_0)

# Joining data
sigma_O_Ext, sigma_1_Ext = sigm_asym(rad, Ap, k)
u_O_Ext, u_1_Ext = U_asym(rad, En, Mas)

r_new = np.concatenate((r[:-1], rad), axis=None)

sigma_O_new = np.concatenate((sigma_0[:-1], sigma_O_Ext), axis=None)
sigma_1_new = np.concatenate((sigma_1[:-1], sigma_1_Ext), axis=None)
u_O_New = np.concatenate((u_O[:-1], u_O_Ext), axis=None)

Chapter B 156



u_1_New = np.concatenate((u_1[:-1], u_1_Ext), axis=None)

# Quadratic interpolation.

fsN = interpld(r_new, sigma_O_new, kind='quadratic')
fprof = lambda x: x**2*fsN(x)**2

masa = quad(fprof, r_new[0], r_new[-1]) [0]

# checking

if inf:
print ('checking ')
print ('Energia: ', En, ' ', uExt[-1]) #, ' ', k**2)
print('Masa: ', Mas, ' ', masa)

return r_new, sigma_O_new, sigma_1_new, u_O_New, u_1_New, [masa, En, sigma_O

011

When v = 0 and Ay = 0 the system of dimensionless equations
is identical to the system of equations for a non-relativistic, spher-
ically symmetric, and self-interacting boson star that we presented in Sec-
tion [I.3| of Chapter Procedures analogous to those we have presented in
this Appendix B.1 were used to compute the solutions we present in Chapter [1]
for relativistic and non-relativistic configurations. In the repositories https:
//github.com/edgargovea/Relativistic-Boson-Stars.git and https://
github.com/edgargovea/Nonrelativistic-Boson-Stars.git, the reader can
review these procedures in detail.

B.2 Example: Multi-frequency Proca Star for
o0 = 1.0, o0 = 0.8, and 0,0 = 0 with n, =
I,n, =0,n,=0.

In this section, we analyze the shooting method implemented for a multi-

frequency Proca star in the case where ol (r =0) = 1.0, az(,o) (r=20) =038

and 020)(7" = 0) = 0 with (n, = 1,n, = 0,n, = 0) nodes. For this, we must

reduce the dimensionless system (2.87)) to a system of first-order differential
equations given by:

O
fb = (jZi ) (I3.4a)
2 do 1
fi = AX["] -2 e, (B.4)
J
(0)
fé = (12; ) (13.4C)
2 dul® 1
fo = AZ[UJ(.O)] —2= 2, (B.4d)
J

and similarly for the y and z components on &. We have written this system
in the function SystemMultiFrequency for r > 0 and r = 0 following the
same procedure as the previous example. The system depends on the values
at the boundary for the components [o,0, 040, 0:0] and the values of the fre-
quencies [ugo, Uyo, o). We have to solve this system numerically using the
scipy package in Python called solve_ivp with the method ‘RK45°’: Explicit
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Runge-Kutta method of order 5(4) [107]. Particularly we consider rtol and
atol, optional relative and absolute tolerances, as Rtol=1e-07 and Atol=1e-
SEI The purpose is to solve the system numerically for the values [0, ty0, U]
that satisfy the boundary conditions (2.88)). These solutions will constitute an
infinite and discrete set of frequencies E, = [E,;, Eny, Ep.] that will conform
a mult-ifrequency configuration with E,, # E,, # E,.. In order to find this
configuration, we use the function MultFreq_Shooting.

def SystemMultiFrequency(r, Vector, arg):
nnn
##### Multifrequency System of Equiations #####
[phi_x, phi_x', phi_y, phi_y', phi_z, phi_z', u_x, u_x', u_y, u.y', u_z, u_z']
==> [pOx, pix, pOy, ply, pOz, plz, uOx, ulx, uOy, uly, u0z, ulz]
Lambda ==> Atractive case: -1, SP = 0, Repulsive case = 1
pOx, plx, pOy, ply, pOz, plz, uOx, ulx, ulOy, uly, u0z, ulz = Vector
Lambda, = arg

# System of equations (B.4).

if r > 0:
sumpi = pOx**2 + pOy**2 + pOz*x*2
f0 = pix
f1 = LambT*sumpi*pOx - (2%plx)/r - pOx*ulx
£f2 = ply
£3 = LambT*sumpi*pOy - (2*ply)/r - pOy*uOy
f4 = piz
f5 = LambT*sumpi*pOz - (2%plz)/r - pOz*ulz
f6 = ulx
£7 = -sumpi-(2%ulx)/r
£8 = uly
f9 = -sumpi - (2*uly)/r
£10 = ulz
f11 = -sumpi - (2*ulz)/r
else:
sumpi = pOx**2 + pOy**2 + pOz*x*2
f0 = pix
f1 = (LambT*sumpi*pOx - pOx*ulx)/3
£f2 = ply
£3 = (LambT*sumpi*pOy - pOy*uOy)/3
f4 = pilz
f5 = (LambT#*sumpi*pOz - pO0z*u0z)/3
f6 = ulx
£f7 = -sumpi/3
£8 = uly
f9 = -sumpi/3
£10 = ulz
f11 = -sumpi/3

return [f0, f1, f2, f3, f4, £5, £6, £7, 8, f9, £10, f11]

To implement the function MultFreq_Shooting, we must introduce a seed
value for [ugg, Uy, Uzo] given by uoy = [Umaze + Uming]/2, Yoy = [Umazy +
Umin,y]/2 for a certain range [Umin.z, Umaz 2|, [Uminy, Umazy] a0 [Umin 2, Umaz, ]
and solve the system SystemMultiFrequency accordingly. Then we analyze
the zeros for the profile a§0)(r) and its derivative da](-o) (r)/dr trough the func-
tions events =(Sigx , dSigx , Sigy , dSigy , Sigz , dSigz) for each
component x,y and z. So, as we explain below, the component that first
reaches one of the zeros according to the identify () function will be sub-
jected to the shooting algorithm described in the Stationary_Shooting func-
tion above. If we have chosen u0, (or u0, or u0,) very large or very small,

2The solver keeps the local error estimates less than atol + rtol * abs(y). Here rtol
controls a relative accuracy (number of correct digits), while atol controls absolute accuracy
(number of correct decimal places).
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we will need to expand or reduce the range in [Umin z, Umas ] and repeat the
process.

def MultFreq_Shooting(InitialO, Uintx, Uinty, Uintz, rmax, rmin=0, Lambda=1, nodes
=[1, 0, 0], met='RK45', Rtol=1e-09, Atol=1e-10, lim=1e-6, info=False, klim
=500, outval=13, delta=0.4):
nnn
##### Multifrequency Shooting Algorithm #####
#Range of values Umin, Umax in which the Shooting will perform the search for
each component phi_x, phi_y, phi_z:
Uintx -> [Umin_x, Umax_x]
Uinty -> [Umin_y, Umax_y]
Uintz -> [Umin_z, Umax_z]

Initial0 -> [pOx, plx, pOy, ply, pOz, plz, ulx, uly, ulz] # Vector of initial
values for phi_x(r=0), phi_x'(r=0), u_x'(r=0), etc.

rmax, rmin -> Maximum and minimum radius values.

nodes ==> [nodos_pOx, nodos_pOy, nodos_p0Oz] # Number of nodes for each
component phi_x(r)==> n_x, etc.

klim ==> Maximum number of iterations for the shooting cycle.

outval ==> Number of times it moves once the <<shoot>> function has returned a
result.

delta ==> Amount we move the values returned by the <<shoot>> function,
defined below.

Order of the variables
[phi_x, phi_x', phi_y, phi_y', phi_z, phi_z', u_x, u_x', u_y, u.y', u_z, u_z']
-> [pOx, plx, pOy, ply, pOz, plz, u0x, ulx, uOy, uly, ulOz, ulz]

nun

nodes = np.array(nodes)
pOx, plx, pOy, ply, pOz, plz, ulx, uly, ulz = InitialO

# Vector with central profiles phi_z(r=0), phi_y(r=0), phi_z(r=0)
pOData = [pOx, pOy, pO0z]

Uminx, Umaxx = Uintx
Uminy, Umaxy = Uinty
Uminz, Umaxz = Uintz

#Finding a profile with [nz, ny, nz] numer of nodes for phi_z(r), phi_y(r) and
phi_z(r).

# Events. Analogous to the case of a statiomary Proca star, we base the
shooting algorithm on the number of zeros that ezxzist in the profiles phi_cz
(r), phi_y(r), and phi_z(r), and their derivatives phi_z'(r), phi_y'(r),
and phi_z'(r). To see when these zeros occurs, we define:

def Sigx(r, U, arg): return U[O0]
def dSigx(r, U, arg): return U[1]
def Sigy(r, U, arg): return U[2]
def dSigy(r, U, arg): return U[3]
def Sigz(r, U, arg): return U[4]
def dSigz(r, U, arg): return U[5]

Sigx.direction = 0; dSigx.direction = 0

Sigy.direction = 0; dSigy.direction = 0

Sigz.direction = 0; dSigz.direction = 0

k=0

arg = [Lambdal

Uintrs = np.array([[Uminx, Umaxx], [Uminy, Umaxyl], [Uminz, Umaxz]])

out = 0
while True:

# As in the previous case, we start with a seed wvalue uO_z, u0_y and u0_z
for each one of the components phi_z, phi_y and phi_z and solve the
system of equations accordingly.

##def shoot (imin, imaz) :##

#agnngtreturn (imin+imazx) /2H##RARRY

u0 = np.array([shoot(*i) for i in Uintrs])

Vo = [pOx, plx, pOy, ply, pOz, pilz, u0[0], ulx, uO[1], uly, u0[2], ulz]

Chapter B 159



sol = solve_ivp(MultFreq_Shooting, [rmin, rmax], VO, events=(Sigx, dSigx,
Sigy, dSigy, Sigz, dSigz),
args=(arg,), method=met, rtol=Rtol, atol=Atol)

# Next, we list the zeros of the solutions for u0.

eventos = np.array([[sol.t_events[0], sol.t_events[1]],
[sol.t_events[2], sol.t_events[3]],
[sol.t_events[4], sol.t_events[5]]], dtype=object)

#Next, we proceed to increase or decrease the walue of u0_z, u0_y, or u0_z
according to the same criteria we described for a stationary Proca
star. Which of the different u0_z, uwO_y, or u0_z we modify first is
determined by the component that reaches a zero in its profile (e.g.,
phi_z(r)) or its derivative (e.g., phi_z'(r)) before any other
component (e.g., phi_y(r) or phi_y'(r)). The function indentify()
allows this selection.

sigModif = identify(sol.t_events, nodes, pOData, info=info)

# For azample sigModif = [True, False, False] if \phi_z(r=0) reaches a
zero in its profile or its derivative before any other component. So,
we use the previously described shooting algorithm (here the function
freq_shoot) if we need to increase or decrease uO_xz. From this, we
obtain the new wvalues u0 in iInterv and rTemp.

# Here, freq_shoot follows the shooting algorithm in Stationary_Shooting.
iInterv, rTemp = freq_shoot(eventos[sigModif], nodos[sigModif], uO[
sigModif], Uintrs[sigModif], rmax)

# If we have reached the mazimum precision:
if abs((iInterv([1]-iInterv[0])/2) <= lim:
if info:
print (out)
print ('We have reached the maximum precision: UOx = ', VO[6], '
Uoy = ', Vo[8], ' UOz = ', VO[10], 'radio', rTemp)

if out==outval:
print ('Maxima precisién alcanzada: UOx = ', VO[6], ' UOy = ', VO
[8], ' UOz = ', VO[10], 'radio', rTemp)
return VO[6], VO[8], VO[10], rTemp, sol.t_events[0], sol.t_events
[2], sol.t_events[4]
else:

Uintrs[sigModif] = [iInterv[0]-delta, iInterv[1]+deltal]

out += 1
#If we still haven't reached maximum precision, we rewrite u0.
else:
Uintrs[sigModif] = ilnterv

if np.all(np.array([shoot(*i) for i in Uintrs])==u0):
print ('Found: UOx = ', VOo[6], ' UOy = ', VO[8], ' UOz = ', VO[10], '
radio', rTemp)
return VO[6], VO[8], VO[10], rTemp, sol.t_events[0], sol.t_events[2],
sol.t_events [4]

if k==klim:
print ('loop limit reached')
break

k += 1

The use of the function identify allows us to identify which of the com-
ponents o (r), o (r) or otV (r) = 0 has reached a zero (event) first. For
example, let’s suppose that in the j-th iteration for a given wg, and ug, we
obtain the results described in the Figure (B.2)). Given that the solutions we
are looking for in this example satisfy o,(r = 0) = 1.0, o,(r = 0) = 0.8
and o,(r = 0) = 0 with (n, = 1,n, = 0,n, = 0), we observe that the solu-
tion for o, (r) satisfies n, = 1 but the zeros in the derivative function o’ (r)
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are greater than n, + 1 with the value of the n, zero at r = 4.022. On the
other hand, o,(r) satisfies n, = 0, but similarly, the number of zeros of the
derivative function oy (r) is greater than n, + 1 with the value of n, zero at
r = 0.0. Then, the component that first reaches zero is ¢,(r), so sigModif
= [False, True, False] and o,(r) will be the next component subjected to
the shooting method. The logical sequence of this process is described below.

1.5

1.0 1

0.5 1

0.0

—0.5 1

— =1

=1.0 1

— n=10

—1.3

0 2 1 6 8
Figure B.2: identify function. The use of the function identify allows us
to identify which of the components o\ (r) (red line), ol (r) (blue line) or
o (r) = 0 has reached a zero (event) first.

The shooting method replicates the same procedure that we have described
for a stationary Proca star. We emphasize that the difference is that for a
multi-frequency Proca star this process is done successively for each component
0.(r), oy(r), and o,(r), as each one first reaches one of the zeros for the profile
or the derivative of the profile according to the identify function. The result
of this particular example for oo, = 1.0 and oo, = 0.8 with n, =1 and n, =0
(the component in the z direction equal to zero) is shown in Figure @ :

def identify(events, nodes, pOData, info=False):

nun

o] ,
Lo — oY= 1.00
0.81 oy = 0.80
0.6 - U{;[” = OOO
3%; 0.44
0.2
0.0
e \/
0.0 25 50 75 100

Figure B.3: Multi-frequency Proca star. Multi-frequency configuration for
00z = 1.0 and o¢, = 0.8 with n, = 1 and n, =0
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##### identify function #H####

Identifying which components have zeros in successive order. When a component
is taken as zero and excluded from the analysis

dicNod = {'0': nodes[0], '2': nodes[1], '4': nodes[2]}

indices = np.fromiter(map(int, dicNod.keys()), dtype=int)

ind = list(map(bool, pOData))

posit = indices[ind]

# posit = [0,2,4]

valR = [np.infty, np.infty, np.infty]
for i in posit:

valtemp = []

node = dicNod[str(i)]

numNod = events[i].size; numdSig = events[i+1].size

if numNod == node and numdSig == node+1:
valtemp.append (0)

elif numNod == node:

if numdSig < node+1:
valtemp.append(events [i+1] [node-1])
elif numdSig > node+1:
valtemp.append(events [i+1] [node])
elif numNod > node:
valtemp.append(events[i] [node])
else:
if numNod !'= O:
valtemp.append(events[i] [-1])
else:
valtemp.append (0)

if i==0:

valR[0] = min(valtemp)
elif i==2:

valR[1] = min(valtemp)
elif i==4:

valR[2] = min(valtemp)

sigModif = [False, False, False]
test = np.min(valR)
for i in range(3):
if valR[i]==test:
sigModif [i]=True
break

return sigModif
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|Appendix C

Appendix Chapter IV

C.1 Dirac Spinor in a de Sitter Universe

In a De Sitter universe, the scale factor is give by

da(n)_ 1
dn  Hgn?

With such a scale factor, the modified Dirac equation (4.22)) are given by

a(n) = (—Hgm)™' and (C.1)

d? m? m
— + k? ' =0 C.2
{an e ZHdsn2:| N ’ (C.28)
d? m? m
— + — i = 0. C.2b
{d?ﬂ e Hin? ZHdsTF} o (C.2b)
Making the appropriate change of variable given by
m 1 .
z2=—kn, and pu= i —v3 + 1= =211 (C.3)
we can recast Eq. (C.2)) as
d? i
|:@ + 1+ s :| up, = 0, (C.4a)
d? v+
[@ + 1+ 52 :| Ve — 0. (C4b)
where vy = —ipu + % These equations admit solutions in terms of the Hankel

functions of the first \/EH&) and second kind \/EHﬁ) for uy and /zHS" and
\/ZHZ(E) for vg. The normalized solutions that has the correct asymptotic
behavior solutions (4.48|) as n — —oo are given by Eq. (4.27). When n — —o0
the asymptotic expression of Hankel function of first is given by ngl)(z) =

\/ = expli(z — 4 — Z)], such that

A/ 1 )
u,(go) = lim iﬂe”“/QHﬁl)(z):—e_’k”, (C.5)
n——00 + \/§
\/ 1 .
v lim YT em2 (D () = —e~ikn, (C.6)
n——oco 2 - \/§

which are the asymptotic adiabatic solutions (4.48)) in the remote past.
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C.2 Dirac Spinor in a Radiation Dominated
Universe

In a radiation dominated universe, the scale factor is a linear function of con-
formal time as
da(n)

dn
With such a scale factor, the modified Dirac equation (4.22)) are given by

a(n) = Hgn, with = Hp. (C.7)

d2

{d_UQ + k2 +mPHEn? + z’mHR} up, = 0, (C.8a)
d2

[d_772 + k2 + m2H12% 2_ ZmHR:| Vr = 0. (C8b)

Making the appropriate change of variable given by

k .
z=+/mHgn, q= Ny and Ay = @+, (C.9)
we can recast (C.8) as
d2
|:@ + 22 + )\(+)} u = 0, (C.10a)
d2
|:@ + 22+ )\(_):| vy, = 0. (ClOb)

The modified Dirac equation above immediately admits solutions in terms of
the parabolic cylinder functions D, (z). These are given by

uy, = c1D, (\/56”/47;) +coD_pq (\/Eei3”/4z> , (C.11a)
v, = 3Dy 1 (\/ﬁei”/‘lz) +caD_,, (\/ﬁei?’”/‘lz) . (C.11b)

with @ = —ig*/2. By imposing that equations (4.21)) be satisfied at late times,
and normalizing according to (4.19)) we arrive at

- eXp{(—87rk2 )}Da (\/56”/4:5), (C.122)

mHR

6i7r/4k 7.‘.]{;2 )
= —— - D,_ 2ei/4 ) | 12
Uk m“p{( 8mHR>} wr (V2ETiz) . (Caz)

As in the scalar field case, the structure of this solution, through the value
«, reveals the presence of a new momentum scale, k; = /mHg, the Jeans
length of a self-gravitating field. In addition, the argument of the cylinder
functions suggests different behaviors the light field (ma < H) and heavy
field (ma > H) limits.
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C.3 Adiabatic Expansion for u; and v, up to
Fourth Order

Zeroth order In the adiabatic limit, following the reasoning of S. Gosh
[174, [161], we can propose the following ansatz to the differential equations

such that
uk(n) ~ exp { / (X () —iYk(ﬁ))dﬁ} (C.13)

where
Xui) = ¢ SORX(0), Yili) = 3 S0 VL) (©1)

where n indicates the adiabatic order expansion, and similarly for v (n). Putting

Eq. (C.14) into Eq. (4.22a]), we obtain, for the zero and first order in n, re-
spectively
X3 —Yi+wi=0, 2XYy —Q =0,
Xo 42X X1 — 2YoY: =0, Yo+ 2XoY; +2X,Y, = 0.

where () = ma. Solving this set of coupled differential equations up to first
adiabatic order, we obtain

X, ~

a 1
2wk’ Zwk’
Yo = wp, Y1 =0.

XO%

Then, the ansatz (C.13|) can be written as
Uy, ~ exp [/ (2m_ci — ;—;)dﬁ} exp [—i/wkdﬁ]. (C.15)

The expression in the first integral can be recast as

ma W ma [ma+ wy wg d Wi -+ ma 1/2 W +ma —1/2
2w 2wr 2w | ma + wg 2wy dt 2wy, 2wy, )
So, the solution u5€0) at zero adiabatic order finally is
ul(CO) ~ LR exp [— i/wkdﬁ} : (C.16)
Wk

and similarly for v,io).

Second order. Now, working up to adiabatic second order, from the

expression (4.33)) and using Eq. (4.22)), we can write

2) . 1 1 . mawy
(Wk—m(l)G(z) = (wk—ma)F(z)—l—w,(c )+ZF(1)+§m (ma — o ) F(l),

' : 1 :
(wp+ma)F® = (cuk+moz)G(2)—|—cu,(€2)—H’G(l)—i—E IO ma GW,
2 (wg —ma) \ wg

(wr + ma)(p@) 4+ O px F(Q)*) + (wp, — ma)(G(2) +GOGM* 4 G(z)*> -0
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Similar to the above process we recast these equations as

(1) .
(wr, — ma) (g( ) _ f(2)) ](€2) _ fz,(fl) Jy 1 (ma B mawk> |

2 (wg +ma) Wi
(1) -
@ _ oy — @ o S ] mawg
(wk +ma>(gx fm ) +gy + 9 (wk _ ma) ( W ma |,

(wi +ma)(2f? + (fél))Q) + (wr, — ma) (298 + (9;,51))2) =0,

and after some manipulations, we can write

@ _ 1@ o L . mawy gy e
2wk(gm f ) = gy _fy _5 ma — + 3

Wi W —ma Wi+ ma

(A2 1wy
£ = = 2wk+ma(2g(2)+(9( ).

From this we obtain the second order expression for 9552) as

g = (f?ﬁl))2 i Wk + ma
v 2 4w?

51 _ f'(l)

Yy Y

. 1 1
Y i |
2 W W —ma  wi +ma

The function f{ is obtained using the condition f* (—m) = g2 (m), and

from these we obtain wk On other hand, we calculate the imaginary part as

1) .
. 1 maw
_ 2) _ @2y = £ z 5 k C17
(wk ma)(gy fy ) fz + 92 (wk+ma) (ma W )7 ( a)

(1) -
@ _ p@y_ o _ 1 mawr N\ b
(o ma) g~ 1) = g8 = e e (M i) Ca7
From here is straightforward to write
2wy, (gf) f ) =0— g(2) = f?SQ). (C.18)

Here, the functions gy ) and f remain undetermined. However, since the
local observables, e.g. the energy density p, regardless of the required adiabatic
order n, remains independent of these functions, this ambiguity can be resolved
by choosing ggg ) = (2 = 0. All the tedious calculus are more easily made in

Wolfram Mathematzca, after some computational work we get

@ _ 5mia?a? B m2a? B m2ad (C190)
8w? 8uw? 4w’ '
re _ _5m'a?a? N bm’a*a  m*a® N m’ad mii (C.19)

16w? 16w} 2wt 8wl 8w}

and G® = g (m) = £ (—m) = F)(—m).
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With the above results now is possible to write

Wy + ma ‘ . 5m*a?a®  mPa®  mPadl
uf): k—eXp (—z/[wk(n)—i— — — — 5 | d7]

2wy, 8wp 8uw? 4w

{1 ima  bmra?a®  5miata  m2a®  miad  ma
>< —

3} , (C.20)

402 1608 16w 32wl 8wl 8w

and similarly for v,(f) using the fact that u](f)(—m) = v,(f) (m). The third and

fourth adiabatic order are calculated next.

Third and fourth adiabatic order. For completeness, we write the
third and fourth adiabatic order expression to get F® G®) and F® and G®
Up to third adiabatic order, the real part of Eq. (4.33)) is given by

(wp—ma)(g® — &) = f 2)_‘_w(2)fél)_f352) 1 ) <ma B mawk) |

2 (wr+ma

(2) .
B)_ B3y — _,® 6@ _,@,0 9y 1 mawy,
(s +ma)(gs” — 1) iy o'+ 75" 2 (Wk—ma)< Wi ma

(wi +ma)(2fP + 22 fID) + (wy, — ma)(29Y + 2P gM) = 0.

Using the fact that g(z) = fy(Q) = 0 in the above expressions, we have the
result & = ¢¥  Using the relation G™(m) = F™(—m) then we have
- f’)(—m) S — gg(;g)(—m) = 0 that is gg(f’)(m) and fi¥ (m) are even
functions of m and using the third relation above we have fy(?’) = 9753) = 0.
With these we find w,(f’) = (. On the other hand, the imaginary part results in

the expressions

: @ 1 maw
(= ma) ) — £9) = &+ ) (md - ’“) + w5,

2 (w +ma Wi,
(2) -
() _ 3y = _0) _ 9 1 mawy o\ @) )
(wp +ma)(g,” — f,”) = —0a > (or = ma) ( o ma Wi Gy -

Recasting the expressions above, we obtain

2n(gl? = F©) = fO — g +wO(f - oY)
i e
+ - <ma - maw’“) ( CLE— , (C.21)
2 W W —ma Wi +ma

from which, we can determine gy ) and fy with the condition fé‘g)(—m) =

a2 (m). [

In order to get fy we define A = gy fy and we use the relation g ( )= fy (3)(_
With these we can write A = fy ( m) — fy (3m) and we calculate the right side of 1D

If Ais odd in m then fég)( ) is odd and f(s)( ) = —1/2A which is the case.
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In the same way, we can calculate the fourth adiabatic order. The real part is

® .
(wr—ma)(g — [9) = @ g2 O I )<ma—maw’f),

2 (wg +ma Wi

(3) .
@ _ @)y — _ W _ @, 53 I 1 mawy
(wi+ma)(gz” = f5") Wi 9r +9y + - 2 (wor — ma) < o ma |,

(wi+ma) 2D +2 10 £7 +(£2)) + (we —ma) (20,7 + 20,79, + (5)%) = 0,

and the imaginary part is

(3) .
_ @y _ (2 (3, o 1 . maw
(wi —ma)(g{? = fiV) = w12 + f1P 4 > (o ) (ma o)
(wr + ma) (gl — fW) = @ g _ 5B _ 9(3) 1 mawy .
Wk + ma — —ma )
’ %y Y Yy Ia 2 (wy — ma) Wi
Using the fact that £ = g5 = f1¥ = ¢/ = 0 into the above expression

(4) _ (4)

for the 1mag1nary part we have 9y = 0 where, again, the functions

gy ) and f remains undetermined. However, since the local observables are
independent of these functions, this ambiguity can be resolved by choosing
Y = f§4) = 0. Next, from the real part we obtain

FO = ) ) <Wk +ma) (S22 (wk —ma) (92)?

Zwk 2 Zwk 2

W — Ma . :
-7 [w;f)(f D =g+ g — £

dw;;
- (3) (3)
1
+—(maw’“—ma>< LM )]
2 Wk W —ma W +ma

from which, again, is possible to obtain g with the condition f£4)(—m) =

gtH (m) and once done this we can obtain w,(f) through

(2)

e
4 w maf,
wli ) = ma(fgl) — g§74)) — % (f( )+ 9(2)) + Q—IUZ

Finally, up to fourth adiabatic order the mode functions are given by

L+ F(p®

i=1

exp <—2/ <wk + w,(c ) + w(2) + w,(c ) 4 w(4)> dn) (C.22)

(4) wg + ma

uy, o~ X

ka
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where

65im°a’a® 2lim2a® 19im3aad  imad

FB®  — _ — C.23
64w? 128wf 32w + 16w}’ ( )
o _ 2285mBa*at  565mTatat  349mSa’at n 803m’aa*  85m*a’
N 512w}? 128w}t 256w, 512w; 2048w
45Tmba’a’a n 113m°a%a®a n 113m*aa’a  141m3a%a
128w;° 32wy 256w 256w
41m4a2a2 S5maa®  m2d? N Tm*a’ad Tmlaad
128w} 16w; 128w 16w} 16w]
m2ada miaa m'a
— — ) C.24
64w? 32w * 32w? (C-24)
and
(4) 1105mBa*a* . 29mba?a*  11mia* n 221m6a3a2a 89m*aa’a
w = — -
b 128w} ! 8wy 128w] 32w} 64w]
19m*a?d? 7m4a2d a  mlad  miPad
- — + =+ = (C.25)
32w 8wy, 32wy 16wy
with w,(cl) = w,g?’) = 0, and similarly for v,(f) remembering the condition

u{M (—m) = vl (m).

C.4 Energy Density

The Dirac field ¢ can be written in terms of creation and annihilation operators
for particles and antiparticles, aj , and b; , respectively, as

=" / @ g, Ugy + 8L, Vi | (C.26)
A

where the eigenfunctions Uy, (z) and V7, (x) are given by

— —

k‘ k A
—ik-% _,Uké' A e~ ik-& U*f_)\
( EE ( *U_k _/\) or Vi = Qrai ()\u}lgf_,\)’ (C.27b)

and &) is the normalized two-component spinor satisfying & /\/f A = O0yy with the

VIZA

property Q,f & = (A/2)&, where A = +1 represents the helicity. Also Uk)\ and
Vz, are related by charge conjugation operation (e.g. Vz, = CU;, = 2UE>\) ﬂ
with ug(n) and vg(n) the two time-dependent mode functions.

2In order to obtain the expression (C.27b)), we need to take into account the expression
- D&k
—i0°Ey = A_a.

Chapter C 169



Let’s compute the expectation value of the energy-momentum tensor using
the Dirac field decomposition (C.26]) such that

v=3Y / &k [CAL,;AU,;A n ZA%AVEA] , (C.28)
A

7 — oy TA0 — 3 T T 0
Wiy _Z/d ot Ut + b VEJV. (C.29)
A

Putting these in the expectation value of T} = g[wovo)w — (Vo¥)v0)¢], we
get

(T0p) — (BooTp) =

/ &Pk / d%fzz (UL, 00U — 00U, Ui, ) 0K = Ry
+ / &K / ZZ (UL, 00V, = 06U Vi, ) 80 + B ymy
+ / &K / d%’fzz (vT DUy, — 0oV Um,> 5(k + Kyma,,

;
/ & / d%/ZZ (VE0Vi — 00V Vi )

where for an arbitrary state |1)),

< %/A/CLE)\> = 6<E - E/)ni)\U (CSO&)
< k’)\’ > 5<E+ E/)mI;\A’7 (CSOb)
(bpyagy) = O(k+K)msy (C.30c¢)
< % ]2' > = 6<k - k/)(S)\/\/ - (S(k - kl)n)\)\/ (CBOd)

If we choose the |in,0) vacuum state, then n%,,, m%,,,m$,,n%,, = 0. Using
the eigenfunctions (4.13]) we can write

(7 00t) — (Do ) =

1 g * o % - . % o o
(27)3a3 [/dgk ; ; O (Uit + AN v — dpu, — AN 005)nS,y,
+ /di’%z Z S nox (Up®f + Mgty — vpog — AN ujpi)[1 — nby]

AN

/d?’kz Z Wop(1+AN) —upop(1+ A )\))ﬁj\gﬁ NELOAY

= [PESS i1  X) = i1+ MDE 6y,

AN
After some straightforward algebra, and using the relations ff\gé‘ﬂ\,fﬁ =
—5;125/\,]—5 = 5»\'/ and 51\155/\,7,; = —ﬂ/\gfﬂ,g = d_,_x (where in the rela-
tion £ , 7 = €'°¢,z we have choose ¢ = m) we can write the energy density
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expression as

1 (o.9)
p= —/ dkk? py, (C.31)
0

2123

where

1
Pr = % |i22 (2 — [nb + n“]) Jm{ukuz + UkUZ}

+2mP (ujvy — uior) + 2m (ugty — ukvk)} (C.32)

or for a finite volume V we have

i y a ~ .k 3

P= 5.4y Z {22 (1= [n% 5+ nial) Im{updy, + w0}
EX
— 2mlj\A(u}ZUZ —upvp) — 2m?,_\ (ugp — ukvk)} (C.33)
with
PED SUNETIED SYOUNTID S SN
A A A A
or

p = 204V Z |:2’l (<CL£‘)\(J,EA> - <bk‘)\b;)\>) Jm{ukuk —+ Ukvk}

EA

—2(al bl (iop — wpiy) — 2 (bp_yag_y) (uxdy — ukvk)} .

C.5 Second and Fourth Adiabatic Expansion
of pi

Up to second adiabatic order, u,(f) can be written as

u](f) -~ wk;_ ma [1 + FO 4 F(Q)] exp{ (—2’ /(wk + wg))dﬁ) } (C.34)
Wi

and vff) (n) = u,(f)(—m). Putting these in (4.53b|) we get

2 1 <wk + ma

p e
k a Wi

) [ﬁmF(l) — [FW)2wy, — 2FPy, — w,(f)]
1 (wk — ma

a Wi

) [F - G]. (C.35)
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With the same steps, we can write the fourth-order term of pi* as

(4)_wk+ma
o=

ImFG) — FAgmEW® — (F@)2y,
awy,
_ (F(3)*F(1) + FWxp®) 4 2F(4))wk + F(Q)(ij(l) _ 2Wl(c2)) _ |F(1) |2w,(€2) _ W;(:l)

F ORI e LGl (C.36)

awy,

C.6 Bogoliubov Transformation

The set of orthonormal basis (4.13), that is {U}Q.“/\, f /\} is not unique. Let’s

consider a different orthonormal basis {Uy ,, V% ,\} with the following relations

UgjA = U\ + BkVias Vkm)\ = . Vi, — BiUg.a (C.37)

where Vi | = inUE)\. Using the fact that
/\ln in zint 1n ~ 7t
Z Z ap Uy + bk AVk A Z Z[GE,AUE,A + b,;AVE,A] (C.38)
oA

and substituting in this the relations (C.37) we obtain

Qg = [aa meﬂk} (C.39a)
bl = (@, B +me all. (C.39b)

With these relations, we can rewrite ((C.39)) as
C:LT’;’A — (O"“ —52) C:L};n? and
bE,A P bE,,\
* T *
a _5k A _5k 1 0 C
= . 40

On other hand, using the relations

oo e’LEf iné—/\ - e—iE~f _,U;cn*gi
a(Zn) = (ra)i2 (U;Cn)@), V(@) = W( WAE ) (C.4la)

and the orthogonality of &), the relation Ugl/\ = U, + 516‘/1;‘,)\7 imply, after

some manipulations, that the solution corresponding to ui" and v}" are given
according to the transformation

u}f(n) = apug — PBrvp  and v}f(n) = apVk + Bruy, (C.42)

where again the functions u}" and vi* are those mode functions that satisfy
the in initial conditions and «j and [, are the Bogoliubov coefficients of a
Bogoliubov transformation ((C.40)).
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Putting these into the normalization condition |ul*|> + |[v*|> = 1 we have
directly that

|l + 1B* = 1, (C.43)

provided that |ug|® + |vg|?> = 1 is satisfied. Then, the Bogoliubov coefficients
ay and [ are constant. On other hand, using Eq. (C.43) and after some

manipulations we have

*,in inx * ) in inx
up = oguy + Brur, vk = apuy — Bruy (C.44)
Finally, using the normalization condition for |u|? + |vi"|* = 1 and manipu-
lating Eq. (C.44) we can write
ap = upuy, + iy, Pr = ugvy — vy (C.45a)

We can also calculate (5 considering the inner product between Vk‘f; and Uy ,
given by Eq. (4.17)), from which

Br = ( ,;li\l: Upn) = /dffsa?"/;;TU,;,/\, = [vpul® — upvit]e™ (C.46)
with ¢® = ¢f . _ _7- To make the Bogoliubov coefficients independent of A
ANE>—A—k

and k as Eq. 1D we need to choose ¢ = 7. Since |3;|? is the quantity that
determines an observable, we can do this without loss of generality.
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“Higher-Order Dark Matter: From nonrelativistic Proca Stars to Cosmological Spinor
Production”. En este proyecto de investigacion realizado por Ivan se estudian configuraciones de
equilibrio no relativistas llamadas estrellas de bosones y estrellas de Proca, que son objetos
compactos, autogravitantes y de energia finita que no se dispersan con el tiempo, donde se
exploran distintos regimenes de interaccion (atractiva o repulsiva) y tipos de polarizacion (lineal,
circular, radial), determinando cuéles configuran el estado de minima energia. Ademas, en otro
tema analiza la produccion de particulas por transiciones cosmicas en un universo Friedmann—
Lemaitre—Robertson—Walker, para campos cuanticos escalares y fermionicos no interactuantes,
encontrando para bosones, se puede despreciar la energia del vacio si hay muchas particulas por
modo; para fermiones, esto depende de la comparacion entre la energia del vacio y la de las
particulas. El trabajo de titulacion satisface con la completez y solidez de un proyecto de titulacion
anivel doctorado. También Ivan ha realizado las correcciones pertinentes al documento de la tesis.
Ademas, he cuestionado a Ivan sobre los temas relacionados a su trabajo de tesis, demostrando su
dominio en los temas abordados en su trabajo de tesis. Por lo que considero que ya se puede
proceder con la disertacion de tesis.

Sin mas por el momento le envio saludos cordiales.

Atentamente
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Dr. Carlos Herman Wiechers Medina

Profesor Titular A
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