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Introduction
This thesis explores the possibilities of forming compact dark matter ob-

jects as solutions to the Einstein-Klein-Gordon and Einstein-Proca }eld equa-
tions, as well as accounting for the mechanism of dark matter production
through gravitational particle production. According to quantum mechanics,
particles are subdivided into two groups: those with integer spin (bosons) and
those with half-integer spin (fermions). The former are capable of forming
particle condensates in the ground state, while the latter, limited by Fermi-
Dirac statistics, are forced to successively occupy higher energy levels. Here
we will focus on describing the equilibrium con}gurations of compact objects
of self-gravitating and self-interacting particles with spin s = 0 and s = 1,
which share similar characteristics to their counterparts, the compact objects
composed of fermions. On the other hand, one of the most notable results
of the semiclassical treatment of quantum }elds on curved spaces predicts the
gravitational production of particles due to gravitational ezects, in abundances
that could account for the dark matter bounds imposed by current observations
[4, 5]. Here we will focus on describing this phenomenon for quantum }elds
with spin s = 0 and spin s = ½ at dizerent orders of approximation. In both
objectives, we describe dark matter as a }eld that interacts only gravitationally
with the rest of the matter. Both objectives aim to address particular issues
(one intends to solve astrophysical and cosmological problems, while the other
intends to explain the mechanism of production of these particles); however,
they equally intend to account for the gravitational presence of dark matter
in the observable universe. In both cases, we will explore dizerent regimes
of approximations for the bosonic or fermionic dark matter }eld according to
each chapter.

In Chapters 1 and Chapter 2, we study stable compact objects composed
of particles with spin s = 0 (boson stars) and s = 1 (Proca stars). In
these chapters, we characterize these con}gurations as equilibrium solutions
of the Einstein-Klein-Gordon systems (relativistic boson star), s = 0 Gross-
Pitaevski-Poisson (non-relativistic boson star), and s = 1 Gross-Pitaevski-
Poisson (non-relativistic Proca star), particularly for spherically symmetric
con}gurations. In each case, dark matter is modeled through a massive self-
interacting boson }eld that only interacts with the standard model of particles
through gravitational interaction. In Chapter 3 and Chapter 4, we explore
the mechanism by which non-interacting dark matter particles of spin s = 0
and s = 1/2, which only interact gravitationally with matter, can be pro-
duced, that is, the gravitational particle production mechanism. Throughout
each chapter, we explore dizerent orders of approximation (e.g. relativistic
and non-relativistic) and analyze in which regimes a quantum }eld admits a
classical }eld description. These concepts will be reviewed throughout this
thesis.

v



Part I

Self-gravitating Objects

Un estudiante a quien le expusieron los
so}smas de Zenon sobre la negación del
movimiento juntamente con un ensayo de
refutación y solución, dijo: “Veo la
solución, pero no veo el problema.” No
seremos demasiado infelices, si no viendo
completamente la solución, vemos al
menos el problema.

Jean Wahl

1



Chapter 1

Boson Stars: Relativistic and
Non-relativistic Con}gurations

1.1 Introduction
Compact objects like white dwarfs and neutron stars are part of the entities
that populate the universe and play a role in astrophysical and cosmological
observations. These are part of the family of compact objects made of fermions
and are part of the catalog of entities that conform to the universe. Parallel to
this family of objects are boson stars, which are hypothetical compact objects
made of spin s = 0 bosons, and Proca stars, which are compact objects made
of spin s = 1 bosons particles. These last ones, in their hypothetical nature,
could account for the dark matter of the universe: massive self-gravitating
(scalar or vector) }elds can form stable astrophysical (or subatomic) objects
supported by self-gravity and Heisenberg’s uncertainty principle, and can pop-
ulate the universe. Although the Cold Dark Matter model (CDM), within the
framework of the standard cosmological model ΛCDM, has been surprisingly
successful in explaining the large-scale structure of the universe, it has en-
countered problems on galactic or sub-galactic scales: CDM simulations lead
to cuspy density pro}les at galactic centers [6], while rotation curves signals
a smooth core density [7]. Also, the predicted number of satellite galaxies
around each galactic halo, is far beyond what we see around the Milky Way
[8]. If dark matter is composed of boson particles in a Bose-Einstein conden-
sate (like that of a boson compact object), these problems might be solved.
Boson and Proca stars phenomenology could alleviate the small-scale problems
of the CDM model, such as the cusp and the missing satellite problem [9].

A compact object is a collective arrangement of particles (that is, quantum
excitations of a quantum }eld) that forms a stable macroscopic object. In the
context of classical }eld theory, the seed idea of particles grouped together to
form compact objects comes from John Wheeler in 1955 [10], who proposed
stable solutions to the electromagnetic }eld within the framework of general
relativity, that is, solutions to the Einstein-Maxwell system of equations. These
objects called geons are unstable against linear perturbations. Conversely,
Proca and boson stars turn out to be stable solutions to the Einstein-Klein-
Gordon and the Einstein-Proca systems, respectively, for a complex massive
scalar }eld and a complex massive vector }eld. Boson and Proca stars are
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stable and massive compact objects susceptible to astrophysical studies and
observations. These can be understood as a macroscopic arrangement in their
minimum energy state, forming a condensate of integer spin particles charac-
terized by a single macroscopic wave function Ψ(t, ~x) (or ~Ψ(t, ~x)). Boson and
Proca stars may have masses comparable to the mass of neutron stars, or even
larger. This makes them an interesting case for study like their counterparts,
neutron and white dwarfs, and plausible candidates for dark matter.

In this chapter, we will describe the equilibrium solutions of the Einstein-
Klein-Gordon system, the relativistic boson stars, and their non-relativistic
limit, the solutions to the s = 0 Gross-Pitaevskii-Poisson system, i.e. the non-
relativistic boson stars. Both solutions include the }eld’s self-interaction term,
parameterized in the action by a dimensionless coupling constant λ. When
this coupling constant is negligible, the relativistic system reduces to the so-
called mini-boson star solutions, and the non-relativistic system reduces to the
Schrödinger-Poisson system. If the mass of the system is small, it will be pos-
sible to neglect relativistic ezects and work with a Newtonian approximation,
that is, with the s = 0 Gross-Pitaevsky-Poisson system. However, when the
mass of the con}guration approaches the Kaup mass Mkaup = 0.633M2

pl/m (for
non-interacting stars with }eld mass m), relativistic ezects must be taken into
account. Above this maximum mass, there will be no equilibrium con}gura-
tions, similar to what happens for a fermion star [11]. As we shall observe,
the mass pro}le for a relativistic boson star M(σ0) exhibits the same damped
oscillation behavior as that of a fermion star [12]. However, stability, unlike a
fermion star where collapse is prevented by the Pauli exclusion principle, for
a boson star is prevented by the Heisenberg uncertainty principle. Also, as we
will observe, a boson star is a system that does not exhibit a typical perfect
~uid description, as its pressure is anisotropic. As we will see later, a self-
interacting boson star has a maximum mass given by Mmax ∼

√
λM3

pl/m
2, for

strong coupling constant λ � m2/M2
pl, that depends on the mass of the }eld

m and the self-interaction parameter λ, which can become comparable to the
maximum mass of a neutron star Mmax ∼M3

pl/m
2. This makes self-interacting

boson stars particularly interesting compared to the free case where the mass
of the con}guration is much smaller than that of fermion stars. The phe-
nomenology of a self-interacting boson star, relativistic and non-relativistic,
will depend only on its self-interaction parameter and its mass.

Because of their mass range, extension, and stability, boson stars could be
considered possible candidates to populate the universe in the form of dark
matter. Advances in the detection of gravitational waves and gravitational
lensing could help point towards considering boson stars and their growing
phenomenology as explanations for the abundance of dark matter. As we
mentioned above, the ΛCDM model has been incredibly successful in explain-
ing the dynamics of the universe at cosmological scales (� 10 kpc). However,
at galactic scales, this model presents challenges. To alleviate the tensions
between physics at cosmological scales, described successfully in the ΛCDM
model, and the physics of galactic scales, it is necessary to review the proper-
ties and nature of dark matter. Properties such as mass, spin, or the strength
of self-interactions can be traced to astrophysical observables. For example,
the phenomenology of a self-interacting bosonic }eld of ultra-light mass can
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be traced to galactic scales [13] and the ground state solitonic solutions of
the s = 0 Gross-Pitaevski-Poisson system can form the core of the galaxy
halos [14]. In addition, given that the occupation numbers within galaxy ha-
los are so high, the state of the boson }eld can be described as a classical
non-relativistic boson condensate, and, since the velocities of visible matter in
galaxies are non-relativistic and the mass range of a boson star (from 10−22eV
to ∼ Mpl) allows solutions with astrophysical scale of de Broglie lengths, the
motivation to study the Newtonian limit is justi}ed. Then, we can think of
a non-relativistic boson star as a Bose-Einstein condensate with wave func-
tion ψ(t, ~x), in which the excitations of the }eld represent identical particles
that can occupy the same ground state. This system is described through
the Gross-Pitaevskii equation for the wave function ψ(t, ~x), and the Poisson
equation for the Newtonian gravitational potential U(t, ~x). Equilibrium con-
}gurations correspond to a balance between the ezects of pressure due to the
self-interacting of the particles, the self-gravitational attraction of the ~uid,
and the repulsion due to quantum pressure.

The literature on boson stars is abundant. The works of Kaup [15], Ru{ni
and Bonazzola [11] are the pioneering works in the study of these solutions.
Subsequently, works where the scalar }eld has self-interaction [16], non-minimal
coupling to gravity [17], or electric charge [18] were considered, as well as the
analysis of its stability [19, 20, 21, 22, 23]. We recommend to the reader the
reviews of Visinelli [9], where the various properties of boson stars are studied,
particularly for the free (λ = 0) and self-interacting (λ 6= 0) cases, and the
work of Jetzer [24], where the non-relativistic limit of boson stars is reviewed
as well as the analysis of their stability, and the work of Ru{ni [25], Lee and
Pang [26] and Liddle [27] where the mechanism of formation for boson stars
is reviewed. In [28], the authors study the dizerent possibilities of detecting
boson stars (e.g. gravitational waves and lensing), of which they provide a
detailed review. In [29], a special type of boson star, called `-boson stars, is
presented, formed by the collection of N non-interacting complex scalar }elds
parametrized by an angular momentum number ` = (N − 1)/2. Finally, we
refer the reader to the work of Liebling and Palenzuela [30] where the dizerent
boson stars and their various astrophysical signals are reviewed.

In this chapter, we will focus on the study of relativistic [9, 24, 25, 26, 27,
28, 30] and non-relativistic [31, 32, 24, 33] boson stars, and we will postpone
the study of non-relativistic Proca stars to the next chapter. We anticipate
that, for these objects to be of astrophysical and cosmological interest, they
must persist for at least the Hubble time, so we demand these con}gurations
to be stable against small perturbations. Furthermore, if these con}gurations
are to play the role of dark matter, they must be weakly (or null) interact-
ing with the Standard Model, non-relativistic, and self-gravitating. Boson
stars, being objects that remain bound only by the ezect of their gravity and
self-interaction, are candidates susceptible to study. In Section 1.2 we study
relativistic boson star, their conserved charges 1.2.1 and the particular case
of a relativistic spherically symmetric self-interacting con}guration 1.2.3 and
their numerical solutions 1.2.4. The analysis of the stability of the relativistic
boson star is brie~y introduced in the Section 1.2.5. In Section 1.3 we study
non-relativistic boson stars and their numerical solutions for the spherically
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symmetric system and, }nally, a brief introduction to the analysis of its sta-
bility in Section 1.3.4. The mechanism of formation of these stars goes beyond
the scope of this thesis, so it will not be addressed here.

1.2 Relativistic Boson Stars
We can de}ne a non-topological soliton as a localized, and time-persistent ob-
ject whose stability is guaranteed by a conserved charge1, see Ref. [35, 9]. In
this sense, a boson star is a non-topological soliton that is supported by grav-
ity, and that is a stable and localized solution to the Einstein-Klein-Gordon
equations, described by a classical complex scalar }eld φ(t, ~x). In the frame-
work of general relativity, a classical complex scalar }eld φ(t, ~x) with mass m0

and potential V (|φ|2) is described by the Einstein-Klein-Gordon action of the
form

S[gµν , φ] =

∫

d4x
√−g

(

1

16πG
R + LM

)

, (1.1)

which consists of the Einstein-Hilbert action plus a matter term given by

LM = −∇µφ
∗∇µφ−m2

0|φ|2 − V (|φ|2), (1.2)

where, as usual, g is the determinant of the spacetime metric gµν , R is the Ricci
scalar, φ∗(t, ~x) is the complex conjugate of φ(t, ~x), with |φ(t, ~x)|2 its modulus
squared, and V (|φ|2) the bosonic potential. This potential can consist of a self-
interaction term of the form λ|φ|4 or higher-order terms. Similarly to a fermion
star like a white dwarf, a boson star depends on the balance formed between
the gravitational force that compacts the star and the pressure gradients that
balance the self-gravity of the star. This self-gravity of the boson }eld is
generated by the geometric aspects of the covariant derivatives in the action
(1.1) and the dispersive nature of the Klein-Gordon equation provides the
pressure gradients that balance the gravitational }eld generated by the boson
}eld.

Variation of the action (1.1) with respect to the metric leads to the Ein-
stein’s equations,

Rµν −
1

2
gµνR = 8πGT φµν , (1.3)

where Rµν is the Ricci tensor and T φµν is the energy-momentum tensor of the
scalar }eld given by

T φµν = − 2√−g
δSM

δgµν
= ∇µφ

∗∇νφ+∇νφ
∗∇µφ− gµν [∇γφ∗∇γφ+ V (|φ|2)]. (1.4)

Variation of the action (1.1) with respect to the scalar }eld φ(t, ~x) leads to the
Klein-Gordon equation

∇µ∇µφ−m2
0φ = −dV (|φ|2)

d|φ|2 φ. (1.5)

1Topological solitons do not require an additional conservation law, and boundary con-
ditions at in}nity are topologically dizerent from the vacuum [9, 34].
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The whole system is denominated the Einstein-Klein-Gordon system (EKG).
Solutions to this system that conform a stable object, in which an equilib-
rium between self-gravity and pressure exists, similar to a fermion star, are
denominated boson star.

1.2.1 Conserved Charges
Associated with the action (1.1) there are conserved charges. It is easy check
that the action (1.1) possesses invariance under the global transformation
φ → eiθφ, with θ a real constant. This invariance, according to the Noether
theorem,2 give rise a conserved current given by

Jµ = i(φ∗∇µφ− φ∇µφ
∗), (1.6)

in such a manner that its covariant derivative vanishes, ∇µJ
µ = 0 (for scalar

}elds the covariant derivative coincides with the partial derivatives ∇µ → ∂µ).
The conserved charge associated to the current Jµ is given by

N =

∫

d3x
√−gJ0, (1.7)

where N can be identi}ed with the number of boson particles present in the
con}guration. Note that if the }eld φ(t, ~x) were real, the conserved charge N
would not exist. The requirement of a conserved charge N is essential to ensure
the stability of the star. These con}gurations, whose condition at in}nity is the
vacuum, are what we have called above non-topological soliton. If the number
of particles is not conserved, the stability is not ensured because of possible
direct decays of the boson particles that constitute the star. In turn, if the
condition at in}nity were not the vacuum, the energy of the object would not
be }nite.

On the other hand, the mass of the star can be calculated using the Tolman
mass formula [9, 28]

M =

∫

dx3
√−g[2T 0

0 − T µ
µ ]. (1.8)

1.2.2 Derrick Theorem
As we have already de}ned, a boson star is a compact object that is a so-
lution to the Einstein-Klein-Gordon system and is stable over time. In this
respect, Derrick’s theorem states the following: for a wide class of nonlinear
wave equations (e.g. the Klein-Gordon equation), there exist no stable time-
independent solutions of }nite energy, see Refs. [37, 38]. The mathematical

2If a continuous symmetry transformation φ → φ +Dφ only changes L by the addition
of a four-divergence (i.e. DL = ∂µW

µ) for arbitrary φ, then this implies the existence of
a current Jµ

N = ΠµDφ −Wµ(x), where Πµ = (∂L/∂(∂µφ)) is the momentum density. If
φ obeys the equations of motion then the current is conserved, i.e. ∂µJµ

N = 0. Conserved
currents are important because they give rise to conserved charges QN =

∫

J
µ
NdAµ. Here,

if φ(xµ) changes under a symmetry transformation by an amount λ, then, an in}nitesimal
transformation on φ, induced by an in}nitesimal δλ, can be written as δφ = Dφδλ where
Dφ = (∂φ/∂λ)|λ=0. In other words, if a system possesses some kind of invariance a quantity
related to this invariance will be conserved, see Ref. [36] for a detailed explanation.
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proof of Derrick’s theorem goes beyond the scope of the present work. How-
ever, the Derrick theorem can be circumvented: it is possible to }nd stable
and localized solutions of the Einstein-Klein-Gordon equation if we consider a
}eld with periodic time dependence, allowing the gravitational }eld to remain
time-independent. This allows us to write solutions of the form

φ(t, ~x) = e−iωtφ(~x), (1.9)

where ω is a constant. It is important to note that the notion of a localized
solution refers to a star that has }nite energy, that is, the scalar }eld φ(t, ~x)
vanishes at r → ∞. For the spherical symmetric case, which we will analyze
here, we need to replace φ(~x) = φ(r).

1.2.3 Spherically Symmetric Relativistic Boson Stars
Now we will present solutions for case of a spherically symmetric con}guration
with self-interacting potential V = λ|φ|4 where φ is given by the harmonic
ansatz (1.9) with φ(~x) = φ(r) a real radial dependent function3. For spherically
symmetric con}gurations the spacetime line element take the forms

ds2 = −evdt2 + eudr2 + r2dΩ2, (1.10)

where v = v(r) and u = u(r) are only radial dependent functions and dΩ2 =
dθ2 + sin2 θdφ2. Note that although the elements of the metric are time-
independent, this does not guarantee that the }eld is time-independent, how-
ever, given that the energy-momentum tensor at Eq. (1.4) only presents combi-
nations of φ∗(t, ~x)φ(t, ~x) and its derivatives ∇µφ

∗(t, ~x)∇νφ(t, ~x), the harmonic
ansatz (1.9) guarantees that this is the case. These stationary spherically
symmetric boson stars are the simplest con}gurations possible. However, con-
}gurations that include rotation (where the pro}le φ(~x) is radial and angular
dependent and the star has angular momentum) might be also of interest since
in nature these con}gurations might rotate.

In order to solve the Einstein-Klein-Gordon system, Eqs. (1.3)-(1.5), we
need to calculate the energy-momentum tensor Tµν , the Ricci tensor Rµν and
Ricci scalar R. Using the harmonic ansatz (1.9) and the spherical symmetric
spacetime element (1.10), there are three non-trivial Einstein equations coming
from the Gtt, Grr and Gθθ components of the Einstein tensor, together with
the conservation equation of the energy momentum tensor ∇µT

µ
ν = 0, giving

us only a system of three independent equations. For the metric (1.10) the
non-zero Ricci tensor components take the form

Rtt =
1

2
ev−u

[

∂2rv +
1

2
(∂rv)

2 − 1

2
∂rv∂ru+

1

r
∂rv

]

, (1.11a)

Rrr =
1

2

[

−∂2rv −
1

2
(∂rv)

2 +
1

2
∂rv∂ru+

1

r
∂rv

]

, (1.11b)

Rθθ = e−u
[r

2
(∂ru− ∂rv)− 1)

]

+ 1, (1.11c)

Rφφ = sin2 θRθθ, (1.11d)
3In principle, φ(r) is a complex scalar }eld dependent on the radius r, given by φ(r) =

φR(r) + iφI(r) up to an arbitrary phase. However, the two components follow the same
equation, so we can write φ(t, ~x) = e−iωtφR(r) = e−iωtφ(r).
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and the Ricci scalar is given by

R = e−u
[

∂2rv +
1

2
(∂rv)

2 − 1

2
∂rv∂ru+

2

r
(∂rv − ∂ru) +

2

r2
(1− eu)

]

. (1.12)

Using these identities and the energy momentum tensor (1.4) into the {tt} and
{rr} Einstein equations (Rµν − 1

2
gµνR = 8πTµν) we get

e−u
(

u′

r
− 1

r2

)

+
1

r2
= 8πGρφ, (1.13a)

e−u
(

v′

r
+

1

r2

)

− 1

r2
= 8πGpφ, (1.13b)

where the primes denote dizerentiation with respect to the radial coordinate r
and the ezective energy density and radial pressure are given respectively by

ρφ = e−vω2φ2 + e−u(φ′)2 + Ṽ (φ2), (1.14a)
pr = e−vω2φ2 + e−u(φ′)2 − Ṽ (φ2), (1.14b)
pT = e−vω2φ2 − e−u(φ′)2 − Ṽ (φ2), (1.14c)

where pT is the tangential pressure and Ṽ = m2
0|φ|2 + V (φ2). Since the radial

pressure and the tangential pressure dizer by one sign in the second term,
a perfect ~uid (where pressure is isotropic) treatment will not in general be
possible when we deal with a relativistic boson star. So, a boson star is an
example of a con}guration with an anisotropic ~uid description.

Now, to calculate the Klein-Gordon equation (1.5) we need to obtain the
d’Alembertian operator

� ≡ gµν∇µ∇ν =
1√−g

∂

∂xµ

(√−g gµν ∂

∂xν

)

, (1.15)

with √−g = e(u+v)/2r2 sin2 θ such that

�φ =

[

− e−v
∂2

∂t2
+ e−u

(

∂2

∂r2
+

1

2

(

∂v

∂r
− ∂u

∂r

)

∂

∂r
+

2

r

∂

∂r

)

+
1

r2
∂2

∂θ2
+

1

r2 sin2 θ

∂2

∂φ2

]

φ.

Finally, we can write the Klein-Gordon equation as

φ′′(r) +

(

2

r
+
v′ − u′

2

)

φ′(r) = eu
(

Ṽ (φ2)

dφ2
− e−vω2

)

φ. (1.16)

Together, equations (1.13) and (1.16) conform the relativistic spherical sym-
metric Einstein-Klein-Gordon system.

Now, if we de}ne
gtt ≡ −

(

1− 2M(r)

r

)

(1.17)

and we use Eq. (1.13), we can recast this last as

dM(r)

dr
= 4πr2ρφ, (1.18)
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with the }nite-mass condition M = limr→∞M(r) where M is the total mass
of the con}guration, given by (1.8).

Now, let us consider the potential for self-interaction given by Ṽ = m2
0|φ|2+

λ|φ|4. The simplest case in which λ = 0 is called mini-boson star con}guration
[39], and the case for λ 6= 0 is called a massive-boson star [40], with m0 the mass
of the boson particles (the reason for these names will soon become clear). In
the particular case of a spherically symmetric con}guration, and after rescaling
the radial function φ(r) in units of the reduced Planck mass M2

pl = (8πG)−1

as φ̃ = φ/Mpl, and the radial coordinate as x = m0r, we can recast Eqs. (1.13)
and (1.16) as

1

x

du

dx
=

1− eu

x2
+ (1 + e−vω̃2 + λ′φ̃2)euφ̃2 +

(

dφ̃

dx

)2

, (1.19a)

1

x

dv

dx
=

eu − 1

x2
− (1− e−vω̃2 + λ′φ̃2)euφ̃2 +

(

dφ̃

dx

)2

, (1.19b)

d2φ̃

dx2
= −

(

1 + eu − x2eu(1 + λ′φ̃2)φ̃2
) 1

x

dφ̃

dx
+ eu(1 + 2λ′φ̃2 − e−vω̃2)φ̃,

(1.19c)

where λ′ = λM2
pl/m

2
0 and ω̃ = ω/m0. With this change of variables, we have

achieved that the mass of the boson m0 does not appear explicitly in the
equations and therefore the con}gurations have no dependence on the mass of
the boson (it is absorbed in the numerical variables). In general, the value of
λ plays a relevant role even for very small values of λ. When λ < 0 or λ > 0
we have the attractive and repulsive case, respectively.

To ensure that the solutions are regular, asymptotically ~at and localized
we need to impose the following boundary conditions

φ̃(r = 0) = φ̃0, lim
r→∞

φ̃(r) = 0, (1.20a)

u(r = 0) = 0, lim
r→∞

u(r) = 0, (1.20b)

v(r = 0) = v0, lim
r→∞

v(r) = 0, (1.20c)

M(r = 0) = 0, lim
r→∞

M(r) =M, (1.20d)

where v0 and φ̃0 are constants that we will call central amplitudes. We can
see from Eq. (1.19c) that the }rst term inside the parentheses is singular at
the origin unless dφ̃

dx
= 0. Similarly, if eu = 1 the }rst term of Eqs. (1.19a)

and (1.19b) is non-singular if u(r = 0) = 0. To ensure the condition that the
solutions are asymptotically ~at we need that eu = ev = 1 at in}nity r → ∞.
Additionally, given that the solutions must have }nite mass, it is necessary
to introduce the limit limr→∞ φ̃ = 0, as we can see from the mass expression
(1.18). If we reduce the order of the dizerential equation (1.19c), we will have
a total of four }rst-order dizerential equations and, therefore, to completely
determine the system, we will require the boundary conditions for u, v, φ̃, and
φ̃′, given by Eqs. (1.20), from which, the condition limr→∞ φ̃(r) = 0 will allow
us to determine the unique value of ω̃n for n = 0, 1, 2, 3, ... number of nodes in
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φ̃(x) that satis}es all the conditions (1.20) given a speci}c value of the central
amplitude φ̃0. The only parameters that remains free are the central amplitude
φ0, the scale determined through x = m0r by the value of the mass m0 and the
self-interacting parameter λ, hence the boson star con}gurations will depend
only on this values.

Now, if we analyze the asymptotic behavior of Eq. (1.19) considering the
boundary conditions (1.20) and a weak coupling λ ∼ 0, we can write the wave
equation of the }eld φ as

d2φ̃

dx2
= (1− ω̃2)φ̃ → φ ∼ exp

{(

−
√

m2
0 − ω2

)

r

}

, (1.21)

where if ω < m0 then the scalar }eld decays exponentially when r → ∞ and if
m0 < ω then the pro}le will have an oscillatory behavior. Therefore, to obtain
localized solutions, that is, con}gurations with }nite energy, ω < m0 must be
satis}ed.

On another hand, using Eq. (1.7) we can calculate the conserved particle
number

N = 4π

∫ ∞

0

drr2ωe
v−u
2 φ2, (1.22a)

and integrating Eq. (1.18) up to in}nity we get the total mass of the star

M = 4π

∫ ∞

0

drr2ρφ = 4π

∫ ∞

0

drr2[(e−vω2 +m2
0 + λφ2)φ2 + e−u(φ′)2]. (1.23)

In terms of the variables x, φ̃ and ω̃ the mass and particle number scales as
M ∼ (λ1/2M3

pl/m
2
0)M̃ (for large λ′ [28, 40] ) and N = (M2

pl/m
2
0)Ñ , respectively.

Additionally, it is important to introduce the binding energy EB of the
star, de}ned as EB ≡ m0N −M , that is the dizerence between the energy
of the gravitationally bound con}guration (M) and the energy that the same
number of particles (N) would have if they were dispersed to in}nity (see
Refs. [24, 40, 41, 42]). We observe that if EB > 0, the star is in a bound state,
so it will not be possible for the constituent particles to disperse to in}nity,
the internal forces are su{cient to keep the system together. Stars with these
characteristics will remain stable. On the contrary, if EB < 0, then it will be
possible for the star to disperse into its constituent particles to in}nity. This
star will be possibly unstable.

Another important quantity to de}ne is the radius of the star. Although a
boson star is certainly in}nite in extension, an ezective de}nition of his radius
is given by the R99 radius. One can de}ne implicitly the R99 radius as

0.99M = 4π

∫ R99

0

drr2ρφ, (1.24)

that is, the radius containing 99% of the mass of the boson star. Along with the
radius of the star, another useful quantity is the relationship between the mass
M and the radius R99 called compactness C ≡ GM/R99. In this sense there is
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a limit for the size of the radio, that is, the Schwarzschild radius Rs = 2GM ,
below which the solution no longer describes a boson star, since the system
collapses into a black hole. Another quantity is the kaup limit associated to
Kaup Mass Mkaup, which is the maximal mass determined numerically of a
stable boson star, where Rkaup > Rs .

Given the value of the central amplitude φ0 there are an in}nite number of
solutions associated with the system (1.19), one for each possible value of the
frequency ωn . However, if we characterize these solutions with the number of
nodes n that the pro}le φn presents in the interval 0 < r <∞, it is possible to
associate the state of minimum energy with the solution with n = 0 number
of nodes and the states of higher energy with the solutions with n = 1, 2, 3...
number of nodes. This characterization is analogous to the excited states in
an atom (see Boson stars-Gravitational atom II, in Ref. [43] or [44]). As we
shall see, excited states have a maximum mass Mmax greater than the ground
state, with Mmax increasing as n increases, with n the number of nodes.

Heisenberg Uncertainly Principle

In the semiclassical approach, gravity is sourced by the expectation value of the
energy-momentum tensor 〈N |T̂ ν

µ |N〉 in the Einstein equations. For a boson
star, in their lowest energy state, the expectation value is given with respect
to the state number |N〉 which represents the state of N bosons in the ground
state n = 0. If the spacetime is asymptotically ~at, the spherically symmetric
and time-dependent scalar }eld φ(r, t) can be expanded in terms of the usual
creation and annihilation operators ân and â†n, which satisfy the commutation
relations [âm, â

†
n] = δmn, and the functions φ̂n which are orthonormal with

respect to a de}ned inner product. For this con}guration, a boson star with
N bosons in its ground state n = 0 will be characterized by a unique value of
the frequency ω0 for the eigenvector φ̂0. If we de}ne a classical }eld φc with
the form

φc = (ω0)
−1/2

√

N +
1

2
φ0(r)e

−iω0t, (1.25)

then the energy-momentum tensor of the classical con}guration and the quan-
tum con}guration are exactly the same (a complete description of the previous
treatment can be found in Ref. [45]). In this sense, it is justi}ed to repre-
sent a boson star by a classical }eld. Another important consequence of the
quantization of the }eld φ(t, r) is the appearance of the uncertainty principle,
which provides the “quantum pressure” that balance the gravitational }eld and
keeps the boson star in equilibrium. Heuristically, if we apply this principle
to a macroscopic boson star, the Heisenberg uncertainly principle of quantum
mechanics given by ∆p∆x ≥ h̄/2 can be written as

4m0vR ≥ h̄, (1.26)

where we have assumed that the boson star is con}ned within some radius
∆x = 2R with momentum ∆p = m0v. We can write the particle velocity
with a de Broglie wavelength λdB ∼ 2R = h/m0v as v ∼ h/(2m0R). With
this, the total kinetic energy is K ∼ Nh̄2/(8m0R

2)−1 (considering a free scalar
}eld, λ = 0). If we neglect the binding energy EB, we can make the approx-
imation m0N ≈ M , then the self-gravity potential energy is given by U ∼
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−(3/5)GM2/R, and the total energy E = Nh̄2/(8m0R
2)−1 − (3/5)GM2/R is

minimized when Rbs ∼ (5/6)(2Gm2
0M), where Rbs is the boson star radius. If

the mass M increases, the radius Rbs decreases. The maximum value of the
mass for which the radius Rbs reaches the Schwarzschild radius RS = 2GM
is given by Mmax ∝ m2

pl/m0 where m2
pl = 1/G. As we will see in the next

section, for a non-self-interacting boson star (a mini-boson star), the maxi-
mum mass (or Kaup mass) is given by Mmax ≈ 0.63m2

pl/m0 and for a self-
interacting boson star (a massive-boson star), the maximum mass is given by
Mmax ∼

√
λm3

pl/m
2
0, which is still inversely proportional to the mass m0, but

it is larger in magnitude (compared with a mini-boson star) and depends on
the coupling constant λ. It is for this reason that con}gurations with λ = 0
are called mini-boson stars and con}gurations with λ 6= 0 are called massive-
boson stars. Note that the maximum mass Mmax of the boson star is inversely
related to the mass of the constituent scalar }eld m0 (and in the case of a
self-interactive boson star depends also on the coupling constant λ) in such a
way that the size and mass of a boson star can reach from astrophysical scales
to atomic scales.

1.2.4 Numerical Solutions
Mini-boson Stars

In the free case, λ = 0, we can set the change of variables du/dx = (1/A)(dA/dx),
dv/dx = (1/B)(dB/dx), eu = A(x), ev = B(x) , φ̃(x) = σ(x), and recast the
dizerential equations (1.19) in the form

dA

dx
= xA2

[

(

ω̃2

B
+ 1

)

σ2 +
1

A

(

dσ

dx

)2
]

− A

x
(A− 1) , (1.27a)

dB

dx
= xBA

[

(

ω̃2

B
− 1

)

σ2 +
1

A

(

dσ

dx

)2
]

+
B

x
(A− 1) , (1.27b)

d2σ

dx2
= −

(

2

x
+

1

2B

dB

dx
− 1

2A

dA

dx

)

dσ

dx
− A

(

ω2

B
− 1

)

σ. (1.27c)

In order to solve numerically the system of equations (1.27) we reduce the
wave equation (1.27c) to a pair }rst order dizerential equations. The resulting
system of four }rst-order dizerential equations must satisfy the boundary con-
ditions (1.20) with the condition σ′(r = 0) = 0. We can write the boundary
conditions as

σ(r = 0) = σ0, lim
r→∞

σ(r) = 0, (1.28a)

A(r = 0) = 1, B(r = 0) = B0, (1.28b)
M(r = 0) = 0, lim

r→∞
M(r) =M. (1.28c)

The central amplitude σ0 and B0 are free parameters. However, we can observe
from Eq. (1.27) that if we choose B → cB and ω̃ → √

cω̃, the system of
equations does not change. Therefore the equations are linear in B and the
structure of the con}guration will be independent of B0. Furthermore, the
condition at in}nity for the }eld σ(r → ∞) = 0 ensures that the star is
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Figure 1.1: Mini-boson star con}guration (λ = 0). A, B, σ and σ′ as
functions of r for the case A0 = 1, B0 = 0.2, σ0 = 0.5 and σ′

0 = 0 with ω̃ = 0.7
and n = 0. As we can observe A(r → ∞) and B(r → ∞) = 1 (remember
that it is always possible to rescale the value of B → αB and ω̃ → √

αω̃ to
ensure the boundary condition B(r → ∞) = 1). Also σ(r → ∞) = 0 and
σ′(r = 0) = 0.

localized and has }nite energy. This condition determines the value for ω̃n
for each n = 1, 2, 3... number of nodes in the solution σn(r). As we mentioned
previously, there are an in}nite number of discrete values of ω̃n that satisfy this
system of equations. The state that minimizes the energy will be characterized
by the solution σn=0(r) with n = 0 nodes. Solutions with a larger number of
nodes represent solutions with increasing higher energy and satis}es ω̃0 < ω̃1 <

ω̃2... < ω̃n. Let us also remember that the condition ωn < m0 must be satis}ed
for all n to ensure solutions with }nite energy.

To determine the value of ω̃n that satis}es the boundary conditions (1.28)
we use the numerical shooting method, reducing the boundary value problem
to }nding the initial conditions that give a root. Given the value of the central
amplitude σ0, we choose a seed value for ω̃n and solve the system accordingly.
For example, in the case of n = 0 number of nodes, if we have chosen ω̃0 very
large, then σ′(x) will become negative at a }nite value of the radius x = m0r

going through a in~ection point, and if we have chosen ω̃ too small then σ′(x)
becomes positive at a }nite value of the radius. We can observe this behavior
for a central amplitude of σ0 = 0.1 in Figure 1.3 left and right panels, in
both cases, the limit limr→∞ σ(r) = 0 is broken. We must then choose a more
appropriate value for ω̃0. We can do this by bisecting ω̃avg = (ω̃max + ω̃min)/2
in a range [ω̃min, ω̃max] for a su{cient number of iterations until we have reach
the desired precision. In Appendix B.1, we analyze a detailed example of this
numerical method applied to a non-relativistic stationary Proca star.

Figure 1.1 shows a sample con}guration illustrating the functions A, B, σ
and dσ/dr as functions of r = x/m for the case A0 = 1, B0 = 0.25 and σ0 = 0.5
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Figure 1.2: Excited mini-boson star con}gurations. Mini-boson star
con}gurations (λ = 0) for dizerent excited solutions (n = 0, 1, 2, 3). Left
panel: radial pro}le σn for n = 0, 1, 2, 3 number of nodes. Right panel: mass
pro}le M as a function of x = m0r for each one of the con}gurations on the
right. Here M ∼ (M2

pl/m0)M̃ and σ =Mplφ̃.

Figure 1.3: Shooting method for a mini-boson star (λ = 0). We need to
}nd the value for ω0 that satis}es the appropriate boundary conditions (1.28)
given the values for σ(r = 0) = σ0 and B(r = 0) = B0. Left panel: if we choose
a value too small for ω, then σ′ becomes positive at a }nite value of x = m0r.
Right panel: if we choose a value too large for ω, the radial pro}le σ becomes
negative at a }nite value of the radius going through a in~ection point. In
both cases, the boundary condition limr→∞ σ(r) = 0 is broken. In the central
panel we have chosen an appropriate value for ω0 in the range [ωmin, ωmax] to a
certain degree of precision for the approximate solution σ(r). In this case the
boundary condition limr→∞ σ(r) = 0 is satis}ed. Also, given the invariance of
the system (1.27c) under the rescaling B → αB and ω̃ → √

αω̃, for B0 = 1, in
order to get B(r → ∞) = 1 we need to rescale ω̃ →

√

1/4.1ω̃ (note that this
ensure the condition ω < m0).
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with ω̃ = 0.7. We can observe that A, B and σ reach asymptotic values as
r → ∞ according to the boundary conditions (1.20). In Figure (1.4) we show
M and m0N as functions of the central amplitude σ0. Let’s remember that
if the binding energy, de}ned as EB = m0N − M , is positive EB > 0, the
con}guration is possible to be stable, otherwise it will be possible for the star
to disperse into its constituent particles to in}nity (or more likely, the radiation
of some of the particles until the system reaches a stable state). In Figure 1.4
the second vertical line signals when the binding energy vanishes. When the
total mass of the con}guration reaches its maximum value, the binding energy
is positive, but this is only a small fraction of the total mass M . Finally,
Figure 1.2 shows the solutions to the system (1.27) with a central amplitude
value of σ = 0.1 for n = 0, 1, 2, 3 number of nodes. We plot the radial pro}le
σ and the mass M of the star as functions of radius x = m0r in the }rst and
second panel, respectively. We can observe that the value of the total mass
M =M(r → ∞) grows as n increases. As we mentioned before, excited states
have a higher value of M with respect to the ground state n = 0. Actually, we
can observe that M is linear with respect to n.

0.0 0.2 0.4 0.6 0.8 1.0

σ0

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
,
m

0
N

M

m0N

EB

Figure 1.4: Total mass and particle number. The total mass M and the
particle number m0N as functions of central amplitude σ0. The }rst dotted
vertical line marks the point of maximum mass Mmax. The second vertical line
marks the point where the binding energy EB vanishes. When EB is positive,
it represents only a small fraction of the total mass M .

Self-interacting Boson Stars

In the case in which the self-interaction term λ is dizerent from zero, we can
solve the system of equations in a similar way to the free case λ = 0. To do

Chapter 1 15



this, let us write equations (1.19) in terms of the variables A, B, ω̃ and σ, such
that

dA

dx
= xA2

[

(

ω̃2

B
+ 1

)

σ2 + λ′σ4 +
1

A

(

dσ

dx

)2
]

− A

x
(A− 1) , (1.29a)

dB

dx
= xBA

[

(

ω̃2

B
− 1

)

σ2 − λ′σ4 +
1

A

(

dσ

dx

)2
]

+
B

x
(A− 1) , (1.29b)

d2σ

dx2
= −

(

2

x
+

1

2B

dB

dx
− 1

2A

dA

dx

)

dσ

dx
− A

[(

ω2

B
− 1

)

− 2λ′σ3

]

σ,

(1.29c)

and from Eq. (1.18), the dizerential mass equation take the form

dM(r)

dx
=

1

2
x2

[

(

ω̃2

B
+ 1

)

σ2 + λ′σ4 +
1

A

(

dσ

dx

)2
]

. (1.30)

Let’s remember that λ′ = λ
M2

pl
m2

0

. This self-coupling term may be important
even for small values of λ. For the case of mini-boson star, Figure 1.4 shows
that the maximum mass Mmax is reached for an approximate value of central
amplitude σ0 = 0.3, which in physical terms is given by φ0 ∼ (0.3)Mpl. If we
take the ratio between the mass term m2

0φ
2
0 and the self-interaction term λφ4

0

for this value of the central amplitude, we have λφ4
0/m

2
0φ

2
0 = λ(0.3)2M2

pl/m
2
0,

so it will be relevant even for values on the order of λ > m2
0/(0.3Mpl)

2 typically
small. For example, if we consider a boson mass m0 of the order of the neutron
mass, we need that |λ| > 10−39. This implies that in general, the value of λ
plays a relevant role even for very small values of λ. Therefore, we can consider
that the coupling term plays a signi}cant role in the con}guration. The system
of equations (1.29) represents a family of con}gurations characterized by each
of the values that λ can take.

The method to solve Eqs.(1.29), is the same described above for a mini-
boson star. Given the boundary conditions A0, B0, σ0 and limr→∞ σ(r) = 0,
we use the shooting method based on bisection method to determine the value
of ω̃n. This value of ω̃n characterizes the solution σn(r) with n number of
nodes that satis}es limr→∞ σ(r) = 0. It is important to note that to solve
Eqs. (1.29) we need to choose values of λ′ that are su{ciently small. For large
values of λ′, the relative size of the terms in Eqs. (1.29) dizers by several orders
of magnitude and also their ratio varies with respect to the radius. Therefore,
it is not possible to systematically neglect speci}c terms in the equations.
However, it is possible to consider an approximate solution in the weak and
strong coupling limit (see the approximations to the strong limit in Ref. [40]).
In Figure 1.5 we present the pro}les σ with zero nodes, considering dizerent
values of λ′, including the case of a mini-boson star λ′ = 0. Also, we can see
that the value of the mass M increases as the value of the coupling constant
does.4 Figure 1.6 shows the total mass as a function of the central amplitude

4Now it is clear that a self-interacting boson star is more massive than its non-self-
interacting counterpart, from which we derive the names mini- and massive- boson star.
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Figure 1.5: Self-interacting relativistic massive-boson star. Self-
interactive relativistic boson star for dizerent values of the constant coupling
λ′ = −1, 0, 10, 15, 20 and n = 0 nodes. Left panel: radial pro}le σ for each λ′.
The pro}le widens as the coupling constant increases. Right panel: the mass
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σ0 for the cases λ′ = 0, 10, 15 and 20. For each case, the total mass increases
successively. The maximum mass increases as a function of λ′.
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value of the coupling constant λ′. Particularly, let us note that the value of
the maximum mass Mmax increases as we increase the value of λ′.
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1.2.5 Dynamical Stability of Relativistic Boson Stars
The con}gurations we have studied so far, mini- and massive- boson stars,
are susceptible of instability against small perturbations. As we have already
mentioned, if EB < 0, then there exists the possibility that the entire star
could be unstable and disperse to in}nity. Otherwise, those con}gurations
for which their binding energy EB is positive cannot disperse completely to
in}nity, therefore, these con}gurations could form stable stars over time. As
we shall see, there is a limit, within the range of con}gurations with EB > 0,
beyond which stable stars cannot be formed in the presence of linear perturba-
tions. Certainly, con}gurations for which the value of the central amplitude σ0
exceeds the point of the maximum mass of the con}guration Mmax (including
a region where EB > 0) will be unstable, thereby either evolving into a black
hole or transitioning from an unstable state to a stable con}guration.

A way to analyze the dynamical stability of boson stars is to study the time
evolution of in}nitesimal perturbations around an equilibrium con}guration,
while considering that the number of particles is conserved (see Refs. [20,
22, 40]). We can obtain the perturbed equations if we decompose the scalar
φ(t, x) and the metric }eld gµν(t, x) into an equilibrium con}guration φ(0)(x)

and g(0)µν (x) and a small perturbation δφ(t, x) and δgµν(t, x), which are generally
dependent on r, ϕ and θ. Here we restrict ourselves to the case of spherically
symmetric perturbations that depend only on r. In this case the functions
φ(r, t) and u(r, t) and v(r, t) can be written as

u(r, t) = u(0)(r) + δu(r, t), v(r, t) = v(0)(r) + δv(r, t), (1.31a)
φ(r, t) = φ(0)[1 + δφR(r, t) + iδφI(r, t)]e

−iωt, (1.31b)

where δu(r, t), δv(r, t), δφR(r, t) and δφI(r, t) are small time-dependent pertur-
bations. Here φ(t, r) is a generalization of the ansatz (1.9). By introducing the
perturbations (1.31) into Einstein’s equations (1.3), we obtain a set of inde-
pendent linearized perturbation equations. If we also consider that perturba-
tions conserve the number of particles N , we can add an additional constraint
equation, counting a total of two second-order dizerential equations and one
constraint. Although obtaining these equations is a challenging task, they can
be consulted in Ref. [40]. However, the spirit of this section is to show the
general process that we need to apply in the relativistic and non-relativistic
limit.

The next step is to assume that all perturbations have a harmonic depen-
dence on time (see Refs. [40, 41, 46, 47]) as

δqi(t, ~x) = δqi(r)e
iλt, with qi ∈ {u, v, φR, φI}, (1.32)

where λ is the characteristic frequency of the system to be determined and
δqi(r) is a radial-dependent function. Once the ansatz (1.32) has been intro-
duced, the system of coupled equations, along with the condition dN/dt = 0,
de}nes an eigenvalue value problem for λ and the eigen-functions δqi(r). These
system of equations can be written as

Lijδqi,n = λ2nMijδqi,n, (1.33)
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with Lij a dizerential operator and Mij a matrix depending on the background
}elds q(0)i , with q(0)i ∈ {u(0), v(0), φ(0)}, see Ref. [40, 41, 46] for a detailed deriva-
tion. The eigen-equation (1.33) yields a spectrum of solutions δqi,n(r) with
their respective eigenvalues λn. As we will see, the sing of the eigenvalue λ2n
is crucial to determine the stability of the star. If λ2n is negative, then λn is
imaginary and the eigenfunction δqi,n(r) grows exponentially with time and
the star will be unstable. Otherwise, if λ2n is positive, λn is real and the star
has no unstable modes, so will be stable. Actually, the system (1.33) is self-
adjoint with real eigenvalues λ2n. Since λ2n acquires a family of values given by
λ20 < λ21 < λ22 < ..., it is only necessary to determine the sign of λ20 to establish
the existence or absence of growing modes. Therefore, the critical value of λc
at which the star becomes unstable is given by λc = 0. The case λc = 0, cor-
responds to a static perturbation according to Eq. (1.32). In particular, in the
case of static perturbations the perturbed functions de}ned in Eq. (1.32) sat-
isfy the same equations as the equilibrium solutions u(0), v(0), φ(0)· Thus if we
have an equilibrium con}guration with σ

(0)
0 , the perturbed }elds will describe

another equilibrium con}guration with σ
(0)
0 + δσ0, for some in}nitesimal δσ0.

We already know that the equilibrium mini-boson and massive-boson stars
con}gurations are parameterized with the only parameter σ0, cf. Figures 1.4
and 1.6, that is, the central amplitude of the scalar }eld, as

M =M(σ0), N = N(σ0), (1.34)

with M the total mass and N the number of particles. Hence, in the static
case perturbed con}gurations must correspond to some central density σ0+δσ0,
and, since the perturbations conserve the particle number δN , we can establish
that only static perturbations exist when

dM(σ0)

dσ0
= 0,

dN(σ0)

dσ0
= 0. (1.35)

In conclusion, the stable modes present in Eq. (1.33) correspond to real
and positive eigenvalues λ2n with λc = 0 the minimum value below which the
modes become unstable. When λc = 0, there exists an extreme value of the
mass M(σ0), beyond which the star becomes unstable. The maximum value
of this mass corresponds to the value of the mass Mmax. In the left panel
of Figure 1.7, we plot the relation between the total mass of the star M for
the relativistic case versus the value of the central pro}le σ0. We can see
that there exists a value of σ0 for which M is maximized which is a critical
point of Eq. (1.35). The gray band indicates a sector of con}gurations whose
total mass is below the Kaup mass value and positive binding energy EB > 0.
Con}gurations within this range could be stable against linear perturbations.
Therefore, Mkaup signs the transition limit between stability and instability.
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Figure 1.7: Relativistic and non-relativistic mini-boson stars (λ = 0)
for n = 0. Right panel: mass pro}le Mr for a relativistic mini-boson star.
There is a region (gray zone) beyond which the star is unstable. The critical
mass value at this point is given by the Kaup mass (Mkaup = 0.629). Left
panel: mass pro}le MN for a non-relativistic mini-boson star. In this case,
there is no critical mass value since relativistic ezects are not present.

1.3 Non-relativistic Boson Stars
1.3.1 Gross-Pitaevskii-Poisson System
In the non-relativistic limit, the action (1.1) takes the form

S[U , ψ] =
∫

dt

∫

d3x

[

1

8πG
U∆U

+ ψ∗
(

i
∂

∂t
+

1

2m0

∆

)

ψ − λ

4m2
0

|ψ|4 −m0U|ψ|2
]

(1.36)

where we have introduced the scalar }eld as φ(t, ~x) = 1√
2m0

e−im0tψ(t, ~x) and
U(t, ~x) is the Newtonian potential. The }rst term describes the gravita-
tional }eld, the second and third terms describes the sector of matter, and
the last term describes the interaction of the matter }eld with the gravita-
tional potential. In particular, we will consider a self-interacting potential
V = λ|ψ|4/(4m2

0) with λ a dimensionless coupling constant, which can take
the values λ > 0 if the self-interaction is repulsive or λ < 0 if the self-interaction
is attractive. When λ = 0 we recover the case with no self-interaction, in such
a case the scalar }eld is only coupled to gravity. In Appendix A.1, we analyze
in detail how to proceed to take the non-relativistic limit of the action (1.1).

Now, varying the action (1.36) with respect to the }eld ψ, we obtain the
Gross-Pitaevskii equation

i
∂ψ

∂t
= − 1

2m0

∆ψ ± |λ|
2m2

0

|ψ|2ψ +m0Uψ (1.37a)

where the signs ± refer to the repulsive (λ > 0) and attractive case (λ < 0),
and varying with respect to the Newtonian potential we obtain the familiar
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Poisson equation as
∆U = 4πGm0|ψ|2. (1.37b)

The whole system (1.37a) and (1.37b) conform the s = 0 Gross-Pitaevskii-
Poisson system. If we restrict to the case λ = 0, we recover the Schrödinger-
Poisson system. So, we can think of this system as a self-gravitating Bose-
Einstein condensate with wave function ψ(t, ~x). As we expected, the system
does not contain temporal derivatives of the gravitational potential. In con-
trast to the self-interacting relativistic system (1.29), which depends on the
gravitational }elds A(t, ~x) and B(t, ~x), and the scalar }eld φ(t, ~x), the non-
relativistic Gross-Pitaevskii-Poisson system (1.37) only depends on the gravi-
tational }eld U and the scalar wave function ψ(t, ~x). Beyond this simpli}ca-
tion, to solve the system (1.37), we follow a process that is entirely analogous
to the relativistic case.

We can recast the Gross-Pitaevskii-Poisson system (1.37a)-(1.37b) as an
integro-dezerential nonlinear equation in the form

i
∂ψ

∂t
= Ĥ(ψ)ψ (1.38)

with the Hamiltonian operator

Ĥ(ψ) = − 1

2m0

∆± |λ|
2m2

0

|ψ|2 + 4πGm2
0∆

−1(|ψ|2), (1.39)

where
∆−1(|ψ|2)(~x) = − 1

4π

∫ |ψ(~y)|2
|~x− ~y|d

3y. (1.40)

Note that the Hamiltionian operator Ĥ[ψ] is hermitian, i.e. (ψ1, Ĥ[ψ]ψ2) =
(Ĥ[ψ]ψ1, ψ2)) and nonlinear in ψ. Solutions to the system (1.38) that minimize
the energy functional and conserve the number of particles are given by the
harmonic ansatz of the form Eq. (1.9) and are called stationary states. Here,
we are interested in characterizing these con}gurations, particularly con}g-
urations spherically symmetric. In what follows, we will make an ezort to
describe these solutions, and a brief review of the methodology for studying
their stability.

1.3.2 Conserved Quantities
Particle Number

The invariance of the Lagrangian in the non-relativistic action (1.36) under
continuous shifts in the phase of the wave function ψ(t, ~x) = e−iαψ(t, ~x), with α
a real constant, leads to the conservation of the “particle number”, N =

∫

d3xn,

where the number density n is given by n = |ψ(t, ~x)|2. In the non-relativistic
case we have that the total mass of the con}gurations is given by M = m0N ,
where the energy density is given by ρ = m0|ψ|2.

Note: Given the Lagrangian density

L =

[

ψ∗
(

i
∂

∂t
+

1

2m0

∆

)

ψ − V −m0U|ψ|2
]

, (1.41)
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the complex scalar }eld ψ has internal U(1) symmetry. This means that
global transformations of the }elds ψ → eiα and ψ∗ → e−iαψ∗ have no
ezect on the Lagrangian. According to the Noether theorem (see footnote
(2)), every symmetry yields a conserved current. To get the conserved
current associated to the U(1) symmetry, we write the transformation for
an in}nitesimal change in the phase α:

ψ → ψ + δψ = ψ +Dψδα = ψ + iψδα, Dψ =
∂ψ

∂α

∣

∣

∣

∣

α=0

= iψ,

ψ∗ → ψ∗ + δψ∗ = ψ∗ +Dψ∗δα = ψ − iψδα, Dψ∗ =
∂ψ∗

∂α

∣

∣

∣

∣

α=0

= −iψ∗,

with DL = ∂L
∂xµ

∂ψ

∂α
|α=0 = 0. Given that the conserved current is given by

the expression J
µ
N = Πµ(x)Dψ −W µ(x) with DL = ∂µW

µ = 0, we have
W µ = 0 and J

µ
N =

∑

σ Π
µ
σDσ where the sum is over the }elds ψ and ψ∗.

So, the conserved current is given by

J
µ
N =

∑

σ

Πµ
σDσ = Πµ

ψDψ +Πµ
ψ∗Dψ

∗ (1.42)

with the conserved charge

N =

∫

d3xJ0
N =

∫

d3x|ψ|2. (1.43)

See Ref. [36] for a comprehensive exposition of Noether’s theorem and
conserved charges.

Energy Functional

Analogous to the relativistic case, we can write the total energy of the system
for the non-relativistic action (1.36) as

E =

∫

d3x

[

∂L
∂(ψ̇∗)

ψ̇∗ +
∂L
∂(ψ̇)

ψ̇ +
∂L
∂(U̇)

U̇ − L
]

, (1.44)

where dots indicates time-derivatives. Using the relations ∇(U∇U) = ∇U∇U+
U∆U , ψ∗∆ψ = ∇(ψ∗∇ψ)−∇ψ∗∇ψ, the Poisson equation (1.37b) and discard-
ing the boundary terms, we can recast this as

E [ψ] ≡
∫

d3x

(

1

2m0

|∇ψ|2 ± |λ|
4m2

0

|ψ|4 + 1

2
m0U|ψ|2

)

, (1.45)

which, due to the invariance of the Lagrangian under time translations ψ(t, ~x) →
ψ(t− t0, ~x), with t0 a real constant, is conserved whereas the system evolves.

Properties of the Energy Functional

We are interested in characterizing equilibrium con}gurations that represent
perdurable solutions over time, that is, that are susceptible to stability against
perturbations. Equilibrium con}gurations correspond to critical points of the
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energy functional E [ψ] that conserves the number of particles N .5 Given the
constriction N = constant, we need to perform the variation of the functional
EE[ψ] = E [ψ]− E

2
(N−

∫

ψ∗ψdV ) with E a Lagrange multiplier associated with
the constraint that guarantees that the particle number remains }xed in the
variation. After the }rst variation of E [ψ] we have δEE = Re(Ĥ[ψ]ψ−Eψ, δψ).
A critical point is characterized by the criteria δEE = 0 for the }eld δψ; Then,
equilibrium con}gurations satis}es the eigenvalue equation Eψ = Ĥψ. These
con}gurations are called stationary con}gurations, and they are given by the
solutions of the form

ψ(t, ~x) = e−iEtσ(0)(~x). (1.49)
For these solutions, the energy functional allows us to shed light on the stability
of stationary con}gurations. In order to see this, we can recast the energy
functional (1.45) in the form

E [ψ] = T [ψ]± F [n]−D[n, n], (1.50)

with n = |ψ|2, and

T [ψ] ≡ 1

2m0

∫

|∇ψ(~x)|2d3x, (1.51a)

F [n] ≡ |λ|
4m2

0

∫

n(~x)2d3x, (1.51b)

D[n, n] ≡ 2πGm2
0

∫ ∫

n(~x)n(~x)

|~x− ~y| d
3yd3x. (1.51c)

Invariance of the particle number N with respect to the rescaled wave function
ψν(t, ~x) = ν3/2ψ(t, ν~x) allows us to establish some properties of the energy
functional for stationary states (states that minimize E [ψ]):

1. The }rst variation of E [ψν ] allows us to write the energy functional for
stationary states as E [ψ] = −T [ψ]∓ 2F [ψ].

2. The energy of a stationary state is always negative in the repulsive case.

3. In the attractive case, stationary states cannot be a minimum of the
energy function if the self-interaction term dominates over the kinetic
term T < 3F .

5To perform the variation of the functional E [ψ], we expand the wave function as

ψ(t,~t) = ψ(0) + εδψ(t, ~x) +
ε2

2
δ2ψ(t, ~x) +O(ε2) (1.46)

where ψ(0) denote the background }eld and δψ(t, ~x), δ2ψ(t, ~x) denote the }rst and second
order perturbations, respectively. So, the n-th variation is de}ned as

δnε =
dn

dεn
ε[ψ]

∣

∣

∣

∣

ε=0

. (1.47)

With this, integrating by parts and discarding the boundary terms, the }rst variation on
the energy functional ε[ψ] take the form

δε = Re(H(ψ), δψ), (1.48)
where we have used the Ĥ de}nition (1.39) and we have de}ned the L2-scalar product
(ψ, φ) =

∫

ψ∗φd3x between ψ and φ.
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Figure 1.8: Energy functional E for stationary states as function of
the number of particles. Energy for a stationary state with n = 0 nodes in
the the free (λ = 0), repulsive (λ = 1) and attractive (λ = −1) cases.

The }rst point allows us to write the energy functional for stationary states
without the need to calculate D. The second point indicates that excluding the
attractive case, the energy functional will always be negative and increasing.
The third point provides us with important information about the stability
of stationary con}gurations for the attractive case λ = −1. The point at
which the quantity T − 3F transitions from positive to negative values, that
is, when T [σ0]− 3F [σ0] = 0, marks the transition point from the stable band
of con}gurations to the unstable band. Particularly, the value at which this
transition occurs coincides with the point of maximum mass in the Figure 1.9,
right panel. We will replicate these demonstrations in more detail in the next
chapter for non-relativistic Proca stars.

1.3.3 Numerical System and Results
In order to numerically solve the system of equations (1.37a)-(1.37b), we can
make a change of variable to obtain a dimensionless system. If we de}ne the
new dimensionless quantities

Λ :=
|λ|M2

pl

2πm2
0

, t :=
2m0

Λ
tphys, x :=

2m0

Λ1/2
xphys, (1.52a)

Uphys :=
Λ

2
U , ψ :=

(

πΛ2

2M2
plm0

)1/2

ψphys. (1.52b)

where phys makes reference to physical quantities. In terms of these variables
we can write a dimensionless Gross-Pitaevski-Poisson system as

i
∂ψ

∂t
= (−∆± |ψ|2 + U)ψ, (1.53a)

∆U = |ψ|2, (1.53b)
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where the coupling constant λ is present in the dimensionless variables. Beyond
the relative simpli}cation of the relativistic system (1.29c), it is noteworthy
to observe that the Gross-Pitaevskii-Poisson system (1.54) does not depend
on the strength of the coupling constant λ. Therefore, the solutions will not
depend on how strong λ is, but only on the repulsive or attractive nature of the
self-interaction. In the relativistic case, a similar situation arises when λ� 1,
(see Ref. [40]). As in the relativistic case with strong coupling constant, λ
plays only a role through the dimensionless variables (1.52) and we have only
two dizerential equations to solve, however, in the non-relativistic case, these
are second order dizerential equations. The mass, similar to the relativistic
case, will scale as M = 4πΛ1/2m0/M

2
plM

phys and the particle number scales
like N = 4πΛ1/2m2

0/M
2
plN

phys.

Spherically Symmetric Con}gurations

Now, let us study the case of a spherically symmetric stationary state with
a spherically symmetric gravitational potential U(r). Note that the spherical
symmetry in ψ(t, r) guarantees the symmetry of T µν (t, r) and therefore the
symmetry of U(r) through the Poisson equation (U is time independent, since
it is not dynamic in the non-relativistic limit). Given the stationary ansatz
ψ(t, x) = e−iEtσ(r) and de}ning the shifted potential u(r) ≡ E − U(r), the
dimensionless Gross-Pitaevskii-Poisson system (1.53) is given by

d2σ

dr2
= −2

r

dσ

dr
± σ3 − uσ, (1.54a)

d2u

dr2
= −2

r

du

dr
− σ2. (1.54b)

In order to ensure regularity at the origin, we must impose the following
boundary conditions: σ′(r = 0) = u′(r = 0) = 0, σ(r = 0) = σ0 and u(r = 0) =
u0. And to guarantees }nite energy solutions we need impose limr→∞ σ(r) = 0.
To solve the system of equations (1.54), we must reduce the equations to four
}rst-order dizerential equations6 and proceed in a similar manner as we did
in the relativistic case. Then, we can solve the system for σ0 and u0 through
the shooting-bisection method before described (in Appendix B, we review in
detail this method applied to a non-relativistic Proca star), and determine
the u0 value that yields a solution with n = 0, 1, 2, ... nodes and satis}es
the condition of }nite energy limr→∞ σ(r) = 0. For a given value of the
central amplitude σ0 we get a discrete set of in}nite values of un that satis}es
the boundary conditions whit successive solutions representing higher energy
regular solutions u0 < u1 < u2 < ... < un.

Additionally, we need to connect the numerical solution obtained for a
}nite value of r (this value depends on the maximum precision achieved by

6System of equations (1.54) reduced to four }rst-order dizerential equations for r > 0:

dσ

dr
= y,

dy

dr
= −2y

r
± σ3 − uσ, (1.55a)

du

dr
= x,

dx

dr
= −2x

r
− σ2. (1.55b)

When lim r → 0 (using L’Hôpital’s rule) we can write dy/dr = −σ0u0/3 and dx/dr = −σ3
0/3.
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the shooting method) with the asymptotic solution of σ(r) and u(r) as r → ∞.
At this limit, the equation (1.54a) takes the form d2

dr2
(rσ(r)) − |E|rσ(r) ≈ 0

from which the radial pro}le take the form

σ(r) ≈ C

r
e−

√

|E|r, (1.56)

where C is a constant of integration. To obtain Eq. (1.56) we have used the fact
that limr→∞ σ(r) = 0 and limr→∞ U(r) = 0. Since the gravitational potential
vanishes at in}nity, the shifted potential is given by limr→∞ u(r) = E−U(r) =
E. On the other hand, it is also possible to demonstrate, see Appendix C in
Ref. [48], that the asymptotic behavior of u(r) takes the form

E = u0 −
M

r
(1.57)

with M the total mass given by M = m0N = m0

∫

r2σ(r)2dr.
Figure 1.9, left panel, shows the radial pro}le with n = 0 nodes for the

attractive, free, and repulsive cases, and a central amplitude σ0 = 1.0. For
these con}gurations, the shooting method produces a value for the shifted
potential u0 = 0.56 (λ = −1), u0 = 0.91 (λ = 0) and u0 = 1.47 (λ = 1). From
this value, it is possible to obtain the eigenvalue E0 through the expression
(1.57). Let’s note that, as in the relativistic case (cf. Figure 1.5), the pro}le
shrinks or expands depending on the value of the self-interaction. When r →
∞, the value of the pro}le approaches zero numerically, as we expect.

Finally, it is important to note that the numerical system (1.54) is identical
to the system s = 1 Gross-Pitaevskii-Poisson for the case of a self-interacting
non-relativistic Proca star with linear(circular) polarization (2.87) that evolves
harmonically with only one frequency E. We will solve these equations in the
next chapter.

Mass and Radius

The mass of a non-relativistic boson star can be computed as the product of m0

with the particle number de}ned in Eq. (1.43), which yields Mphys = m0N
phys

where Nphys = M2
pl/(4πΛ

1/2m2
0)N , and N represent the number of particles

in the dimensionless variables (1.52), that in the spherically symmetric case is
given by

N = 4π

∫ ∞

0

|σ(r)|2r2dr. (1.58)

Let’s remember that to calculate the total mass of the con}guration σ(r)
we need to make the integral in 4π

∫∞
0
drr2ρ with ρ = m0|σ(r)|2 and to cal-

culate the radius of the star R99 we have to calculate the integral 0.99M =
4π
∫ R99

0
drr2ρ with R99 = 2

√
2πm2

0/(|λ|1/2Mpl)R
phys
99 . In Figure 1.9, we plot

σ(r) vs r for λ = 1, 0,−1, that is the systems Gross-Pitaevskii-Poisson (GPP)
in the repulsive (λ = 1), free (SP, λ = 0), and attractive (λ = −1) case,
respectively, for a central amplitude σ0 = 1. We can see that, if we compare
with respect to the Schrödinger-Poisson (SP) pro}le λ = 0, the pro}le of the
con}guration expands if the self-interaction is repulsive λ = 1 and shrinks if
it is attractive λ = −1. Also, in the right panel of Figure 1.9, we have plotted
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Figure 1.9: Self-interactive non-relativistic boson star n = 0. Radial
pro}le σ(r) for a non-relativistic boson star for dizerent values of the coupling
constant λ = 0, 1,−1. We can observe that the pro}le becomes wider as
the value of the self-interaction increases. M99vsR99 for a non-relativistic self
interactive boson star for the attractive (λ = −1), free (λ = 0) y repulsive
(λ = 1) case. M99 is 99% of the value of the star’s mass contained within 99%
of the star’s radius. For the attractive case (λ = −1), we observe that there is
a critical mass value similar to the one that appears in the relativistic case.

M99 vs R99, that is, the relation between 0.99M of the total mass and R99,
the radius of the 0.99M mass. In the free and repulsive case, the con}gura-
tions become more compacts as we increase the value of the central amplitude
σ0, whereas in the attractive case, the con}guration reaches a maximum mass
M99 corresponding to a central amplitude σmax

0 . In the case of σ0 → 0, we can
see from Eq. (1.37a) that the self-interactive term is negligible with respect
to all the other terms. In Figure 1.9 it is clear when σ → 0 and the pro}les
approximate the Schrödinger-Poisson solution.

Energy Functional

As we have seen, the energy functional E [ψ] plays an important role in deter-
mining equilibrium con}gurations, and for this reason, we analyze it separately.
From Eq.(1.45) the total energy is given by Ephys = m4

0(2π)
5/2/(2π2|λ|5/2Mpl)E

with
E = −2π

∫ [

d2σ(r)

dr2
± σ(r)4

]

r2dr (1.59)

where we have used the relation, E [ψ] = −T [ψ] ∓ 2F [ψ]. In Figure 1.8 we
show the energy functional E [ψ] as function of the number of particles of the
con}guration N for the attractive (λ = −1), free (λ = 0) and repulsive (λ = 1)
case. Note that for the free and repulsive case the energy is always negative
(in agreement with the point two above), contrary to the attractive case for
which the energy takes positive values at a }nite value of N . For the repulsive
and free case the energy increases with the number of particles. Remember
that in the attractive case, stationary states cannot be a minimum of the
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energy function if the self-interaction term dominates over the kinetic term
T < 3F , that is, when T − 3F = 0 marks the point in which stationary states
with attractive self-interaction becomes instable. In Figure 1.8, the point at
which the energy reaches its minimum coincides with the state at which the
con}guration reaches its maximum mass. We can also observe that stationary
states without self-interaction represent a state of lower energy compared to
those for which the self-interaction is λ = 1. Naturally, the energy will increase
in value as we increase the value of n. The ground state con}guration (i.e. the
lowest possible energy state that exists for a given particle number) is given by
nodeless (n = 0) spherically symmetric stationary states in the absence of self-
interactions. As we shall demonstrate in the following chapter, the s = 0 Gross-
Pitaevskii-Poisson system (1.54) is equivalent to the s = 1 Gross-Pitaevskii-
Poisson system with linear (circular) polarization. For stationary solutions
with λ ≥ 0, we }nd that the energy functional is bounded from below and
that, moreover, for spherically symmetric con}gurations, the system reaches
its minimum energy state. That is, stationary con}gurations with spherical
symmetry and λ ≥ 0 constitute the ground state.

Excited stationary con}gurations

With an harmonic ansatz of the form ψ(t, x) = e−iEtσ(~x), we can write the
integro-dizerential equation (1.38) in the form of an eigen-value problem as

Eσ = Ĥ(σ)σ(~x). (1.60)

Given a value for the central amplitude σ0, there are an in}nite number of
possible eigenvalue solutions En for n = 0, 1, 2, 3... that satisfy the integro-
dizerential equation (1.60) for the regular and }nite boundary conditions. If
we characterize the solutions to Eq. (1.60) in terms of the number of nodes n
present in the pro}le σ(~x), it is possible to associate the ground state (that
is, the state with minimum energy) to the solution with the n = 0 number of
nodes and the states with higher energy to solutions with n = 1, 2, 3... number
of nodes. With this, the association of the value of the constant ω in Eq. (1.9)
with the value of the frequency (energy) of the boson }eld is clear.

In Figure 1.10 we can see the σ(r) pro}le (right panel) in the attractive,
free (SP, λ = 0) and repulsive case for the Gross-Pitaevskii-Poisson system
with n = 1 number of nodes and the 99% of the total mass M99 as function
of R99 the value of the radius containing 99% of the mass (left panel). Solu-
tions to the eigenvalue problem with n = 1 number of nodes correspond to a
value En=1 given by Eq. (1.57). For this case, the shooting method produces
the values for the shifted potential given by u0 = 0.91 (λ = −1), u0 = 1.2
(λ = 0), and u0 = 1.66 (λ = −1). Note that for a }xed value of R99, solu-
tions with n = 1 represent more massive solutions compared to the solutions
without nodes. Also, as we observed for the stationary solutions with n = 0
(see Figure 1.9), the attractive case (λ = −1) reaches a maximum value of
the mass M99 for a unique value of R99 (or σ0). For σ0 → 0 the ezects
of the self-interactions becomes negligible and we recover the non-interacting
Schrödinger-Poisson system. Figure 1.12 shows these systems for n = 1 and
n = 2 solutions for λ = −1, 0, 1, in the }rst and second panels, and the value
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Figure 1.10: Self-interactive boson star n = 1.Left panel: radial pro}le
σ(r) for a non-relativistic Boson star for n = 1 number of nodes and central
amplitude σ0 = 1. In each case, these pro}les represent excited states with
λ = −1, 0, 1. In the right panel: M99vsR99 for each case in the left panel.
Again, we can see that the attractive case (λ = −1) has a maximum mass
value similar to the relativistic case.

of the total mass M for each case, in the third panel. Note that the total mass
M increases with the values of λ and n. This is expected since con}gurations
with a greater number of nodes have greater energy. In each case, the solutions
are regular at the origin, localized (that is, limr→∞ σ(r) = 0) and energy }nite.
Finally, Figure 1.11 shows the energy functional E as a function of the number
of particles N for the }rst excited state n = 1. For a }xed N , the energy is
greater than that corresponding to the state with n = 0, for each λ = −1, 0, 1.

1.3.4 Linear Stability
To study the stability of the Gross-Piaevskii-Poisson system (1.37a)-(1.37b)
against small perturbations to the stationary solutions ψ(t, ~x) = e−iEtσ(~x) that
we have studied so far, we propose the ansatz (see Ref. [49] for an exhaustive
analysis of the methodology described in this section) of the form

ψ(t, ~x) = e−iEt
[

σ(0) + εσ(t, ~x) +O(ε2)
]

(1.61)

where ε is a small positive parameter, σ(0) is the background solution to eigen-
value problem (1.60) and σ(t, ~x) is a complex function that describes the linear
perturbation. Note that in the relativistic case we have written the perturba-
tion with spherical symmetry as φ(t, r) = φ(0)δφR(r, t) + φ(0)δφI(r, t), which
is an analogous construction to the ansatz (1.61). In Ref. [40] they write the
decomposition for the relativistic case with spherical symmetry in the form
φ(r, t) = e−iEt[φ(r, t)(0) + φ(t, r)(1)] in accordance with Eq. (1.61).

Following the same procedure described in Section 1.2.5, we insert the
ansatz (1.61) into the integro-dizerential Gross-Pitaevski-Poisson system, and
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up to linear order in ε, we get

i
∂σ

∂t
=
(

Ĥ(0) − E
)

σ(t, ~x) + 2σ(0)K̂
[

σ(0)Re(σ(t, ~x)
]

, (1.62)

where

Ĥ(0) := −∆± σ(0)2 +∆−1(σ(0)2) and K̂ = ±1 + ∆−1. (1.63)

Now, similar to the harmonic decomposition of the perturbation (1.32) in
the relativistic case, we can write σ(t, ~x) as σ(t, ~x) = σR(t, ~x) + σI(t, ~x) =
2Im

(

B(~x)eλt
)

+ 2Re
(

A(~x)eλt
)

or

σ(t, ~x) = [A(~x) + B(~x)] eλt + [A∗(~x)− B∗(~x)] eλ
∗t (1.64)

where A(~x) and B(~x) are complex-valued functions and λ (do not confuse
λ with the self-coupling constant and A(~x) and B(~x) with the relativistic
gravitational potentials) is the characteristic frequency of the perturbation.
Here Eq. (1.64) is equivalent to the system (1.32) for the relativistic case, in
this case the only }eld to be perturbed is given by ψ(t, ~x) through the }elds
A(~x) and B(~x) in a way similar to that of δφI and δφR. Putting Eq. (1.64)
into Eq. (1.62), and setting the coe{cients in front of eλt and eλ∗t to zero, we
get

LijXj = iλXi with ~X = (A(~x), B(~x))T (1.65a)
where

L̂ =





0
(

Ĥ(0) − E
)

(

Ĥ(0) − E
)

+ 2σ(0)K̂
[

σ(0)
]

0



 . (1.65b)

and K̂[σ(0)]A acts as K̂
[

σ(0)A
]

. Note the similitude and simpli}cation in form
with Eq. (1.33) now with L̂ containing both partial derivatives and background
equilibrium solution σ(0). The system (1.65) is a linear eigenvalue problem
for the constant λ, such that, if L̂ is a self-adjoint matrix, then λ will be
real. In this last case σ(t, ~x) = [Re{A(~x)} + Im{B(~x)}]eλt ∼ eλt, and the
perturbations grow exponentially with t. So, linear instability is determined
by the existence of solutions with positive real part of λ. In Ref. [49], the
authors demonstrate that stationary ground state con}gurations can have only
real or purely imaginary λ and that real eigenvalues are excluded if these
con}gurations are a local minimum of the energy functional E [ψ].

Spherical and Non-spherical perturbations

The background solutions σ(0)(r) that we have calculated are spherically sym-
metric, so the linearized equations (1.65) can be decoupled into a family of
purely radial systems by expanding the perturbation functions A(~x) and B(~x)
in terms of spherical harmonics Y lm as

A(~x) =
∑

lm

Alm(r)Y
lm(θ, ϕ), (1.66a)

B(~x) =
∑

lm

Blm(r)Y
lm(θ, ϕ). (1.66b)
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For radial perturbations we need to consider l,m = 0. With these functions,
the eigen-value system (1.65) can be written in terms of

Xi = (Alm, Blm) with L̂ =





0
(

Ĥ(0)
l − E

)

(

Ĥ(0)
l − E

)

+ 2σ(0)K̂l

[

σ(0)
]

0



 ,

(1.67)
where the operators Ĥ(0) and K̂l are de}ned as

Ĥ(0) := −∆l ± σ(0)2 +∆−1
s (σ(0)2) and K̂l := ±1 + ∆−1

l , (1.68)

with ∆l := (1
r
d2

dr2
r)− l(l + 1)/r2 and

∆−1
l (f)(r) := − 1

2l + 1

∫ ∞

0

rl<

rl+1
>

f(r̃)r̃2dr̃, (1.69)

where r< := min{r, r̃} and r> := max{r, r̃}.
We need to solve the system (1.65), with L̂ and ~X given by Eq. (1.67), to

}nd the eigenvalues λ and the eigen-functions A(~x) and B(~x) that satis}es a set
of appropriate boundary conditions. For this, we recast the system de}ning the
new rescaled functions alm(r) = rAlm(r) and blm(r) = rBlm(r) which reduce
the perturbed system to

−iλalm = b′′lm ± σ(0)2 + U ez
l blm, (1.70a)

−iλblm = a′′lm + U ez
l al ± 3σ(0)2alm − 2σ(0)

(

d2

dr2
− l(l + 1)

r2

)−1
[

σ(0)alm
]

,

(1.70b)

where U ez
l = u(0) − l(l + 1)/r2, and the operator (d2/dr2 − l(l + 1)/r2)

−1
=

r∆−1
l r−1 denotes the inverse of r∆l(r

−1) with homogeneous Dirichlet boundary
conditions at r = 0 and r → ∞. To determine the boundary conditions that
ensure regular and }nite solutions, we need to analyze the asymptotic behavior
of the system (1.70) and their behavior near the origin. We know that near
the origin r ≈ 0, σ(0) ≈ σ0, u(0) ≈ u0, so the dominant term in Eq. (1.70) is
the centrifugal U ez

l term, and the system takes the form

b′′lm − l(l + l)

r2
blm ≈ 0 a′′lm − l(l + l)

r2
alm ≈ 0, (1.71)

whose solutions are blm, alm ∼ r1/2+1/2
√

4(l(l+1))+1 regular at the origin. On the
other hand, when r → ∞, we know that limr→∞ σ(r)(0) = 0, and limr→∞ u(r)(0) =
E, so the system (1.70) take the form

b′′lm + Eblm ≈ 0 a′′lm + Ealm ≈ 0. (1.72)

In order to have limr→∞(alm, blm) = 0 we must choose the solution that van-
ishes at in}nity, that is, when E < 0. This implies the following boundary
conditions

alm(r = 0) = 0, blm(r = 0) = 0, (1.73a)
lim
r→∞

alm(r) = 0, lim
r→∞

blm(r) = 0, (1.73b)
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which means that the solutions are regular at the center and have }nite total
energy. Also, note that Eq. (1.70) do not depend on the quantum number m.
Particularly, in Ref. [49], the authors demonstrated that for large values of l,
there are no unstable modes.

Given the system of second order dizerential equations (1.70) and the set
of boundary conditions (1.73), it is possible to }nd solutions to alm and blm
that will be regular at the origin and will have }nite energy. The procedure to
obtain these solutions goes beyond the scope of this thesis work, however, we
summarize it as follows: }rst, 1) we need to extend the range in r of the nu-
merical solutions to σ(0)(r) and u(0)(r) obtained through the shooting method
using the asymptotic solutions (1.57) and (1.56), second, 2) the extended ver-
sions of the stationary solutions σ(0)

ext(r) and u
(0)
ext(r), the perturbed }elds alm

and blm, and the dizerential operators r∆−1
l r−1, ∆−1

s , ∆s and ∆−1 are dis-
cretized in terms of Chebyshev polynomials using a standard spectral method,
which leads to a }nite-dimensional eigenvalue problem.

It is important to mention the results obtained with the methodology de-
scribed above applied to the Gross-Pitaevskii-Poisson system developed by
Nambo et al. in Ref. [49]. First, for radial perturbations (l = 0) regarding the
ground state n = 0, the authors found that the con}gurations will be stable
if the self-interaction is repulsive, that is, λ > 0. Furthermore, in the case
of attractive self-interaction, that is λ < 0, there exists a maximum value for
the mass Mmax beyond which the con}gurations transition to unstable states
under radial perturbations (l = 0). In Figure 1.9, we can verify that there is a
maximum value for the mass M99 when λ < 0. This behavior is analogous to
the relativistic case where the transition to unstable states is determined by
the value of the kaup mass Mkaup, as we can see in the Figure 1.7. The dizer-
ence with respect to the relativistic case is due to the fact that this maximum
mass arises from relativistic ezects, while in the non-relativistic case, this limit
is caused by the ezect of attractive self-interaction. Second, regarding excited
states under spherical perturbations (l = 0), Nambo et al. Ref. [49] found
that, if in general these are unstable, there exist con}gurations belonging to
the }rst excited states that remain stable under spherical linear perturbations
for repulsive case (λ > 0). In particular, they found that, in the free and
attractive case, spherically symmetric excited boson stars are unstable under
radial perturbations. In Table 1.1 we summarize these results for n = 0, 1, 2.

For non-spherical perturbations (l > 0), regarding the ground state n = 0,
the authors found that the con}gurations will be stable if the self-interaction
is repulsive (λ > 0). Furthermore, in the case of attractive self-interaction
(λ < 0), there exists a common stability band (at least for l ≤ 6) for the
con}gurations in the range σ0 ≤ 1. Second, with respect to excited states,
under non-spherical perturbations (l > 0), Nambo et al. Ref. [49] found that,
if in general these are unstable, there exist con}gurations belonging to the }rst
excited states that remain stable under generic linear perturbations in the re-
pulsive case (λ > 0). They found that, in the free (λ = 0) and attractive case,
spherically symmetric excited boson stars are unstable under generic pertur-
bations. In Table 1.2 we summarize these results for n = 0, 1, 2. Although
in this thesis we only present a general outline of this methodology applied
to Boson stars and non-relativistic Proca stars, detailed future works on the
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stability analysis of non-relativistic Proca stars are in progress [2].

Spherical perturbations l = 0

GPP Attractive SP (λ = 0) GPP Repulsive
n = 0

ground state there exist a maxi-
mum mass Mmax be-
yond which the con-
}gurations are un-
stable

stable stable

n = 1, 2, ..
excite states unstable unstable there exist con-

}gurations that
remain stables

Table 1.1: Stability for a non-relativistic self-interacting boson star
(l = 0). For ground state con}gurations (n = 0) the repulsive (λ = 1) and
free (λ = 0) case are always stable under radial perturbations (l = 0). For the
attractive case (λ = −1), there exists a maximum mass Mmax beyond which
the con}gurations transition to unstable states (for σ0 ≥ σmax

0 ). For excited
con}gurations (n = 1, 2), the attractive and free self-interacting con}gurations
are unstable under radial perturbations, whereas the in the repulsive case there
exists values of σ0 for which the con}gurations are stable.

Non-spherical perturbations l > 0

GPP attractive SP (λ = 0) GPP repulsive
n = 0

ground state there exist an stabil-
ity band for σ0 ≤ 1

stable stable

n = 1, 2, ..
excite states unstable unstable there exist con-

}gurations that
remain stables

Table 1.2: Stability of non-relativistic self-interacting boson star (l >
0). Only con}gurations lying in the intersection of the stability bands for
all l > 0 are stable with respect to generic linear perturbation. For ground
state con}gurations (n = 0) the repulsive (λ = 1) and free (λ = 0) cases
are always stable under non-spherical perturbations (do not exhibit unstable
modes (at least for l ≤ 12). For the attractive case (λ = −1), there exists an
common stability band (at least for l ≤ 6)) for the con}gurations in the range
σ0 ≤ 1. For excited con}gurations (n = 1, 2), the attractive and free cases are
unstable under non-spherical perturbations, whereas the in the repulsive case
for (n = 1) there exists a very narrow band of stability for 1.55 ≤ σ0 ≤ 2.07
for which the con}gurations are stable.
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Chapter 2

Non-relativistic Proca Stars: Spherical
Stationary and Multi-frequency States

2.1 Introduction
As we have already seen in the previous chapter, boson stars are regular,
}nite energy con}gurations that do not disperse in time and are encountered
in massive, self-gravitating scalar }eld theories [15, 11, 46, 40, 43, 50, 51,
52]. In this chapter, we will review similar solutions that arise when dealing
with self-gravitating massive spin-1 }elds, known as Proca stars. Particularly,
we will study the non-relativistic ezective theory of a self-interacting massive
vector }eld minimally coupled to gravity, and we pay particular attention to
spherically symmetric states and equilibrium con}gurations. This chapter is the
result of the research work Non-relativistic Proca stars: Spherical stationary
and multi-frequency states [1] from which the description below is derived. On
small scales, weakly interacting dark matter models, like the WIMP model,
have problems like the “missing satellite” and “cuspy core” problems discussed
in the previous chapter. By nature, boson stars might be able to mitigate
these problems in this way [53, 54]. Further, massive vector }elds may be
especially relevant to ultralight dark matter models [55, 56, 57, 58], exhibiting
a richer phenomenology compared to spin s = 0 axion-like particles [59]. In
galaxies, these particles could form dark matter halos, whose global structure
is inherently Newtonian, and this motivates our focus on the non-relativistic
theory in this thesis report.

Proca stars were }rst introduced by Brito, Cardoso, Herdeiro, and Radu
in Ref. [60], where they constructed solutions of the Einstein-Proca equations
with both static spherically symmetric and stationary axially symmetric space-
time. This pioneering work triggered a surge in research on such stars that
includes theoretical investigations [61, 62, 63, 64, 65, 66, 67], numerical simu-
lations [68, 69, 70], and astrophysical applications [71, 72, 73, 74, 75]. In the
non-relativistic regime, Proca stars have been explored by Amin, Jain, and
collaborators in [76, 77, 78, 79, 80] (see also Refs. [81, 82, 83, 84, 85]).

We can think of non-relativistic Proca star as self-gravitating condensates
of spin s = 1 particles, where matter is described in terms of a vector-valued
wave function ~ψ(t, ~x) satisfying the Schrödinger wave equation and obeying
Poisson’s equation in terms of the Newtonian gravitational potential U(t, ~x).
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spherically symmetric equilibrium configurations

generic sector
(λs 6= 0)

symmetry-enhanced
sector (λs = 0)

stationary (linear) stationary (circular) stationary (radial)

stationary (constant) multi-frequency

Figure 2.1: Spherical Proca stars’ inventory: The normalized real part of
the vector }eld, ~ψR(t, ~x), and the normalized particle number density, n(t, ~x),
in color gradient, of some representative equilibrium con}gurations at time
t = 0. When λs 6= 0, all equilibrium con}gurations are stationary states, with
only linear, circular, and radial polarizations allowed in spherical symmetry.
When λs = 0, in addition to the aforementioned stationary states, spherical
symmetry permits general constantly polarized stationary states and multi-
frequency states. At t = 0, all constant polarization states look the same,
although they dizer in their time evolution (see Figure 2.2 for details).
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When self-interactions are included, the Schrödinger wave equation needs to
be replaced by a Gross-Pitaevskii type equation with two coupling constants
λn and λs. We refer to these equations as the s = 1 Schrödinger-Poisson
system when λn = λs = 0, and as the s = 1 Gross-Pitaevskii-Poisson system
otherwise, and to the resulting }nite energy equilibrium con}gurations as non-
relativistic Proca stars. Let’s remember that a non-relativistic boson star could
also be interpreted as a non-relativistic condensate of self-gravitating and self-
interacting s = 0 particles, with scalar wave function φ(t, ~x), depending only
on the self-interaction parameters λn and the mass of the particle m0. In this
sense, Proca stars exhibit a more extensive phenomenology.

The spectrum of Proca star solutions depends on the spin-spin self-interaction
parameter λs. When λs 6= 0, which we henceforth call the generic sector of
the theory, the Proca star’s wave function evolves in time harmonically. As
in standard quantum mechanics, we shall refer to these equilibrium con}g-
urations as stationary (or single-frequency) states. However, when λs = 0,
the ezective theory acquires an additional (accidental) symmetry, resulting in
the symmetry-enhanced sector. In this sector, new types of equilibrium con-
}gurations appear besides the stationary states in which the wave function
oscillates with two or three distinct frequencies. We shall call these con}gura-
tions multi-frequency states. This spectrum of con}gurations dizers from that
of a boson star, where we only }nd stationary con}gurations that evolve har-
monically with a frequency. The spin term introduces this dizerence here. In
this sense, single-}eld boson Stars only constitute stationary (single-frequency)
equilibrium con}gurations.

By de}nition, equilibrium con}gurations are critical points of the total en-
ergy functional keeping }xed suitable constants of motion. It is relevant to de-
termine whether these points correspond to local or global minima or maxima,
or to saddle points, since this provides information regarding their stability.
We prove that, under certain conditions on the parameters λn and λs, ground
state con}gurations (i.e. lowest energy solutions for }xed particle number)
exist. Moreover, when these conditions are satis}ed, there exits a spherically
symmetric stationary state of constant polarization which has lowest possible
energy, regardless what sector of the theory we are exploring. In the free the-
ory, de}ned by λn = λs = 0, we show that the ground state is unique (up to
translations and rigid unitary transformations). Otherwise, even if there could
in principle exist additional states which minimize the energy, they must also
be stationary, spherically symmetric, and exhibit constant polarization.

In this chapter, we further concentrate on spherical con}gurations. In this
case, stationary Proca stars can be classi}ed according to the node number
of their radial pro}le and their polarization vector, which can be constant or
radial, although in the former case the polarization has to be linear or circular
when λs 6= 0. In contrast, multi-frequency Proca stars are classi}ed according
to the node number of each component of the wave function ~ψ(t, ~x). Figure 2.1
illustrates the classi}cation of spherical equilibrium con}gurations that appear
in the dizerent sectors of our ezective theory, whereas in Figure 2.2 we show
some features of their time evolution which will be discussed later.

It is worth noting that the equilibrium, spherically symmetric s = 1 Gross-
Pitaevskii-Poisson system is equivalent to other systems studied in the frame-
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Figure 2.2: Time evolution of spherical Proca stars: The normalized
real part of the vector }eld, ~ψR(t, ~x), and the normalized particle number
density, n(t, ~x), of some representative equilibrium con}gurations at dizerent
moments of time. In the }rst three rows, we consider stationary Proca stars of
unit central “amplitude”, σ0 = 1, no nodes, n = 0, and dizerent polarization
vectors ε̂ at times t1 = 0, t2 = π

2E
and t3 =

π
E

. First row: Linear polarization
along the x axis, ε̂ = êx. Second row: Circular polarization along the z axis,
ε̂ = ε̂

(+)
z := 1√

2
(êx + iêy). Third row: Radial polarization, ε̂ = êr. Fourth row:

A multi-frequency Proca star of central amplitude (σx0, σy0, σz0) = (1, 1, 0) and
nodes (nx, ny, nz) = (0, 1, 0) at times t1 = 0, t2 = π

2Ex
and t3 = π

Ex
. Apart

from radially polarized states, the spherical symmetry is only manifest in the
gravitational }eld trough n(t, ~x), since in other cases the wave function selects
a preferred direction in space. This occurs because, in these cases, the }eld
transforms under a non-standard representation of the SO(3) group. Radially
polarized Proca stars are characterized by a “hole” in their center, which is
due to the regularity conditions at the origin. In all these cases we have
assumed repulsive self-interactions. To better visualize the time evolution of
these objects, we refer the reader to the movies provided in [86].
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work of multi-scalar }eld theories. The free theory possesses an internal global
U(3) symmetry and is identical to the N -particle s = 0 Schrödinger-Poisson
system studied in Refs. [87], speci}cally in the case where no more than three
orthogonal states are occupied. This system admits non-relativistic ` = 0 and
` = 1 boson star solutions [87, 88], which in the context of Proca stars lead to
stationary states of constant and radial polarization, respectively, and multi-
state boson stars solutions [89], which in the present context correspond to
multi-frequency states.

When λn 6= 0 and λs = 0, the theory retains the U(3) symmetry and
generalizes the theories discussed in Refs. [87] and [49] in several ways. On
the one hand, in the present work we include self-interactions, which were
not considered in Ref. [87]. On the other hand, the internal structure of the
vector }eld allows new con}gurations, such as the stationary states of radial
polarization and the multi-frequency solutions, which do not exist in the theory
with a single scalar }eld considered in Ref. [49]. In contrast, when λs 6= 0, the
spin-spin self-interaction term breaks the U(3) symmetry which forbids the
existence of multi-frequency states and removes the degeneracy of the constant
polarization equilibrium con}gurations.

Conversely, in the framework of relativistic vector }eld theories, the static
and spherically symmetric solutions reported in Ref. [60] correspond to sta-
tionary con}gurations of radial polarization in our classi}cation of the equilib-
rium solutions. These con}gurations were subsequently recognized as excited
states of the Einstein-Proca theory [66], indicating the potential existence of
lower-energy solutions. In the non-relativistic regime, the works [76, 77] dis-
cuss the linearly and circularly polarized states. These studies were further
extended in Ref. [70], where the stability of linearly, circularly, as well as ra-
dially polarized Proca stars was investigated by means of 3 + 1 dimensional
numerical simulations in general relativity, and in Ref. [81], where stationary
non-spherical solutions were also considered. However, as far as we are aware,
multi-frequency states have not been reported in previous studies.

In Section 2.2 we review the general scheme of relativistic Proca stars.
This scheme generalizes to a vector }eld that we have previously discussed for
a relativistic boson star. In Section 2.3, we study the main topic of this chap-
ter, the non-relativistic Proca stars. In Section 2.3.1 we review the s = 1
Gross-Pitaevskii-Poisson system, in Section 2.3.2 the symmetries and con-
served quantities of the system, and in Section 2.3.3 we study the equilibrium
con}gurations and their general properties. In Section 2.3.4 we write the s = 1
Gross-Pitaevskii-Poisson system for an spherically symmetric equilibrium con-
}gurations and }nally, in Section 2.3.5 we present the numerical results for
this system. Again, here we work in natural units, for which c = h̄ = 1.

2.2 Relativistic Proca Stars: a concise sum-
mary

As we already mentioned, relativistic Proca stars were }rst introduced by
Brito, Cardoso, Herdeiro, and Radu in Ref. [60]. These consist of one complex
Proca }eld, with mass m0, that is described by the potential Aµ(t, ~x) and the
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“electromagnetic tensor” F ≡ ∇µAν − ∇νAµ. The Einstein-Proca model is
described by the action

S[gµν , Aµ] =

∫

d4x
√−g

(

1

16π
R + LM

)

(2.1)

where R is the Ricci scalar, g = det(gµν) is the determinant of the metric
tensor and the matter sector term is given by

LM = −1

2
F ∗
µνF

µν −m2
0A

∗
µA

µ. (2.2)

Variations with respect to the metric gµν and with respect to the Proca }eld
Aµ(t, ~x), yields the Einsten and Proca }eld equations, respectively

Gµν = 8πGTµν and ∇µF
µν = m2

0A
ν , (2.3)

where the energy-momentum tensor takes the form

Tµν =
1

2

(

FµρF
∗ ρ
ν + F ∗

µρF
ρ

ν

)

− 1

4
FργF

∗ργgµν

+
m2

0

2

(

AµA
∗
ν + A∗

µAν − gµνA
∗ρAρ

)

. (2.4)

If m0 6= 0 in the above system equations, and F µν is an antisymmetric tensor,
then the Proca equation must satisfy the Lorentz constriction ∇νA

ν = 0.
Additionally, global U(1) invariance of the action (2.1), that is, invariance
with respect to transformations Aµ → eiαAµ with α a constant, implies the
existence of a conserved current

Jµ =
i

2
(F ∗µαAα − F µαA∗

α) (2.5)

with an associated Noether charge Q given by

Q =

∫

d3x
√−gJ0. (2.6)

Similar to the treatment we performed for a relativistic boson star, the sim-
plest case is to }rst study a spherically symmetric con}guration for a Proca
massive }eld. Let’s remember that a line element with spherical symmetry is
given by (1.10), and using a harmonic ansatz for the potentials A0 = e−iωtf(r)
and Ai = e−iωtg(r)r̂, it is possible to write the Proca and Einstein equations in
terms of the four functions u(r), v(r), f(r), g(r) that depend only on the radial
coordinate r. Similar to boson star case, the solutions u(r), v(r), f(r), g(r) to
these equations for each discrete value of the frequency ωn must satisfy regu-
larity conditions at the origin r = 0 and }nitude to r → ∞ in order to ensure
localized con}gurations with }nite energy. Delve into this procedure goes be-
yond the purpose of this thesis report; however, we note that the procedure to
follow in order to determine the solutions is very similar to the one we already
developed for relativistic boson stars. In Ref. [60], the authors have found
self-gravitating solitonic solutions to these spherically symmetric con}gura-
tions. These solutions are stationary, regular, and asymptotically ~at, forming
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a family of solutions labeled by the integer n for each frequency ωn, similar to
the con}gurations we have studied for scalar }elds. The stationary relativistic
Proca star share with boson stars the existence of a maximum value Mmax

for the mass beyond which the solutions are possibly unstable. In Ref. [60],
the authors have calculated, for spherically symmetric and axially symmetric
con}gurations, the maxima mass value given by Mmax ' 1.058M2

pl/m0 (for
spherically symmetric con}gurations) and Mmax ' 1.568, 2.337, 3.297M2

pl/m0

(for axially symmetric con}gurations with m = 1, 2, 3), which are slightly
larger values than those for mini-boson star Mmax ' 0.6M2

pl/m0. Regarding
the stability of these free spherically symmetric con}gurations, a stability anal-
ysis like that we presented in the previous Chapter 1 for boson stars, Ref. [60]
has found that Mmax corresponds to a transition point beyond which the con-
}gurations become unstable, similar to the case of a relativistic boson star.
Unstable con}gurations could collapse into black holes or migrate to stable
con}gurations of lower energy.

In Ref. [70], Wang and collaborators investigate relativistic Proca stars,
considering, in addition to the aforementioned radially polarized spherically
con}gurations, the cases of a linearly and circularly polarized vector }eld, and
numerically analyze the stability of these compact objects. They found that the
initial values of compactness (C =M/R95) that lead to the formation of black
holes are larger for circularly polarized con}gurations (which carry macroscopic
spin angular momentum) compared to the compactness of linearly polarized
con}gurations, which in turn have a greater compactness than con}gurations
with radial polarization (values in range C � 1, the object is non-relativistic,
C ∼ 0.1 indicates a compact object like a white dwarf or neutron star and
C → 0.5 indicate the limit of black hole formation).

Relativistic Proca stars with quartic order self-interaction term λ(AµA∗
µ)

2

are considered in Ref. [63]. There, the authors show that in comparison with
the case without self-interaction λ = 0, the maximal mass Mmax and the
Noether charge increase for λ > 0 and decrease for λ < 0, considering only
radially polarized con}gurations. For a su{ciently large positive coupling con-
stant λ � 1, the maximal mass and Noether charge for Proca stars is of or-
der O[

√
λM3

pl/m
2
0 ln (λM2

pl/m
2
0)] which is dizerent from that of a boson star

O[
√
λM3

pl/m
2
0]. In Ref. [90], Herdeiro and Radu introduces self-interaction

terms up to sixth order, and, spherically symmetric self-interacting con}gura-
tions with radial polarization and charge (charged Proca stars) are considered
in Ref. [91]. There, the authors calculate the values of the maximum mass
Mmax for Proca stars, charged Proca stars, Proca Q-stars, and charged Proca
Q-stars.

Finally, in Ref [68], Herdeiro, Radu, and collaborators report fully-non
linear numerical evolutions of spherically symmetric relativistic Proca stars for
λ = 0, with the aim of exploring linear stability and the critical point beyond
which these con}gurations become unstable. Their results con}rm the value of
the maximum mass Mmax as the point from which the con}gurations become
unstable and divides the con}gurations into bands of stability and instability.
Depending on the sign of the binding energy of the solutions, they }nd that
unstable con}gurations can either i) migrate to stable bands, ii) completely
disperse, or iii) collapse into a black hole. These results are similar to those
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we have reviewed for a relativistic boson star in Chapter 1.

2.3 Non-relativistic Proca Stars
We have postponed much of the details concerning to the numerical methods
that we have described in the study of boson stars, both relativistic and non-
relativistic, to the analysis of non-relativistic Proca stars. This section will
describe the numerical and analytical methodology that we have followed to
}nd the solutions to the stationary and multi-frequency con}gurations and the
system of equations for the perturbations. In Appendix B will delve into the
shooting method that we have used to }nd the stationary solutions for the
boson Stars, now applied to non-relativistic Proca stars.

Numerical studies for the case of relativistic Proca stars can be found in
Ref. [60, 78] for the three types of polarization that we present here. In the
present study, we address these results now for the non-relativistic case and
report results analogous to these works along with other novel aspects. The
analysis of non-relativistic Proca stars allows a general understanding of the
methods we have already presented for boson stars. Thus, details in describing
these methods allow us to better understand both cases, as we will soon see.

We can anticipate that since the treatment is now for a vector }eld ~ψ(t, ~x)
with mass m0, the s = 1 Gross-Pitaevskii-Poisson system analogous to the
s = 0 Gross-Pitaevskii-Poisson system for boson stars will depend on the pa-
rameters that de}ne the polarization of the vector }eld and the self-interacting
coupling constants, λn and λs, related to the self-coupling number density
n = ~ψ∗ · ~ψ and the self-coupling of the spin density term ~s = −i~ψ∗ × ~ψ. With
this in mind, the level of complexity will be greater than that before reported
for boson stars, and the phenomenology of these Proca stars will be more
richer.

2.3.1 The s = 1 Gross-Pitaevskii-Poisson System
Here, we present the ezective construction of the non-relativistic action com-
patible with the symmetries of Galileo, from which we aim to recover the
physics related to galactic speeds and Newtonian scales. Constructed from
operators depending up to fourth order on the }eld ~ψ(t, ~x), this action should
naturally lead to the Poisson gravitational equation for the Newtonian po-
tential U(t, ~x), and to the Gross-Pitevski equations for a self-interacting and
self-gravitating vector }eld. We shall also observe, how it is possible to obtain
this ezective action from the non-relativistic limit of the Einstein-Proca action
for the potential V (Aµ) that includes the self-interaction terms λ1(A∗

µA
µ)2 +

λ2(AµA
µ)(A∗

νA
ν∗). Also, writing the s = 1 Gross-Pitaevskii-Poisson system in

the compact form of the Schrödinger eigen-equation i∂ ~ψ/∂t = Ĥ[~ψ,U ]~ψ will
allow us to talk about ~ψ in terms of a “wave function”.

Non-relativistic Ezective Action

Our purpose is the construction of a non-relativistic, low energy ezective theory
that describes a self-interacting vector }eld ~ψ(t, ~x) coupled to the Newtonian
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gravitational potential U(t, ~x). This theory is expressed in terms of the action

S[U , ~ψ] =

∫

dt

∫

dV

[

1

8πG
U∆U −m0Un

+~ψ∗ ·
(

i
∂

∂t
+

1

2m0

∆

)

~ψ − λn

4m2
0

n2 − λs

4m2
0

~s 2

]

, (2.7)

which consists of all operators of mass dimension 6 or lower that can be con-
structed from the }eld ~ψ(t, ~x) and are scalars under the Galilei group. In this
expression, i =

√
−1 is the unit imaginary number, G is Newton’s constant,

the star denotes complex conjugation, and dV and ∆ refer to the volume el-
ement and Laplace operator, respectively, associated with three-dimensional
Euclidean space. As we mentioned, the variation with respect to the Newto-
nian gravitational }eld U(t, ~x) leads to the Poisson equation and the variation
with respect to the vector }eld ~ψ(t, ~x) leads to the Gross-Pitaevskii equation.

We start with the Newtonian gravity in order to build the ezective theory
shown by Eq. (2.7). This is expressed in terms of the action

S =

∫

dt

∫

dV

[

1

8πG
U∆U −m0Un+ Lm

]

. (2.8)

The }rst two terms of this equation correspond to the “kinetic” term of the
gravitational }eld U(t, ~x) and its coupling with the mass density m0n(t, ~x), re-
spectively. Conversely, the last term of Eq. (2.8) comprises the matter sector,
that for the purposes of this thesis consists of a vector }eld ~ψ(t, ~x) of mass
dimension 3/2, i.e. [~ψ] = E3/2, where E denotes dimensions of energy. Follow-
ing an ezective theory approach, we write down the most general expression
for Lm that is compatible with the allowed symmetries of the theory, that we
assume to consist of locality (i.e. all }elds are evaluated at the same spacetime
point) and Galilean transformations [92]:

~ψ(t, ~x) 7→ e−i
(

m0~v·~x+ 1

2
m0~v

2t
)

R~ψ(t− t0, R
−1~x+ ~vt− ~x0). (2.9)

In this equation t0, ~x0, ~v, and R are constant, with R an element of the
orthogonal group. With these assumptions, there is an in}nite number of terms
that can contribute to the ezective action, with higher-dimensional operators
being suppressed at low energies. For concreteness, in this thesis, we will
restrict ourselves to operators of mass dimension 6 or lower.1

The vector }eld transforms non-trivially under the Galilei group, Eq. (2.9),
which implies that derivative terms must appear in combinations of the form:

∫

dt

∫

dV ~ψ∗ ·m1−n
0

(

i
∂

∂t
+

1

2m0

∆

)n

~ψ. (2.10)

When n = 1, this leads to the standard Schrödinger operator appearing in
Eq. (2.7). At this point one might be tempted to include terms with n =

1In natural units h̄ = c = 1 these operators have dimensions of [E6] ∼ [m6
0] or less. For

example, for the self-interactive term we have [S] = [E][T ] ∼ [T ][L3][n2]/[m2
0], and since

[m2
0] ∼ [E2], [L] ∼ [T ] and [E] ∼ [T−1], then [n2] ∼ [E6] ∼ [m6

0].
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2, 3, 4, . . . However, they involve operators of mass dimension 7 or higher, and
this is why we have excluded them from our ezective theory.

Moreover, non-derivative terms must appear in combinations of the form:
δijψ∗

i ψj, δi`δjkψ∗
i ψjψ

∗
kψ`, δikδj`ψ∗

i ψjψ
∗
kψ`, δi`δjmδknψ∗

i ψjψ
∗
kψ`ψ

∗
mψn, . . ., although

only the }rst three of this series are of mass dimension 6 or lower. The }rst
term in this list is equal to the particle number density, δijψ∗

i ψj = n, and is
already included in the }rst line of Eq. (2.7).2 The second term of the list
gives rise to a self-interaction operator that depends on the number density
squared, δi`δjkψ∗

i ψjψ
∗
kψ` = (ψ∗

i ψ
i)(ψ∗

jψ
j) = n2, and it is also present in our

ezective theory. Apparently, the third term is absent from Eq. (2.7), how-
ever, using the identity εmijεm

k` = δikδj` − δi`δjk, we can express this oper-
ator as δikδj`ψ∗

i ψjψ
∗
kψ` = (εmijεm

k` + δi`δjk)ψ∗
i ψjψ

∗
kψ` = −sisi + n2, where

sm = −iεmk`ψ∗
kψ` represents the spin density. Thus, in general, our theory

includes two self-interaction terms of mass dimension 6: one depending on
the square of the number density, n2, and the other on the square of the spin
density, ~s 2 = ~s · ~s.

Non-relativistic Limit of a Self-interacting Einstein-Proca Theory

Now, we compute the non-relativistic limit of a massive vector }eld theory. Our
starting point is the Einstein-Proca theory for a complex-valued3 vector }eld
Aµ(t, ~x) of massm0 and quartic self-interaction λ1(A∗

µA
µ)2+λ2(AµA

µ)(A∗
νA

ν∗).4
In natural units, this theory is described by the action (2.1) which consists of
the Einstein-Hilbert term with matter sector

LM = −1

2
F ∗
µνF

µν −m2
0A

∗
µA

µ

−λ1(A∗
µA

µ)2 − λ2(AµA
µ)(A∗

νA
ν∗), (2.11)

where Fµν ≡ ∇µAν −∇νAµ is the “electromagnetic” tensor.
To proceed, we will explore the non-relativistic limit of this theory at in-

creasing levels of complexity. First, we will focus on the free theory, which
excludes the ezects of self-interactions and gravity. Subsequently, we will in-
corporate the self-interaction terms, and }nally, we will consider the in~uence
of gravity. At the end of the presentation, we will arrive at an expression that
coincides with the ezective action that we introduced in Eq. (2.7). Here, we
employ the (−,+,+,+) signature convention for the spacetime metric, and
for convenience we occasionally represent Newton’s constant G in terms of the
Planck mass, denoted as MPl ≡ 1/

√
G. We have followed this same procedure

in Appendix A.1 to obtain the non-relativistic limit of a boson star.
2An operator of the form λ0m0n (where λ0 is a dimensionless coupling constant) can

be absorbed into the second term of Eq. (2.7) by rede}ning the gravitational potential as
U ′ = U + λ0.

3For the non-relativistic limit of a real-valued vector }eld theory, see e.g. Ref. [77].
4Recent works [93, 94, 95] have pointed out to a fundamental problem with relativistic

self-interacting vector }elds due to the appearance of unstable modes that could render
these theories unphysical. However, the authors of Refs. [96, 97, 98] have argued that these
instabilities are not indicative of ghosts and/or tachyons, but rather of the breakdown of
the well-posedness of the Cauchy problem and the regime of validity of the ezective theory.
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A. Free Theory

In absence of gravity, a non-sel}nteracting complex-valued vector }eld Aµ(t, ~x)
of mass m0 is described in terms of the action

S =

∫

d4x

[

−1

2
F ∗
µνF

µν −m2
0A

∗
µA

µ

]

. (2.12)

If we perform a 1 + 3 decomposition of the vector }eld Aµ = (A0, Ai) we can
write this expression in the form:

S =

∫

d4x

(

Ȧ∗
i Ȧ

i + ∂iA
∗
0∂

iA0 − ∂iA
∗
j∂

iAj − Ȧ∗
i ∂

iA0

− ∂iA
∗
0Ȧ

i + ∂iA
∗
j∂

jAi +m2
0A

∗
0A0 −m2

0A
∗
iA

i

)

, (2.13)

where the overdot indicates time derivative and indices are raised and lowered
with the ~at spacetime metric.

Now, we express the timeA0(t, ~x) and spatialAi(t, ~x) components ofAµ(t, ~x)
in the form

A0(t, ~x) =
1√
2m0

e−im0ta0(t, ~x), (2.14a)

Ai(t, ~x) =
1√
2m0

e−im0tψi(t, ~x). (2.14b)

This allows us to write Eq. (2.13) as

S =

∫

d4x

(

i

2
ψ∗
i ψ̇

i − i

2
ψ̇∗
i ψ

i +
1

2m0

ψ̇∗
i ψ̇

i +
1

2m0

∂ia
∗
0∂

ia0

− 1

2m0

∂iψ
∗
j∂

iψj − i

2
ψ∗
i ∂

ia0 −
1

2m0

ψ̇∗
i ∂

ia0 +
i

2
∂ia

∗
0ψ

i

− 1

2m0

∂ia
∗
0ψ̇

i +
1

2m0

∂iψ
∗
j∂

jψi +
m0

2
a∗0a0

)

. (2.15)

In the non-relativistic limit, the dizerent quantities scale as ∂t ∼ εm0, ∂i ∼
ε1/2m0, and a0 ∼ ε1/2|ψi|, with ε a small positive number, so to leading order
in ε we can approximate:

S =

∫

d4x

(

i

2
ψ∗
i ψ̇

i − i

2
ψ̇∗
i ψ

i − 1

2m0

∂iψ
∗
j∂

iψj − i

2
ψ∗
i ∂

ia0

+
i

2
∂ia

∗
0ψ

i +
1

2m0

∂iψ
∗
j∂

jψi +
m0

2
a∗0a0

)

. (2.16)

Note that there are no time derivatives of a0 in this expression, indicating
that this component is not dynamical and can be integrated out from the
action. In order to do that, we vary Eq. (2.16) with respect to a0, and obtain

a0 =
i

m0

∂jψ
j, (2.17)
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which is a condition that must be satis}ed by a0. Introducing the constraint (2.17)
back into Eq. (2.16), integrating by parts, and neglecting surface terms, yields

S =

∫

d4x

[

ψ∗
i

(

i
∂

∂t
+

1

2m0

∆

)

ψi
]

. (2.18)

This is just the Schrödinger action for a vector wave function ψi(t, ~x) that
describes free particles of spin s = 1.

B. self-interactions

In presence of self-interactions, Eq. (2.15) requires the addition of the new
terms:

∫

d4x

{

λ1

4m2
0

[

−(a∗0a0)
2 + 2a∗0a0ψ

∗
i ψ

i − (ψ∗
i ψ

i)2
]

(2.19)

+
λ2

4m2
0

[

−(a∗0a0)
2 + a20ψ

∗
i ψ

i∗ + a∗20 ψiψ
i − ψiψ

iψ∗
jψ

j∗]
}

.

In the non-relativistic limit, the third and seventh terms dominate over the
other }ve, and hence the constraint in Eq. (2.17) is unazected. If again we
integrate out the }eld a0, we obtain

S =

∫

d4x

[

ψ∗
j

(

i
∂

∂t
+

1

2m0

∆

)

ψj − λn

4m2
0

n2 − λs

4m2
0

sjs
j

]

, (2.20)

where n = ψ∗
i ψ

i is the number density, sm = −iεmijψ∗
i ψj is the spin density and

we have de}ned λn := λ1+λ2 and λs := −λ2. In order to obtain Eq. (2.20), we
have used some properties of the Levi-Civita symbol that we have previously
introduced. Note that the only dizerence with respect to the free theory,
Eq. (2.18), is the appearance of two self-interaction terms.

C. Gravity

Finally, we include the ezects of gravity, which are codi}ed in the spacetime
metric gµν(t, ~x). For that purpose, it is convenient to decompose the spacetime
line element in the form [49]

ds2 = − [1 + 2Φ(t, ~x)] dt2 + [1− 2Ψ(t, ~x)] δjkdx
jdxk, (2.21)

which has been expressed in the Newtonian gauge and codi}es only the scalar
degrees of freedom of the gravitational }eld (vector and tensor modes do not
couple to non-relativistic matter and we have omitted them here). The func-
tions Φ(t, ~x) and Ψ(t, ~x) transform as scalars under spatial rotations and con-
stitute the gravitational potentials.

This introduces the additional terms
∫

d4x

[

1

8πG
Ψ∆(2Φ−Ψ)−m0Φn

]

(2.22)

into the action (2.20), where we have taken into account that, in the non-
relativistic limit, Φ ∼ Ψ ∼ ε and |ψi| ∼

√

M2
Plm0ε. Here, the }rst term of
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Eq. (2.22) originates from the Einstein-Hilbert action, whereas the second one
from the kinetic term of the vector }eld. Note that the }eld a0 is absent from
Eq. (2.22), and hence the constraint (2.17) is not azected.

Combining Eqs. (2.20) and (2.22), we obtain

S[Φ,Ψ, ψj] =

∫

dt

∫

d3x

[

1

8πG
Ψ∆(2Φ−Ψ)−m0Φn

+ψ∗
j

(

i
∂

∂t
+

1

2m0

∆

)

ψj − λn

4m2
0

n2 − λs

4m2
0

sjs
j

]

. (2.23)

Varying this expression with respect to Ψ yields ∆(Φ−Ψ) = 0, and assuming
that Φ and Ψ vanish at in}nity this implies that Φ = Ψ. Introducing this result
back into Eq. (2.23), we arrive at Eq. (2.7), where we have de}ned Φ = Ψ := U
as the Newtonian gravitational potential. The action (2.23) has the same
form as that of a non-relativistic self-interacting boson star, Eq. (1.36), with
the dizerence that the action (2.23) now considers the phenomenology of the
polarization of the vector }eld ~ψ encoded in the parameter λs.

The s = 1 Gross-Pitaevskii-Poisson System

The theory described by the action S[U , ~ψ], Eq. (2.7), is characterized in terms
of three parameters: the positive and non-vanishing }eld’s mass m0 and the
dimensionless coupling constants λn and λs.5 The }rst term in the }rst line of
Eq. (2.7) describes Newtonian gravity, the second line the matter sector and
the last term in the }rst line the interaction between gravity and matter. The
matter sector consists of the free Schrödinger action plus two short-range self-
interaction terms, one that depends on the particle number density, n := ~ψ∗ · ~ψ,
and the other on the spin density, ~s := −i~ψ∗ × ~ψ, which by de}nition are real-
valued.

Varying Eq. (2.7) with respect to ~ψ we obtain a Gross-Pitaevskii type
equation of the form

i
∂ ~ψ

∂t
= − 1

2m0

∆~ψ +
λn

2m2
0

n~ψ + i
λs

2m2
0

~s× ~ψ +m0U ~ψ, (2.24a)

whereas varying it with respect to U(t, ~x) leads to the Poisson equation,

∆U = 4πGm0n. (2.24b)

We will refer to Eqs. (2.24) as the s = 1 Gross-Pitaevskii-Poisson system.
Setting λn = λs = 0 the self-interactions vanish and Eqs. (2.24) reduce to the
s = 1 Schrödinger-Poisson system.

Reformulation of the Dynamical Equations

In this section we reformulate the system (2.24) in terms of a non-linear Hamil-
ton operator, which will bring more transparency for several of the discussions.

5In the ezective theory, the parameters λn and λs are in principle arbitrary and unrelated.
Compare this with e.g. Ref. [77], where taking the non-relativistic limit of a generic massive
real-valued vector }eld the authors obtain λs = − 1

3λn.
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The s = 1 Gross-Pitaevskii (2.24a) and Poisson (2.24b) equations can be ex-
pressed more compactly as:

i
∂ ~ψ

∂t
= Ĥ[~ψ,U ]~ψ, (2.25a)

∆U = 4πGm0n, (2.25b)

where, for }xed ~ψ and U , we have de}ned the Hamilton operator

Ĥ[~ψ,U ] := − 1

2m0

∆+
λn

2m2
0

n+ i
λs

2m2
0

~s×+m0U . (2.26)

In this equation, ~s× represents the cross product of the spin density with the
vector-valued function that the operator Ĥ[~ψ,U ] is acting on. Furthermore,
by inverting the Laplacian in Eq. (2.25b), one can eliminate the gravitational
potential U from Eq. (2.25a), which yields a nonlinear integro-dizerential equa-
tion for the wave function ~ψ,6

i
∂ ~ψ

∂t
= Ĥ[~ψ]~ψ, (2.27)

with

Ĥ[~ψ] := Ĥ[~ψ,U = ∆−1(n)] (2.28)

= − 1

2m0

∆+
λn

2m2
0

n+ i
λs

2m2
0

~s×+4πGm2
0∆

−1(n),

and where for a generic function f(~x) we have introduced the inverse Laplacian
as

∆−1(f)(~x) := − 1

4π

∫

f(~x′)

|~x− ~x′|dV
′. (2.29)

It is worth noting that, for }xed ~ψ, the Hamilton operator Ĥ[~ψ] is Hermitian,
i.e. (~ψ1, Ĥ[~ψ]~ψ2) = (Ĥ[~ψ]~ψ1, ~ψ2), where (~ψ1, ~ψ2) =

∫

(~ψ∗
1 · ~ψ2)dV denotes the

standard L2-scalar product between ~ψ1 and ~ψ2. However, despite the apparent
simplicity of Eq.(2.27), the operator Ĥ[~ψ] is non-linear, as all terms beyond
the }rst one in Eq.(2.28) are quadratic in the }eld ~ψ.

2.3.2 Symmetries and Conserved Quantities
In this section, we will study some conserved quantities in the temporal evo-
lution of the s = 1 Gross-Pitaevskii-Poisson system, which will be relevant in
the characterization of equilibrium solutions and the study of stability. These
quantities are associated with the dizerent global symmetries present in the
action (2.7). As we have done for boson stars, we will observe that for Proca
stars the number of particles and energy are also conserved. Additionally, for
Proca stars, we will observe that the spin contribution will imply the conser-
vation of total angular momentum.

6While we refer to ~ψ(t, ~x) as the wave function, it should be noted that this is a classical
}eld. In particular, n = ~ψ∗ · ~ψ describes the particle and not the probability density.
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Note: Given that the action (2.7) does not contain the time and the spatial
coordinates explicitly, the (canonical) energy-momentum tensor T ν

µ must
be conserved, that is ∂νT ν

µ = 0, where

Tµ
ν =

∂L
∂(∂νψ∗

i )
∂µψ

∗
i +

∂L
∂(∂νψi)

∂µψi +
∂L

∂(∂νU)
∂µU +−Lδµν (2.30)

with L given by

L =
1

8πG
U∆U−m0Un+ ~ψ∗ ·

(

i
∂

∂t
+

1

2m0

∆

)

~ψ− λn

4m2
0

n2− λs

4m2
0

~s 2. (2.31)

Here T 0
0 is the energy density, T0j is the j-component of the energy cur-

rent density, Ti0 is (minus) the linear momentum density along the i-th
direction, and Ti

j is (minus) the j-component of the linear momentum
current density along the i-th direction.

The non-relativistic action (2.7) is invariant under time translations, which
means that Eq. (2.31) is not azected by shifts in the time parameter, ~ψ(t, ~x) 7→
~ψ(t − t0, ~x), with t0 a real constant. Associated to this symmetry is the con-
served total energy (the spatial integral of the 00 component of the energy-
momentum tensor) given by

E =

∫

dV

[

1

8πG
∂iU∂iU +

1

2m0

∂iψ
∗
j∂

iψj +
λn

4m2
0

n2 +
λs

4m2
0

sis
i +m0Un

]

.

(2.32)

Using the Poisson equation (2.24b) and discarding the boundary terms, we can
express Eq. (2.32) as

E =

∫ [

1

2m0

|∇~ψ|2 + λn

4m2
0

n2 +
λs

4m2
0

~s 2 +
m0

2
nU
]

dV. (2.33)

In addition, one can also prove that the action (2.7) remains invariant
under rotations, ~ψ(t, ~x) 7→ U(R)~ψ(t, R−1~x), with U(R) = R a rotation matrix
or U(R) = I the identity matrix. Consequently, one has conservation of the
total angular momentum

~J = −i
∫

(~ψ∗ × ~ψ)dV − i

∫

[~x× (~ψ∗ · ∇~ψ)]dV, (2.34)

where ~S = −i
∫

(~ψ∗ × ~ψ)dV is the internal (or spin) angular momentum and
~L = −i

∫

[~x× (~ψ∗ · ∇~ψ)]dV is the orbital angular momentum. Both, ~S and ~L

are conserved individually.

Note: Given that the Lagrangian density (2.31) is symmetric respect
to the transformation ψi → ψi + εijkθ

jψk, there exist a conserved quan-
tity associated to this symmetry. For example, a rotation about the ψ3-
axis gives ψi → ψi + εi3kθ

3ψk and D3ψ1 = −ψ2, D3ψ2 = ψ1 where the
symmetry from rotation around the b-axis is Dbψa. Also, we have that
DL = (∂L/∂xµ)(∂xµ/∂θ)=0 and W µ = 0. So, the conserved current is
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given by

J
3µ
N =

∑

a

ΠaµD3ψa −W µ → S(3) = −i
∫

d3x
(

ψ1∗ψ2 − ψ2∗ψ1
)

. (2.35)

Finally, generalizing we have

Si = −i
∫

εijkψ
∗jψkd3x. (2.36)

Note: Given that the Lagrangian density is invariant under in}nitesimal
Lorentz (Galilei) transformation

Λµν = δµν + ωµν , xµ → xµ + δxµ = xµ + ωµνxνδλ, (2.37)

where ωµν is an antisymmetric tensor, we have a conserved current as-
sociated to this symmetry. Hence δψi = ∂µψ

i[ωµνxνδλ] and Dψi =

(∂ψi/∂λ)|λ=0 = ωµνxν∂µψ
i = ωµνx

ν∂µψi. So, we have that
n
∑

i=1

i2DL =

ωµνx
µ∂νL = ∂µ[g

µρωρσx
σL] = ∂µW

µ and W µ = gµρωρσx
σL. Thus, we can

write

J
µ
N =

∑

a

ΠaµDψa −W µ = ωρσ
[

∑

a

Πaµxσ∂ρψa − gµρxσL
]

= ωρσx
σT ρµ = ωρσ(J̃

µ)ρσ, (2.38)

where (J̃µ)ρσ = xσT ρµ. There are six parameters in ωρσ and so there are
six conserved currents. Now, if we write (Jµ)ρσ = xρT µσ − xσT µρ where
(Jµ)ρσ = (J̃µ)ρσ−(J̃µ)σρ and ∂µ(Jµ)ρσ = 0, we obtain the conserved charge

Qλρ =

∫

d3x(J̃µ)σρ where → Qij =

∫

dxx
(

xiT j0 − xjT 0i
)

(2.39)

are the angular momentum components. Finally, using the expression
T i0 = iψ∗

j∂
iψj we get

J i = i

∫

d3x
[

εijkx
jψ∗

l ∂
kψl
]

. (2.40)

Other conserved quantities associated with the Galilei group lead to the
fact that the center of mass follows a free-particle trajectory. However, we
will mostly limit ourselves to the study of spherically symmetric equilibrium
con}gurations which are centered at the origin, where these quantities do not
play a signi}cant role.

Also, we know that the Eq. (2.7) is invariant under continuous shifts in
the phase of the wave function, ~ψ(t, ~x) 7→ eiα ~ψ(t, ~x), with α a real constant,
leading to the conservation of the “particle number” given by

N =

∫

(~ψ∗ · ~ψ)dV. (2.41)
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where, in contrast with the relativistic expression (2.6), there not are time and
spatial derivates of the }eld.

Moreover, our theory features an “accidental” symmetry: in absence of
spin-spin self-interactions (λs = 0), the action (2.7) is also invariant under
global unitary transformations, ~ψ(t, ~x) 7→ Û ~ψ(t, ~x), where Û is a constant
unitary 3 × 3 matrix.7 This symmetry induces the conserved, self-adjoint,
second-rank tensor8

Q̂ =

∫

(~ψ∗ ⊗ ~ψ)dV, (2.43)

with the following properties: N = Tr(Q̂) = N1 +N2 +N3 where for example
N1 =

∫

d3xψ∗
1ψ1 and ~S = −iTr(ε̂Q̂), where ε̂ is the third-rank Levi-Civita

tensor and in the last expression the trace denotes the contraction of the last
two indices of ε̂ with the two indices of Q̂. The reason why the particle number
N and the spin angular momentum ~S are codi}ed in the tensor Q̂ is because
rotations and global phase factors are elements of the U(3) group. On the
other hand, the other components of Q̂ are only conserved when λs = 0.9

In the following, we will distinguish between two scenarios: the symmetry-
enhanced sector of the ezective theory, where λs = 0 and the accidental U(3)
symmetry is manifest, and the generic sector of the ezective theory, where the
two coupling constants λn and λs can take arbitrary values, except λs = 0. In
addition, we will consider two con}gurations, ψ1(t, ~x) and ψ2(t, ~x), as “equiv-
alent” if they are related by a symmetry transformation (note that the notion
of equivalent con}gurations depends on the speci}c sector of the theory that
we are exploring). In this thesis, we will not distinguish between equivalent
con}gurations and will always use symmetry transformations for our conve-
nience. In particular, if λs = 0, we can use the U(3) symmetry to diagonalize
the operator Q̂, leaving only the diagonal elements non-zero.

G. Constant Polarization States

Now, we introduce some simple properties of constant polarization states,
which will be of interest later. Constant polarization states are de}ned as

~ψ(t, ~x) = f(t, ~x)ε̂, (2.45)
7We can see, for example, that under the transformation Û with Û †Û = 1, the term

n = ~ψ∗ · ~ψ is invariant since n′ = ~ψ
′∗ · ~ψ′

= (Û ~ψ)† ·Û ~ψ = U∗
lkUkjψ

l∗ψj = ψ∗ ·ψ = n. However,
the term ~s = −i ~ψ∗ × ~ψ is not invariant since s′i = −iεijkU∗

jmUklψ
∗
mψl 6= −iεijkψ∗

jψk = si.
8Since the Lagrangian (2.31) is invariant to unitary in}nitesimal transformations Û(α) =

1 + iαD̂ we have an induced a conserved current of the form

J
µ
N =

∑

a

ΠaµDψa → Qij =

∫

d3xψ∗
i ψj . (2.42)

9The tensor Q̂ evolves in time according to

dQ̂

dt
=

λs

m2
0

Im
∫

(~ψ · ~ψ)∗(~ψ ⊗ ~ψ)dV. (2.44)

If λs = 0, this tensor is conserved. If λs 6= 0, however, only the anti-symmetric part of this
tensor and its trace are conserved.
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where f(t, ~x) is an arbitrary complex-valued function and ε̂ is a polarization
vector that is independent of the space-time coordinates and that, for conve-
nience, we have normalized to one, ε̂∗ · ε̂ = 1.

Given that the wave function ~ψ(t, ~x) contains an arbitrary global phase,
we can parametrize a constant polarization vector in the form:

ε̂ = sin θ cosφêx + eiγ1 sin θ sinφêy + eiγ2 cos θêz, (2.46)

where θ, φ, γ1 and γ2 are 4 real constants and êx, êy, and êz are the Cartesian
unit vectors. Furthermore, given the symmetries of our ezective theory, one
can always perform a rotation such that the polarization vector is contained
in the xy plane, and obtain

ε̂ = cosφêx + eiγ1 sinφêy, (2.47)

which is the expression for a general elliptical polarization vector.10
On the other hand, from the de}nition of the spin density ~s = −i~ψ∗(t, ~x)×

~ψ(t, ~x), one has ~s = 2|f |2 cosφ sinφ sin γ1 such that using the identity sin2(2φ) =
4 cos2(φ) sin2(φ), we have

~s 2 = |f |4 sin2(2φ) sin2 γ1, (2.48)

which implies that |~s| ≤ |f |2 = n.11 Con}gurations with zero spin density
(γ1 = 0) are (up to a global phase factor) of the form ε̂ = cosφêx ± sinφêy,
which after a rotation can be further reduced to

ε̂ = ε̂x := êx. (2.49a)

In contrast, con}gurations which saturate the spin density (φ = π/4 and γ1 =
π/2), |~s| = n, are of the form ε̂ = 1√

2
(êx ± iêy), which using a rotation can be

reduced to
ε̂ = ε̂(+)

z :=
1√
2
(êx + iêy) . (2.49b)

We call constant polarization states having ε̂ as in Eq. (2.49a) linearly polarized,
and states as in (2.49b) circularly polarized.

When the spin-spin self-interaction is absent (λs = 0) the theory is U(3) in-
variant and all states with constant polarization are equivalent to each other.12
In particular, this means that when exploring constant polarization states in
the symmetry enhanced sector of the ezective theory we can restrict ourselves

10This name takes on particular signi}cance when the state is stationary, i.e. f(t, ~x) =

e−iEtf̄(~x), and the real ~ψR and the imaginary ~ψI parts of the vector ~ψ evaluated at a }xed
point ~x describe an ellipse as time progresses.

11Note that, in general, ~s 2 = n2 − |~ψ · ~ψ|2, so the inequality |~s| ≤ n holds true for any
wave vector ~ψ(t, ~x)

12Any elliptical polarization vector (2.47) can be expressed in the form ε̂ = Û êx, where

Û =





cosφ −e−iγ1 sinφ 0
eiγ1 sinφ cosφ 0

0 0 1



 (2.50)

is a unitary matrix.
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to the simplest case in which ε̂ = ε̂x. In contrast, when λs 6= 0, one can prove
that any solution of Eq. (2.24a) with constant polarization has either linear
(~s 2 = 0) or circular (~s 2 = n2) polarization, which in this case are dizerent
to each other. To summarize, if we restrict ourselves to constant polarization
states, it is su{cient to consider the linear and circular ones, which degenerate
when λs = 0.

Note: We can prove that when λs 6= 0, constant polarization states sat-
isfying the }eld equations are necessarily linear or circular. To do so, we
substitute the de}nition (2.45) into Eq. (2.24) and obtain

i
∂f

∂t
ε̂ = −(∆f)ε̂+ λn|f |2f ε̂+ λs|f |2f(ε̂∗ × ε̂)× ε̂+∆−1(|f |2)f ε̂. (2.51)

where the condition (ε̂∗× ε̂)× ε̂ = ε̂− (ε̂ · ε̂)ε̂∗ = Cε̂ must be satis}ed, with
C a complex constant. Taking the dot product with ε̂ on both sides yields
C(ε̂ · ε̂) = 0. There are two solution to this equation: C = 0 and ε̂ · ε̂ = 0.
In the }rst case, the above condition leads to ε̂ = (ε̂ · ε̂)ε̂∗, which, together
with the normalization condition ε̂∗ · ε̂ = 1, implies that ε̂ is real-valued
up to a global phase factor. This is the condition for linear polarization.
In the second case, if one writes ε̂ = ε̂R + iε̂I (with ε̂R and ε̂I denoting
the real and imaginary parts of ε̂, respectively) then the equation ε̂ · ε̂ = 0
implies that |ε̂R| = |ε̂I | = 1√

2
, ε̂R · ε̂I = 0, which is the condition for circular

polarization in the direction ε̂R × ε̂I .

2.3.3 Equilibrium Con}gurations
Now, we identify the dizerent types of equilibrium con}gurations that can
exist in our ezective theory. For that purpose, we de}ne an equilibrium con-
}guration as a critical point of the energy functional E [~ψ]. In practice, we
restrict ourselves to variations that keep conserved quantities }xed. As we will
demonstrate, the choice of which quantities are }xed might azect the location
of the critical points, and, ultimately, the equilibrium states that can exist in
the dizerent sectors of the theory.

To proceed, let us }rst concentrate on the generic sector, where the two
coupling constants λn and λs can take arbitrary values (except λs = 0) and
the particle number N is conserved. In this case, the relevant critical points
are obtained from varying the modi}ed energy functional

EE[~ψ] := E [~ψ] + 1

2
E

(

N −
∫

(~ψ∗ · ~ψ)dV
)

, (2.52)

where E is a Lagrange multiplier associated with the constraint that guarantees
that the particle number remains }xed in the variations.13 Remember that
the functionals E [~ψ] and N [~ψ] de}ned in Eqs. (2.33) and (2.41) depend on

13Let’s remember that when varying a functional subject to a constraint, we must use the
method of Lagrange multipliers. This method reduces the problem with n variables and k
constraints to one with n + k variables without constraints. In our case, the constraint is
given by g[~ψ] =

∫

(~ψ∗ · ~ψ)dV = N , so the function for which we need to }nd the extrema is
given by h[~ψ] = E [~ψ]− λ(N − g[~ψ]).
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the }eld ~ψ and its spatial gradients, but not on its time derivatives, and for
that reason we will treat EE[~ψ] as a functional of ~ψ(~x) alone, ignoring any
time evolution. Correspondingly, we assume that the Lagrange multiplier E is
time-independent.

The }rst variation of EE[~ψ] with respect to ~ψ yields14

δEE = Re(Ĥ[~ψ]~ψ − E ~ψ, δ ~ψ). (2.54)

A critical point is characterized by the condition that δEE = 0 for all δ ~ψ;
hence, equilibrium con}gurations ~ψ(~x) must ful}ll the nonlinear equation

E ~ψ = Ĥ[~ψ]~ψ, (2.55)

which must be solved subject to appropriate boundary conditions. Note that
if ~ψ(~x) satis}es Eq. (2.55), then eiα ~ψ(~x), where α is an arbitrary phase in-
dependent of ~x, is also a solution to this equation. If we make this phase
time-dependent and introduce this expression into the dynamical Eq. (2.27),
we obtain

~ψ(t, ~x) = e−iEt ~ψ(t = 0, ~x), (2.56)

with ~ψ(t = 0, ~x) = ~ψ(~x). In the context of quantum mechanics, these solutions
are usually referred to as stationary states. They have time-independent parti-
cle n(t, ~x) and spin ~s(t, ~x) densities, and, consequently, the Hamiltonian (2.28)
remains constant in the evolution. Furthermore, stationary states are eigen-
functions of the Hamilton operator.

Next, we extend the study of the equilibrium con}gurations to the symmetry-
enhanced sector, where λs = 0 and in addition to the particle number N the
charges Q̂ associated with the accidental symmetry are conserved. In analogy
with the previous case, we de}ne the energy functional

EÊ[~ψ] := E [~ψ] + 1

2
Tr
[

Ê

(

Q̂−
∫

(~ψ∗ ⊗ ~ψ)dV

)]

, (2.57)

with Ê a constant Hermitian transformation that plays the role of the Lagrange
multiplier associated with Q̂. In this case, the }rst variation of Eq. (2.57) can
be expressed in the form

δEÊ = Re(Ĥ[~ψ]~ψ − Ê ~ψ, δ ~ψ), (2.58)

and, therefore, imposing δEÊ = 0 for all δ ~ψ, yields

Ê ~ψ = Ĥ[~ψ]~ψ. (2.59)
14To perform the variation, we expand the wave function ~ψ as

~ψ(t, ~x) = ~ψ(0)(t, ~x) + εδ ~ψ(t, ~x) +
ε2

2
δ2 ~ψ(t, ~x) +O(ε3) (2.53a)

where ~ψ(0)(t, ~x) denote the background }eld and δ ~ψ(t, ~x), δ2 ~ψ(t, ~x) are the }rst and second
order perturbations. The n-th variation of E [~ψ] is given by δnE [~ψ] = dn

dεn
E [~ψ]|ε=0. Using

(2.53a) and (2.33) we have
δE [~ψ] = Re(Ĥ ~ψ(0), δ ~ψ). (2.53b)

where (~ψ1, ~ψ2) =
∫

(~ψ∗
1 · ~ψ2)dV denotes the standard L2-scalar product between ~ψ1 and ~ψ2.
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Now, if ~ψ(~x) is a solution of Eq. (2.59), then Û ~ψ(~x) also satis}es this equation,
where Û = eiÂ is a constant unitary transformation with Â Hermitian and
commuting with Ê. However, if we allow Â to depend on time, and substitute
this expression into the dynamical Eq. (2.27), we obtain

~ψ(t, ~x) = e−iÊt ~ψ(t = 0, ~x), (2.60)

where again ~ψ(t = 0, ~x) = ~ψ(~x). We will refer to these con}gurations as
multi-frequency states, given that they involve more than one frequency of
oscillation. These states maintain the particle number density n(t, ~x) time-
independent, although, in general, the spin density s(t, ~x) depends on time.
Nonetheless, this does not azect the Hamiltonian Ĥ[~ψ], which is independent
of the spin density when λs = 0. Stationary states arise for the particular case
in which Ê is proportional to the identity matrix; however, in the following,
we will exclude this case when referring to multi-frequency states. Under this
assumption, we can conclude that multi-frequency states are not eigenfunctions
of the Hamilton operator.

To summarize, the equilibrium con}gurations of the generic sector of the
ezective theory (where λn is arbitrary and λs 6= 0), consist only of stationary
states (2.56). In the symmetry-enhanced sector (where λn is arbitrary and
λs = 0), in addition to the stationary (i.e. single-frequency) states, one must
also consider the multi-frequency solutions (2.60).

General Properties of the Energy Functional and the Equilibrium Con-
}gurations

Following Ref. [49], we discuss some interesting properties of the energy func-
tional and the equilibrium con}gurations that to a large extent can be deduced
from a simple scaling argument. To this purpose, it is convenient to express
Eq. (2.33) in the form

E [~ψ ] = T [~ψ ] + λnFn[n] + λsFs[~s ]−D[n, n], (2.61)

where the functionals T , Fn, Fs and D are de}ned by

T [~ψ ] :=
1

2m0

∫

|∇~ψ(~x)|2dV, (2.62a)

Fn[n] :=
1

4m2
0

∫

n(~x)2dV, (2.62b)

Fs[~s ] :=
1

4m2
0

∫

~s(~x)2dV, (2.62c)

D[n, n] :=
Gm2

0

2

∫ ∫

n(~x)n(~x′)

|~x− ~x′| dV
′dV, (2.62d)

and are positive de}nite.
Next, let ν > 0 be an arbitrary real and positive parameter, and ~ψ(~x) a

given wave function which does not vanish identically. Consider the rescaled
function

~ψν(~x) := ν3/2 ~ψ(ν~x), (2.63)
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Figure 2.3: Parameter space of the theory: The shadow region (λ0 ≥ 0)
represents the parameter space of our ezective theory for which, when N is
}xed, the energy functional is bounded from below. Furthermore, in this region
there exists a global minimum of the energy functional, which is attained for
a stationary and spherically symmetric state of constant polarization (linear
if λs > 0 and circular if λs < 0) and negative energy. In general, we cannot
guarantee the uniqueness of the ground state, unless λn = λs = 0, in which case
the ground state is unique up to translations and rigid unitary transformations.

which leaves the particle number and the global U(3) charges invariant, i.e.
N [~ψν ] = N [~ψ] and Q̂[~ψν ] = Q̂[~ψ] for all ν > 0. Under the rescaling (2.63), the
energy functional (2.61) transforms according to

E [~ψν ] = ν2T [~ψ] + ν3λnFn[n] + ν3λsFs[~s]− νD[n, n]. (2.64)

Furthermore, the }rst and second variations of E [~ψν ] at ~ψν=1 = ~ψ are given by

d

dν
E [~ψν ]

∣

∣

∣

∣

ν=1

= 2T [~ψ] + 3λnFn[n] + 3λsFs[~s]−D[n, n], (2.65a)

d2

dν2
E [~ψν ]

∣

∣

∣

∣

ν=1

= 2T [~ψ] + 6λnFn[n] + 6λsFs[~s]. (2.65b)

A number of interesting conclusions can be drawn from these results.

A. Lower Bound of the Energy Functional

First, we claim that, for }xed N , the energy functional (2.61) is bounded from
below if and only if λ0 ≥ 0, where

λ0 :=

{

λn, if λs ≥ 0,
λn − |λs|, if λs < 0,

(2.66)
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see Figure 2.3 for an illustration. Furthermore, the same holds true when
λs = 0 and Q̂ is }xed.

To prove this, we }rst assume that N = Tr(Q̂) is }xed but allow the
trace-free part of Q̂ to vary. Notice that if λn ≥ 0 and λs ≥ 0, then E [ψ] ≥
T [~ψ] − D[n, n], which is known to be bounded from below when N is }xed
(see, for instance, Ref. [99]). In contrast, when λn < 0 and λs ≥ 0, we can
choose ~ψ equal to a state of constant linear polarization, such that Fs[~s] =
0, and then it follows from Eq. (2.64) that E [~ψν ] can be made arbitrarily
negative by choosing ν large, showing that the energy functional is not bounded
from below.15 Finally, if λs < 0, then the inequality |~s| ≤ n implies that
λnFn[n]+λsFs[~s] ≥ (λn−|λs|)Fn[n], with the equality sign for states of constant
circular polarization. Hence, in this case, the energy functional is bounded
from below if and only if λn − |λs| ≥ 0.

When λs = 0 and Q̂ is }xed it is easy to verify that one can apply the
same arguments as above to show that the energy functional is bounded from
below if and only if λn ≥ 0. It should be noted that in this case one cannot
always choose ~ψ to be a state of constant linear polarization since this requires
that Q̂ has rank 1; however, this is not needed for the scaling argument since
the term λsFs[~s] in Eq. (2.64) is automatically zero when λs = 0. Hence, one
can use again the particular variation de}ned in Eq. (2.63) (which }xes Q̂) to
conclude that the energy functional is unbounded from below when λn < 0.

B. Energy Functional of Equilibrium States

Second, if ~ψ(t, ~x) is an equilibrium con}guration, then the }rst variation of the
energy functional vanishes, and Eq. (2.65a) yields the relation

D[n, n] = 2T [~ψ] + 3λnFn[n] + 3λsFs[~s]. (2.67)

This expression is valid for any equilibrium state and allows one to express
the selfgravity term D[n, n] as a function of the kinetic term T [~ψ] and the
self-interaction ones Fn[n] and Fs[~s], similar to the usual virial relation. Ac-
cordingly, the total energy of any equilibrium state can be expressed as

E [~ψ] = −T [~ψ]− 2λnFn[n]− 2λsFs[~s], (2.68)

which does not require the computation of the selfgravity term D[n, n]. Since
λnFn[n]+λsFs[~s] ≥ λ0Fn[n] and T [~ψ] and Fn[n] are positive de}nite, it follows
that the energy of the equilibrium states is always negative when λ0 ≥ 0.

15An energy functional that is unbounded from below is considered ill-de}ned, as it implies
that an unlimited amount of energy can be extracted from the system, rendering the theory
non-physical. However, in the context of ezective theories, this issue is expected to be
resolved by the ultraviolet completion, where higher-order operators not included in Eq. (2.7)
should ensure that the energy functional becomes bounded. This is what happens, for
instance, with the well-known cosine potential of the QCD axion, where expanding in a
Taylor series reveals that the quartic term has a negative coe{cient (indicating an attractive
self-interaction), while the potential remains positive de}nite.
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C. Discarding Local Minima of the Energy Functional

Third, Eq. (2.65b) implies that a critical point at ν = 1 corresponds to a local
minimum of E [~ψν ] if T [~ψ] + 3λnFn[n] + 3λsFs[~s] is positive and to a local max-
imum if it is negative. In particular, an equilibrium state ~ψ(t, ~x) cannot be a
(local) minimum of the energy functional with respect to arbitrary variations
that }x N (or Q̂ if λs = 0) when λnFn[n] + λsFs[~s] < −T [~ψ]/3.

Generic Sector: Stationary Solutions

In the generic sector of the ezective theory, equilibrium con}gurations are
stationary states, which are characterized by the ansatz, c.f. Eq. (2.56):

~ψ(t, ~x) = e−iEt~σ(0)(~x), (2.69)

where ~σ(0) is a complex vector-valued function of ~x and the energy eigen-
value E is a real constant. As explained previously, these states have a time-
independent Hamiltonian, and consequently, they give rise to a static grav-
itational potential U(t, ~x) = U(~x). Introducing Eq. (2.69) into the integro-
dizerential equation (2.28) yields the nonlinear eigenvalue problem:

E~σ(0) = Ĥ[~σ(0)]~σ(0). (2.70)

This equation determines the stationary solutions of the s = 1 Gross-Pitaevskii-
Poisson system, which will be solved numerically in Section 2.3.5 under the
assumption of spherical symmetry.

However, before doing so, we ask ourselves whether stationary states can
arise as global minima of the energy functional. This question is particularly
relevant since such a minimum is expected to represent a stationary state that
is (orbitally) stable under small enough perturbations [100].

In order to formulate the question in a more precise way, let

AN :=

{

~ψ ∈ H1(R3,C3) :

∫

|~ψ(~x)|2dV = N

}

, (2.71)

where here H1(R3,C3) denotes the space of wave functions ~ψ : R3 → C
3 such

that ~ψ and its }rst partial derivatives are (Lebesgue-) square-integrable. It
can be shown that E is well-de}ned on this space [99]. Thus, we ask whether
there exists a wave function ~ψ∗ ∈ AN such that

E [~ψ∗] = inf
~ψ∈AN

E [~ψ]. (2.72)

The }rst observation is that a necessary condition for the existence of such a
minimum is that E must be bounded from below on AN . As has been shown
in Section 2.3.3, this is the case if and only if λ0 ≥ 0, with λ0 de}ned in
Eq. (2.66), so for the remainder of this section we shall assume that λ0 ≥ 0.

Next, we claim that a global minimum is attained by a wave function of
constant polarization and that, if multiple global minima exist, all share this
form. To show this, we }rst decompose ~ψ(~x) according to

~ψ(~x) = f(~x)ε̂(~x), (2.73)
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where f(~x) := |~ψ(~x)| and ε̂(~x) has unit norm. Using the fact that n = f 2

and |∇~ψ|2 = |∇f |2 + n|∇ε̂|2, and recalling the inequality λnFn[n] + λsFs[~s] ≥
λ0Fn[n], one obtains

E [~ψ] ≥ Escalar[f ] := Tscalar[f ] + λ0Fn[n]−D[n, n], (2.74)

where Tscalar[f ] := 1
2m0

∫

|∇f(~x)|2dV . Furthermore, equality holds only if on
the set of points where f > 0 the polarization vector ε̂(~x) is constant and
satis}es λn + λs|ε̂∗ × ε̂|2 = λ0, which means that ε̂(~x) has linear (circular)
polarization if λs > 0 (λs < 0).

One can further decrease the energy functional by replacing f by its “sym-
metric decreasing rearrangement” f∗ (which, by de}nition, is spherically sym-
metric, nonincreasing, nonnegative and satis}es

∫

f p∗dV =
∫

f pdV for all p ≥ 1;
see [99] and references therein). It follows from [99] that Escalar[f ] ≥ Escalar[f∗],
with strict inequality unless f(~x) = f∗(~x− ~x0) with a constant vector ~x0.

As a consequence, any minima ~ψ∗ of the problem (2.72) must lie in the
subset of AN consisting of constant polarization states for which the function
f(~x) := |~ψ(~x)| is radially symmetric (up to translations), nonincreasing, and
nonnegative and for which the polarization is linear for λs > 0 and circular for
λs < 0. The function f can then be found by minimizing the functional Escalar,
which is known to have a minimum [99, 101, 102] satisfying f(~x) = f∗(~x).

In conclusion, global minima of Eq. (2.72) exist, and (up to translations)
all of them are described by stationary and spherically symmetric states of
constant polarization that have the form ~ψ(t, ~x) = e−iEtσ(0)(r)ε̂, with σ(0)(r)
monotonically decreasing and positive, the polarization ε̂ being linear when
λs > 0 and circular when λs < 0. Whether or not the function σ(0)(r) charac-
terizing the ground state is unique for λ0 > 0 is an interesting open question
that will not be addressed in this thesis work.

Figure 2.3 further illustrates the results of this section.

Symmetry-enhanced Sector: Stationary and Multi-frequency Solutions

In absence of spin-spin self-interactions (λs = 0), stationary con}gurations still
exist. Following similar arguments as in Section 2.3.3 we conclude that, for
}xed N and λn ≥ 0, the energy is always minimized by a stationary and spher-
ically symmetric state of constant polarization and no nodes. Furthermore, in
the free theory (λn = λs = 0), the ground state is unique, up to translations
and rigid unitary transformations [99].

As explained in Section 2.3.3, in the symmetry-enhanced sector there also
exists the possibility of equilibrium con}gurations that are realized as multi-
frequency states. Expanding

~ψ(t = 0, ~x) =
3
∑

λ=1

σ
(0)
λ (~x)êλ (2.75)

in terms of an orthornormal basis êλ of C
3 which diagonalizes the transfor-

mation Ê, Eq. (2.60) leads to the following expression for the multi-frequency
states:

~ψ(t, ~x) =
3
∑

λ=1

e−iEλtσ
(0)
λ (~x)êλ, (2.76)
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where σ(0)
λ are complex-valued functions depending on ~x and Eλ denote the

eigenvalues of Ê which are real and correspond to the frequency of oscillation
associated with σ

(0)
λ . As the stationary states, these solutions have a time-

independent Hamiltonian and gravitational potential. Introducing Eq. (2.76)
into the integro-dizerential equation (2.28) yields the nonlinear eigenvalue
problem:16

Eλσ
(0)
λ = Ĥ[~ψ]σ

(0)
λ . (2.77)

These equations determine the multi-frequency solutions of the symmetry-
enhanced sector of the s = 1 Gross-Pitaevskii-Poisson system, which will be
solved numerically in Section 2.3.4 under the assumption of spherical symme-
try.

An open question is whether constant polarization states, which minimize
the energy functional for }xed N , also minimize it for arbitrary }xed values of
Q̂. We do not address this question in this thesis work.

2.3.4 Spherically Symmetric Equilibrium Con}gurations
Hereafter, we further specialize on equilibrium con}gurations which are spheri-
cally symmetric. As discussed in Section 2.3.2, our ezective theory is invariant
under the rotation group, hence we expect spherically symmetric con}gura-
tions to play a relevant role in our discussion. Furthermore, as we have already
argued in Section 2.3.3, for }xed N and λ0 ≥ 0, all ground state con}gurations
are stationary and spherically symmetric (up to translations).

We de}ne a spherically symmetric con}guration as one that is invari-
ant under rotational transformations.17 Recall that Eq. (2.7) is invariant
with respect to any two of the following representations of the SO(3) group:
~ψ(t, ~x) 7→ R~ψ(t, R−1~x) and ~ψ(t, ~x) 7→ ~ψ(t, R−1~x). Therefore, a spherically
symmetric con}guration should lie in the trivial irreducible representation of
any of these two representations of the rotation group.

In the }rst case, one obtains a state of the form

~ψ(t, ~x) = ψr(t, r)êr, (2.78a)

with êr the unit radial vector and ψr(t, r) an arbitrary complex-valued function
of t and r = |~x|. In the second case, however, one gets

~ψ(t, ~x) =
3
∑

λ=1

ψλ(t, r)êλ, (2.78b)

16Recall that Ĥ[~ψ] depends on ~ψ only through the combination n =
∑

λ |σ
(0)
λ |2, which is

independent of t.
17Clearly, a spherically symmetric con}guration should be associated with a radially sym-

metric gravitational potential. Through Poisson’s equation, this implies that the particle
density n should have the same symmetry. The question then is which wave functions
~ψ(t, ~x) give rise to such densities and, at the same time, are self-consistent stationary or
multi-frequency solutions of the s = 1 Gross-Pitaevskii-Poisson system. While in this thesis
report we do not provide a complete answer to this question (since we do not guarantee ob-
taining all possible such wave functions), we nevertheless identify dizerent families of such
states based on symmetry arguments.
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where the three components of ~ψ(t, ~x) in an orthonormal constant basis êλ of
C

3 are functions of t and r only. Note that in both cases the particle density n
is radially symmetric, which, according to Poisson’s equation, guarantees that
the gravitational potential U also respects this symmetry. The spin density
~s vanishes in the }rst case, however, in the second one it may be non-zero,
although its three components are functions of t and r only.

Next, we identify the dizerent types of spherically symmetric equilibrium
con}gurations that can exist in our ezective theory. For doing this, we combine
our de}nition of equilibrium con}gurations in Section 2.3.3, together with that
of spherically symmetric con}gurations in this section.

Stationary spherical solutions

Polarization λn = 0, λs = 0 λn 6= 0, λs = 0 λn = 0, λs 6= 0 λn 6= 0, λs 6= 0
Constant: linear ` = 0 SP [87, 49] ` = 0 GPP [49] ` = 0 SP [87, 49] ` = 0 GPP [49]

circular ` = 0 SP [87, 49] ` = 0 GPP [49] ` = 0 SP [87, 49] ` = 0 GPP [49]
arbitrary ` = 0 SP [87, 49] ` = 0 GPP [49] non-existent non-existent

Radial ` = 1 SP [87] ` = 1 GPP (new) ` = 1 GPP (new) ` = 1 GPP (new)

Table 2.1: The stationary and spherical s = 1 Gross-Pitaevskii-Poisson
system: The stationary, spherically symmetric s = 1 Gross-Pitaevskii-Poisson
equations as compared to other systems studied in the framework of multi-
scalar }eld theories. The comparison depends on the polarization vector ε̂. A
general constant polarization (dizerent from the linear and circular ones) is
prohibited in presence of spin-spin self-interactions. Self-interacting, radially
polarized Proca stars are not related with previously known solutions. SP
(Schrödinger-Poisson), GPP (Gross-Pitaevskii-Poisson).

For the following, it will be convenient to express the }eld ~σ(0)(~x) of the
stationary ansatz (2.69) in the form ~σ(0)(~x) = σ(0)(r)ε̂(~x). Here σ(0) is a real-
valued function which, due to spherical symmetry, depends only on the radial
coordinate r and ε̂ is a complex polarization vector that, in general, depends
on ~x and is normalized to have unit length. Then, combining Eqs. (2.69)
and (2.78a) leads to ε̂(~x) = êr, whereas combining Eqs. (2.69) and (2.78b)
yields ε̂(~x) = ε̂(r).

In addition, the wave function ~ψ(t, ~x) needs to satisfy the s = 1 Gross-
Pitaevskii equation (2.25a), and this puts a further condition on the possible
form of the polarization vector. Although we have not analyzed the full impli-
cations of this condition,18 we identi}ed three dizerent types of polarization
vectors that are compatible with the structure of the }eld equations and lead
to stationary and spherically symmetric con}gurations:

i) A linear polarization vector, for which ε̂(~x) = êx; see Eq. (2.49a).
18However, when λs = 0 one can prove that ε̂(r) must be constant since in this case the

three components of ~σ(0)(~x) satisfy the same time-independent Schrödinger equation with
the same energy level E and thus they must be proportional to each other according to the
Sturm oscillation theorem [103]. Further, we have proved that under the assumption that
ε̂(r) is constant, only linear or circular polarizations are possible when λs 6= 0, although in
this case we have not been able to demonstrate that the polarization vector is necessarily
constant.
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ii) A circular polarization vector, for which ε̂(~x) = ε̂
(+)
z ; see Eq. (2.49b).

iii) A radial polarization vector, for which ε̂(~x) = êr, with êr the unit radial
vector.

The }rst two cases were already introduced in Section 2.3.2 and represent (up
to a global symmetry transformation) the most general stationary states with
constant polarization. For λs = 0, they degenerate; however, when λs 6= 0
they lead to inequivalent states. Furthermore, as discussed in the previous
section, when λ0 ≥ 0 there exists a spherical and constant polarization state
that minimizes the energy functional. These solutions were previously explored
in Refs. [76, 77]. The radially polarized states can be obtained by substituting
γ1 = γ2 = 0 and θ = ϑ and φ = ϕ into Eq. (2.46), where ϑ and ϕ repre-
sent the polar and azimuthal angles in three-dimensional space, respectively.
These solutions constitute the non-relativistic limit of the spherically symmet-
ric Proca stars originally reported in [60] (see also Ref. [70], which explores
radial polarization under the name of edgehog }eld con}gurations).

Introducing the ansätze i), ii), and iii) into the s = 1 Gross-Pitaevskii-
Poisson system (2.25), we obtain that the stationary and spherically symmet-
ric con}gurations of linear, circular and radial polarization must satisfy the
nonlinear eigenvalue problem

Eσ(0) =

[

− 1

2m0

(

∆s −
2γ

r2

)

+
λn + αλs

2m2
0

σ(0)2 +m0U
]

σ(0), (2.79a)

∆sU = 4πGm0σ
(0)2. (2.79b)

Here, ∆s := 1
r
d2

dr2
r denotes the radial part of the Laplace operator, and the

parameters γ and α depend on the polarization vector ε̂ and take the following
values:

i) γ = 0, α = 0 for linearly polarized Proca stars,

ii) γ = 0, α = 1 for circularly polarized Proca stars,

iii) γ = 1, α = 0 for radially polarized Proca stars.

It is interesting to note that linearly and circularly polarized Proca stars
are described by exactly the same equations as non-relativistic boson stars, c.f.
Eqs. (32) in Ref. [49] (see also [14, 104] for previous studies of the equilibrium
con}gurations of the s = 0 Gross-Pitaevskii-Poisson system). As we clari}ed
earlier, in absence of spin-spin self-interaction, all constant polarization states
are equivalent to each other; therefore, when λs = 0, elliptically polarized
Proca stars beyond the linear and circular cases also exist and are described
by Eqs. (2.79) with γ = 0. Non-sel}nteracting (λn = λs = 0) radially po-
larized Proca stars, on the other hand, are described by the same equations
as non-relativistic, ` = 1 boson stars, c.f. Eqs. (41) in Ref. [87]. Finally, self-
interacting, radially polarized Proca stars satisfy the same system of equations
as self-interacting, ` = 1 boson stars; however, up to our knowledge, such so-
lutions have not been reported in the literature. We review the equivalence
between these dizerent systems in Table 2.1.
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Equations (2.79) must be complemented with appropriate boundary con-
ditions that guarantee that the solutions remain regular at the origin and
possess }nite total energy. Near r = 0, we can expand the solutions in
power series of the form σ(0)(r) = σ0r

α + σ1r
α+1 + σ2r

α+2 + . . ., U (0)(r) =
U0r

β + u1r
β+1 + U2r

β+2 + . . ., with σ0 6= 0, U0 6= 0, α and β taking constant
values positives values. Introducing this ansatz into Eqs. (2.79) we can write
this as

{σ0α(α− 1)rα−2 + σ1(α + 1)αrα−1 + σ2(α + 2)(α + 1)rα + ...}

+
2γ

r
{σ0αrα−1 + σ1(α + 1)rα + σ2(α + 2)rα+1 + ...}

− 2

r2
{σ0rα + σ1r

α1+ + σ2r
α+2 + ...} ± {σ0rα + ...}3

+{U0r
β + ...}{σ0rα + ...} = 0. (2.80)

Near r = 0 we can neglect the terms r3α and rα+β. Grouping the terms with
power rα−2 and setting it to zero, we obtain a quadratic equation for α with
solutions α = −1, 0 if γ = 0 and α = −2, 1 if γ = 1. The only solutions
that are regular are given by the values α = 0, 1. In a similar way for β
using the Poisson equation (2.79b) we get the regular solution β = 0, 1. When
we group the terms rα−1, we get σ1,U1 = 0. So, when γ = 0, they have
(α, β) = (0, 0) and (α, β) = (−1,−1), where the second solution needs to
be discarded since it leads to divergences at the origin. For γ = 1 the two
solutions have (α, β) = (1, 0) and (α, β) = (−2,−1), and again, the second
one leads to a divergent behavior at r = 0.

This suggests the following regular boundary conditions at the center:

σ(0)(r = 0) = (1− γ)σ0, σ(0)′(r = 0) = γσ0, (2.81a)
U (0)(r = 0) = U0, U (0)′(r = 0) = 0, (2.81b)

with σ0 and U0 constants and where the primes refer to derivation with re-
spect to r. Notice that, at the origin, linearly and circularly polarized states
have a nonzero value and a vanishing }rst derivative. In contrast, for radially
polarized Proca stars, regularity implies that the wave function vanishes at
r = 0, whereas the }rst derivative at the origin does not vanish. Nonetheless,
we will sometimes refer to σ0 as the central “amplitude” of the con}guration,
although rigorously this is only true if the polarization is linear or circular. On
the other hand, Eqs. (2.79) are invariant under simultaneous shifts of E and
U(r), and we can use this symmetry to }x arbitrarily the value of U0.

At in}nity, we impose lim
r→∞

σ(0)(r) = 0, which is required for the solutions
to have a }nite total energy. This de}nes a nonlinear eigenvalue problem for
the frequency E, where, for each central amplitude of the con}guration, σ0,
there exists a discrete set of frequencies En(σ0), n = 0, 1, 2, . . ., for which the
boundary conditions are satis}ed. We discuss this problem in more detail in
Section 2.3.5, where we present our numerical results.

Multi-frequency Spherical Solutions

Next, we explore multi-frequency states, which are only possible in absence of
spin-spin self-interactions (λs = 0).
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λn = 0, λs = 0 λn 6= 0, λs = 0 λn = 0, λs 6= 0 λn 6= 0, λs 6= 0
` = 0

multi-state SP [89]
` = 0

multi-state GPP (new)
` = 0

multi-state GPP (new)
` = 0

multi-state GPP (new)

Table 2.2: The multi-frequency and spherical s = 1 Gross-Pitaevskii-
Poisson system: The multi-frequency, spherically symmetric s = 1 Gross-
Pitaevskii-Poisson equations as compared to other systems studied in the
framework of multi-scalar }eld theories. Self-interacting, multi-frequency
Proca stars are not related with previously known solutions. SP (Schrödinger-
Poisson), GPP (Gross-Pitaevskii-Poisson).

Combining Eqs. (2.76) and (2.78a), we }nd that the only possible states
are the stationary radially polarized solutions that were already discussed in
the previous section. On the other hand, combining Eqs. (2.76) and (2.78b),
we }nd

~ψ(t, ~x) =
3
∑

λ=1

e−iEλtσ
(0)
λ (r)êλ, (2.82)

where σ(0)
λ are complex-valued functions depending only on r. As far as we

know, these solutions have not been previously reported in the literature of
Proca stars.

Introducing Eq. (2.82) into the s = 1, λs = 0 Gross-Pitaevskii-Poisson
system (2.25), we obtain:

Eiσ
(0)
i =

[

− 1

2m0

∆s +
λn

2m2
0

∑

j

|σ(0)
j |2 +m0U

]

σ
(0)
i , (2.83a)

∆sU = 4πGm0

∑

j

|σ(0)
j |2, (2.83b)

where, as in Eqs. (2.79a), ∆s denotes the radial Laplace operator, and without
loss of generality we have chosen the Cartesian basis êλ = êi with i = x, y, z.19
Furthermore, it is su{cient to consider real-valued functions σ(0)

i (r),20 and
from now on we will stick to this assumption.

It is worth noting that non-sel}nteracting (λn = 0), multi-frequency Proca
stars are described by exactly the same equations as non-relativistic, multi-
state boson stars with two or three occupied energy levels in which the angular
momentum number ` vanishes, c.f. Eqs. (9) in Ref. [89]. To the best of our
knowledge, the generalization of this system for λn 6= 0 has not been reported
in the literature, with the exception of the relativistic scenario discussed in
Ref. [105].

19By applying a unitary transformation one can always map an arbitrary orthonormal
basis êλ to the standard Cartesian one êi, which changes the original multi-frequency state
~ψ(t, ~x) of Eq. (2.76) to an equivalent one.

20Indeed, one can take the real and imaginary parts of Eq. (2.83a) and conclude that
Re(σ(0)

i ) and Im(σ
(0)
i ) satisfy the same one-dimensional Schrödinger equation. As a conse-

quence of the nodal theorem, the imaginary part of the wave function must be proportional
to the real part, which means that the functions σ(0)

i are real, up to a global phase. After
applying a constant unitary transformation one achieves that all σ(0)

i ’s are real.
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To proceed, Eqs. (2.83) must be accompanied by some appropriate bound-
ary conditions. Near r = 0, we demand that the solutions remain regular.
For this, we again expand the functions σ

(0)
i (r) and U(r) in power series

σ
(0)
i (r) = σi0r

αi +σi1r
αi+1+σi2r

αi+2+ . . ., U(r) = U0r
βi +U1r

βi +U2r
βi+2+ . . .,

and impose σi0 6= 0, U0 6= 0, αi ≥ 0 and βi ≥ 0. Introducing this expansion
into Eqs. (2.83) results in eight solutions, although only the one for which
(αi, β) = (0, 0) and (σi1,U1) = (0, 0) is regular. This leads to the following
boundary conditions at r = 0:

σ
(0)
i (r = 0) = σi0, σ

(0)′
i (r = 0) = 0, (2.84a)

U(r = 0) = U0, U ′(r = 0) = 0. (2.84b)

As for the stationary states, the system (2.83) is invariant under common
constant shifts in Ei and m0U(r), and we can choose arbitrarily the value of
U0.

Finally, to guarantee }nite total energy, we impose lim
r→∞

σ
(0)
i (r) = 0. This

de}nes a nonlinear multi-eigenvalue problem for the frequencies Ei, where, for
each combination of central amplitudes (σx0, σy0, σz0), there exists a discrete
set of frequencies Exnx

(σx0, σy0, σz0), Eyny
(σx0, σy0, σz0), and Eznz

(σx0, σy0, σz0),
nx, ny, nz = 0, 1, 2, . . ., satisfying the boundary conditions.

For the interpretation of our results, the following observation will be im-
portant. According to the nodal (or Sturm oscillation) theorem (see [103] for
a pedagogical review), the eigenfunction ψn(r) corresponding to the nth en-
ergy level En of a one-dimensional Schrödinger operator has exactly n nodes.
Once the nonlinear system (2.83) is solved, Eq. (2.83a) can be interpreted as
a Schrödinger equation for the wave functions σ(0)

i (r) with a }xed ezective
potential

λn

2m2
0

∑

j

|σ(0)
j |2 +m0U . (2.85)

Therefore, the frequencies Eini
can be ordered according to the node number

of the functions σ(0)
i (r). Consequently, two functions σ(0)

i (r) and σ
(0)
j (r) with

i 6= j are proportional to each other if they coincide in their node numbers,
whereas they are mutually orthogonal if they have dizerent numbers of nodes.
In particular, this implies that a solution whose wave functions σ(0)

i (r), i =
x, y, z, have equal number of nodes are proportional to each other and satisfy
Ex = Ey = Ez; therefore it yields a stationary solution. Thus, for }xed central
amplitudes (σx0, σy0, σz0), multi-frequency solutions can be labeled by their
node numbers (nx, ny, nz) with nx ≤ ny ≤ nz and not all ni’s equal to each
other.

In the next section, we numerically solve the nonlinear eigenvalue problems
belonging to spherically symmetric stationary and multi-frequency states.

2.3.5 Numerical Results
In this section, we provide numerical solutions of the s = 1 Gross-Pitaevskii-
Poisson system and discuss their properties. To proceed, we introduce the
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Figure 2.4: Stationary Proca stars of constant polarization: The nor-
malized real part of the vector }eld, ~ψR(t, ~x), and the normalized particle
number density, n(t, ~x), for three Proca stars of constant polarization, unit
central “amplitude”, σ0 = 1, and repulsive self-interaction, λphysn +αλphyss > 0,
at time t = 0. Left panel: No nodes, n = 0. Center panel: One node, n = 1.
Right panel: Two nodes, n = 2. Note the appearance of an additional “layer”
in the con}guration for each increment of the variable n. Code variables use
the scale λ∗ = |λphysn + αλphyss |.
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Figure 2.5: Stationary Proca stars of radial polarization: Same as in
Figure 2.4 but for the case of radially polarized Proca stars. The main dizer-
ence with respect to the linear and circular cases, apart from the fact that the
vector points radially and does not pick a preferred direction, is the presence
of a “hole” in the center of the con}guration. This is a consequence of the
regularity conditions at the origin.
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Figure 2.6: Stationary and multi-frequency Proca stars: Similar as in
Figs. 2.4 and 2.5, but comparing a stationary Proca star with multi-frequency
ones. Left panel: (σx0, σy0, σz0) = (1, 0, 0) and (nx, ny, nz) = (0, 0, 0). Cen-
ter panel: (σx0, σy0, σz0) = (1, 1, 0) and (nx, ny, nz) = (0, 1, 0). Right panel:
(σx0, σy0, σz0) = (1, 1, 1) and (nx, ny, nz) = (0, 1, 2). Although the stationary
constantly polarized and multi-frequency solutions are spherically symmetric
according to the representation ~ψ(t, ~x) 7→ ~ψ(t, R−1~x) of the SO(3) group, this
symmetry is not manifest given the pattern formed by the vector }eld.
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Figure 2.7: Radial pro}les of some representative stationary and
multi-frequency con}gurations: Radial pro}les σ(0)

i (r) of some con}gu-
rations reported in Figs. 2.4, 2.5 and 2.6. Left panel: The pro}les σ(0)(r) of
the three linear/circular con}gurations of Figure 2.4. Center panel: The pro-
}les σ(0)(r) of the three radial con}gurations of Figure 2.5. Right panel: The
pro}le σ(0)

x (r), σ(0)
y (r), and σ

(0)
z (r) of the multi-frequency con}guration in the

right panel of Figure 2.6.
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dimensionless quantities:21

t :=
4πGm3

0

λ∗
tphys, ~x :=

√
8πGm2

0

λ
1/2
∗

~xphys, (2.86a)

U :=
λ∗

4πGm2
0

Uphys, ~ψ :=
λ∗√

8πGm
5/2
0

~ψphys, (2.86b)

λn :=
λphysn

λ∗
, λs :=

λphyss

λ∗
, (2.86c)

where λ∗ > 0 is a characteristic self-interaction scale that we can choose at our
convenience. Note that the dimensions of E are the inverse of those of t.

In terms of the dimensionless variables, Eqs. (2.79) and (2.83) can be con-
veniently combined into a single system of the form

∆sσ
(0)
i =

(

2γ

r2
±
∑

j

σ
(0)2
j − u

(0)
i

)

σ
(0)
i , (2.87a)

∆su
(0)
i = −

∑

j

σ
(0)2
j , (2.87b)

where Latin indices and summations range from 1 to 3 for multi-frequency
states and are omitted for stationary states. Here, γ = 0 for multi-frequency
states and stationary states with constant polarization, whereas γ = 1 for ra-
dially polarized stationary states. To simplify the numerical implementation,
we have also introduced u(0)i (r) := Ei−U(r) as the dizerence between the fre-
quencies Ei and the gravitational potential U(r). (Although the u(0)i dizer only
by a constant number, for multi-frequency states we still }nd it convenient to
solve the three Poisson equations for the shooting algorithm described below.)
In addition, we have }xed the characteristic self-interaction scale of Eqs. (2.86)
to λ∗ = |λphysn + αλphyss |,22 where α was de}ned in Section 2.3.4. The ± signs
in Eq. (2.87a) make reference to the “repulsive”, λphysn + αλphyss > 0, and the
“attractive”, λphysn + αλphyss < 0, cases, respectively. These equations must be
complemented with the following boundary conditions at r = 0; c.f. Eqs. (2.81)
and (2.84):

σ
(0)
i (r = 0) = (1− γ)σi0, σ(0)′(r = 0) = γσi0, (2.88a)
u
(0)
i (r = 0) = ui0, u

(0)′
i (r = 0) = 0. (2.88b)

To }nd the appropriate values of σi0 and ui0, we use a methodology sim-
ilar to the one described in the previous chapter (based on Ref. [87]), where,
given σi0, the possible values for ui0 are }ne-tuned using a numerical shooting
method based on the conditions lim

r→∞
σ
(0)
i (r) = 0, which are required for the

21In this section, t, ~x, U , . . . denote dimensionless variables. Whenever needed, we will
label dimensionfull quantities by the superscript phys.

22In absence of self-interactions, when the polarization vector is linear or radial and
λphysn = 0, or when it is circular and λphysn = −λphyss , the second term on the right-hand side
of Eqs. (2.79a) and (2.83a) vanishes. In these cases, the second term on the right-hand-side
of Eq. (2.87a) should be discarded and the scale λ∗ is arbitrary.
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Figure 2.8: Radially polarized Proca stars with no nodes: Stationary
and spherically symmetric solutions of the s = 1 Gross-Pitaevskii-Poisson sys-
tem with no nodes (n = 0) and radial polarization. Red (blue) lines correspond
to the repulsive (attractive) case, and we have included the solutions to the
s = 1 Schrödinger-Poisson system (black lines) for reference. Left panel: The
pro}le of σ(0)(r) for σ0 = 1. Center panel: The ezective mass of the con}gura-
tions M99 as a function of the ezective radius R99. Right panel: The magnitude
of the energy eigenvalue |E| as a function of the central amplitude σ0. The
dots in the last two panels correspond to the con}gurations of unit amplitude.
For σ0 → 0 the ezects of the self-interactions become negligible and we re-
cover non-self-interacting radially polarized Proca star con}gurations, which
are equivalent to ` = 1 boson star.

solutions to have }nite total energy. This results in a discrete family of so-
lutions σ(0)

i (σi0, ni; r), where ni = 0, 1, 2, . . . label the number of nodes of the
functions σ(0)

i (r) in the interval 0 < r <∞. For the numerical integration, we
use an adaptive explicit 5(4)-order Runge-Kutta routine [106, 107, 108], which
requires rewriting the equations as a }rst-order system for the }elds (σ(0)

i , u
(0)
i ),

and for the shooting method we employ a technique based on bisection.
In Figs. 2.4 and 2.5 we plot some representative solutions of the stationary

and spherically symmetric s = 1 Gross-Pitaevskii-Poisson system for σ0 = 1,
n = 0, 1 and 2, and dizerent polarizations ε̂ at time t = 0. In addition,
Figure 2.6 presents a comparison between the constantly polarized station-
ary con}guration de}ned by the parameters σ0 = 1 and n = 0, and two
prototypical multi-frequency states, where for concreteness we have chosen
(σx0, σy0, σz0) = (1, 1, 0), (nx, ny, nz) = (0, 1, 0), and (σx0, σy0, σz0) = (1, 1, 1),
(nx, ny, nz) = (0, 1, 2), all of them evaluated at t = 0. For completeness, in
Figure 2.7, we include the radial pro}les σ(0)

i (r) associated with some of these
con}gurations. It is important to stress that in all these }gures we have focused
on the repulsive case.

Mass and Radius

The mass of a Proca star can be computed as the product of m0 with the
particle number de}ned in Eq. (2.41), which yields Mphys = m0N

phys. Here
Nphys = [1/(

√
8πGλ∗m0)]N , where N represents the number of particles in
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Figure 2.9: Radially polarized Proca stars with one node: Same as in
Figure 2.8 but for the stationary and spherically symmetric solutions of the
s = 1 Gross-Pitaevskii-Poisson system with one node (n = 1).
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Figure 2.10: Phase diagrams for multi-frequency states: Multi-frequency
Proca stars with amplitude (σx0, σy0, 0) and node numbers (nx, ny, nz) =
(0, 1, 0) in the free theory (λn = λs = 0). Left panel: The central ampli-
tudes σx0 and σy0 that are consistent with N = 43.5 number of particles.
Right panel: The M99 vs. R99 plot. Contrary to stationary states (described
by the border lines), multi-frequency states correspond to a region instead of
a curve.
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the dimensionless variables of Eq. (2.86), and is given by

N = 4π
∑

i

∫ ∞

0

σ
(0)2
i r2dr. (2.89)

To simplify the presentation, we have chosen the same conventions as those
de}ned just below Eqs. (2.87).

Formally, the size of a Proca star extends to in}nity, and for that reason it
is usual to de}ne an ezective radius R99 as the one containing 99% of the total
mass of the con}guration, M99, which in physical units is given by R

phys
99 =

[
√
λ∗/(

√
8πGm2

0)]R99.
First, we concentrate on stationary solutions. In Figs. 2.8 and 2.9, we show

the pro}le σ(0)(r) for σ0 = 1.0, the M99 vs. R99 plot, and the behavior of the
energy eigenvalue E as a function of the central amplitude σ0, for radially
polarized Proca stars of zero and one nodes, respectively, in the attractive,
repulsive, and free theories. The corresponding }gures for linearly and cir-
cularly polarized Proca stars, which coincides with those of non-relativistic
boson stars, can be found in Figs. 1 and 2 of Ref. [49]. In the limit σ0 → 0,
the attractive and repulsive branches of the radially polarized Proca stars con-
verge to those of the free theory (see the central and right panels of Figs. 2.8
and 2.9). This occurs because, at low densities, short range self-interactions
(which are cubic in the }elds) become negligible and the Gross-Pitaevskii equa-
tion approaches the Schrödinger one. The same property has been observed
for self-interacting boson stars in Ref. [49] and thus it also holds for linearly
and circularly polarized Proca stars, and for all constant polarization states
when λs = 0. In all cases, the numerical data suggests that the mass of a
stationary Proca star increases without bound as the radius of the object de-
creases, except when an attractive self-interaction is present. In this situation,
the objects reach a state whose mass cannot be exceeded.

For multi-frequency states, the situation becomes more involved, as the
con}gurations are labeled by the three independent amplitudes (σx0, σy0, σz0),
in addition to the corresponding number of nodes (nx, ny, nz). As a result,
we anticipate that each curve in the M99 vs. R99 plot belonging to stationary
states of }xed n transforms into a region when considering multi-frequency
states of }xed (nx, ny, nz).

To analyze this, we focus on the free theory (λn = λs = 0) for simplicity.
In this case, the s = 1 Gross-Pitaevskii-Poisson system is invariant under the
scaling transformation

t 7→ λ−1
∗ t, ~x 7→ λ−1/2

∗ ~x, U 7→ λ∗U , ~ψ 7→ λ∗ ~ψ, (2.90)

where λ∗ is an arbitrary nonvanishing constant. This invariance is associated
with the arbitrary choice of the scale λ∗ in Eqs. (2.86), which does not azect
the eigenvalue problem (2.87) when both λn and λs vanish. This simpli}es the
analysis of the free theory, since, for any node numbers (nx, ny, nz), con}gura-
tions (σx0, σy0, σz0) that maintain the same ratio between the dizerent σi0 are
related to each other by a rescaling transformation.

In particular, we concentrate on the case where (nx, ny, nz) = (0, 1, 0),
which describes multi-frequency states with two components, (σx0, σy0, 0). In

Chapter 2 71



the left panel of Figure 2.10, we show the family of states corresponding to
a }xed particle number N = 43.5, i.e. M99 = 43.1, leading to con}gurations
with sizes between 5.7 ≤ R99 ≤ 24.2. Here, the number N = 43.5 is the one
obtained from the con}guration with parameters σx0 = 1 and σy0 = 0, which
represents a stationary state of linear polarization. As we just mentioned, this
family can be rescaled to any value of N using the transformation (2.90), where
every element in the family transforms according to M99 ∼ 1/R99. We show
the M99 vs. R99 plot for multi-frequency states of (nx, ny, nz) = (0, 1, 0) in
the right panel of Figure 2.10. Note that the left border line of this diagram
corresponds to the M99 vs. R99 plot of the n = 0 stationary states of linear
polarization, whereas the right border to the their }rst excited states n = 1
(these border lines correspond to the black curves in the central panels of
Figs. 1 and 2 in Ref. [49]). As we anticipated, multi-frequency states }ll whole
regions in the M99 vs. R99 diagram.

Angular Momentum

All states constructed in this thesis are spherically symmetric, which inher-
ently results in con}gurations of vanishing angular momentum, ~Lphys = 0.
This can be directly veri}ed by substituting Eqs. (2.78a) and (2.78b) into the
general expression for the orbital angular momentum. One can show that lin-
early, circularly, and radially polarized Proca stars possess no orbital angular
momentum, ~L = −i

∫

[~x× (~ψ∗ · ∇~ψ)]dV = 0 .

Note: If we decompose the vector }eld in terms of spherical harmonics as

ψ(t, ~x) =
l
∑

m=−l
Y 1,m(θ, ϕ)σ(0)(r) (2.91)

and we concentrate on the the x-component, we can write Lx as

Lx = i

∫

(zψ∗
m∂yψ

m − yψ∗
m∂zψ

m) d3x = i
4π

3

×
{

∫

σ(0)(r)
[

z∂yσ
(0)(r)− y∂zσ

(0)(r)
]

∑̀

m=−`
Y 1,m(θ, ϕ)∗Y 1,m(θ, ϕ)d3x

+

∫

zσ(0)2(r)
∑̀

m=−`
Y 1,m(θ, ϕ)∗∂yY

1,m(θ, ϕ)d3x

−
∫

yσ(0)2(r)
∑̀

m=−`
Y 1,m(θ, ϕ)∗∂zY

1,m(θ, ϕ)d3x

}

= 0, (2.92)

where we have made use of

z∂yσ
(0)(r)− y∂zσ

(0)(r) = 0, (2.93)

and following a similar argument to that at the beginning of Appendix A
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in Ref. [109]:
∑̀

m=−`
Y `,m(θ, ϕ)∗∂iY

`,m(θ, ϕ) = 0. (2.94)

Identical arguments for Ly and Lz allows to write ~L = 0.

On the other hand, whereas the spin angular momentum vanishes for multi-
frequency states, for stationary states with circular polarization this is given
by ~Sphys = [MPl/(

√
8πλ∗m0)] ~S, with23

~S = −i
∫

(~ψ∗ × ~ψ)dV = αNêz, (2.95)

where we have used ε(α) × ε(α) = iαêz. And, for linear and radial polarization
we have

Sx = −i
∫

(

ψ∗
yψz − ψ∗

zψy
)

d3x = −i4π
3

∫ ∞

0

σ2(r)r2dr

×
(∫

Y 1,0(θ, ϕ)∗Y 1,1(θ, ϕ)dΩ−
∫

Y 1,1(θ, ϕ)∗Y 1,0(θ, ϕ)dΩ

)

= 0.

(2.96)

and similar for the Sy and Sz components. From a quantum perspective,
the macroscopic spin angular momentum of circularly polarized Proca stars
originates from the intrinsic microscopic spin of the individual particles that
conform the con}guration.

Global Charges

If the spin-spin self-interaction term vanishes, one can construct the charges
associated with the accidental symmetry, which are also conserved in the time
evolution. In physical units, Eq. (2.43) can be expressed in the form Q̂phys =
[1/(

√
8πGλ∗m0)]Q̂, with

Q̂ij = 4π

∫ ∞

0

σ
(0)∗
i σ

(0)
j r2dr, (2.97)

where σ(0)
i are the Cartesian components of ~σ(0)(~x).

Given that we do not distinguish between unitarily equivalent con}gura-
tions, we can limit our study to states for which Q̂ is diagonal, Q̂ = diag
(Q̂xx, Q̂yy, Q̂zz). Speci}cally, stationary, linearly polarized Proca stars have
Q̂ = Ndiag(1, 0, 0), while stationary, radially polarized Proca stars have Q̂ =
N
3

diag(1, 1, 1) (remember that in the symmetry-enhanced sector of the ezective
theory linearly and circularly polarized states are degenerated). In contrast,
multi-frequency con}gurations allow the diagonal components of Q̂ to be ar-
bitrary, with the particle number given by Tr(Q̂) = N .

As an illustration, we compute the global charges of the con}gurations
that we have constructed in Figs. 2.4, 2.5, and 2.6. To do that, we assume

23In the absence of spin-spin self-interaction, general elliptic polarization states (2.47)
have ~S = N sin(2φ) sin γ1êz.
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Figure 2.11: Radial pro}les of Q̂, N , and E: Left panel: The radial pro}le
of Q̂xx, Q̂yy, Q̂zz, and N = Tr Q̂ for a stationary radially polarized Proca
star of Q̂xx = Q̂yy = Q̂zz = 40 and N = 120. Center panel: Same as in the
left panel but for a multi-frequency state with the same values of Q̂xx, Q̂yy,
Q̂zz and N . In both panels, the insets correspond to the radial pro}les of the
components of ~σ(0)(~x) (remember that for a Proca star of radial polarization
σ
(0)
x = σ(0)(r) sinϑ cosϕ, σ(0)

y = σ(0)(r) sinϑ sinϕ, and σ
(0)
z = σ(0)(r) cosϑ).

Right panel: The radial pro}le of E for both con}gurations. Note that the
radial Proca star has a lower energy than the multi-frequency con}guration.
In all cases we have assumed λn = λs = 0. Given the rescaling symmetry of
the free theory we can extend these conclusions to arbitrary values of N .

λs = 0. In particular, for the constant polarization states of Figure 2.4 we ob-
tain Q̂ = diag(85, 0, 0), Q̂ = diag(134, 0, 0), and Q̂ = diag(190, 0, 0), where
we have rounded the numbers to the closest integer. The radially polar-
ized states of Figure 2.5 yield Q̂ = 59 diag(1, 1, 1), Q̂ = 81 diag(1, 1, 1), and
Q̂ = 104 diag(1, 1, 1), whereas the stationary and multi-frequency states of Fig-
ure 2.6 have Q̂ = diag(80, 0, 0), Q̂ = diag(79, 18, 0), and Q̂ = diag(79, 18, 7).

In the }rst two panels of Figure 2.11 we present, for the free theory
(λn = λs = 0), the pro}les Q̂ij(r) = 4π

∫ r

0
σ
(0)∗
i σ

(0)
j r′2dr′ for two con}gurations

of charge Q̂ = diag(40, 40, 40), i.e. N = 120, although using the rescaling of
Eq. (2.90) we can extend these results to an arbitrary N : a stationary radially
polarized Proca star with σ0 = 1.0 and n = 0, and a multi-frequency star with
(σx0, σy0, σz0) = (1.48, 1.07, 0.85) and (nx, ny, nz) = (0, 1, 2). Even though the
charge is distributed dizerently in these objects (the multi-frequency Proca
star being more extended than the radially polarized one), their total charges
coincide. According to Eqs. (2.67) and (2.68), when λn = λs = 0, the to-
tal energy is E [~ψ] = −T [~ψ] = −1

2
D[n, n], which shows that for }xed N , the

more extended objects have smaller values of D[n, n], resulting in higher en-
ergies. This suggests that, for }xed Q̂ proportional to the identity matrix,
(nx, ny, nz) = (0, 1, 2) multi-frequency Proca stars are more energetic than
n = 0 radially polarized con}gurations. The plots in the right panel of Fig-
ure 2.11 and the }ndings in Section 2.3.5 con}rm this expectation.
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Figure 2.12: Energy functional of stationary states (symmetry-
enhanced sector): The energy E of stationary Proca stars with λs = 0
as function of their particle number N and polarization vector ε̂. Constant po-
larization states are indicated by red lines and are degenerated when λs = 0,
whereas states with radial polarization are indicated by blue lines. When
the self-interaction is repulsive (λn > 0) or is absent (λn = 0) the ground
state con}guration is provided by nodeless Proca stars of constant polariza-
tion and negative energy, E < 0, in agreement with the analytical results of
Section 2.3.3. When the self-interaction is attractive (λn < 0) it is not possible
to de}ne a ground state con}guration and the polarization of the lowest energy
stationary state changes with N .

50 100 150
N

−100

−80

−60

−40

−20

0

E

λn > 0, λs = λn

n = 0

stationary (radial)

stationary (linear)

stationary (circular)

50 100 150
N

−100

−80

−60

−40

−20

0 λn > 0, λs = −λn/2

Figure 2.13: Energy functional of stationary states (generic sector):
Similar as in Figure 2.12 but for the case in which λs 6= 0. The spin-spin
self-interaction breaks the degeneracy of constant polarization states, which
are only possible for linear (red lines) or circular (orange lines) cases. Radial
polarization states are indicated in blue lines and represent excited con}gu-
rations. The left panel belongs to the shaded region in the }rst quadrant of
Figure 2.3, where λ0 > 0, λs > 0, and a spherically symmetric ground state of
linear polarization exists, while the right panel to the shaded triangle in the
fourth quadrant of the same }gure, where λ0 > 0, λs < 0, and the polarization
of the ground state is circular. For simplicity, we have only considered node-
less (n = 0) con}gurations. In this }gure Ephys = [

√
8πGm2

0|λphysn |−3/2]E and
Nphys = [1/(

√
8πGm0|λphysn |1/2)]N .
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Figure 2.14: Stationary states as critical points of the energy func-
tional: The energy functional E [~ψν ] of the rescaled states ~ψν(~x) associated to
stationary con}gurations ~ψν=1(~x) of particle number N = 10, 19 and 25 (see
Eq. (2.63)). First row: For λ0 > 0, λs > 0, there exists a global minimum
of the energy functional provided by a stationary state of linear polarization
and no nodes, where E < 0. Second row: For λ0 > 0, λs < 0, there is also
a global minimum of the energy functional, in this case provided by a sta-
tionary state of circular polarization and no nodes, where E < 0. Third row:
For λ0 < 0, λs = 0, stationary states of linear and circular polarization are
degenerated and the energy functional is not bounded from below (this applies
to the radial case as well, although the maximum of the energy functional ap-
pears for larger values of ν). In all cases, the energy functional has a critical
point at ν = 1, which is a global minimum if λ0 ≥ 0, and a local minimum,
a saddle point or a maximum if λ0 < 0, depending on the value of N . Here,
Ephys = [

√
8πGm2

0|λphysn |−3/2]E and Nphys = [1/(
√
8πGm0|λphysn |1/2)]N .
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Figure 2.15: The energy spectrum of multi-frequency states: The en-
ergy of the same multi-frequency Proca stars as in Figure 2.10. The lowest
energy state is obtained for σx0 = 1 and σy0 = 0 (orange star), while the high-
est energy state is for σx0 = 0 and σy0 ≈ 0.2 (blue star). Both con}gurations
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shown in the center panel of Figure 2.12, there exists a continuum of multi-
frequency solutions that connect the ground state with the }rst excited state.

Energy Functional

The energy functional plays a central role to determine the equilibrium con}g-
urations and deserves an independent discussion. Using Eq. (2.68), the total
energy of a Proca star is given by Ephys = [

√
8πGm2

0/
√

λ3∗]E , with

E = −4π
∑

i

∫ ∞

0

[

1

2

(

σ
(0)′2
i +

2γσ
(0)2
i

r2

)

± 1

2
σ
(0)4
i

]

r2dr, (2.98)

where we have use the relation ε[~ψ] = −T [~ψ]− 2λnFn[~ψ]− 2λsFs[~ψ], the fact
that in spherical coordinates we can write |∇~ψ|2 = σ′2 + 2σ′σ(0)/r + σ(0)2/r2,
the de}nition λ∗ = |λphysn +α2λphyss | and we have discarded the boundary terms.

As before, we }rst focus on stationary states. For λs = 0, Figure 2.12
shows the energy E of Proca stars as function of their particle number N and
polarization vector ε̂. In absence of spin-spin self-interactions, constant po-
larization states are degenerated, and this is the reason why for }xed N all
constantly polarized Proca stars possess the same total energy. Furthermore,
if λn ≥ 0, the ground state con}guration (i.e. the lowest possible energy state
that exists for a given particle number) is given by nodeless (n = 0), spheri-
cally symmetric constant polarization states, irrespectively of the value of N ,
as anticipated at the beginning of Section 2.3.3. Similarly, when N and n are
}xed, radially polarized con}gurations have more energy than constant polar-
ization states, signaling that radially polarized Proca stars represent excited
states of the s = 1 Gross-Pitaevskii-Poisson system with λn ≥ 0 and λs = 0.
On the other hand, when the self-interaction is attractive (λn < 0), the energy
is unbounded from below (see Section 2.3.3) and one cannot de}ne a ground
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state con}guration. Nevertheless, it is interesting to note from the right panel
of Figure 2.12 that for some values of N , radial polarization states possess
less energy than constant polarization states whose energy can even become
positive. Note that these curves exhibit a spike-like behavior, signaling an
extremal point in the energy functional E as well as the particle number N .
This feature signals the appearance of a zero mode, which is indicative of a
transition in the system’s stability. A more detailed discussion of this will be
presented in Ref. [2]. Finally, as we argued in Section 2.3.5, when N → 0 (i.e.
σ0 → 0), the ezect of the self-interaction is negligible and we recover the same
results as in the free theory, no matter the value of λn (see the behavior of the
four curves in each panel of Figure 2.12 close to the origin).

When λs 6= 0, the situation is more involved given that the characteristic
self-interaction scale λ∗ = λphysn +αλphyss that we have used to normalize phys-
ical quantities depends on the state of the system (α = 0 if the polarization
is linear or radial, and α = 1 if it is circular). To proceed, we will focus on
two cases: λn > 0, λs = λn, and λn > 0, λs = −1

2
λn, both of which lie within

the region shown in Figure 2.3 where the energy functional is bounded from
below and a ground state exists. As is evident from Figure 2.13, the spin-spin
self-interaction term breaks the degeneration between the constant polariza-
tion states that is present when λs = 0. This becomes more pronounced as N
increases and the ezects of the self-interaction grow in signi}cance. In partic-
ular, as we anticipated in Section 2.3.3 (see Eq. (2.66)), when λ0 > 0, λs > 0,
the ground state con}guration is given by a stationary state of linear polariza-
tion, whereas when λ0 > 0, λs < 0, the polarization of the lowest energy state
is circular. Moreover, in both cases radially polarized Proca stars represent
excited con}gurations.

We further illustrate this in Figure 2.14, where we study the behavior of
the energy functional under variations of the vector ~ψ which are consistent
with the rescaling of Eq. (2.63). As we demonstrated in Section 2.3.3, when
λ0 ≥ 0, the energy functional is bounded from below. Furthermore, if λs > 0,
there exists a global minimum of the energy functional that is provided by a
stationary and spherically symmetric state of linear polarization (}rst row of
Figure 2.14), whereas if λs < 0 the polarization of the state that minimizes the
energy is circular (second row). This suggests the existence of Proca stars that
are stable under small perturbations. On the contrary, if λ0 < 0, the energy
functional is not bounded from below, as can be appreciated in the third row
of Figure 2.14. Furthermore, for large N , the critical points turn into maxima,
signaling the onset of an instability.

To study the multi-frequency solutions, we again concentrate on the free
theory (λn = λs = 0). In Figure 2.15, we show the same family of multi-
frequency states N = 43.5 that we introduced in Figure 2.10. Interestingly,
this family connects the linearly polarized stationary ground state (in the x
direction) with the }rst excited linearly polarized stationary state (in the y
direction). Also shown in Figure 2.15 through the color bar is the energy of
each state in this family. As can be appreciated, the con}guration with σx0 = 1
and σy0 = 0 has the lowest energy, as expected, whereas the energy is growing
monotonously when moving along the family towards the state with σx0 = 0
and σy0 ≈ 0.2. Finally, the right panel of this }gure has been constructed
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from the family N = 43.5 using the rescaling (2.90), which implies that, when
λn = λs = 0, the energy E and the particle number N are related through
E ∼ N3. As we previously identi}ed in Figure 2.10 for the M99 vs. R99 plot,
multi-frequency states with (nx, ny, nz) = (0, 1, 0) }ll a region in the E vs. N
diagram, which are delimited by the curves associated with the n = 0 and n = 1
stationary states of linear polarization (see the center panel of Figure 2.12).

In the right panel of Figure 2.11, we compare the energy pro}le of a station-
ary nodeless state of radial polarization and charge Q̂ = diag(40, 40, 40), with
the one of the multi-frequency solution of the same charge and (nx, ny, nz) =
(0, 1, 2), when λn = λs = 0. Again, this plot can be rescaled to any value of
N . As was anticipated in Section 2.3.5, for }xed Q̂, multi-frequency solutions
are more energetic than n = 0 radially polarized states.

2.3.6 Linear Stability
In this section, we will present the general aspects and directions for the study
of the linear stability of non-relativistic Proca stars, in the same way we did
in Section 1.3.4, of Chapter 1. A comprehensive study of the stability of
non-relativistic Proca stars is given in the forthcoming research paper Linear
stability of non-relativistic Proca stars Ref. [2]. In order to study the stability
of the equilibrium con}gurations that we have described in the spherically
symmetric case, we follow the procedure presented in Refs. [48, 49], and we
consider the behavior of small deviations of ~ψ(t, ~x) from the ansatz (2.69),
which we parametrize in the form

~ψ(t, ~x) = e−iÊt
[

~σ(0)(~x) + ε~σ(t, ~x) +O(ε2)
]

. (2.99)

Here, (Ê, ~σ(0)) is a solution of Eq. (2.70) and ~σ is a complex vector-valued
function depending on (t, ~x) that describes the perturbation to }rst order in the
small parameter ε. Recall that Ê is Hermitian, and further it is proportional
to the identity when λs 6= 0. Equation (2.99) is completely analogous to the
ansatz (1.61) now with σ(0) and σ(t, ~x) replaced by the vector functions ~σ(0),
~σ(t, ~x), and E replaced by a Hermitian matrix Ê.

Substituting the expansion (2.99) into Eq. (2.27) and considering the }rst
order terms in ε we obtain the following evolution equation for ~σ:

i
∂~σ

∂t
=
[

Ĥ(0) − Ê
]

~σ (2.100)

+ K̂
[

Re
(

~σ(0)∗ · ~σ
)]

~σ(0) + i
λs

m2
0

Im
(

~σ(0)∗ × ~σ
)

× ~σ(0),

with the linear (formally self-adjoint) operators Ĥ(0) := Ĥ[~σ(0)] and

K̂ :=
λn

m2
0

+ 8πGm2
0∆

−1. (2.101)

Again, as shown in [110], one can separate the time and space parts of ~σ by
means of the following mode ansatz:

~σ(t, ~x) =
[

~A(~x) + ~B(~x)
]

eλt +
[

~A(~x)− ~B(~x)
]∗
eλ

∗t. (2.102)
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Here ~A and ~B are complex vector-valued functions depending only on ~x and
λ is a complex number. Substituting Eq. (2.102) into Eq. (2.100) and setting
the coe{cients in front of eλt and eλ

∗t to zero one obtains

iλ ~A =
[

Ĥ(0) − Ê
]

~B + i
λs

2m2
0

~s0 × ( ~A− ~B) (2.103a)

+
i

2

{

K̂
[

~σ(0)∗ · ( ~A+ ~B) + ~σ(0) · ( ~A− ~B)
]}

Im ~σ(0)

+
λs

2m2
0

[

~σ(0)∗ × ( ~A+ ~B)− ~σ(0) × ( ~A− ~B)
]

× Re ~σ(0),

iλ ~B =
[

Ĥ(0) − Ê
]

~A− i
λs

2m2
0

~s0 × ( ~A− ~B) (2.103b)

+
1

2

{

K̂
[

~σ(0)∗ · ( ~A+ ~B) + ~σ(0) · ( ~A− ~B)
]}

Re ~σ(0)

+ i
λs

2m2
0

[

~σ(0)∗ × ( ~A+ ~B)− ~σ(0) × ( ~A− ~B)
]

× Im ~σ(0),

where ~s0 := −i~σ(0)∗ × ~σ(0) is the spin density associated with the background
solution. It is important to stress that in order to obtain Eqs. (2.103) we
have assumed that Ê is real-valued; hence, for multi-frequency states, these
equations are only valid in the basis that diagonalizes the operator Ê. Equa-
tions (2.103) constitute a linear eigenvalue problem for the constant λ, where
a nonvanishing real and positive part of λ indicates the existence of a linear
instability of lifetime tlife ∼ 1/λR, with λR the real part of the eigenvalue λ.

Spherical and non-spherical perturbations

Equations (2.103) describe the evolution of a general linear perturbation around
an arbitrary equilibrium con}guration of the s = 1 Gross-Pitaevskii-Poisson
system. Now, if we concentrate speci}cally on spherical equilibrium con}g-
urations, we can decouple the linearized equations (2.103) into a family of
purely radial systems by expanding the perturbations in terms of (scalar or
vector) spherical harmonics, similar to what we have made in equations (1.66)
for non-relativistic boson stars. The result is that for stationary states of lin-
ear, circular and radial polarization, as well as for multi-frequency states, the
linearized system can be cast into the following general schematic form:

iλ





Xlm

Ylm
Zlm



 =





M11
lm M12

lm M13
lm

M21
lm M22

lm M23
lm

M31
lm M32

lm M33
lm









Xlm

Ylm
Zlm



 , (2.104)

where l refers to the total angular momentum number of the perturbation and
m to the associated magnetic quantum number where l and m assumes the
values l = 0, 1, 2, . . . and m = −l,−(l − 1), . . . , l. The particular realization
of the variables Xlm, Ylm and Zlm, and the matrix Mlm, which is a function
of the background equilibrium con}guration, depend on the case of interest.
Equation (2.104) conform the eigenvalue system of the form L̂ ~X = iλ ~X similar
to the system (1.67) with Lij =Mij and ~X = (Xlm, Ylm, Zlm). In Linear stabil-
ity of non-relativistic Proca stars [2], we solve numerically the system (2.104),
following a generalization of the methodology described in Section 1.3.4, for
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stationary Proca stars with constant, linear, and circular polarization, as well
as for multi-frequency Proca stars. We invite the reader to review the detailed
analysis described therein.
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Part II

Gravitational Production of
Dark Matter

The idea of quantum }eld theory is that
quantum }elds are the basic ingredients
of the universe, and particles are just
bundles of energy and momentum of the
}elds. In a relativistic theory the wave
function is a functional of these }elds,
not a function of particle coordinates.

What is Quantum Field Theory, and
What Did We Think It Is?

S. Weinberg
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Chapter 3

Scalar Fields on Curved Spacetimes

3.1 Introduction
The prediction of the Schwinger ezect is an example of the success of ap-
plying a semiclassical approximation to purely quantum phenomena. When
considering an external classical electric }eld, if it is strong enough, the pres-
ence of a quantized spectator matter }eld leads to the particle production of
electron-positron pairs from the vacuum. This ezect was }rst predicted by
Heisenberg and Euler in 1936 [111], based on the work of Sauter in 1931 [112]
and fully understood in 1951 within the framework of quantum electrody-
namics by Schwinger [113]. Heuristically, an external electric }eld interacts
with a virtual pair of particles e+e−, accelerating electrons in one direction
and positrons in the opposite direction. If the external }eld is strong enough
to accelerate the particles to energies greater than their mass at distances
smaller than or equal to the Compton wavelength of the particle, that is,
|E| > |Ecrit| = m2

e/e, then the virtual particles can be “pushed out” of the
vacuum and propagate as real particles.1 The production rate of these par-
ticles is given by exp{−π|Ecrit|/|E|}. One of the most notable lessons that
was left behind by the semiclassical treatment of the Schwinger ezect is that,
within the regime of validity in which it can be considered, it was able to yield
a prediction that was subsequently con}rmed exactly within the framework of
a complete quantum theory, namely, the theory of quantum electrodynamics.

Similarly, in the absence of a fully satisfactory quantum theory of grav-
ity that incorporates the gravitational interaction with the other fundamental
forces of the standard model (the electromagnetic and the weak and strong nu-
clear forces), a semiclassical treatment of the ezects that occur in a quantum
}eld when it interacts with a dynamical spacetime allows us to shed light on
the large-scale ezects we expect from a complete quantum theory of gravity.
In this semi-classical treatment, the quantum aspects of gravity are negligible
at ezective scales, allowing for a classical description of the dynamics of the
gravitational }eld within Einstein’s theory of gravity (analogously to the way

1If the electric }eld exerts a force E on the pair of particles e+e−, and they move a
distance l apart from each other, then they will receive an amount of energy leE from the
electric }eld. In the case where the energy exceeds the rest mass of the particle pair, that is,
leE > 2me, the virtual particle pair becomes real and the particles continue moving apart.
For lengths on the order of the Compton wavelength 2π/me, the probability of creating a
pair e+e− is given by exp

{

−m2
e/eE

}

.
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we described the electromagnetic }eld in the Schwinger ezect above). Mean-
while, the matter }elds are treated fully quantum mechanically. When this
approximation is applicable, it enables us to account for important quantum
ezects. The purpose of this and the following chapter is to describe the phe-
nomena that arise in the quantum treatment of scalar and fermionic }elds on
curved spacetimes.

First, let’s consider that the quantum ezects of gravity become relevant
when the length and time scales of a quantum process fall below the Planck
scales. The Planck time tp and length lp, therefore, mark the boundary be-
yond which a complete treatment of a quantum theory of gravity is necessary.
When the scales of time and distance far exceed the Planck scales (e.g. at
cosmological scales), we can expect that the semiclassical treatment of gravity
can be applied without problem. However, when considering the nonlinear-
ity of Einstein’s equations, ignoring a complete treatment of quantum gravity
implies a more subtle analysis. Since all forms of matter and energy couple
equally to gravity, it implies that the graviton itself is subject to gravitational
ezects, just like any other particle (or }eld), such as, say, an electron. There-
fore, when gravitational ezects are signi}cant (e.g. at cosmological scales), it
is not possible to ignore the ezects that gravity exerts on gravitons. So, when
dealing with cosmological gravitational ezects (or strong gravitational }eld),
we would not be able to satisfactorily apply a semiclassical approximation.

However, if we consider, according to a classical procedure in general rela-
tivity (see for example Ref. [114], Chapter 7), that we can describe the prop-
agation of a gravitational wave in a curved background spacetime separately
according to

gµν = δgµν + ḡµν , (3.1)
where δgµν represents the wave (perturbation) and ḡµν the background space-
time, it is possible to consider the wave as a null ~uid like any other, and its
contribution to Einstein’s equations can be considered as part of the energy-
momentum tensor Tµν that acts as a source. In other words, we can consider
the “graviton”2 }eld as a linear perturbation over the background spacetime
through Tµν .3 At one-loop level, the quantization of the gravitational }eld in
the background ḡµν is equally as important as the quantization of the matters
}elds [116, 117].

In this context, in curved spacetimes it will be necessary to consider a
renormalization process that yields a }nite value for the vacuum energy of
the matter }elds. For this, the number of counterterms to consider is }nite.
However, regarding the graviton }eld, when perturbatively expanding the ac-
tion with respect to δgµν about ḡµν , we }nd an in}nite number of divergent
terms at each order in the expansion, so it will be necessary to consider an in-

2“Upon quantization, Einstein’s equation predicts spin-two particles called gravitons. We
don’t know how to carry out such quantization consistently, but the existence of gravitons is
su{ciently robust that it is expected to be a feature of any well-de}ned scheme. Since gravity
couples to energy-momentum, gravitons interact with every kind of particle, including other
gravitons. This provides a way of thinking about nonlinearity of Einstein’s theory.” Ref. [114]

3Let’s think about the photoemission by an atom that is immersed in a classical electric
or magnetic background }eld. Although the background }eld is treated classically, it is
possible to talk about the emission of quanta of this same }eld, namely, the photon [see
Ref. [115]].
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}nite number of counterterms. This fact renders a quantum theory of gravity
non-renormalizable. Higher-order terms in the expansion of the gravitational
action in powers of δgµν produce Feynman diagrams of gravitons with multi-
ple loops. However, a theory truncated to a certain number of loops could be
considered renormalizable. At one loop, for free }elds, this constitute the }rst
order quantum correction to general relativity.4 This is the scenario we will
be considering in the present thesis work: a free scalar or fermionic quantum
}eld only coupled to gravity in an dynamical universe.

As we will see in detail in the subsequent chapters, there exist nontrivial
gravitational ezects in quantum }eld modes for which the wavelength λ is com-
parable with some length scale of the background spacetime (e.g. H). One of
these gravitational ezects is the cosmological gravitational production of par-
ticles from the “vacuum state”. Heuristically, a pair of virtual particles being
pulled apart due to the expansion of the universe can become real particles. As
the spacetime expands the recessional velocity of the pair, e.g. e+e−, increases
with distance according with the Hubble law v = Hd. At distance equal to
m−1, the velocity would be H/m. When H ≥ Hcrit ∼ m the particles will
obtain relativistic velocities within a Compton length and particles creation
is possible. This is analogous to the Schwinger ezect, and one might expect
particle production proportional to exp{−πHcrit/H}. If there is a de}nitive
quantum theory of gravity, the gravitational production of particles due to
the expansion of the universe should be a prediction within the previously
mentioned regimes.

In the semiclassical approximation to gravity at one-loop, the Einstein
equations are given according to

Ḡµν = 8πG 〈Tµν〉 (3.2)

where the gravitational }eld ḡµν remains classical and the matter }elds are
quantum }elds. Here, the important quantity to consider is the expectation
value of the energy-momentum (it is a more useful probe of the physical situa-
tion than a particle count through the particle operator) and how this evolves
when the spacetime is dynamical. As we have already mentioned, it is nec-
essary to consider an appropriate renormalization process that yields a }nite
value for 〈Tµν〉 by subtraction of a }nite number of physical quantities (e.g.
Pauli-Villars renormalization). What are the dizerent interpretation, in the
framework of semiclassical gravity, of the renormalized value of 〈Tµν〉? This
is an important question that play an important role in the cosmological con-
text. We often study cosmological phenomena in terms of particles, despite
assuming that the nature is described in terms of quantum }elds and also, in a
cosmological context, we typically ignore the quantum nature of the }elds and
treat them as classical }elds (see, for example Ref. [118]). Dark matter models
consist of non-relativistic particles, or dark energy models consist of the dy-
namics of classical }elds. However, we ezectively assume that the right-hand
side of Einstein’s equations, Eq. (3.2), is the expectation value of quantum

4Even considering mutually-interacting (or se~-interacting) matter }elds, there exist a
large regime in which the one-loop level quantum gravity is still a valid approximation
whereas the condition l−2G� 1 is satis}ed with l a typical length scale of the system under
consideration.
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}elds. In this thesis work, we explore the limits within which a quantum }eld
can be approximated, either by an ensemble of particles or by a classical }eld.
This is one of the important issues to be resolved in the present thesis work
focused on scalar and fermionic quantum }elds on curved spacetimes. In the
following chapters, we will make an ezort to describe the regimes of classical-
ity or “particle production formalism,” that 〈Tµν〉 admits within the context of
gravitational particle production. Here, will assume that the spectator quan-
tum }eld does not have back-reaction on the dynamical geometry of spacetime
(that is, the particle production is a small ezect at early times). However, it is
possible that the energy density of the “produced particles” becomes relevant
at late times.

Due to the absence of direct detections, a non-interacting dark matter
model [119] seems to be a model that gains strength over those in which dark
matter interacts with some sector of the standard model. If this is the case,
there should be a mechanism through which the relic density of dark matter is
produced. In this scenario, the phenomenon of gravitational particle produc-
tion can account for the abundance of matter required to explain the current
cosmological observations without the need to non-gravitationally couple dark
matter with any other }eld of the standard model. In semiclassical one-loop
gravity, cosmological transitions, such as the transition from an in~ationary
universe to a radiation-dominated universe, can lead to the gravitational pro-
duction of particles in a quantity large enough to account for the present
observable universe [4, 5]. Therefore, in the context of an in~ationary cosmol-
ogy, justifying when “particles” or classical }elds play an important role, and
in which regimes it is possible to consider these approximations, is part of the
discussion we present in this thesis report. An approach in this direction was
made in Cosmic Energy Density: Particles, Fields and The vacuum Ref. [120]
for a quantum scalar }eld. Part of its results are presented in Chapter 3. In
Chapter 4, we extend this discussion to a quantum Dirac }eld.

The phenomenon of cosmological gravitational particle production has been
investigated through multiple studies over several decades. The }rst paper dis-
cussing the creation of particles in the expanding universe was Schrodinger in
1939 [121]. Schrodinger suggested that the expansion of the universe can mix
the positive- and negative-frequency mode solutions to the wave equations.
In the subsequent works of Parker [122, 123, 124] and collaborators (Fulling,
Ford and Hu [125, 126, 127, 128]) from 1968 to 1974, they emphasized the
importance of gravitational particle production in a FLRW universe assuming
a semiclassical approach. Also, in 1974, Hawking was developing the theory
of particle creation by black holes[129]. In the context of in~ationary theory,
the formalism of gravitational particle production was applied to the quantum
~uctuations of the in~aton scalar }eld and the metric ~uctuations, which led
to predictions about the density perturbations that account for the large-scale
structure of the universe and the anisotropies in the cosmic microwave back-
ground [130]. Also, dark matter production is one of the main approaches that
this phenomenon has received and its application to explain the origin of the
relic density of dark matter in the present universe [131, 132, 133, 134]. The
text-books of Birrel and Davies [135], Parker and Toms [136], Mukhanov and
Winitzki [137] and Fulling [138], consist of excellent and comprehensive text
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of this literature. We recommend to the reader the excellent reviews by Ford,
[139], Kolb [140], and Jacobson [141].

The order of the present chapter is as follows: in Section 3.2, we will
develop in detail the formalism of quantum scalar }elds on curved spacetimes
applied to a Friedmann–Lemaître–Robertson–Walker (FLRW) universe, derive
the dynamic equations for the mode functions (which capture the evolution
of the }eld as spacetime evolves), explore the solutions for asymptotically ~at
spacetimes, and introduce the Bogoliubov transformations. In Section 3.3, we
review the construction of the number operator and the “number of particles”,
and in Section 3.4, we de}ne an adiabatic vacuum state and asymptotically
adiabatic spacetime. In Section 3.5, we introduce the in and out regions that
allow us to de}ne a cosmological transition, and in Section 3.6, we calculate the
energy density for an arbitrary quantum state. In Section 3.7, we renormalize
through the Pauli-Villars renormalization process the energy density ρin of
the adiabatic vacuum state. Finally, in Section 3.8, we review the concept of
“particle” and classical }eld description and de}ne in which regimes the particle
production formalism and the classical description are applicable. Here we use
the signature of the metric is (−,+,+,+) and the natural units c = h̄ = 1.

3.2 Formalism
Scalar Field Action

We are interested in the general behavior of a real quantum scalar }eld on ex-
panding curved spacetimes, particularly the behavior of the energy density of
this }eld through spacetime transitions. In a semi-classical context, where the
dynamic gravitational }eld remains classical and the spectator scalar }eld is a
quantum }eld, whose excitations consist of spin s = 0 particles, these condi-
tions lead to the cosmological gravitational production of particles. In partic-
ular, we will focus on the study of transitions given by an FLRW (Friedmann-
Lemaître-Robertson-Walker) type expansion, between an in~ationary universe
and a radiation-dominated universe.

For this purpose, we begin with the covariant action for a massive spin-0
scalar }eld Φ(x) coupled to gravity through the metric }eld gµν(x), given by

s[Φ(x), gµν ] =

∫

d4x
√−g

[

M2
pl

2
R− 1

2
∂µΦ(x)∂

µΦ(x)− 1

2
m2Φ(x)2− 1

2
ξRΦ(x)2

]

(3.3)
where g is the determinant of the metric gµν , m is the scalar }eld mass, ξ
is a coupling constant between the scalar }eld Φ(x) and the Ricci scalar R
and M2

pl = (8πG)−1/2 is the reduced Planck mass. In particular, we will
consider only the case when ξ = 0, that is, the case when the scalar }eld is
minimally coupled to gravity5 (for the case ξ = 1/6, it is conformally coupled
to gravity, and for other nonzero value it is non-minimally coupled to gravity).

5Conformally invariant scalar quantum }eld on conformally ~at spacetimes (e.g. the
FLRW spacetime, that is, the metric can be written down as gµν = Ω2(x)ηµν) do not
react to changes in the expansion history. The same occurs for massless fermion }elds on
conformally ~at spacetimes, as we will see in the next chapter.
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In the context of in~ation, Φ(x) will represent a spectator }eld distinct from
the in~aton }eld. Here, the }eld Φ(x) only interacts with gravity. As we
mentioned, a dark matter model in which dark matter only interacts with the
}elds of the standard model through gravity is consistent with the absence of
direct or indirect observations. This motivates the form of the action (3.3).
Also recall that the bosonic }elds of Chapter 1 and Chapters 2 that can form
compact objects of dark matter interact only with the standard model through
gravity.

Scalar Fields on FLRW Spacetimes

We will focus on a FLRW spacetime expansion, that is, an isotropic and ho-
mogeneous universe that expands uniformly according to the FLRW metric
given by

ds2 = a(η)2[−dη2 + dxidxjδij], (3.4)
where the time-dependent function a(η) is called the scale factor, such that the
Hubble parameter is given by H = a′(η)/a(η). Here we have used the conformal
time de}ned as adη = dt and the comoving spatial coordinates de}ned as
x′i = a(η)xi. The primes denote derivatives with respect to conformal time η
and ∂i denote derivatives with respect to comoving spatial coordinates.

With the metric (3.4), we have that √−g = a4, g00 = −a−2 and gij =
a−2δij, so after the change of variable Φ(x) = a−1φ(x), we can write the
covariant action (3.3) as

Sφ(x) =

∫

dη

∫

d3x

[

φ′2

2
− 1

2
(∂iφ)

2 − 1

2
∂t[φ

2H]− 1

2
m2

eza
2φ2

]

(3.5)

where we have de}ned the ezective mass as

m2
ez(η) = m2 +

[

ξ − 1

6

]

R(η) (3.6)

and we have use R = 6(a′′/a3) and H′ = (a′′/a)−H2. In the case of interest,
where ξ = 0, we have an ezective mass of the form m

ξ=0
ez = m2 − a′′/a3.

From Eq. (3.5), we can calculate the Hamiltonian according to the relation
H =

∫

d3x[∂L
∂φ̇
(φ̇)− L], such that

H =

∫

d3x

[

φ′

2
+

1

2
(∂iφ)

2 − φH +
1

2
∂η[φ

2H] +
1

2
m2

eza
2φ2

]

. (3.7)

Since the above Hamiltonian expression depends explicitly on time through
the scale factor a(η), the energy of the scalar }eld Φ(x) will not be conserved.
When we quantize the }eld Φ̂(x), the non-conservation of energy causes the
gravitational production of particles, whose energy is provided by the gravita-
tional }eld. We will study the details of this conclusion later.

After discarding the boundary terms and varying the action (3.5) with
respect to φ(x), we have

φ′′ −∆φ+ a2m2
ezφ = 0, (3.8)
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where ∆ is the Laplacian operator for the comoving spatial coordinate. It’s
worth noting that a time-dependent ezective mass accounts for the interac-
tion of the scalar }eld with the gravitational background. When spacetime
is static a =constant, we recover the Klein-Gordon equation for a scalar }eld
in a Minkowski spacetime.6 So, all the information about the gravitational
in~uence on the scalar }eld is encapsulated into the ezective mass m2

ez.

Field Quantization

Note that the action (3.5) has explicit time dependence through the ezective
mass m2

eza
2, so the energy density of the scalar }eld is not conserved. In

the context of quantum }elds on curved spacetime this time dependence leads
to gravitational particle production supplied by the spacetime expansion. To
characterize this behavior, we need to quantize the scalar }eld Φ(t, x) keeping
the gravitational }eld classic. Canonical quantization7 of the }eld imposes the
equal time commutation relations

[φ̂(t, ~x), π̂(t, ~y)] = iδ(~x− ~y), (3.9a)
[φ̂(t, ~x), φ̂(t, ~y)] = [π̂(t, ~x), π̂(t, ~y)] = 0, (3.9b)

where π̂(x) = ∂L/∂(φ′) is the conjugate momentum density.
Introducing the mode expansion of the }eld φ̂(x) in terms of the creation

â
†
k and annihilation âk operators we can express the scalar quantum }eld as

φ̂(x) =

∫

d3k

(2π)3
[

âkU~k(η, k) + â
†
kV~k(η, k)

]

(3.10a)

with U~k(η, x) = χk(η)e
i~k·~x and V~k(η, x) = U∗

k (η, x), (3.10b)

where ~k = a(η)~kphys is the comoving wave vector with magnitude k = |~k|
and χk(η) is a complex time-dependent function called mode function. Here,
Uk(η, ~x) and Vk(η, ~x) form a complete and orthonormal basis that spans the
space of solutions to (3.8), and satis}es the Wronskian condition:

∫

d3x(U~kV
′

~q − V~qU
′

~k
) = i(2π)3δ(~k − ~q). (3.11)

Additional to the commutation equations (3.9) the ladder operators âk and
â
†
k satis}es the usual commutation relations

[âk, â
†
q] = (2π)3δ(~k − ~q), (3.12a)

[âk, âq] = [â†k, â
†
q] = 0. (3.12b)

A ladder operator is assigned for each complex function U~k(x) labeled by ~k.
Note that we have written de mode function χk(η) in terms only of k = |~k|
because of the isotropy of the FLRW universe.

6In the case of a quantum fermion }eld we recover the usual Dirac }eld equations.
7Canonical quantization of the scalar }eld in action (3.3) results in a system of “single

particles” that do not interact with each other. Here, we will work in the Heisenberg picture
in which operators evolve according to the Heisenberg equation of motion and states are
statics. See Ref. [36], for a comprehensive exposition of the quantization process.
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The Mode Equations

Introducing Eq. (3.10b) into the Wronskian condition (3.11) implies the rela-
tion

χkχ
′∗
k − χ∗

kχ
′
k = i, (3.13)

and putting Eq. (3.10a) into the wave equation (3.8) leads to the mode equation
for χk(η) given by

χ′′
k + ω2

k(η)χk(η) = 0, where ω2
k = k2 + a2m2

ez (3.14)

is the time-dependent comoving squared angular frequency for each mode k.
Since the mode equation is a second order dizerential equation for each k, it

admits a two-dimensional space of solutions. An important question is, Which
basis is the “good” basis for characterize the }eld evolution? To determine this
solution basis, additionally to the relation (3.13), we need another condition to
completely specify the form of mode function χk(η). In the next subsections we
analyze the conditions to give unambiguous solutions to the mode equations
(3.14). The choice of the appropriate mode functions is crucial to the particle
interpretation of the theory.

The Mode Function χk(η)

In order to solve the mode equation (3.14) we need to specify the scale func-
tion a(η) for the FLRW spacetime and the appropriate conditions to determine
completely the mode function χk(η). For example, we are possibly interested
in the cosmological expansion characterized by a quasi-de Sitter a(t) ∝ eHΛt

phase of in~ation followed by a radiation dominated period with a(t) ∝ t1/2. In
this case we need the conditions for the mode function χin(η) = limη→−∞ χ(η)
in the remote past and χout(η) = limη→∞ χ(η) in the remote future. For this
purpose, we begin by focusing on the simpler case of a Minkowski spacetime
with a(η) ∼ constant followed by the case of an asymptotically ~at spacetime.

Minkowski spacetime. For this case, we have m2
ez = m2, H = 0, R = 0 and

ω2 = k2 + a20m
2 with a20 a constant. With these relations, we need to solve the

dizerential equation χ′′
k + ω2

kχk = 0, which are solved by the normalized pair
of solutions

χk(η) =
1√
2ωk

e−iωkη and χ∗
k(η) =

1√
2ωk

eiωkη, (3.15)

or any linear combinations of these vk(η) = αkχk + βkχ
∗
k. Solutions χk and χ∗

k

in Eqs. (3.15) are normalized according to the Wronskian condition (3.13) and
are called, respectively, positive and negative-frequency8 modes. If we chose
βk = 0 and vk = χk, w can write Eq. (3.10a) as

φ̂(t, x) =
1√
2ωk

∫

d3k

(2π)3
[

âke
−i(ωkη−~k·~x) + â

†
ke
i(ωkη−~k·~x)

]

. (3.16)

8These terminology is motivated only on historical considerations. Positive frequency
solutions refer to particles with positive energy ωk > 0 and negative frequency solutions
refer to antiparticles with negative energy ωk < 0.
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For this quantum }eld operator, we can construct a ladder operator âk that
allows us to postulate the existence of a vacuum state such that âk |0〉 = 0 for all
~k. The state |0〉 is interpreted as the vacuum state which minimize the energy.
It is important to note that to determine the mode functions vk unambiguously,
we must de}ne a vacuum state that allows us to set βk = 0. Both procedures
are equivalent. In the Minkowski spacetime all the inertial observers agree on
the absence of particles in this vacuum state and the presence of particles in
the excited states.

Contrary to the Minkowski spacetime, cosmological spacetimes like, for
example, the FLRW spacetime which evolves in time (expand or contract), is
generally not possible to de}ne a positive-frequency solution, that is, in general
βk 6= 0. Thus, the notion of an empty state depends on the time at which each
observer de}nes the state. Therefore, the vacuum state de}ned by an observer
at time η0 is dizerent from the vacuum de}ned by an observer at time η for
η0 < η. On the other hand, remember that energy is not conserved for explicit
time-dependent lagrangian as Eq. (3.5) and it is not possible to de}ne a state
that minimizes the energy at each instant of time.

Finally, let us emphasize that for Minkowski spacetime it is possible to
choose at all times the positive (or negative) frequency solutions and therefore
an associated vacuum state for which â~k |0〉 = 0 is satis}ed at all times. How-
ever, if the spacetime expands or contracts, it will not be possible to specify
the positive (or negative) frequency solutions at all times, but rather a com-
bination of positive and negative frequency solutions as χin

k = αkχk + βkχ
∗
k.

When βk 6= 0, â~k(η1) and â~k(η2) will be dizerent for η2 > η1. As a consequence,
the vacuum states will be dizerent at dizerent times. This fact is essentially
the mechanism by which gravitational particle production occurs.

Asymptotically ~at spacetimes. In this case, we consider spacetimes that
are asymptotically ~at (e.i. Minkowski-like) at early and late times. Is such
way, we can write the scaler factor as

a(η) =

{

ain, ωin
k when η → −∞,

a(η), ωk(η) when −∞ < η <∞,

aout, ωout
k when η → ∞

(3.17)

where ain and aout are constant and ωin
k and ωout

k are time-independent, real and
positive. In the asymptotical regions when η → ±∞, the spacetime with scale
factor (3.17) are approximately Minkowski-like and admits positive-frequency
solutions given by Eq. (3.15). Then, we can write two solutions that satisfy

lim
η→−∞

χin
k (η) =

1
√

2ωin
k

e−iω
in
k
η, (3.18a)

lim
η→∞

χout
k (η) =

1
√

2ωout
k

e−iω
out
k

η, (3.18b)

e.i., they are asymptotic to positive-frequency Minkowski solutions and are
related by the linear combination χin

k (η) = αkχ
out
k (η) + βkχ

∗out
k (η).9 Using

9Remember that, if the spacetime is always dynamic, it will not be possible to specify
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these positive-frequency solutions we can construct the }eld mode expansion
(3.10a) as

φ̂(t, x) =

∫

d3k

(2π)3
[

âin~k χ
in
k (η) + â

†in
−~kχ

∗in
k (η)

]

ei
~k·~x

=

∫

d3k

(2π)3
[

âout~k
χout
k (η) + â

†out
−~k χ

∗out
k (η)

]

ei
~k·~x, (3.19)

where we have de}ned the corresponding ladder operators âin~k and âout~k
associ-

ated to the mode functions χin
k (η) and χout

k (η).

Bogoliubov Transformations

Eq. (3.19) establishes a relation between the ladder operators âin~k and âout~k

and their complex conjugates. Writing âin~k χ
in
k (η) + â

†in
−~kχ

∗in
k (η) = âout~k

χout
k (η) +

â
†out
−~k χ

∗out
k (η) and using the relation χin

k (η) = αkχ
out
k (η) + βkχ

∗out
k (η) and the

normalization condition |αk|2 − |βk|2 = 1, we have that

âout~k
= âin~k αk + â

†in
−~kβ

∗
k , → âin~k = âout~k

α∗
k − â

†out
−~k β

∗
k , (3.20a)

â
†out
~k

= âin~k βk + â
†in
−~kα

∗
k, → â

†in
~k

= â
†out
~k

αk − â
†out
−~k βk. (3.20b)

These relations allow us to de}ne the linear transformation ∈ SU(1, 1)

(

−βk αk
α∗
k −β∗

k

)(

β∗
k αk
α∗
k βk

)

= I, (3.21)

that leaves the }eld operator unchanged and relates two dizerent basis of
ladder operators and mode functions. So, this matrix transformation called
Bogoliubov transformation, relates a family of equivalent representations of the
}eld operator φ̂(x). Each ladder operator âin~k and âout~k

obeys the commutation
relations (3.12).

Finally, using the relation χ̇in
k = αkχ̇

out
k + βkχ̇

∗out
k , we can write

iαk = W (χin
k , χ

∗out
k ), iβk = W (χout

k , χin
k ), (3.22)

where W refers to the Wronskian condition (3.11).

3.3 Particle Number Operator
Given that the ladder operators âin~k and âout~k

satis}es the canonical commu-
tation relations (3.12) and allows the }eld operator representation (3.10a) we
can de}ne the “vacuum states” |0〉in and |0〉out such that

âin~k |0〉in = 0, and âout~k
|0〉out = 0. (3.23)

the positive (or negative) frequency solutions at all times, but rather a combination of
positive and negative frequency solutions as χin

k (η) = αkχk(η)+βkχ
∗
k(η) with χ(η) a general

solution to Eq. (3.14). For two dizerent times η1 → −∞ and η2 → ∞ in an asymptotically
~at spacetime, we have χin

k (η) = αkχ
out
k (η) + βkχ

∗out
k (η).
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With these de}nitions, we can construct a Fock space of multi-particle states.
So, we can talk about two de}nitions of the vacuum state: the in-vacuum
state |0〉in and the out-vacuum state |0〉out, whose excited states |n〉in and
|n〉out describes Nin number of in-particles and Nout number of out-particles,
respectively.

Since âin~k and âout~k
are related by a Bogoliubov transformation (3.21), we

can calculate the expectation value of the number of out-particle operator
N̂out
~k

= âout~k
â
†out
~k

with respect to the in-vacuum state |0〉in. Using (3.20), after
some straightforward algebra, we obtain

〈0|N̂out
~k

|0〉in = (2π)3δ(0)n, with n =

∫

d3k

(2π)3
|βk|2 (3.24)

where n is the comoving number density of particles that the out-number
operator measures in the in-vacuum. After integration with respect to the
angular variables, we have

n =
1

2π2

∫

dk

k
k3|βk|2 with nk =

k3

2π2
|βk|2 (3.25)

where nk is the comoving number density spectrum; also we can write

n =
1

2π2

∫

dk

k

d

d ln kk
3|βk|2, (3.26)

where nk is the comoving number density of particles per logarithmic wavenum-
ber interval. Note that, from Eq. (3.25), n is }nite only if |βk|2 decays faster
than k−2 for large k. This condition also guarantees that we can express the
in-vacuum state as a normalized combination of out-excited states.

3.4 Adiabatic Vacuum
3.4.1 Physical Vacuum
As we have seen, the notion of real “vacuum” depends crucially on our election
for the mode functions χin

k and χout
k . For example, in the particular choice of

χin
k in which βk = 0 we have that χin

k = χout
k , and, in this case, there exist

a preferred notion of the vacuum state, namely the Minkowski vacuum state.
However, in general βk 6= 0 and there no exist a preferred notion of vacuum
and the physical vacuum acquire an inherent ambiguity.

We have learned from Eq. (3.25) that in general the out-vacuum state
|0〉out, being a state without out-particles, nevertheless contain in-particles.
One way to see that the out vacuum state is populated by Nin particles, is
to consider that the state that minimizes the energy at the time η1, at the
time η2 > η1 will no longer minimize the energy if the frequency ωk is time-
dependent. For these two instants η1 and η2, the mode functions are given by
the expressions (3.15), so it is possible to de}ne the operators âk(η1) and âk(η2)
that satisfy âk(η1) |0〉η1 = 0 and âk(η2) |0〉η2 = 0. In this case, it is possible to
calculate the energy density ρη2 with respect to the vacuum |0〉η1 from which
we obtain ρη2 = 〈0η1 |T 0

0 (η2)|0η1〉 =
∫

d3kωk(η2)[
1
2
+ |βk|2]. Where we obtain
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a contribution to the energy coming from ωk|βk|2, that is, the energy of each
particle multiplied by the number of particles in each mode. Finally, we can
conclude, there is not a preferable choice of the mode functions to determine
an unambiguous vacuum state or an empty state for which there no exist in- or
out- particles. This is the essence of the cosmological gravitational production.

3.4.2 Asymptotically Adiabatic Spacetimes
For spacetimes that are not asymptotically ~at as η → ±∞ the scale factor
a(η) is always growing and the identi}cation (3.18) is not possible, i.e., we can
not identify the positive and negative frequency modes and hence the particle
concept is not de}ned. However, in the case that the angular frequency ωk
is slowly varying at early and late times, is possible perform a WKB-type
approximation such that

χk = (2Wk)
−1/2 exp

{

−i
∫ η

Wk(η
′)dη′

}

, (3.27)

where Wk satis}es the non-linear equation

W 2
k (η) = ω2

k −
1

2

(

Ẅk

Wk

− 3

2

Ẇ 2
k

W 2
k

)

. (3.28)

Since the spacetime is slowly varying, at zeroth order approximation we have
W

(0)
k = ωk. Using Eq. (3.28), by iteration we can construct the subsequent

orders of approximation with the adiabatic order given by the number of deriva-
tives of a(η). For example, the second adiabatic order approximation is written
as

(

W
(2)
k

)2

= ω2
k −

1

2

(

ω̈k

ωk
− 3

2

ω̇2
k

ω2
k

)

. (3.29)

Hence, one solution of adiabatic order (A) is given by χ
(A)
k with W

(A)
k given

by Eq. (3.28). When a(η) ≈ constant as η → ±∞ we recover the asymptoti-
cally ~at approximation (3.18). However, if the spacetime is varying slowly, the
Minkowski solutions (3.18) and the approximate solutions χ(A)

k will be dizerent
only by terms of adiabatic order higher than zero. Since the series obtained in
Eq. (3.27) is asymptotic, the approximated solutions reach an optimum value
at one particular order (A).

Then, for spacetimes in which ωk(η) is asymptotically slowly varying or
asymptotically adiabatic, that is when ω̇k � ωk as η → ±∞, we can de}ne the
positive-(and negative) frequency approximated solutions as

χin
k (η) = lim

η→−∞
χk(η) ≈ χ

(0)
k =

1
√

2ωin
k (η)

e−i
∫ η

ωin
k
(η′)dη′ , (3.30a)

χout
k (η) = lim

η→∞
χk(η) ≈ χ

(0)
k =

1
√

2ωout
k (η)

e−i
∫ η

ωout
k

(η′)dη′ . (3.30b)

and these allows us to de}ne an zeroth order adiabatic vacuum |0〉(0)in asso-
ciated to these solutions and the corresponding ladder operators âin~k and â

†in
~k

.
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η → ∞ out region

a(η) = a+ b tan(ρη)

a(η) = eaη

a(η) = a+ bη2

Figure 3.1: a(η) vs η for dizerent asymptotical adiabatic spacetime.
Black line: asymptotically adiabatic spacetime in the remote past as η → −∞
and limη→−∞ a(η) = eaη = constant with a a constant. Grey line: asymp-
totically adiabatic spacetime in the remote past and future as η → ±∞ and
limη→±∞ a(η) = a + b tanh ρη = constant with a, b and ρ constants. On an-
other side, scale factor in red line satis}es dn/dηn(ȧ/a) → 0 as η → ±∞ for
n ≤ 0 given a(η) = a2 + b2η with a, b constants, therefore this spacetime is
asymptotically adiabatic in the remote past and future.

Consequently, it is possible to talk about “particles” and gravitational produc-
tion of particles. Note that, actually, |0〉in is an in adiabatic vacuum of in}nite
adiabatic order |0〉(n)in . As we have described before in the asymptotically ~at
case, also for the asymptotically adiabatic case we can write the general solu-
tion χk(η)in = αkχ

out
k + βkχ

out∗
k where αk and βk satisfy conditions αk = 1 and

βk = 0 as η → −∞ and |αk|2 + |βk|2 = 1 for all time η.

Examples. Let’s consider the example of a time-dependent frequency ωk(η)
of the form ω2

k = k2 + a2m2
ez with a(η) = 1 + tanh η, such that the condition

of adiabaticity ωk � ω̇k is satis}ed in the regions where η tends to ±∞,
see Figure 3.1. The mode functions in these remote regions are given by
Eqs. (3.30). This case constitutes an example of an asymptotically adiabatic
spacetime. Another example of spacetime that is only adiabatic in the remote
past is given by the case a(η) = eη with η < 0. However, the adiabatic
approximation applies not only to spacetimes that are asymptotically static
but also to those that vary slowly (e.g. a(η) = a2 + b2η2 with −∞ < η < ∞
and a, b constants), that is, for which H � ωk is satis}ed. In these instances,
the adiabatic approximation is really useful.
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3.5 Cosmological Epochs
Presumably, the universe has experienced multiple facets of uniform expan-
sion throughout its history, characterized by dizerent epochs of domination.
The transitions between dizerent epochs are accompanied by jumps in the be-
havior of the scale factor. In Figure 3.2, we draw a timeline representing the
dizerent cosmological epochs that the universe has experimented until the ra-
diation domination. Initially, the universe experiences a period of accelerated
expansion (Λ domination) called in~ation at time ηi, followed by a period of
decelerated expansion called radiation domination at time ηr, mediated by a
highly model-dependent period of reheating at ηe < η < ηr. Subsequently, the
universe experiments a period dominated by matter followed by a new period
of accelerated expansion up to the present day. We invite the reader to review
Baumman’s excellent book [118], in which he reviews all these periods.

Figure 3.2: Timeline characterizing the transition experienced by the universe
as it expands from an initial period of cosmic in~ation at ηi followed by a
period of radiation domination ηr mediated by a model-dependent reheating
period ηe < η < ηr. In a sharp transition ηr = ηe and there is a discontinuity
in the second derivative of the scale factor.

To characterize these cosmological transitions in the context of gravita-
tional particle production, we will consider an initial in-region characterized
by in~ation where a preferred notion of vacuum exists (the Bunch-Davies vac-
uum state, the ground state of the hamiltonian at the beginning of in~ation)
and a subsequent out-region that is generally not asymptotically adiabatic.
With this in mind, we will immediately characterize both regions.

3.5.1 in Region
This region is characterized by an initial period of in~ation. It is known that
during this period we can choose a preferred notion of vacuum, since H tends
to zero as η → −∞, that is ω̇k � ωk, and we can approximate the solution
χin
k as the zeroth order adiabatic “positive frequency” solution

χin
k (η) →

1
√

2ωk(η)
e−i

∫ η
ωk(η

′)dη′ . (3.31)

With this, it is possible to de}ne an adiabatic vacuum and a concept of particles
associated with this preferred notion of vacuum.

As described in Ref. [120], in~ation is not a period that extends endlessly
into the past. Therefore, for light or massless }elds, it is necessary to introduce
the scale ΛIR ∼ HIR where HIR is the Hubble parameter evaluated at the
beginning of in~ation ηi. In Figure 3.3, we draw the order of this scale. It
is important to note that for superhorizon scales, there is no preferred notion
of vacuum, in the sense that it is not possible to make the positive frequency
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approximation (3.31). Additionally, for massive }elds, that is for the case when
m� H, we have ωk � H and ΛIR = 0.

Let’s remember that, once we have established the condition (3.31), we
will be able to construct the operator φ̂(x) given by Eq. (3.10a) for which it
is possible to de}ne an in vacuum state that satis}es âin~k |0in〉 = 0, in which
there is no presence of in “quanta/particles”. Also, we can construct a number
operator N̂ in

~k
= â

in†
~k
âin~k for which the state N̂ in

~k
|ψ〉 = N in

k |ψ〉 contains N in
k

number of “quanta/particles”. Again, note that only the states for which the
condition k > ΛIR is satis}ed allow us to de}ne the notion of in vacuum.

Figure 3.3: Infrared scale ΛIR ∼ Hi at the beginning of in~ation. The modes
below this scale have an unknown state. Modes above ΛIR are found in the
preferred in vacuum state set by in~ation at ηi. If the }eld is massless or
light, the state of the superhorizon modes at the beginning of in~ation, is not
determined by in~ation and remains unknown to us.

3.5.2 out region
As we have already mentioned, in general, the functions χout

k (η) do not nec-
essarily satisfy asymptotically adiabatic conditions (3.30b), and although we
explicitly refer to the out region, the function χout

k (η) can generally be an arbi-
trary function that satis}es the normalization condition (3.13) and the mode
equation (3.14). Assuming that χout

k (η) and χout∗
k (η) are linearly independent,

it is possible to write χin
k (η) as a combination of two solutions such that

χin
k = αkχ

out
k (η) + βkχ

out∗
k (η) (3.32)

where the Bogoliubov coe{cients satis}es the relation |αk|2 − |βk|2 = 1. Fur-
thermore, solving for αk and βk, we can write

iαk = χin
k (η)χ̇

out*
k (η)− χ̇in

k (η)χ
out*
k (η), (3.33a)

iβk = −χin
k (η)χ̇

out
k (η) + χ̇in

k (η)χ
out
k (η). (3.33b)

When η → −∞, we get αk = 1 and βk = 0, as expected.
Example. Asymptotically adiabatic spacetime. In the case where the space-

time is asymptotically adiabatic when η → ±∞, the mode functions χout
k (η)

take the form given by Eq. (3.30b), and, substituting these solutions into
Eq. (3.33b), we obtain the expression

|βk|2 =
|χ̇in
k |2

2ωk
+
ωk

2
|χin
k |2 −

1

2
. (3.34)

With the expression (3.34), we can obtain the number of out particles that the
in vacuum contains calculating 〈in0|N̂out

~k
|0in〉 = (2π2)−1

∫

dkk2|βk|2.
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3.6 Energy Density
In the semiclassical approach to gravity, the gravitational }eld gµν(x) retains
its classical nature while the matter }elds follow a quantum treatment. In our
formalism, we need to consider the relationship

Rµν −
1

2
Rgµν =M−2

pl 〈Tµν〉 , (3.35)

where the right side encodes the gravitational dynamics and the left side is the
expectation value of the stress-energy tensor for the quantum }eld φ̂(x). For
the scalar }eld action in (3.3), the associated stress-energy tensor (for ξ = 0)
is given by

Tµν(t, ~x) = ∂µΦ∂νΦ− 1

2
gµν∂

βΦ∂βΦ +
1

2
m2gµνΦ

2. (3.36)

Given this expression, we are interested in analyzing the evolution of the expec-
tation value on the right-hand side in Eq. (3.35) when the universe undergoes a
cosmic transition as described in the previous section (e.g. the evolution of the
energy density ρ = 〈T̂00〉 with respect to the adiabatic vacuum |0〉inad con}gured
by in~ation to a subsequent decelerated universe dominated by radiation).

Following the approximation in Ref. [120], we need to calculate

ρ = ρ0 +

∫ Λ

0

dk

k

dρ

d log k (3.37)

where we have separated the energy density ρ between the contribution of the
zero mode ~k = 0 and the contribution of the modes in the range 0 < k < Λ,
where we have introduced the cutoz Λ. After performing the integration, we
send Λ → ∞. The zeroth mode component is given by

ρ0 =
1

2a2V

{(

N0 +
1

2

)[

∣

∣

∣

d

dη

(χ0

a

) ∣

∣

∣

2

+m2|χ0|2
]

+ L0

[

(

d

dη

χ0

a

)2

+m2χ2
0

]

+ c.c.

}

(3.38)

and

dρ

d log k =
k3

4π2a2

{(

Nk +
1

2

)[

∣

∣

∣

d

dη

(χk

a

) ∣

∣

∣

2

+ ω2
k|χk|2

]

+ Lk

[

(

d

dη

χk

a

)2

+ ω2
kχ

2
k

]

+ c.c.

}

(3.39)

is the “spectral energy density” (per logarithmic interval) for the k 6= 0 modes.
Here, the expectation value is taken with respect to an arbitrary state and χk
are arbitrary solutions to Eq. (3.14). For the in adiabatic vacuum con}gured
by in~ation we have that Nk, Lk = 0 and χin

k = χk from which we can write

dρin

d log k =
k3

4π2a2

[

∣

∣

∣

∣

(

d

dη

χin
k

a

) ∣

∣

∣

∣

2

+ ω2
k|χin

k |2
]

. (3.40)
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Modes in range 0 ≤ k < ΛIR

~k = 0
This mode admits

classical interpretation

massless case ρ0 ∝ 1/a6

stiz ~uid

masive case
light }eld ma� H

stiz ~uid + “ frozen }eld”
ma� H adiabatic approximation

pressureless ~uid

0 < k < ΛIR

massless case These modes not admits
classical interpretation

masive case ΛIR < ma non-relativistic
ΛIR > ma relativistic

Table 3.1: Energy density for the range of modes 0 ≤ k < ΛIR and its behavior
in dizerent mass regimes. For these states, there is no preferred notion of
vacuum, and their state is indeterminate. The }rst row corresponds to the
zero mode ~k = 0, which admits an interpretation in terms of a homogeneous
classical }eld. For the massless case, the energy density behaves like a stiz
~uid. For the massive case, if ma � H, in addition to the contribution of
the stiz ~uid, there is the contribution of a frozen ~uid, and if ma � H, the
density behaves like that of a pressureless ~uid. The second row corresponds
to the 0 < k < ΛIR modes. For the massless case m = 0, these modes are
relativistic and do not allow for an interpretation in terms of a classical }eld.
In the massive case, however, when ΛIR < ma, the modes are non-relativistic
and ρk admits a classical interpretation.

In Table 3.1, we present the behavior of the spectral density (3.39) for the
0 ≤ k < ΛIR modes in the massive and massless cases. Recall that ΛIR ∼ Hi

is a characteristic scale at the beginning of in~ation below which the state of
the }eld remains indeterminate or unknown to us. In Ref. [120] we can see
the treatment for each dizerent case in Table 3.1 in detail. Here we will limit
ourselves to presenting as an example the massless case for the mode ~k = 0. In
the next chapter, we will perform in detail the methodology summarized here
now for the case of a fermion }eld. To begin, let us consider the mode equation
(3.14) when m = 0 and k = 0, such that χ′′

0(η)+ω
2
0χ0(η) = 0 with ω2

0 = −ä/a.
The solutions of this equation take the form χm=0

0 = iAa(η)+Ba(η)
∫ η dη̃

a2
with

A and B two real constants. Putting these into Eq. (3.38) with m = 0 we have

ρ0 =
1

2a2V

{(

N0 +
1

2

)

[

∣

∣

∣

∣

(

d

dη

χ0

a

)∣

∣

∣

∣

2
]

+ L0

[

(

d

dη

χ0

a

)2
]

+ c.c.
}

(3.41)

with (χ0/a)
. = B/a2, from which we obtain the energy density contribution

coming from the zero modes given by

ρ0 =
B2

2V

{(

N0 +
1

2

)

+ L0 + c.c.
}

1

a6
, (3.42)

which behaves like a stiz ~uid with equation of state ω = 1. Now, if we
consider a classical homogeneous scalar }eld φcl = 1/a(A0χ0 + B0χ

∗
0) whose

energy density is ρcl = (|φ̇cl|2 + m2a2|φcl|)/(2a2), then we can identify the
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energy density (3.42) like a classical homogeneous stiz ~uid if we can solve the
system of equations (|A0|2+ |B0|2)/2 = (N0+1/2)/V and A0B

∗
0 = L0/V . This

is the result presented in the }rst row for the massless case of the Table 3.1.

Note: Let’s brie~y address the massive case (m 6= 0) for the zero mode
~k = 0 (corresponding to the }rst row of Table 3.1). For this case, we
distinguish two regimes. In the }rst case, when ma� H, that is, when the
}eld is light, we can expand the solutions to Eq. (3.14) in terms of the mass
m, and progressively construct around the solution χm=0

k=0 to Eq. (3.14).
These solutions have the form χm=0

0 = iAa(η)+Ba(η)
∫ η dη̃

a2
. Neglecting the

term corresponding to B (which decays in an expanding universe for −1 ≤
ω < 1) and using into ρ0, Eq. (3.41), and ρcl = (|φ̇cl|2 +m2a2|φcl|)/(2a2),
we obtain that ρ0 = D0

1
a6

+m2E0 and ρcl = D 1
a6

+m2E, with D0, E0, D

and E constants dependent on N0, L0, A0 and B0. Therefore, ρ0 admits
interpretation in terms of a homogeneous classical }eld Φcl. On the other
hand, when the }eld is heavy, that is, when ma � H, we can use the
adiabatic expansion (3.27) to }rst order, such that ρ0 ∼ m

a3V
and ρcl ∼ m

a3V
,

so it is also possible to interpret ρ0 as the contribution of a homogeneous
classical }eld ρcl as long as we can solve A0 and B0 in terms of N0 and L0.

3.7 Pauli-Villars Renormalization
In the range of modes ΛIR < k < ∞, as the cutoz Λ goes to in}nity, the
integral over all modes of Eq. (3.40) is divergent. We can see this using the
zeroth adiabatic order solutions (3.31) for large k, such that ωk ≈ k, so the
integral

ρ = lim
Λ→∞

∫ Λ

ΛIR

dk

k

k3

4π2a2

[

∣

∣

∣

∣

d

dη

(

χin
k

a

) ∣

∣

∣

∣

2

+ ω2
k|χin

k |2
]

(3.43)

is divergent as k4 in the leading order term in k. To deal with these divergences,
we will use the Pauli-Villars renormalization procedure, summarized in the
following points:

(i) Since the mode functions χin
k are built in the adiabatic regime, it is pos-

sible to expand up to fourth adiabatic order the integrand in Eq. (3.43),
such that

ρ = lim
Λ→∞

∫ Λ

ΛIR

dk

k

[

(

dρk

d log k

)(0)

+

(

dρk

d log k

)(2)

+

(

dρk

d log k

)(4)

+ ...

]

,

(3.44)
and we can identify the subsequent divergent terms as Λ → ∞ after
performing the integrals. For example, integrating the zeroth order of
the adiabatic expansion of the spectral density, we have that

lim
Λ→∞

∫ Λ

ΛIR

dk

k

(

dρk

d log k

)(0)

= lim
Λ→∞

1

2π2

[

Λ4

8a4
+
m2Λ2

8a2
+
m4

64

(

1−2 log 4Λ4

a2µ2

)]

(3.45)
where the right term is divergent as Λ tends to in}nity. The same proce-
dure applies to the second and fourth adiabatic orders in order to }nd the
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divergent terms of the expansion. Terms with higher derivatives (sixth
and more time derivatives) remain }nite as the cutoz Λ tends to in}nity.

(ii) In order to remove these divergences, we introduce n Paulli-Villars Reg-
ulators φr of mass Mr and Grassman parity σr, with r = 1, , 2 . . . , n, in
such way that we need to calculate

∑

i=0 〈T 0
0 〉i, with i = 0, 1, 2, . . . , n,

such that

ρk = lim
Λ→∞

∑

i

∫ Λ

ΛIR

dk

k
σi

[(

dρk

d log k

)(0)

+

(

dρk

d log k

)(2)

+

(

dρk

d log k

)(4)

+ ...

]

.

(3.46)
Then we use the relations 10

∑

i=0

σi = 0,
∑

i=0

σiM
2
i = 0,

∑

i=0

σiM
4
i = 0, (3.47)

and we to apply the limit Λ → ∞. For example, for the zeroth order,
using the result (3.45), we have that

lim
Λ→∞

∑

i

1

2π2

[

σiΛ
4

8a4
+
σiM

2
i Λ

2

8a2
+
σiM

4
i

64
− σiM

4
i

32
log 4Λ4

a2M2
i

]

. (3.48)

Now, using the relations (3.47) and applying the limit Λ → ∞, we can
see that the divergent terms in the above expression disappear. So, if
Eq. (3.47) are satis}ed, the theory is }nite, but the expectation still
depends on the otherwise arbitrary regulator masses Mr. Certainly, the
expression (3.48) still depends on the term

∑

r

σrM
4
r logM2

r a
2 (3.49)

which diverges when we decouple the mass of the regulators as Mr → ∞.

(iii) Now, we decouple the regulator }elds sending their mass to in}nite Mr →
∞. The only trace left are the divergent contribution stemming from the
logarithms terms. They act as counterterms. For example, in order to
counteract the divergence in Eq. (3.49) as Mr → ∞, we introduce the
counterterm

δΛ =
1

2π2

1

32

∑

r

σrM
4
r logM2

r a
2 + (δΛ)f (3.50)

where f refers to a “physical” quantity that is left after the in}nity sub-
traction.

(iv) Finally, we can express the normalized energy density

ρren = ρ− ρsub, (3.51)
10Here,

∑

i σi = σ0 +
∑

r σr,
∑

i σiM
2
i = σ0M

2
0 +

∑

r σrM
2
r and

∑

i σiM
4
i = σ0M

4
0 +

∑

r σrM
4
r , where σ0 = 1 and M0 = m. This is possible because fermionic }elds (σi = −1)

give loop contributions with the opposite sign as those of bosonic }elds (σi = 1).
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where sub indicates the counterterms and the regulator }elds contribu-
tion. Following the example of zeroth adiabatic order, we can express
this part of the renormalized energy density ρren as

ρ(0)ren = lim
Λ→∞

∫ Λ

ΛIR

dk

k

(

dρk

d log k

)

(3.52)

− 1

2π2

{

Λ4

8a4
+
m2Λ2

8a2
−
[

δΛf − m4

64

(

1− 2 log 4Λ4

a2m2

)]}

,

where, after the subtraction, when the cutoz Λ is sent to in}nity, the
renormalized energy remains }nite and cutoz-independent by construc-
tion. We can see the totally renormalized energy density ρren in Eq. (2.35)
of Ref. [120].

In Eq. (3.52), δΛf is a }nite quantity with physical signi}cance that we asso-
ciate with the cosmological constant. The remaining counterterms coming from
the second and fourth adiabatic orders are associated with the Einstein-Hilbert
term and dimension four curvature invariants, respectively. This method
makes explicit the role of counterterms and also explains the origin of the
subtraction terms. It is important to emphasize that in the renormalization
of Pauli-Villars, the mass of the regulators is assumed to be much larger than
any accessible scale k, such that their contribution to the spectral density is
highly suppressed at cosmological distances. So, only in the ultraviolet do the
regulators play a role.

This procedure will be developed exhaustively in the following chapter.

3.8 Particle Interpretation
The expression (3.40) allows us to calculate the energy density of the scalar
}eld φ(x) in the in vacuum through the integral (3.37) at any moment in cosmic
history. However, another possible choice to obtain this expression is to use
the transformation (3.32) in Eq. (3.40), and express the energy density ρin in
terms of the arbitrary function χout

k (associated or not with the out region)
and the Bogoliubov coe{cients αk and βk. If we perform this calculation, it is
possible to identify two contributions to ρin , one that we can identify as the
contribution of the out vacuum independent of βk and another contribution
that depends on βk which we can associate with the contribution of the particles
produced in the transition between in and out regions. With this in mind, we
can express ρin as

ρin = ρout + ρp. (3.53)
where ρout is the out vacuum contribution and ρp is the produced particle con-
tribution.

If the spacetime is asymptotically adiabatic as η → ±∞, then we can
use the approximation (3.27) for χout

k , applicable for massive }elds or large
wavenumbers. Making this approximation, it is possible to demonstrate that
when ω � H and |βad

k | � 1 then the spectral density is well approximated by
dρp

d log k ≈ k3

2π2a3
|βad
k |2ωk

a
(3.54)
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where |βad
k | are the Bogoliubov coe{cients (3.33b) in the adiabatic regime.

If we compare with the expression (3.25) for the number density of parti-
cles created, we can interpret the above relation in terms of particles, where
k3/2π2a3|βas

k |2 ωk

a
is the physical number density, the 1/a3 factor accounts for

the physical volume of the universe and ωk/a is the particle’s energy. Here the
expression (3.54) was constructed by neglecting terms with a time derivative,
consequently |βad

k | will be of zeroth adiabatic order.11

Note: Here the spectral density for the in vacuum energy is given by

dρin

d log k =
dρout

d log k +
dρp

d log k =

lim
n→∞

k3

4π2a2

{(

|βk|2 +
1

2

)

[

∣

∣

∣

∣

d

dη

(

χ
out(n)
k

a

)

∣

∣

∣

∣

2

+ ω2
k|χ

out(n)
k |2

]

+ αkβ
∗
k





(

d

dη

χ
out(n)
k

a

)2

+ ω2
k

(

χ
out(n)
k

)2



+ c.c.
}

(3.56)

where (n) refers to the n adiabatic order of the adiabatic expansion for
the out mode functions χout

k . From this expression is possible to relate the
contribution to ρin from the out vacuum energy dρout

d log k given by Eq. (3.40),
replacing in with out in that expression, and the contribution from the
particle production contribution given by the remaining terms dρp

d log k . In
order to consider the approximation to dρp

d log k given by Eq. (3.54), it is
necessary to consider only the zeroth adiabatic order n = 0 given by the
expression (3.30b), large frequencies ωk � H, and an ezective “particle
production”, that is, that |βad|2 ≥ 1. Let’s remember that |αk|2−|βk|2 = 1,
such that if |βad

k | � 1, then |αad
k β

ad
k | ∼ |βad

k | and the relation (3.54) is not
possible.

We must emphasize that the conditions under which Eq. (3.54) is valid are

(i) the mode function χout
k is in the adiabatic regime where the approxima-

tion (3.27) is valid, such that W (n)
k � W

(n+2)
k where n is the adiabatic

order,

(ii) the mode frequencies are long (ωk � H),

(iii) and |βad
k | ≥ 1, that is, the “particle production” is ezective.

In view of the above, we can express the energy density of the in vacuum in
terms of the “particle production formalism”. For this, let us rewrite Eq. (3.53)

11In the ultraviolet regime k → ∞, that is, when λ→ 0, the expression for ρp, Eq. (3.56)
takes the form

lim
Λ→∞

∫ Λ

0

dk

k

dρp
d log k =

1

2π2a4
lim

Λ→∞

∫ Λ

0

[|βad
k |2k4 +H|αad

k β
ad
k |k3 sin 2kη + φ+ ...] (3.55)

where we have consider Wk ≈ ωk ≈ k. From Eq. (3.55) it is possible to conclude that |βk|
has to decay faster that 1/k2 according to the restriction for N in

k in Eq. (3.26).
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Figure 3.4: Relativistic and non-relativistic modes. a) Modes in the
range ΛIR < k < ∞ for which ma > ΛIR consist of modes that are relativistic
and non-relativistic. b) Modes in the range ΛIR < k <∞ for which ma < ΛIR
consist of modes that are only relativistic.

as
ρren = ρ

��ad + ρ
p
ad + (ρoutad )ren, (3.57)

where we have separated the contribution of the modes that are in the adiabatic
regime “ad” from those that are not “��ad”. Regarding the modes that are
in the adiabatic regime, as we have already seen, we can express these as
ρad = ρ

p
ad+(ρoutad )ren, where we have considered the contribution of the created

particles ρpad and the contribution of the renormalized energy density of the
adiabatic vacuum given by (ρoutad )ren = ρoutad − ρsub.

Moreover, if we consider that the dominant modes in Eq. (3.57) are those
that satisfy conditions i), ii) and iii), then we can write this as

ρren ≈
∫

dk

k

k3

2π2a3
|βad
k |2ωk

a
. (3.58)

Classical Field Interpretation

Let’s now brie~y see if it is possible to identify ρΛIR<k, the contribution to the
energy density coming from the modes ΛIR < k <∞, with the contribution of
an homogeneous classical }eld, as happens for the zero mode ~k = 0 and for the
modes in the range 0 < k < ΛIR when these are non-relativistic (see Table 3.1,
second row). For this purpose, we consider dividing ρren for the modes in the
range ΛIR < k <∞ into the contribution from the non-relativistic modes and
the contribution from the relativistic modes (see Figure 3.4), that is, k < ma

and k > ma, respectively, in such a way that

ρren = ρ<ma + ρ>ma, (3.59)

where ρ<ma refers to the energy density contributions from the modes in
ΛIR < k < ma and ρ<ma to the modes from ma < k <∞. The energy density
of these last modes needs to be renormalized according to the Pauli-Villars
renormalization procedure. Here, ρ>maren refers to the renormalized energy den-
sity of the in vacuum state (3.43). With this classi}cation, in Table 3.2, we
summarize the conditions under which it is possible to apply the classical }eld
description for each contribution.
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Modes in range ΛIR < k <∞

ρ<ma
non-relativistic modes

ΛIR < k < ma

ω2
k ≈ m2a2,

χin
k ≈ αkχ

out
0 + βkχ

out∗
0

It admits classical homogeneous
}eld interpretation

ρ>ma
relativistic modes
ma < k <∞

gradients contribute
to the energy density

no admits classical
homogeneous interpretation

Table 3.2: Energy density for the modes in the range ΛIR < k < ∞, when
ΛIR < ma. In the }rst row ρ<ma is the contribution to ρren from the non-
relativistic modes ΛIR < k < ma, for which ω2

k ≈ m2a2. These modes can
be interpreted in terms of a homogeneous classical }eld. The second row
corresponds to the relativistic modes for which ma < k <∞. These modes do
not allow for a classical interpretation.

As an example, we will brie~y analyze the result shown in the }rst column
of Table 3.2. There, ρ<ma refers to the contribution of the non-relativistic
modes to the energy density ρinren, given by

ρ<ma =

∫ ma

ΛIR

dk

k

dρ

d log k . (3.60)

For these modes the dispersion relation is given by ωk ≈ ma since k � ma,
whose mode functions correspond to χin

k ≈ αkχ
out
0 + βkχ

out∗
0 . Using these

solutions in (3.43) we have that

ρ<ma =
1

4π2a2

∫ ma

ΛIR

dk

k
k3
{(

|βk|2 +
1

2

)

[

∣

∣

∣

∣

d

dη

(χ0

a

)

∣

∣

∣

∣

2

+m2|χ0|2
]

+ αkβ
∗
k

[

(

d

dη

χ0

a

)2

+m2χ2
0

]

+ c.c.
}

. (3.61)

When we compare this result with the zero mode expression (3.38), we observe
that it is possible to interpret this contribution to the energy density ρ<ma as
that of a homogeneous classical }eld φcl = 1/a(A0χ0 + B0χ

∗
0) as long as we

make the identi}cation

1

V

(

N0 +
1

2

)

≡ 1

2π2

∫ ma

ΛIR

dk

k
k3
(

|βk|2 +
1

2

)

,
L0

V
≡ 1

2π2

∫ ma

ΛIR

dk

k
k3αkβ

∗
k ,

(3.62)
and if we are able to solve the system of equations (|A0|2 + |B0|2)/2 = (N0 +
1/2)/V and A0B

∗
0 = L0/V . Let’s note that for N0 and L0 to be constant,

the integration between the limits ΛIR < k < ma must be constant, which, in
general, does not happen. When the ρ>ma contribution to ρren is subdominant,
then is possible write Eq. (3.59) as

ρren =
1

2a2

(

|φ̇cl|2 +m2a2|φcl|2
)

. (3.63)

In the next chapter, we will extend this discussion to the case of a Dirac }eld.
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3.8.1 The Concept of Particle
As a }nal section, we will review the concept of particle according to the main
authors we have examined for this chapter, which will serve as the basis for
the study of fermion }elds in curved spaces.

As we have already reviewed, according to Ref. [120], to discuss a particle
production formalism, it is necessary for the three conditions we have reviewed
in Section 3.8 to be satis}ed, that is, i) that the mode functions χout

k is in the
adiabatic regime when the approximation (3.27) is valid, such that W (n)

k �
W

(n+2)
k where n is the adiabatic order, ii) the mode frequencies are long (ωk �

H) and iii) the particle production is ezective (that is |βk|2 � 1). With these
conditions, and always that the adiabatic modes are dominant, we can consider
the particle production energy density as

ρp =
1

2π2

∫ ∞

0

ωk

a
|βk|2k2dk. (3.64)

On the other hand, according to Ref. [140], several conditions are re-
quired in order to talk about the number density of particles interpreted in
a Minkowskian context, that is, i) the spacetime is asymptotically adiabatic
(ωk � ω̇k) in the remote past and future (for intermediate times the particle
interpretation is ambiguous because positive and negative frequency solutions
are mixing), ii) the spacetime curvature must not vary across the spatial size of
the wavepacket of momentum k/a (in FLRW spacetime this implies k/a > H),
and iii) ω2

k > 0, that is, the mode must be oscillatory (if this condition is not
satis}ed the mode equation does not have oscillatory solutions).

Finally, according to Ref. [135], the concept of a particle is associated with
the best possible description of a physical vacuum (also understood as the
absence of particles). Birrell and Davis associate the presence of particles with
what a quantum detector can register, therefore the concept of a particle is
tied to the state of the detector. Particles can register their presence in some
detectors but not in others, so they have an essentially observer-dependent
quality. However, if spacetime is asymptotically adiabatic, it is possible to
de}ne the state of the detector unambiguously in the in and out regions and
associate |βk|2 with the number density nk of the particles produced due to
the dynamics of spacetime.
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Chapter 4

Fermion Fields on Curved Spacetimes

4.1 Introduction
In the context of semiclassical gravity, that we have outlined in the previous
chapter, a “spectator” quantum }eld in presence of a dynamic background
spacetime leads to the gravitational production of particles. As we have seen
for a quantum scalar }eld on FLRW spacetime, there are circumstances in
which it is possible to speak of a “particle production” interpretation and a
classical }eld description for the vacuum energy density of the scalar }eld. In
the present chapter, we explore whether these conditions hold when dealing
with a quantum }eld of spin ½. Since a fermion quantum }eld introduces the
condition of the Pauli exclusion principle, we will observe that a parallelism
with the scalar }eld is not immediate. This chapter follows the results derived
from the forthcoming research paper Cosmic Spinors and the Weight of the
Vacuum [3].

Given the absence of direct detections of dark matter and the growing cos-
mological and astrophysical evidence of its gravitational presence in the uni-
verse, a plausible line of investigation about its nature is to consider that dark
matter only interacts gravitationally with the rest of the universe. However,
a dark matter model with these characteristics faces the challenge of account-
ing for a production mechanism that yields the correct abundance to satisfy
observational constraints, as well as meeting the stability criterion (minimum
the age of the universe). It is in this scenario that the gravitational particle
production mechanism enters as a natural mechanism in the evolution of the
universe, depending only on the mass of the particle and the nature of its
coupling to gravity, without depending on how dark matter couples to other
sectors of the standard model.1 This is one of the main motivations for sys-
tematically exploring the behavior of the energy density, both of a scalar }eld
and a fermionic }eld, in a dynamical spacetime.

The gravitational production of particles has been studied in various con-
texts. For quantum scalar }elds during in~ation, this phenomenon has been
studied in Refs. [4, 142, 143, 144], as well as during the reheating period

1Dizerent species of particles can be created by various mechanisms in the early universe.
For any spin number (integer or half-integer), the most familiar mechanism is through colli-
sions or decays of other particles. Also, in the case of spin-0 particles, they can be produced
through topological defects or through the oscillations of a scalar }eld.
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[145, 146]. In turn, for example, the gravitational production of particles
on spacetimes that depend on a particular equation of state has been studied
in Ref. [147], as well as for radiation-dominated universes [148]. For quantum
fermionic }elds, gravitational particle productions have been studied in stan-
dard cosmology scenarios [149, 150, 151], and for the in~ationary period of
expansion [144, 152, 5, 153, 154, 155, 156]. The renormalization of the energy-
momentum tensor in FRLW universes has also been studied in the works of
Navarro et al. [157, 158, 159, 160, 161, 162, 163, 164].

In the present thesis work, we focus on studying the phenomenon of grav-
itational particle production as a result of the expansion of a FLRW universe
for a Dirac quantum }eld that only interacts (minimally coupled) with gravity.
The fermionic }eld does not interact with the in~aton }eld nor with any other
}eld of the standard model. We set the initial conditions to those that cor-
respond to an early universe of in~ationary expansion characterized by a De
Sitter spacetime followed by a post-in~ationary universe dominated by radia-
tion. In general, our results can be applied to any transition that takes place
in a FLRW universe.

The main objective is to characterize the evolution of the energy density
of the Dirac }eld when a cosmic transition occurs in the universe. We analyze
the contribution of the modes for the ranges 0 ≤ k < ΛIR and ΛIR < k <

∞ where ΛIR is the characteristic scale at the beginning of in~ation Hi =
ΛIR. We also consider the contribution of the relativistic modes and the non-
relativistic modes, as well as the adiabatic and non-adiabatic modes, which
allows us to analyze the density energy according to the contribution of the
dizerent modes. We also calculated analytically the solutions in a De Sitter
and radiation-dominated universe, as well as solutions for a massless }eld and a
homogeneous }eld, and we calculated approximate solutions when it is possible
to make an adiabatic approximation. We characterize the energy density with
respect to the in vacuum as ρ = ρout + ρp, where ρout is the contribution of
the out vacuum, which we will renormalize using the Pauli-Villars procedure,
and ρp is the contribution of the “gravitationally produced particles”. We
found that in general it is not possible to consider ρ as the contribution of
gravitationally produced particles due to the restrictions imposed by the Pauli
exclusion principle. However, under certain circumstances, it is possible to
talk about the classical }eld description of the energy density.

The value of the mass m of the “produced particles” plays a central role
in the analysis. Depending on the value of m, these particles can account for
dark matter in the universe. For example, for a scalar }eld in the context of
in~ation, it has been found that the density of the particles produced is given
by n ∼ H3

inf if m ≤ Hinf where Hinf denotes the Hubble parameter during
in~ation. For the case of fermions, Chung et al. [5] have found that when the
mass of the gravitationally produced particles is much smaller than the Hubble
expansion rate at the end of in~ation, i.e., m � Hinf, then nk = |βk|2 ∼ 1/2
when k ∼ ma(t), an identical result to the case of a conformally coupled scalar
}eld. Here we address the form of the number density nk = |βk|2 for dizerent
orders of approximation and mode contribution. As we shall see, when the
fermionic }eld is massless, there is no gravitational particle production.

Regarding the process of renormalization of the expectation value of the
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energy-momentum tensor, we use Pauli-Villars renormalization based on the
adiabatic expansion of the mode functions (which contain information about
how the fermionic }eld evolves on time). In curved spacetime, the renormal-
ization process is more complicated than in Minkowski spacetime, as curvature
introduces new types of divergences. To identify and deal with these diver-
gences, we use the adiabatic expansion proposed by Barbero et al [159] based
on a WKB-type expansion of the mode functions. On the other hand, the
same authors have developed another method not based on a WKB-type ex-
pansion that overcomes some ambiguities of this expansion [164]. However,
both methods allow for the determination of the subtraction terms and pro-
duce the same results for the renormalized quantities. The subtracted terms
can be interpreted in terms of renormalization of coupling constants in the
gravitational action functional. In the present work, we used this methodol-
ogy to renormalize the energy density ρin and pressure pin with respect to the
in vacuum and we calculated the value of the conformal anomaly. In the pre-
vious chapter, we summarized the Pauli-Villars renormalization process using
the work [120] as a reference.

The present chapter is organized as follows: in Section 4.2, we introduce
the formalism of spin ½ Dirac }elds on curved spaces and derive the mode
equations for a FLRW spacetime. In Section 4.3, we derive exact and approx-
imate solutions for the mode functions in dizerent regimes of approximation.
In Section 4.4, we de}ne a cosmic transition and introduce the Bogoliubov
transformations. In Section 4.5 and 4.6, we calculate the energy density for
the modes 0 ≥ k < ΛIR and ΛIR < k < ∞, in the same way we did in the
previous chapter 3, and we calculate the renormalized value of ρin and pin and
the trace anomaly. Finally, in Sections 4.7-4.8, we review under what condi-
tions (if they exist) it is possible to apply the “particle production formalism”
and the classical }eld description. We use the signature (+,−,−,−) and work
with natural units h̄ = c = 1.

Literature Review: In the work of Barbero et al. [165], the authors pro-
pose an adiabatic regularization method based on a WKB-type expansion of
the mode functions uk(η) and uk(η) (similar to that applied in adiabatic reg-
ularization for the scalar }eld (3.27)) to calculate the energy density ρinψ and
the number density Nψ of the gravitationally produced particles for a quan-
tum Dirac }eld ψ̂(x). In our work, we recover the WKB-type expansion for
the mode functions introduced by the authors in this work. This regulariza-
tion method was applied to an expanding universe without regions that are
asymptotically Minkowskian. In this particular case, the integral of the num-
ber of particles density nk leads to divergences that need to be removed. This
calculation was extended to the energy density and pressure in a de Sitter uni-
verse during the in~ationary expansion, not only during asymptotically static
regions. In particular, they con}rm the adiabatic regularization method by
calculating the conformal anomaly and the axial anomaly. Subsequent works
extend the analysis to consider universes dominated by radiation in Ref. [159]
and Yukawa-type interactions with a scalar }eld using the same adiabatic
regularization process in Ref. [164]. Other proposals for adiabatic expansion
to regularize the energy density are given in later works by Suman Ghosh
[162, 161], similarly applied to a de Sitter and radiation dominated universe
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in the same framework as the previous works. In Ref. [164], they move away
from a WKB-like expansion, proposing an iterative method involving unitary
transformations. Regarding this, in Herring et al. [148], the authors propose
an expansion in the same spirit as Barbero et al. for adiabatic regularization
of the energy density. We will discuss these authors more speci}cally later.
Here, we use the original WKB-expansion of Ref. [165] for the Pauli-Villars
regularization of the energy density.

In Chung et al. [5], they analyze the gravitational production of spin ½ par-
ticles directly related to |βk|2 for the heavy and light mass regimes compared
to the in~ation scale. In this study, they do not perform the adiabatic regu-
larization treatment of the energy density or any other regularization method.
The main result of this work is that for light masses |βk|2 → ½. They ap-
ply the particle production formalism to a toy in~ationary model with instant
transition from a de Sitter universe to a radiation-dominated universe. In a
numerical analysis of |βk|2, the authors con}rm that most of the contribution
to |βk|2 comes from non-relativistic modes with light mass relative to the in-
~ation scale. Chung et al. also perform an analysis of the particle production
resulting from the rapid oscillation of the in~aton after in~ation. In Herring et
al. [148], they recover the same analysis by considering an adiabatic expansion
for mode functions beyond the zeroth order. On the other hand, the works
by Ema et al. [154] perform a quite similar analysis to Ref. [5], recovering
the expression for nψ in line with the latter. Similarly, they analyze particle
production due to the rapid expansion related to coherent in~aton oscillations
at the end of in~ation. Unlike all previous analyses, Ema et al. [154] include
a study of gravitational production for vector }elds. In a separate work Stahl
and Strobel [156], calculate the number of particles created in a de Sitter uni-
verse for an asymptotically adiabatic spacetime. Especially, they calculate βk
through iterative integration, considering a WKB-like ansatz similar to that
used in Ref. [165].

In summary, all the previous works attempt to address whether a Dirac
}eld of dark matter can account for the observed dark matter energy density.
With the exception of Ref. [148], the distinction between the concepts of }eld
and particle plays a rather super}cial role, and the authors limit themselves
to using the expression for Nk ∼ |βk|2 to account for the production of dark
matter particles through the expansion of the universe. A treatment that is
closer to distinguishing between the concepts of particle and }eld is found in
Herring et al [148]. As mentioned earlier, Ref. [148] follows a similar approach
to Chung et al. [5], with a particular emphasis on the concept of particle
production and adiabatic regularization through a WKB-like approximation
(dizerent from the proposal of Refs. [164, 162]). In this work, they calculate
|βk|2 as in [5], obtaining a spectrum close to Maxwell-Boltzmann and applying
it to the same toy in~ationary model with instant reheating. In comparison to
previous works, our study aims to emphasize the more general conditions under
which the “particle production” formalism is applicable and when it is possible
to speak of a classical }eld description that can play the role of dark matter
(as in some axion dark matter models). It is also important to emphasize
that in this thesis we renormalize using the Pauli-Villars method, with the
original WKB-like adiabatic expansion proposed by Ref. [165], in order to
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identify divergences. Our goal is to analyze the behavior of a minimally coupled
and non-interacting Dirac quantum }eld, undergoing a cosmic transition as
mentioned above. In addition, we aim to determine under what conditions
the interpretation of particle production yields the correct estimated value of
energy density, and under what conditions the latter can be considered as the
contribution of a homogeneous classical Dirac }eld.

Pauli-Villars Regularization: In this work, we develop the Pauli-Villars
renormalization of the energy density of a spin 1/2 }eld in an expanding uni-
verse. In this regard, we dizerentiate ourselves from the previously mentioned
works. In those, the authors develop energy density regularization through
adiabatic regularization. The adiabatic method identi}es UV divergences by
initially considering a slow variation of the scale factor, i.e., by considering a
slow expansion of the universe. The Pauli-Villars regularization adopts this
criterion to identify the divergences. For this purpose, it is natural to require a
WKB-like expansion of the mode functions. When the adiabatic regularization
method is applied to renormalize local expectation values, such as the energy-
momentum tensor, it is equivalent to the DeWitt-Schwinger point-splitting
method. This method has been extended to spin 1/2 }elds in Ref. [166]. On
the other hand, in Ref. [167], the authors demonstrated that adiabatic regu-
larization is equivalent to n-wave regularization (which is essentially a variant
of the Pauli-Villars regularization method (see Birrel and Davis Ref. [135]).
Here, we make use of Pauli-Villars renormalization, supported by the work of
Weinberg [168]. As mentioned earlier, Pauli-Villars utilizes a WKB-like ap-
proximation to analyze the divergences that are controlled by the introduction
of Pauli-Villars regulators.

4.2 Formalism
Our main purpose is to analyze the evolution of the energy density of a free
fermion }eld ψ minimally coupled to gravity, through the action

Sψ =

∫

d4x
√−g

{

i

2
[ψ̄γµ(∇µψ)− (∇µψ̄)γ

µψ]−mψ̄ψ

}

, (4.1)

where γµ are the global gamma matrices, related to the usual Minkowski ones
by the vierbein }eld eµa as γµ = eµaγ

a, m is the mass of the }eld, ψ̄(x) denotes
Dirac conjugation of the }eld ψ(x) and ∇ν = ∂ν + Ων denotes its covariant
derivative (for the covariant representation of Dirac }elds on curved space-
time see Refs. [169, 170, 171, 172]). The global gamma matrices satisfy the
generalized Clizord algebra {γµ(x), γν(x)} = 2gµν(x), where gµν is a general
metric tensor and g its determinant. We use the convention that Latin indices
a, b, . . . are used to label local inertial coordinates and Greek indices µ, ν, . . .
for general coordinates. From here on, we will use the notation γµ = eµaγ̃

a.
The covariant derivative is de}ne in terms of the connection coe{cient

Ων(x) for the spinor }eld ψ(x) which is given by

Ων = − i

4
ωabν(x)σ

ab, (4.2)
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where σab = i[γ̃a, γ̃b]/2 and the spinor connection (a generalization of the a{ne
connection) is

ωabν ≡ ηace
c
µe
σ
bΓ

µ
σν + ηace

c
µ∂νe

µ
b, (4.3)

where ηac is the Minkowski metric and Γµσν are the Christozel’s symbols.
The spin connection is antisymmetric in the }rst two indices, i.e., ωabν =
−ωbaν . The vierbein and the inverse vierbein matrices (de}ned at point xµ =
Xµ by eµa(X) = (∂xµ/∂ya)|xµ=Xµ and eaµ(X) = (∂ya/∂x

µ

)|xµ=Xµ), which
diagonalizes the metric gµν(x), obey the relations

ηab = eµae
ν
bgµν and gµν = eaµe

b
νηab. (4.4)

The action (4.1) describes how a spinor }eld ψ(x) is coupled to gravity.
If we assume the latter is governed by the Einstein-Hilbert action, then the
spinor }eld minimally coupled to gravity is given by the action

S = Sm + Sψ +
M2

pl

2

∫

d4x
√−gR, (4.5)

where R is the Ricci scalar and Sm[gµν , ψ] describes additional matter }elds.
Here gµν(x) is regarded as a classical external }eld, whereas the Dirac }eld
ψ(x), as well as the matter }elds in the action of the standard model Sm, will
be treated as quantum }elds. Gauge }elds and massless fermion }elds are
conformally invariant and do not react to changes in the expansion history.
After varying with respect to the }eld ψ̄(x), the dynamical equation is provided
by a generalization of the Dirac equation to curved spacetime given by

[iγµ∇µ −m]ψ(x) = 0. (4.6)

4.2.1 Dirac Fields on FLRW Spacetimes
In particular, for the conformal FLRW metric

ds2 = a2(η)[dη2 − δijdx
idxj], (4.7)

where η is the conformal time η = ∫ dt/a(t) and a(η) is the scale factor, we
get according to Eq. (4.4) the vierbein coe{cients e00 = e11 = e22 = e33 = 1/a
(the vierbein inherit the same symmetry as the metric) and the Christozel
symbols Γ0

00 = H, Γ0
ij = Hδij, Γij0 = Hδij. In these coordinates, the Hubble

parameter is H = ȧ/a , which is related to the “physical” Hubble constant H
by H = aH, where from now on a dot represents the derivative with respect
to conformal time.

Inserting the above results into Eq. (4.3), these leads to the non-vanishing
spin connections ω0ij = −Hδij, and ωi0j = Hδij (note that ωµab depends on
the signature of the metric). Plugging these results in Eq. (4.2), we get Ωj =
H
4
[γ̃0, γ̃j] and Ω0 = 0. Noticing that γµ = eµaγ̃

a, then we can write

γ0 = (1/a)γ̃0, γ1 = (1/a)γ̃1, γ2 = (1/a)γ̃2, γ3 = (1/a)γ̃3. (4.8)
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Inserting the above results into Eq. (4.6) and multiplying with aγ̃0 from the
left, we get the Dirac equation in a ~at conformal FLRW spacetime as

i∂0ψ + γ̃0γ̃i∂iψ +
iH
4
γ̃0γ̃k[γ̃0, γ̃k]ψ −mγ̃0aψ = 0. (4.9)

Now, using the relation γ̃cγ̃aγ̃b− γ̃cγ̃bγ̃a = 2ηcaγ̃b− 2ηcbγ̃a− 2iεcabdγ̃dγ̃
5, where

εcabd is the Levi-Civita connection, we can recast the commutator in Eq. (4.9)
and get

iγ̃0
(

∂0 +
3H
2

)

+ iγ̃k∂kψ −maψ = 0. (4.10)

Finally, upon de}ning ψ ≡ a−3/2ψ̃, we can obtain

iγ̃0∂0ψ̃ + iγ̃k∂kψ̃ −maψ̃ = 0 −→ iγ̃µ∂µψ̃ −mezψ̃ = 0, (4.11)

where mez = ma is called the ezective mass or conformal mass. So, the }eld
ψ̃ solves the regular Dirac equation with ezective mass mez = ma.

Once we have written the Dirac equation in an FLRW spacetime, we pro-
ceed to quantize the }eld ψ(x) and calculate the expectation value of the
energy-momentum tensor, which is the source of Einstein’s semiclassical equa-
tions. Our objective is to analyze the evolution of the energy density as the
universe experiments a transition between an in-region to a subsequent out-
region (similar to a scattering process in QFT) like, for example, from an in
region during which the universe accelerates exponentially (an in~ationary pe-
riod) to a subsequent out region during which the expansion is decelerating,
namely, during the radiation domination era. In general, the in and out re-
gions refer to two dizerent epochs of a transition and are not apriori related to
the “particle production formalism”. In the in region, the }eld ψ is considered
as a spectator }eld, which allows us to control the “initial” conditions for }eld
~uctuations.

4.2.2 Field Quantization
In the semiclassical treatment of gravity, the gravitational }eld remains classi-
cal while the other matter }elds obey a quantum formulation. In order to quan-
tize the Dirac }eld ψ, we proceed according to the canonical quantization recipe
introducing the ladder operators for the creation and annihilation of “particles”
and “antiparticles”, denoted as â~kλ and b̂†~kλ

2 , and their anti-commutation rela-
tions {âλ,~k, â

†
λ′,~k′

} = {b̂λ,~k, b̂
†
λ′,~k′

} = δλ,λ′δ
′
k~k~k

and {âλ,~k, b̂
†
λ′,~k′

} = 0. With these,
the Dirac }eld ψ can be written as

ψ̂ =
∑

λ

∫

d3k
[

â~kλU~kλ + b̂
†
~kλ
V~kλ

]

, (4.12)

2The annihilation and creation operators can be interpreted as creating particles and
antiparticles of comoving momentum ~k. Actually, these “particles-antiparticles” do not
represent localized particles, these are eigenvectors of the momentum operator.
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where the momentum expansion of the eigenspinors U~kλ(x) and V~kλ(x) are
given by

U~kλ =
ei
~k·~x

(2πa)3/2

(

ukξλ

vk
~σ·~k
k
ξλ

)

, or U~kλ =
ei
~k·~x

(2πa)3/2

(

ukξλ
vkλξλ

)

, (4.13a)

V~kλ =
e−i

~k·~x

(2πa)3/2

( −v∗kξ−λ
−u∗k ~σ·

~k
k
ξ−λ

)

, V~kλ =
e−i

~k·~x

(2πa)3/2

(

−v∗kξ−λ
λu∗kξ−λ

)

, (4.13b)

where ξλ is the normalized two-component spinor stisfying ξ†λ′ξλ = δλ′λ and the
property ~σ·~k

2k
ξλ = (λ/2)ξλ where λ = ±1 represents the helicity. Also U~kλ and

V~kλ are related by charge conjugation operation (e.g. V~kλ = CU~kλ = iγ2U∗
~kλ

) 3

with uk(η) and vk(η) two time-dependet functions known as mode functions4.
In particular, because of the homogeneity and isotropy of the metric (4.7), we
may assume that the mode functions only depend on k ≡ |~k|.

Note: To write the solutions (4.13), we have used the ansatz of the form

ψk(x) =

(

uk(η)
vk(η)

)

⊗
(

ψL
ψR

)

ei
~k·~x, (4.14)

where we have chosen the positive frequency solutions and
(

ψL
ψR

)

corre-

spond to the Weyl eigenspinors of the helicity operator (k̂ · ~σ/k)ψR,L =
±ψR,L which have two eigenvalues λ = ±1. This corresponds to the mas-

less Dirac equations iγ̃µkµψ̃ = 0 with kµ = ∂µ for ψ̃ =

(

ψL
ψR

)

which have

the solutions ψL = i~σ · ~k/kψR and ψR = −i~σ · ~k/kψL. With these, we can
write Eq. (4.14) as

ψk,λ(x) =

(

uk(η)ξλ
vk(η)

k̂·~σ
k
ξλ

)

ei
~k·~x, with ξλ=±1 = ψR,L. (4.15)

It makes sense that the helicity operator captures the spin information
(which is a conserved quantity) through the constant eigenspinors ξλ (so-
lutions of the massless Dirac equation) since the time dependence comes
from the ezective mass mez = ma in Eq. (4.11) whose ezect is captured
by the time-dependent functions uk(η), vk(η). Finally, we have that the

3In order to obtain the expression Eq. (4.13), we need to take into account the expression
−iσ2ξ∗λ = λξ−λ. For example, if we consider Eq. (4.16) we can write −iσ2ξ+1 = ξ−1 where

we have used the Pauli matrix σ2 =

(

0 −i
i 0

)

.
4Because the mode function V~kλ arises from the charge conjugation matrix acting on

U~kλ
we can impose the Majorana condition on ψ simply by setting b~kλ = a~kλ. It is hence

straightforward to extend our analysis to Majorana fermions. Weyl fermions (massless)
are also easy to deal with. In that case, we can set u = v, which ezectively yields two
independent massless }elds, one for each chirality.
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normalized spinors written are

ξ+1 =
1

√

2k(k + k3)

(

k + k3
k1 + ik2

)

and ξ−1 =
1

√

2k(k + k3)

(

−k1 + ik2
k + k3,

)

(4.16)
with ~k = (k1, k2, k3) and ξ

†
λξλ′ = δλ,λ′ . When k1 = k2 = 0 we have

ξ+1 =

(

1
0

)

and ξ−1 =

(

0
1

)

.

The Dirac product on the solution ψ to equations (4.11) is given by

(ψ|ψ) =
∫

Σ

ψ̄γα(x)ψnαdΣ, (4.17)

where the vector nα is the future-directed normal to the spacelike Cauchy
hypersurface Σ, and dΣ is the invariant “volume element” on Σ. It is easy to
calculate Eq. (4.17) if we choose Σ to be a slice of constant conformal time
η, then the future-directed normal vector nα has components (a(η), 0, 0, 0). In
this case we have

(ψ|ψ) =
∫

Σ

ψ†ψ
√−gd3x. (4.18)

where ψ̄ = ψ†γ̃0 is the Dirac adjoint and where the integration is over a con-
stant x0 = η Cauchy hypersurface (dΣ =

√−gd3xa3d3x). Also we have use
the relations (γ0)2 = I and γ0 = (1/a)γ̃.

Finally, with the ansatz (4.12) into Eq. (4.18) we have (U~kλ|U~k′λ′) =
(V~kλ|V~k′λ′) = δλλ′δ

(3)(~k − ~k′), which implies the normalization condition for
the mode functions as 5

|uk(η)|2 + |vk(η)|2 = 1. (4.19)

This condition assures the standard anticommutation relations for the creation
and annihilation operators given by 6 {a~kλ, a

†
~k′λ′

} = {b~kλ, b
†
~k′λ′

} = δ3(~k−~k′)δλλ′
with all the others combinations equal to zero.

4.2.3 Mode Equations
Now, we will derive the dynamic equations for the mode functions, uk(η) and
vk(η), which encapsulate the information about how the }eld ψ̂(x) evolves as
spacetime evolves over time. From Eq. (4.13), we observe that the dynamic
evolution of the }eld depends on the mode functions uk(η) and vk(η). To

5Here we have use the integral
∫

Σ
d3xei~x·(

~k−~k′) = (2π)3δ(3)(~k−~k′) and the normalization
condition ξ†λξλ = δλδλ′ .

6These relations are established imposing the anticommutation relation for the Dirac
}eld {ψλ(x)ψ

†
λ′(x′)} = δ(x− x′)δλ,λ′ . Using the Fourier decomposition (4.12), the solutions

(4.13) and the normalization condition (4.19), the Dirac }eld anticommutation relation is
satis}ed if {a~kλ, a

†
~k′λ′

} = {b~kλ, b
†
~k′λ′

} = δ3(~k − ~k′)δλλ′ are satis}ed. Also, we have used the
delta Dirac de}nition given by (1/(2π)3)

∫

d3k exp[ik(x− x′)] = δ(3)(x− x′).
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obtain their dynamical equations, we put Eq. (4.13) into Eq. (4.11) and using
the gamma matrix given by

γ̃0 =

(

1 0
0 −1

)

and γ̃i =

(

0 σi

−σi 0

)

, (4.20)

we can write the Dirac equations as iu̇kξλ + iλvk~σ · ~kξλ − maukξλ = 0 and
−iv̇kλξλ−iuk~σ·~kξλ−mavkλξλ = 0. Now, using the eigen-equation (~σ·~k/k)ξλ =
λξλ and the normalization condition for the eigen-spinors ξ†λξλ′ = δλ,λ′ we get
the following }rst-order coupled dizerential equations

u̇k + imauk + ikvk = 0, (4.21a)
v̇k − imavk + ikuk = 0. (4.21b)

Next, multiplying Eq. (4.21a) by v∗k and subtracting the complex conjugation
of Eq. (4.21b) multiplied by uk, and using the normalization condition (4.19)
we get the Wronskian condition given by u̇kv∗k − ukv̇

∗
k = −ik.

Finally, deriving equations (4.21a) and using v̇k = imavk − ikuk and u̇k =
−imauk−ikvk, and similarly for (4.21b), we obtain the following two decoupled
second-order equations for uk a and vk:

ük + [ω2
k + imȧ]uk = 0, (4.22a)

v̈k + [ω2
k − imȧ]vk = 0, (4.22b)

where ωk =
√
m2a2 + k2. Here, the expression ω̃2

k± = ω2
k ± imȧ corresponds

to the frequency of the mode functions uk and vk, respectively, and ω2
k is the

frequency of the fermion }eld ψ̂(x). Note that a solution for vk can be obtained
from a solution for uk by the replacement m→ −m. From now on, we will refer
to these equations as the mode equations of }rst (4.21) and second dizerential
order (4.22).

It turns out to be convenient to recast Eq. (4.21) as the Schrodinger equa-
tion for a non-relativistic spin-1/2 particle in a time-dependent magnetic }eld
~B. Namely, setting by de}ning the two-component spinor ψ ≡ (uk, vk), equa-
tions (4.21) can be cast as

iψ̇ = Hψ, where H = ~B · ~σ and ~B = (k, 0,ma). (4.23a)

The latter admits the formal solution

ψ(t) = T exp
(

−i
∫ t

t0

dt̃H̃

)

ψ0, (4.23b)

which is particularly useful in the cases in which exact solutions are ready
found, namely, when k = 0 or when m = 0.

Finally, we remark that for conformal }elds on conformal spacetimes, there
is no gravitational particle production as gravity does not in~uence the dynam-
ical equations. In the case of a spin 1/2 }eld on a conformal spacetime (like
Eq. (4.7)), this occurs when the }eld is massless. If in the mode equations
(4.22), we set m = 0, these reduce to the trivial expression for Minkowskian
spacetime; therefore, gravitational ezects do not exist in this case.
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4.3 Approximate and Exact Solutions
In this section, we will discuss approximate and exact solutions to the dy-
namical equations (4.22) for the uk and vk mode functions. For the cases
of a massless m = 0 and homogeneous k = 0 Dirac }eld, and for a spinor
on in~ationary and radiation dominated universe, we found exact solutions
that describes the evolution of ψ on a FLRW spacetime. However, in general,
there are no exact analytical solutions to the mode equation (4.22), so we shall
rely on approximate solutions instead. We present high-frequency and low-
frequency solutions to the mode functions in the next two subsections. In the
}rst case, we will consider solutions for frequencies that satisfy ωk � H, when
an adiabatic approximation of uk, vk is possible. In the second case, we will
discuss the regime in which ma� H and k � H, such that a small mass and
small momentum approximation is possible.

4.3.1 Exact Solutions
Massless Dirac Field

In the case of a massless Dirac }eld, the dynamical equations (4.22) take the
form ük + k2uk = 0 and v̈k + k2vk = 0. The solutions to these equations are
given by

um=0
k = C exp(−ikη) +D exp(ikη), (4.24a)
vm=0
k = E exp(−ikη) + F exp(ikη). (4.24b)

These solutions satisfy the normalization condition (4.19) and the Wronskian
condition u̇kv

∗
k − ukv̇

∗
k = −ik. Putting Eq. (4.24) into Eq. (4.22) we }nd that

E = C and D = −F . If we choose the de}ned solution “positive frequency”
we obtain, after normalization, that at zeroth order in mass

um=0
k =

1√
2

exp(−ikη), vm=0
k =

1√
2

exp(−ikη), (4.25a)

and for de}ned solution “negative frequency”

um=0
k = − 1√

2
exp(ikη), vm=0

k =
1√
2

exp(ikη). (4.25b)

This is equivalent to choosing initial conditions to determine the coe{cients
C and D for the system of equations (4.24). Negative and positive frequency
solutions are related by charge conjugation. When m = 0, the Dirac }eld is
conformally coupled. In this case, the }eld evolves as in Minkowski spacetime,
and it does not experience the expansion of the universe, hence there is not
room for gravitational particle production.

Homogeneous Dirac Field

In this case let’s consider solutions to Eq. (4.22) with k = 0 and ωk ∼ ma.
One can also solve exactly the system (4.22) with k = 0 and arbitrary m. Two
linearly independent solutions are, for instance,

uk=0 = exp
(

−i
∫

madη

)

, vk=0 = 0. (4.26a)
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and
uk=0 = 0, vk=0 = exp

(

i

∫

madη

)

. (4.26b)

Again, one solution is “positive-frequency” and the other “negative-frequency,”
and both solutions are related by “charge conjugation”. When k = 0 the
Hamiltonian in equation (4.23a) is diagonal and equation (4.23b) immediately
leads to the positive frequency exact solution (4.26a). As opposed to what
happens in the scalar case, such positive frequency solutions exist even when
the }eld is homogeneous. A negative frequency solution can be found by charge
conjugation of the previous solution, as usual.

Dirac Spinor in de Sitter spacetime

De Sitter universe is characterized by the scale factor a(t) = eHt where H is the
Hubble constant. In terms of the conformal time η we have a(η) = (−Hη)−1

and η = (−HeHt)−1. Solutions to Eq. (4.22) in a De Sitter universe that
satis}es the appropriate asymptotic conditions in the remote past are given by

u(z) = i

√
zπ

2
eπµ/2H(1)

ν+
(z), (4.27a)

v(z) =

√
zπ

2
eπµ/2H(1)

ν−
(z), (4.27b)

where z = −kη, µ = m/H, ν± = ±1
2
− iµ and Hν±(z) are the Hankel functions

of the }rst kind. See Appendix C.1 for details.

Dirac Spinor in Radiation Dominated Universe

A radiation dominated universe is characterized by the scale factor a(t) = a0
√
t

where a0 is a constant with t the cosmic time. In terms of the conformal time
η we have a(η) =

a20
2
η with η = 2

a0

√
t and ȧ0 ≡ ȧ(t0) =

a20
2

≡ HR. Solutions
to Eq. (4.22) in a radiation dominated universe that satis}es the asymptotic
conditions (4.29) in the remote future are given by

uk = exp
(

− πk2

8mHR

)

Dα

(√
2eiπ/4z

)

, (4.28a)

vk =
eiπ/4k√
2mHR

exp
(

− πk2

8mHR

)

Dα−1

(√
2eiπ/4z

)

. (4.28b)

where z =
√
mHRη, α = −ik2/mHR and Dα(z) are the cylindrical parabolic

functions. See Appendix C.2 for details.

4.3.2 High Frequencies Approximation
When the }eld frequency ωk is much greater than the Hubble parameter
ωk � H, it is possible to rely on approximate solutions given by an adia-
batic expansion. We found in the literature a variety of approximate solutions
to the second-order dizerential equations (4.22), by adopting an “adiabatic”
expansion in the number of time derivatives of the scale factor. Similar to the
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case of a scalar }eld on curved spacetime, these solutions make use of a WKB-
expansion for the mode functions uk(η) and vk(η) (see for example Refs. [165],
[173] and [174]). Here, we use the }rst proposal given by Ref. [165], where the
authors propose an ansatz with the form

uk =

√

ωk +ma

2ωk
exp

(

−i
∫

Ω(η̃)dη̃

)

F (η), (4.29a)

vk =

√

ωk −ma

2ωk
exp

(

−i
∫

Ω(η̃)dη̃

)

G(η), (4.29b)

where ωk =
√
m2a2 + k2 and the time-dependent function Ω(η), F (η) and G(η)

are expanded adiabatically as

Ω(η) = ωk + ω
(1)
k + ω

(2)
k + ω

(3)
k + ω

(4)
k + . . . , (4.30a)

F (η) = 1 + F (1) + F (2) + F (3) + F (4) + . . . , (4.30b)
G(η) = 1 +G(1) +G(2) +G(3) +G(4) + . . . , (4.30c)

where the superscripts indicate the adiabatic order, that is F (n), G(n) and
ω
(n)
k are functions of adiabatic order n, i.e. they contain n derivatives of the

scale factor a(η). The time-dependent functions F (n) and G(n) are complex
functions and we can write these like F (n) = f

(n)
x + if

(n)
y and G(n) = g

(n)
x +

ig
(n)
y .7 This expansion is generally applicable when ωk � H, that is, for

short wavelengths modes or massive }elds. Strictly speaking, the “adiabatic
regime” holds whenever expressions (4.29) is a valid approximation of the mode
equation, no matter what the value of the frequency ωk is. In general when
the mode frequency becomes small, ωk � H, the approximate solution (4.29)
stops working. Then the approximate solution for low frequencies (small mass
or long wavelength) is applicable. As an example of the procedure described in
Ref. [165], we will calculate the approximate solutions uk and vk to }rst-order
adiabatic (in Appendix C.3 we calculate these solutions up to fourth-order
adiabatic). For this, it is useful to write the coupled dizerential equations for
uk and vk, Eq. (4.21), as

kuk = iv̇k +mavk, (4.31a)
kvk = iu̇−mauk. (4.31b)

Now, substituting the ansatz (4.29) for uk and vk into Eq. (4.31a) we obtain
the expression

k

(

W+

W−

)

F = i

[(

Ẇ−
W−

)

G− iΩG+ Ġ

]

+maG, (4.32)

7One more formal solution was given in Refs. [174] and [175] overcoming the arbitrariness
in the adiabatic expansion of the mode function that is somewhat inconvenient. However,
all these works obtain exactly the same results for the renormalized expressions ρk and pk.
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whereW± =
√

ωk±ma
2ωk

and similarly for Eq. (4.31b). After some straightforward
algebra and recalling that ω2

k = k2 +m2a2, we can write both equations as

(ωk −ma)G =
i

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

F + ΩF + iḞ −maF, (4.33a)

(ωk +ma)F =
i

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

G+ ΩG+ iĠ+maG, (4.33b)

F ∗F (ωk +ma) +G∗G(ωk −ma) = 2ωk, (4.33c)

where we have used the relation m2aȧ = ω̇kωk and the third equation fol-
lows from the normalization condition (4.19). By keeping only terms in }rst
adiabatic order in Eq. (4.33) and taking into account Eq. (4.30) we obtain

(ωk −ma)G(1) = (ωk −ma)F (1) + ω
(1)
k +

i

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

,(4.34a)

(ωk +ma)F (1) = (ωk +ma)G(1) + ω
(1)
k +

i

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

,(4.34b)

(ωk +ma)(F (1) + F (1)∗) + (ωk −ma)(G(1) +G(1)∗) = 0.(4.34c)

Now, using the decomposition F (0) = f
(0)
x + if

(0)
y and G(0) = g

(0)
x + ig

(0)
y , and

working the real part, we have (ωk −ma)(g
(1)
x − f

(1)
x ) = ω

(1)
k , (ωk +ma)(g

(1)
x −

f
(1)
x ) = −ω(1)

k , and (ωk +ma)f
(1)
x + (ωk −ma)g

(1)
x = 0, from which after some

straightforward manipulations we obtain f
(1)
x = g

(1)
x = ω

(1)
k = 0. On other

hand, the imaginary part gives two dependent equations

(ωk −ma)(g(1)y − f (1)
y ) =

1

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

, (4.35a)

(ωk +ma)(g(1)y − f (1)
y ) = −1

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

, (4.35b)

from which the solution is given by g
(1)
y − f

(1)
y = 1

2
mȧ
ω2
k

. To alleviate this am-
biguity we can use the fact that uk(−m) = vk(m)8, that is equivalent to
F (n)(−m) = G(n)(m). This fact implies that f (1)

y (−m)− f
(1)
y = 1

2
mȧ
ω2
k

and from
here is necessary to write f (1)

y (−m) = −f (1)
y (m). From a direct manipulation

we obtain
g(1)y =

mȧ

4ω2
k

, f (1)
y = −mȧ

4ω2
k

. (4.36)

With the results above is possible to write the adiabatic expansion (4.29) up
to }rst order as

u
(1)
k =

√

ωk +ma

2ωk
exp

(

−i
∫

ωk(η̃)dη̃

)[

1− imȧ

4ω2
k

]

, (4.37a)

v
(1)
k =

√

ωk −ma

2ωk
exp

(

−i
∫

ωk(η̃)dη̃

)[

1 +
imȧ

4ω2
k

]

. (4.37b)

In Appendix C.3, we write the complete expressions for uk and vk up to fourth-
order adiabatic.

8This symmetry comes from the dizerential equation (4.22) under the change m→ −m.
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4.3.3 Low Frequencies Approximation
In order to }nd approximate solutions to the system of equations (4.22) when
ma � H and k � H, that is, when the }eld has small mass or small mo-
mentum, we can consider two regimes: in the }rst case we can consider m
as a perturbation in the Hamiltonian (4.23a). In this case, we can search for
approximate solutions in which m = 0 is the lowest order of approximation
and proceed successively by searching for corrections in perturbation theory
around the mass m. In the second case we can consider k as a perturbation in
the Hamiltonian (4.23a), from which it is possible to obtain corrections to the
approximate solutions in perturbation theory in a similar way to the previous
case.

First Case. We will develop the solution to Eq. (4.22) with m = 0 as the
lowest order approximation when the mass of the }eld is su{ciently small. In
this case equations (4.22) have solutions um=0

k and vm=0
k , and take the form of

Eq. (4.25). If m 6= 0 the relations (4.24) is not a solution of the mode equation
(4.22). In this case Eq. (4.24) can be regarded as solutions of the lowest order
to the massless mode equation at the limit of small mass, with corrections,
∆uk ≡ u

(n)
k − um=0

k and ∆vk ≡ v
(n)
k − vm=0

k , given by

∆uk = −
∫ η

dη̃G1(η; η̃)
(

m2a2u
(n−2)
k + imȧu

(n−1)
k

)

, (4.38a)

∆vk = −
∫ η

dη̃G2(η; η̃)
(

m2a2v
(n−2)
k − imȧv

(n−1)
k

)

, (4.38b)

where G1,2(η; η̃) is the Green’s function of the zero-mass equation, which can be
readily constructed as a linear combination of the two solutions exp(−ikη) and
exp(ikη). We obtain an explicit solution of the mode equation by recursively
expanding uk, vk in powers of m. The n-th order in such an expansion thus
contain n powers of the mass m and is related to the next one by

u
low(n)
k (η) = u

low(0)
k (η)

−
∫ η

dη̃G1,2(η; η̃)

[

a2u
low(n−2)
k (η̃) + iȧu

low(n−1)
k (η̃)

]

, (4.39)

and similarly for vlow(n)
k , where ulow(0) = um=0

k and n > 1.

Small mass. In order to extend the exact solution (4.25) at m = 0 to
cases where m is non-zero but “small”, we shall treat the mass term in the
Hamiltonian as a perturbation,

H = H0 + V, H0 = kσ1, V = maσ3. (4.40)

Then, turning to the interaction picture, the “exact” solution (4.23b) can be
cast as

ψ = U0(t)T exp
(

−i
∫ t

dt̃ṼI

)

ψ0, U0 = T exp
(

−i
∫ t

dt̃H̃0

)

, (4.41)

where VI = U
†
0V U0 is the interaction V in the interaction picture. It is

worth noting that, at least formally, Eq. (4.41) is still an exact solution of
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the Schrodinger equation (4.23a), so the validity of Eq. (4.41) does not require
m to be small. When m is “small,” however, it ought to su{ce to expand
Eq. (4.41) to }rst order in the interaction VI . We shall deem the approxima-
tion “accurate” when the }rst order correction is much smaller than the zeroth
order term. Because both depend on the common but arbitrary initial vector
ψ0, we hence arrive at the operator norm condition

‖
∫ t

dt̃ṼI‖ � 1. (4.42)

The eigenvalues of the integrated interactions obey

λ2 = m2

[

(∫ t

ã cos
(

2kt̃
)

dt̃

)2

+

(∫ t

ã sin
(

2kt̃
)

dt̃

)2
]

≤ 2m2

(∫ t

ãdt̃

)2

(4.43)
and, therefore, the condition for the validity of our small mass approximation
is ma� H, which, somewhat surprisingly, does not depend on the magnitude
of k, but on the size of the comoving horizon. As hinted above, this is because
our approximation does not rely on ma begin smaller than k, but, rather,
that the series in Eq. (4.41) be correctly approximated by its leading term. In
summary, the zero mass approximation works when the }eld is light, that is,
when ma� H.

Second Case. In this case we consider an expansion around k, to solutions
for low frequencies, with k = 0 the lowest order of the approximation, when
ωk ∼ ma. These solutions are given by Eq. (4.26). As before, we can obtain
corrections to these approximate solutions in perturbation theory. In the same
way, we can write the n-th order in such expansion that contain n powers of
k and is related to the next one by

u
low(n)
k (η) = ulow0 (η)−

∫ η

dη̃ exp
(

−i
∫ η̃

ma(η′)dη′
)

u
low(n−2)
k , (4.44)

v
low(n)
k (η) = vlow0 (η)−

∫ η

dη̃ exp
(

i

∫ η̃

ma(η′)dη′
)

v
low(n−2)
k , (4.45)

where ulow0 , vlow0 = ulowk=0, v
low
k=0, n > 2 and we have used the explicit form of the

Green’s function. In this case, the solutions (4.26a) and (4.26b) correspond to
the case k = 0 of the zeroth order of the adiabatic approximation (4.29).

Small Momentum. To }nd an approximate solution when the momentum
k is small, we employ again }rst order perturbation theory in the interaction
picture. Setting

H0 = maσ3, V = kσ1, (4.46)
and proceeding exactly like in the small mass case we arrive at the eigenvalues
of the }rst order correction

λ2 = k2

∥

∥

∥

∥

∥

∫ t

dt̃ exp
(

2i

∫ t̃

dt̃mã

)∥

∥

∥

∥

∥

2

≤ k2(η − η0)
2. (4.47)

Hence, in this case the condition for the validity of the small momentum ap-
proximation is k � H, once more, regardless of how k compares to ma.
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Figure 4.1: Timeline characterizing the transition experienced by the universe
as it expands from an initial period of cosmic in~ation at ηi followed by a
period of radiation domination ηr mediated by a model-dependent reheating
period ηe < η < ηr. In a sharp transition ηr = ηe and there is a discontinuity
in the second derivative of the scale factor.

4.4 Cosmological Epochs
4.4.1 in and out Regions
The notion of vacuum and the number of particles, associated with the number
of quanta for the number operator and the creation and annihilation operators
introduced by the expansion (4.12), depends on the particular choice we make
of the mode functions uk(η) and vk(η). In a spacetime that experiments a
transition from an initial in in~ationary region to a subsequent out region
where the universe expands as a FLRW spacetime, the in vaccum is determined
by the Bunch-Davis vacuum (see Figure 4.1). So, this in region is determined
by the existence of a preferred notion of vacuum. This is the case if the
solutions of the mode equations (4.22) for any }xed k, that in the remote past
matches the adiabatic zero order of the expansion (4.29), are given by

uink →
√

ωk +ma

2ωk
exp

(

−i
∫

ωkdη

)

, (4.48a)

vink →
√

ωk −ma

2ωk
exp

(

−i
∫

ωkdη

)

. (4.48b)

This condition is characteristic of a universe experiencing an early period of
in~ation. With these initial conditions we can characterize the mode functions
uink and vink , which in turn characterize a preferred vacuum, that is, the in adi-
abatic vacuum. However, we must rule out a scenario of eternal in~ation, that
is, in~ation is not expected to be past eternal. With this in mind, we cannot
consider that the conditions are determined by an in region that extends in-
de}nitely into the past. Taking this into account, it is convenient to introduce
an initial time ηi at which in~ation starts characterized by Hi = H(ηi). With
this scale, if the }eld is massless or light we must introduce an infrared cutoz
such that ΛIR ∼ Hi, since at these scales there is no preferred quantum state
for the modes that are higher than the horizon at the start of in~ation. On
the other hand, if the }eld is heavy, we can set ΛIR = 0. See Figure (4.2).

Once we have determined the in initial conditions for the mode functions in
the decomposition (4.12), it is possible to associate the ladder operators âin~kλ and
b̂in~kλ to those states corresponding to the in region. With this we can talk about
a number operator N̂a,in

~kλ
and N̂ b,in

~kλ
associated with the mode ~k. The in vacuum

ain~kλ |0in〉 = 0 has no in quanta N̂a,in
~kλ

|0in〉 = 0, while N̂a,in
~kλ

|ψ〉 = N
a,in
λ |ψ〉 can

be thought of as containing a de}nite number of quanta Na,in
λ , and similarly
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for the operator N̂ b,in
~kλ

. This is how in~ation allows us to identify the quantum
state of all modes within the range ΛIR < k <∞, e.i., the in vacuum.

Now we consider an out region that for example, contains a radiation-
dominated universe starting at η = ηr > ηe, where e means the end of in~ation
and r the begin of the radiation-dominated universe. To determine the mode
functions in the out region, we need to }nd the solution of equation (4.22)
that evolved through the transition from the one in the in region. Let uk and
vk be arbitrary solutions to the equation (4.22). Since uk and vk are linearly
independent we can express the solutions uink and vink as a linear combination
of uk and vk as

uink (η) = αkuk − βkv
∗
k, (4.49a)

vink (η) = αkvk + βku
∗
k, (4.49b)

where αk and βk are the Bogoliubov coe{cient and uk and vk are arbitrary
solutions to equation (4.22) that do not necessarily satisfy the initial condi-
tions set by in~ation. In general, the solutions uk and vk are not necessarily
associated with the out region. At this point the nature of uk and vk are irrel-
evant, we only need these to satisfy the equation (4.22) and the normalization
condition (4.19). If uk = uink and vk = vink these equations imply that βk = 0
and αk = 1, as expected.

Expressions in Eq. (4.49) are useful to de}ne a two mode expansion simi-
lar to that Eq. (4.12), now with the out conterpart of the annihilation and
creations operators ain~kλ and b

†in
~kλ

(see Appendix C.6). These set of opera-
tors de}nes, respectively, a number operator of out particles and antiparti-
cles, given by N̂a

~kλ
= â

†
~kλ
â~kλ and N̂ b

~kλ
= b̂

†
~kλ
b̂~kλ. This set of number operators

N̂a
~kλ

, N̂ b
~kλ

, N̂a,in
~kλ

and N̂
b,in
~kλ

allows de}ne the in vacuum |0in〉 which no con-
tain in particles and the out vacuum |0out〉 which no contain out particles.
But, when βk is nonzero, the in vacuum does contain out particles given by
〈0in|Nab

~k
|0in〉 =

∫

dk3|βk|2. Note that the Bogolubov coe{cients do not have
an independent meaning by themselves, since they are inherently linked to
the choice of the mode functions uk and vk through Eq. (4.49). Only in the
adiabatic regime do the Bogolubov coe{cients acquire a context-independent
meaning. Then, in the adiabatic regime we can say that the mode functions
uadk and vadk are uniquely determined. If this approximation is applicable then
we can refer to these mode functions as “out adiabatic mode functions” and to
the vacuum state as “out adiabatic vacuum”. The exact solution to the mode
equation that matches with Eq. (4.29) and its }rst derivative at any chosen
and }xed time η implicitly de}nes the n-th order adiabatic vacuum at that
time. As stressed in Ref. [135], this de}nes a two-parameter family of vacuum,
characterized by the adiabatic order n and the time η. In general, we are not
interested in determining the out mode basis functions. Only when we need to
renormalize the energy density of the out vacuum is that we must determine
the adiabatic mode functions up to order n ≥ 4.

4.4.2 Transitions
Once the nature of the in and out regions is established, we must establish
the nature of the transition between the two regions. In a scenario determined
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Figure 4.2: Infrared scale ΛIR ∼ Hi at the beginning of in~ation. The modes
below this scale have an unknown state. Modes above ΛIR are found in the
preferred in vacuum state set by in~ation at ηi. If the }eld is massless or
light, the state of the superhorizon modes at the beginning of in~ation, is not
determined by in~ation and remains unknown to us.

by the transition from an in~ationary universe to a universe dominated by
radiation, the nature of this transition is determined by the relatively unknown
phenomenology of the period called reheating, see Figure 4.1. To describe the
in~ationary period, we can use the parametrization a(η) ∼ ηp with p ≤ −1
where the ezective equaion of satate in such universe is ωk = (2 − p)/3p.
Here, the slow-roll parameter ε = −Ḣ/(aH2) = p2 + p. The case p = −1,
for example, correspond to a Cosmological Constant Λ dominated universe
and ε = 0. After In~ation, in a radiadion dominated universe the scale factor
evolves as a(η) ∼ η or a(t) ∼ t1/2. In the following, unless a speci}c example
is required we will only assume that Hr ≤ H ≤ He.

In order to determine the form of the in mode functions after a jump in
the derivates of the scale factor a(η), we need to }nd the solution of equation
(4.22) that matches the one in the in region at the transition time η = ηe.
We use arbitrary solutions uk and vk to the mode equations, and we impose
continuity of the solutions and its derivatives at the future boundary of the in
region, that is ηe. If the mode functions uink and vink remains in the adiabatic
regime throughout the in region, and we assume that the mode functions uk
and vk are well approximated by the adiabatic expansion (4.29), the Bogolubov
coe{cients in Eq. (4.49) after such transition are given by

αad
k ≈ 1 +

(

ωk +ma

2ω

)

(

F−,(1)∗ + F+,(1) + F+,(1)F−,(1)∗ + F+,(2)F−,(2) + ...
)

+

(

ωk −ma

2ω

)

(

G−,(1)∗ +G+,(1) +G+,(1)G−,(1)∗ +G+,(2)G−,(1)∗ + ...
)

,

(4.50a)

βad
k ≈ k

2ω

[

(

F−,(1) − F+,(1)
)

+
(

G+,(1) −G−,(1))

+
(

G+,(1)F−,(1) −G−,(1)F+,(1)
)

+ ...

]

, (4.50b)

where the plus and minus superscripts denote the limits in which η approaches
ηe from above and below, respectively. The dizerent terms are organized
by growing number of time derivatives. If F−,(1) = F+,(1), G−,(1) = G+,(1),
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that is, there is no jump in the derivatives of the scale factor, and using
|F |2(ωk +ma) + |G|2(ωk −ma) = 2ωk, then we have to αk = 1 and βk = 0,
as we expected. From this, we infer that the scale factor must at least make
a jump in the }rst derivative of the scale factor to obtain a value of |βk| dif-
ferent from zero. At }rst adiabatic order we have β(1)

k ≈ (ikm/4ω3
k)[ȧ

+ − ȧ−]

and α
(1)
k ≈ 1− (ma/k)β

(1)
k [ȧ+ − ȧ−] where [ȧ+ − ȧ−] is always positive. Now,

taking into account that 0 ≤ |αk|, |βk| ≤ 1, and given that [ȧ+ − ȧ−] = [1 +
p/η−p−1

e ] ≈ 1, we expect particle production to be ezective when k ∼ ma, i.e,
the fermion becomes non-relativitic. On the other hand, from the expression
βk = ukv

in
k − vku

in
k , evaluating uk, vk in the asymptotic region η → ηeq where

ηeq is the time at matter-radiation equality, βk = ukv
in
k −vkuink are given by the

adiabatic approximation (4.29) to zeroth order in the late radiation-dominated
universe, and evaluating uink , vink in the asymptotic past determined by the early
in~ation stage where uink , vink = 1√

2
e−ikη, 1√

2
eikη, in the limit k → 0, we obtain

|βk|2 ∼ 1
2
. This result coincides with the result reported in Refs. [173, 176].

These formulas establish a link between the smoothness of the transition and
the behavior of the Bogolubov coe{cients in the adiabatic regime. If the tran-
sition remains dizerentiable, the coe{cients βk vanish in the adiabatic regime,
as expected. As we have previously argued, the modulus square |βk|2 is the
expected number density of out particles and antiparticles in that mode, and
particle and antiparticle production hence requires departures from adiabatic-
ity. Up to third adiabatic order the Bogoliubov coe{cient are given by

β
(3)
k ≈ km

8ω4
k

(äin − äout) +
i19km3a0ȧ0

32ω7
(äin − äout)−

ikm

16ω5
(
...
a in − ...

a out) + ....

(4.51)

4.5 Energy Density
We are interested in the evolution of the energy density of the quantum fermion
}eld ψ̂ as the universe experiences transition from the in to the out region,
as described in Section 4.4. In the semiclassical approximation to gravity, the
energy density of the }eld ψ is related to the expectation value of the time-time
component of its energy-momentum tensor as ρ = 〈T 00〉, which acts as a source
for the classical gravitational }eld, c.f. Eq. (3.2). According to the action (4.1)
the energy-momentum tensor is given by Tmµν = i

2
[ψ̄γ(µ∇ν)ψ − (∇(µψ̄)γν)ψ],

where we are using de de}nition A(iBj) = 1/2(AiBj + AjBi). Now, using
Ω0 = 0, γ0 = (1/a)γ̃0 and γ0 = (1/a)γ̃0, the 00-component of the stress-energy
tensor can be written as

T 0
0 =

i

2

(

ψ̄γ0∂0ψ − ∂0ψ̄γ
0ψ
)

. (4.52)

In order to calculate the vacuum expectation value 〈T 0
0 〉 with respect to the

vacuum state |0〉, we use the expressions (4.12) and (4.13) into Eq. (4.52) (see
Appendix C.4 for details), and after some calculations we obtain

ρ =
1

2π2a3

∫ ∞
dkk2ρk, (4.53a)
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where the spectral density is given by

ρk =
i

a

[

uink ∂0u
in∗
k + vink ∂0v

in∗
k − uin∗k ∂0u

in
k − vin∗k ∂0v

in
k

]

. (4.53b)

On other hand, if we calculate 〈T 0
0 〉 with respect to an arbitrary state |ψ〉, after

some calculations, we can write the energy density expression ρ = 〈ψ|T 0
0 |ψ〉

with the spectral density given by

ρk =
i

2a

[

2i
(

2− [nbk + nak]
)

Im{uku̇∗k + vkv̇
∗
k}

+ 2mb
k(u̇

∗
kv

∗
k − u∗kv̇

∗
k) + 2ma

k(ukv̇k − u̇kvk)
]

(4.53c)

or, eliminating the time derivatives using the equations (4.21), we can write

ρk =
i

2a

[

2i
(

2− [nbk + nak]
)

Im{ima(|uk|2 − |vk|2) + ik(ukv
∗
k + vku

∗
k)}

+ 2ma
k(ik(u

2
k − v2k)− 2imaukvk)− 2mb

k(−ik(u∗2k − v∗2k ) + 2imau∗kv
∗
k)

]

.

(4.53d)

Here, the mode functions uk and vk are arbitrary solutions to the mode equa-
tions (4.21) and we have de}ned 〈â†~k′λ′ â~kλ〉 = δ(~k − ~k′)naλλ′ , 〈â†~k′λ′ b̂

†
~kλ
〉 = δ(~k +

~k′)mb
λλ′ , 〈b̂~k′λ′ â~kλ〉 = δ(~k+~k′)ma

λλ′ , 〈b̂~k′λ′ b̂
†
~kλ
〉 = δ(~k−~k′)δλλ′−δ(~k−~k′)nbλλ′ where

nak =
∑

λ n
a
λλ, n

b
k =

∑

λ n
b
−λ−λ, m

a
k =

∑

λm
a
−λ−λ, m

b
k =

∑

λm
b
λλ, see Ap-

pendix C.4 for details. If |ψ〉 is the vacuum state then nak = nbk = mb
k = ma

k = 0.
In order to analyze the energy density ρ of the fermionic }eld it is convenient

to separate the contributions from the ~k = 0 and ~k > 0 modes.9 Starting from
a sum over the modes in a volume V and subsequently replacing it with an
integral taking the continuous limit V → ∞, we can write ρ as

ρ = ρ~k=0 +
1

2π2a3

∫ ∞
dkk2ρk, (4.54)

where ρ~k=0 and ρ~k>0 are the zeroth and k > 0 mode contribution, respectively,
to the total energy density. Here, if the expectation value 〈T 0

0 〉 is respect to the
states |0〉 or |ψ〉, ρ is given in term of the spectral density (4.53b) or (4.53b),
respectively.

Finally, motivated by the discussion in Section (4.4.1), we will divide the
integral in Eq. (4.54) in two pieces

ρ<ΛIR ≡
∫ ΛIR

0

dkk2ρk, and ρ>ΛIR ≡
∫ Λ

ΛIR

dkk2ρk, (4.55)

where ΛIR ∼ Hi is of the order the Hubble radius at the beginning of in~ation
and plays the role of an infrared cutoz. Here ρ<ΛIR contains the contribution of

9Since for a free }eld the modes evolve in a decoupled manner, we can treat these sep-
arately. In particular, the zero mode k = 0 requires separate treatment. In the case when
0 ≤ k < ΛIR, there is no preferred state for these modes.
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those modes in the interval 0 < k < ΛIR, that were already outside the horizon
at the beginning of in~ation and whose state remains undetermined. On the
other hand, modes in the range ΛIR < k <∞ do have a preferred state, though
we have limited their contribution up to those below an ultraviolet cutoz Λ
that we have introduced for convenience (in the integration process we will
apply the limit limΛ → ∞).

Reformulation of ρk. We can also recast the spectral energy density in
terms of the “state vector” ψ. Using equation (4.21) in order to eliminate the
time derivatives, we }nd that the energy of a single momentum mode (two
polarizations) is

ρk = − 2

V a4
ψ†Hψ, (4.56)

where H is the Hamiltonian above, c.f. Eq. (4.23a). In other words, the Hamil-
tonian and the energy density are proportional to each other. The proportion-
ality factor contains the volume factor a3V expected from a density, and the
additional redshift of the energy inversely proportional to a.

4.5.1 Adiabatic Expansion of the Spectral Density
Now, we will calculate the spectral density ρk for the in vacuum whose state is
characterized by the solutions uink and vink , which satisfy the conditions (4.48).
To calculate the integral (4.53a) we must expand its integrand (that is, the
spectral density ρink , Eq. (4.53b)) adiabatically. By dimensional analysis, we
need to calculate up to the fourth adiabatic order. So, once we get the adiabatic
expression for the mode functions u(n)k and v(n)k , up to adiabatic order n = 4, we
can obtain, after some straightforward algebra, the expression for ρ(n) putting

u
(n)
k =

√

ωk +ma

2ωk

[

1 +
n
∑

i=1

F (η)(i)

]

exp
(

−i
∫

Ω(n)dη′
)

, (4.57a)

v
(n)
k = u

(n)
k (−m), (4.57b)

into Eq. (4.53b), with F (n), G(n) = F (n)(−m) and Ω(n) given by Eqs. (4.30).
For example, at the zeroth adiabatic order, the mode functions are given by

u
(0)
k =

√

ωk +ma

2ωk
exp

(

−i
∫

ωk(η
′)dη′

)

, and v
(0)
k (η) = u

(0)
k (−m), (4.58)

form which the spectral density ρ(0)k , remaining at zeroth adiabatic order, can
be written as

ρ
(0)
k =

i

a

[(

ωk +ma

ωk

)

iωk

]

+ (F → G) = −2ωk
a
, (4.59)

where (F → G) refers to adding the }rst term by changing the functions F
for G = F (−m), or making the change m → −m. In the appendix (C.5), we
explain in more detail how to obtain the second and fourth adiabatic orders
of the spectral density ρk (the odd adiabatic orders vanish).
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Finally, using the equations (C.22), (C.35) and (C.36), the full expression
for the spectral density ρ(4)k up to fourth adiabatic order is given by

ρk ≈ ρ
(0)
k + ρ

(1)
k + ρ

(2)
k + ρ

(3)
k + ρ

(4)
k , (4.60)

where

ρ
(0)
k = −2ωk

a
, ρ

(1)
k = ρ

(3)
k = 0, (4.61a)

ρ
(2)
k = − ȧ

2m4a

4ω5
k

+
ȧ2m2

4aω3
k

, (4.61b)

ρ
(4)
k =

105m8a3ȧ4

64ω11
k

− 63m6aȧ4

32ω9
k

+
21m4ȧ4

64aω7
k

− 7m6a2ȧ2ä

8ω9
k

+
7m4ȧ2ä

8ω7
k

+
m4aä2

16ω7
k

+
m2ä2

16aω5
k

+
m4aȧ

...
a

8ω7
k

− m2ȧ
...
a

8aω5
k

. (4.61c)

4.5.2 Modes 0 ≤ k < ΛIR

Now, let us consider the contribution to the energy density coming from the
modes 0 ≤ k < ΛIR, that is, from those modes below the infrared cutoz ΛIR
at the start of in~ation. As we already mentioned, these modes are outside
the horizon Hi at the star of in~ation and do not have a preferred state. We
will divide the discussion by analyzing separately the zero mode ~k = 0 and the
modes in range 0 < k < ΛIR.

Zero mode. According to Eq. (C.33), the spectral density for the zero
mode can be written as

ρ0 =
i

2a4V

[

(2− [nb0 + na0])(2iIm{u0u̇∗0 + v0v̇
∗
0})

+ 2ma
0 (u0v̇0 − v0u̇0)− 2mb

0 (u
∗
0v̇

∗
0 − v∗0u̇

∗
0)

]

. (4.62)

If into Eq. (4.62) we consider V goes to in}nity then ρk=0 → 0, since |na0|, |nb0| ≤
1 and |ma

0|, |mb
0| ≤ 1. It may be useful to cast the energy density of the

zero mode as function of the critical density: it is of order (na0 + nb0 −
1)(mH/M2

pl)(VH/V ) where VH is the Hubble volume. This is typically very
small. Otherwise, for the scalar }eld it is possible to obtain a macroscopic
Boson condensate as V → ∞. In any case, for a value of V dizerent from
zero, the energy density seems to coincide with that of a classical homoge-
neous Dirac }eld Ψcl =

∑

λ

[

AλU0λ + BλV0λ
]

whose energy density is ρcl =
i/2a(Ψ̄clγ

0∂0Ψcl − ∂0Ψ̄clγ
0Ψcl), such that

ρcl =
i

2a4

[

(

∑

λ

|Bλ|2 − |Aλ|2
)

(u0u̇
∗
0 + v0v̇

∗
0 − u∗0u̇0 − v∗0 v̇0)

+
∑

λ

A∗
λB−λ(v

∗
0u̇

∗
0 − u∗0v̇

∗
0) +

∑

λ

A−λB
∗
λ(u0v̇0 − v0u̇0)

]

. (4.63)

Chapter 4 129



Comparing the last expression with Eq. (4.62), such a classical description
works provided that we are able to identify

∑

λ

|Bλ|2 − |Aλ|2 =
1

V

[

2−
(

nb0 + na0
)

]

,

∑

λ

A−λB
∗
λ =

ma
0

V
,
∑

λ

A∗
λB−λ =

mb
0

V
, (4.64)

and there exists a solution to the system. As long as there is a solution for
Eq. (4.64) the classical description for Ψcl works, in the sense that there exists
a classical }eld con}guration with the same energy density like Eq. (4.62). In
general, there is no preferential choice of the functions v0, u0. Any solution of
the mode equation for k = 0 is equally valid, such that the coe{cients Bλ, Aλ,
n0, m0, do not have a particular meaning for themselves.

On the other hand, we can see that if the }eld is massless, the zero mode
u0 and v0 is described by the equation (4.25) with ~k = 0 which have solu-
tions vm=0

0 , um=0
0 = constant subject to Eq. (4.21). Then, the energy density

vanishes. If the mass is dizerent from zero, on the other hand, there are two
dizerent regimes. In the }rst case, if now we consider the “positive frequencies”
solutions (4.25a) with ma � H, that is, whereas the }eld remains light, we
have from Eq. (4.62) that the energy density also vanishes.

After some time, when the }eld becomes heavy, ma � H, the frequency
approximation (4.25a) breaks down, then we need to make use of the adiabatic
approximation, that is, the equation (4.29). With these solutions, we can write

ρk=0 =
1

a4V

(

nak=0 + nbk=0 − 2
)

[

Ω|Fk=0|2 + Im(FḞ ∗)k=0

]

, (4.65)

from which the zero adiabatic order is given by ρk=0 =
2ωk

a4V
[(nak=0+n

b
k=0)−2] =

2m
a3V

[Nad
0 − 2], that is, we obtain that, at zeroth order in the adiabatic approx-

imation, the oscillating zero mode behaves like a pressureless ~uid, whose
overall density is proportional to the value of Nad

0 , where the superscript in-
dicates that we have chosen the mode functions (4.29) in the }eld expansion
(4.12). As we discussed in Section 4.7 this is precisely the behavior that would
be expected of Nad

0 particles with zero space momentum.
In the case of a massless classical }eld, we obtain ρcl = 0, and if the }elds

is massive, we can write the classical energy density as ρcl = m
a3
Ψ̄0Ψ0 = ρ0m/a

3

where Ψ0 is a constant spinor. Since the expectation of the energy density of
the zero mode (4.65) also scales like 1/a3, by a appropriate choice of Ψ we can
always cast it as that of classical }eld

ρcl = −
(

∑

λ

|Bλ|2 − |Aλ|2
)

m

a3
. (4.66)

If there exists a solution to Eq. (4.64), Eq. (4.65) admits a classical interpre-
tation in terms of a classical }eld ψcl as Eq. (4.66). But, as we have already
mentioned, given that na0, nb0 ≤ 1, the contribution of the zero mode, for the
massive or massless case, is generally negligible. Otherwise, for the case of the
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scalar }eld, when V grows Nad
0 must grow so that its energy density approaches

a value other than zero. Of course in the case of fermions this contribution
tends to zero.

Continuum 0 < k < ΛIR . Now, let’s analyze the energy density ρk<ΛIR

which captures the contribution of modes 0 < k < ΛIR whose state, like the
case ~k = 0, we also ignore. In the massless case, as long as ΛIR < H, we can
set uk, vk ≈ um=0

k , vm=0
k like the solutions (4.25a), uk, vk ≈ (1/

√
2) exp{−ikη}

as discussed in Section (4.3.3), and substitute into Eq. (4.53c) we }nd

ρk<ΛIR =
1

π2a4

∫ ΛIR

0

dkk3
[

(nak + nbk)− 1
]

, (4.67)

where the value of the integral is }nite. Let’s note that if we express ρk<ΛIR

in the form ρk<ΛIR = ρ0,r/a
4, we can conclude that the energy density (4.67)

behaves classically like cosmological radiation. Later, in Section (4.7), we will
associate 2−(nak+n

b
k) = 2−4|βk|2 for ΛIR < k <∞ with the density number of

out particles plus the contribution of the out vacuum in the case of an asymp-
totically adiabatic spacetime in the out region. With these conditions, we can
associate ρ

p
k<ΛIR

= 1
π2a4

∫ ΛIR
0

dkk3|βk|2 as the value of the density energy of
created particles whose behavior does not admit classical interpretation. Let’s
remember that 0 ≤ |βk|2 ≤ 1, therefore ρpk<ΛIR

is always positve.

Figure 4.3: Relativistic and non-relativistic modes. a) Modes in the
range 0 < k < ΛIR for which ma > ΛIR consist of non-relativistic modes. b)
Modes in the range 0 < k < ΛIR for which ma < ΛIR consist of relativistic and
non-relativistic modes.

In the massive case, we need to distinguish between two possible limits.
When ΛIR < ma all the relevant modes are non-relativistic, so we can approx-
imate the dispersion relation ωk ≈ ma (see Figure 4.3, }rst arrow). When
ma� H, that is, when the }eld is light, the mode functions are well approxi-
mated by the expression (4.25a), so from Eq. (4.53c),

ρk<ΛIR ∼ 1

a4

[

1

π2

∫ ΛIR

0

dkk3(nak + nbk − 1)

]

(4.68)

which we can express as ρk<ΛIR ∼ ρr/a
4 with ρr =

m
π2 [
∫ ΛIR
0

dkk3(nak + nbk − 1)].
Again, this is the cosmological classical behavior of relativistic matter. In
the second limit, when H � ma, the mode functions are well approximated
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by the adiabatic approximation (4.29) and the energy density at zero adia-
batic order scales like non-relativistic matter as ρk<ΛIR ∼ ρm/a

3 with ρm =
m
π2 [
∫ ΛIR
0

dkk2(nak + nbk − 1)], which admits a classical interpretation in terms of
the classical }eld ψcl. Since the comoving mass grows monotonically, we expect
ΛIR < ma to hold at su{ciently late times, and this is the relevant limit then.

If the mass satis}es ma ≤ ΛIR (see Figure 4.3, second row), the modes in
the interval 0 < k < ma are non-relativistic, so their spectral density behaves
like that of the massive case just discussed above, with ρk<ma = ρm(η)/a

3 =
m
π2a3

∫ ma

0
dkk2(nak + nbk − 1). Similarly, modes in the interval ma < k < ΛIR

are relativistic, and their spectral density behaves like that of a massless }eld,
ρma<k<ΛIR = ρr(η)/a

4 = 1
π2a4

∫ ΛIR
ma

(nak + nbk − 1). Note that the behavior of
the energy for these modes is that of a time-dependent classical cosmological
component, of non-relativistic and relativistic matter, respectively. But since
the boundary between the two regimes at k = ma changes with time, we
cannot, in general, make de}nite predictions about the time evolution of ρk<ΛIR

for these modes. Therefore, we will not study this case explicitly here, although
the methods we have presented so far could be similarly applicable.

Modes in range 0 ≤ k < ΛIR

ρ~k=0

These modes are negligible
due to the exclusion principle.

massless case The energy density vanishes

masive case It admits classical interpretation as
non-relativistic matter ∼ ρ0,m/a

3.

ρk<ΛIR

massless case It admits classical interpretation only as
non-relativistic matter ∼ρ0,m/a3.masive case

Table 4.1: Energy density for modes in the range 0 ≤ k < ΛIR and its behavior
in dizerent mass regimes. For these states, there is no preferred notion of
vacuum, and their state is indeterminate. The }rst row corresponds to the
zero mode ~k = 0, which admits an interpretation in terms of a homogeneous
classical }eld ρk=0 ∼ ρ0m/a

3 in the massive case for heavy mass ma� H. For
the massless case, the energy density vanishes. The second row corresponds
to the 0 < k < ΛIR modes. For the massless case m = 0, these modes are
relativistic and behaves like that of relativistic matter ρk<ΛIR ∼ ρr/a

4, and
does not admit classical interpretation. In the massive case, however, when
ΛIR < ma, in the heavy mass regimes, the modes are non-relativistic and ρk<ΛIR

behaves like that of a classical }eld for non-relativistic matter ∼ ρm/a
3.

4.6 Modes in Range ΛIR < k <∞
4.6.1 Renormalization of ρΛIR<k

Modes in the range ΛIR < k < ∞ }nd themselves ezectively in Minkowski
space at the beginning of in~ation, where a preferred choice of state exists:
the in vacuum. If, as opposed to a general state, the }eld is in the in vacuum,
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with solutions uk = uink and vk = vink , then the energy density simpli}es to

ρin>ΛIR
=

1

2π2a3

∫ ∞

ΛIR

dkk2ρink , (4.69)

with

ρink =
i

a

[

uink ∂0u
in∗
k + vink ∂0v

in∗
k − uin∗k ∂0u

in
k − vin∗k ∂0v

in
k

]

. (4.70a)

Let us remember that within the Heisenberg picture, the states remain static,
while the operators obey a dynamic equation. A system con}gured in the state
|0in〉 remains in this state all time. From now on, unless stated otherwise, the
energy density ρ>ΛIR and the spectral density ρk will be those of modes above
the infrared cutoz ΛIR in the in vacuum, but for notational simplicity, we shall
omit the labels “> ΛIR” and in form our expressions.

The Einstein gravitational semiclassical equations are given by the ap-
proximation M2

plḠµν = 〈Tµν〉, where Ḡµν behaves classically, and Tµν is the
energy-momentum tensor associated with the s = 1/2 quantum }eld ψ̂. In
this context, the expectation value of 〈Tµν〉 is the quantity we are interested
in calculating. From this, we shall restrict our attention to the time-time com-
ponent to calculate the renormalized vacuum energy density. This 00 compo-
nent is the semiclassical “Friedman” equation H2/a2 = a2 〈0|T 0

0 |0〉 /3M2
p . As

it stands, the energy density (4.69) diverges in the ultraviolet regime, when
Λ → ∞. This follows from the solutions (4.48), in the adiabatic regime, wich
implies that at large k the leading term in the spectral density is proportional
to k. Pictorially, this divergence arises from a Feynman Loop diagram in which
a particle is crated and annihilated at the same spacetime location.

In order to renormalize the integral (1/2π2a3)
∫

dkk2ρink in the range of
modes ΛIR < k < ∞, we will follow the Puilli-Villars renormalization proce-
dure that is described in Ref. [168], and as we have described in Section 3.7,
where it is possible to regularize this quantity while preserving dizeomorphism
invariance by introducing a set of Pauli-Villars regulator }elds. The contribu-
tion of these regulator }elds and the counterterms leads to the renormalized
energy density

ρren = ρ− ρsub, (4.71)
where ρsub consists of the subtraction terms that leave the integral free of
divergences when Λ → ∞, and the contribution of the counterterms coming
from the regulator }elds as their mass is decoupled.

The }rst step is then to adiabatically expand the spectral density ρk and
identify the divergent terms as the cutoz Λ tends to in}nity. That is, we need
to calculate

ρ = lim
Λ→∞

1

2π2a3

∫ Λ

ΛIR

dkk2(ρ
(0)
k + ρ

(2)
k + ρ

(4)
k + ...), (4.72)

and identify the divergent terms. This adiabatic expansion was given in the last
Section (4.61). In the particular case of a fermion }eld in conformal spacetime,
the divergent terms come from the zeroth and second adiabatic order. Higher
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orders remain }nite when Λ → ∞. However, we will calculate up to fourth
order by analogy with the scalar case. These divergent terms are given by

ρ(0) =
−1

π2

[

Λ4

4a4
+

Λ2m2

4a2
+
m4

32
− 1

8
m4 log

(

2Λ

ma

)]

, (4.73)

ρ(2) =
ȧ2m2

8π2a4

[

−4

3
+ log

(

2Λ

ma

)]

. (4.74)

Again, all the subsequent adiabatic terms are convergent as the cutoz Λ tends
to in}nity. Next, in the second step (see Section 3.7), we shall regulate the
divergent ρk integrand in Eq. (4.72) through the introduction of a set of n Pauli-
Villars regulator }elds ψr of Grassmann parity σr, with the same couplings as
ψ, but with dizerent masses Mr, where r = 1, ..., n. So, the actual expectation
that enters the 00-component of the energy-momentum tensor in equation
(4.53a) is ρ =

∑n

i=0 〈T 0
0 〉i. At the end of the calculation we shall decouple

the regulator }elds by sending their masses Mr to in}nity, leaving a }nite,
renormalized theory behind. Remember, the adiabatic approximation is only
valid at large values of k or large values of M2

r . Hence, we shall only be able
to analytically recover the ultraviolet behavior of the original mode integral
(4.72), or the magnitude of ρren when the regulators become su{ciently heavy.
Fortunately, these are the only regimes at which we shall need to renormalize
the divergences we shall encounter. Hence, we need to perform the integral

∑

i=0

〈T 0
0 〉i = lim

Λ→∞

1

2π2a3

∑

i

σi

∫ Λ

ΛIR

dkk2ρk,i. (4.75)

Using the expressions (4.73) and (4.74) we obtain

ρ(0) =
∑

i

σi
−1

π2

[

Λ4

4a4
+

Λ2M2
i

4a2
+
M4

i

32
− 1

8
M4

i log
(

2Λ

Mia

)]

, (4.76a)

ρ(2) =
∑

i

σi
ȧ2M2

i

8π2a4

[

−4

3
+ log

(

2Λ

Mia

)]

, (4.76b)

and the convergent term

ρ(4) = − 1

4π2

∑

i

σi

[

11

240

ȧ4

a8
− 1

10

äȧ2

a7
− 1

40

ä2

a6
+

1

20

...
a ȧ

a6

]

, (4.76c)

where ρ(0) contains no derivatives of the scale factor, ρ(2) contains two, and
ρ(4) has four. Next, if the regulator masses and parities obey the relations

∑

i

σi = 0,
∑

i

σiM
2
i = 0,

∑

i

σiM
4
i = 0, (4.77)

as we send Λ to in}nity the }rst three terms in Eq. (4.76a) and the }rst term
in Eq. (4.76c) disappear, however, they still depend on the regulator masses
Mr through the terms 8π2

∑

r σrM
4
r log

(

Mr

µ

)

and 1
8π2

∑

r σrM
2
r log

(

Mr

µ

)

, and
hence the integral diverge when the regulators are decoupled Mr → ∞. How-
ever, if these surviving contributions are of the same form as those from the
additional counterterms

Sct =

∫

d4x
√−g

[

δΛ + δM2
pl
]

(4.78)
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which are given by

δΛ =
1

8π2

∑

r

σrM
4
r log

(

Mr

µ

)

+ (δΛ)f , (4.79)

δM2
pl =

R

6

1

8π2

∑

r

σrM
2
r log

(

Mr

µ

)

+ (δM2
pl)

f , (4.80)

the integral will be UV divergent. Here we have introduced the arbitrary renor-
malization scale µ, and δΛf and δ(M2

pl)
f are the }nite pieces of the countert-

erms associated with a cosmological constant and the Einstein-Hilbert term,
respectively. On dimensional grounds, terms with a higher number of time
derivatives vanish as the cutoz Λ is sent to in}nity. Finally, with the coun-
terterms given by the previous expressions, the one-loop “exact” renormalized
value of the energy density have the form

ρren = lim
Λ→∞

{

1

2π2a3

∫ Λ

0

dkk2ρk

+
Λ4

4π2a4
+

Λ2M2
0

4π2a2
+

M4
0

8(4π2)
− M4

0

2(4π2)
log
(

2Λ

aµ

)

+ (δΛ)f

−4

3

1

8π2

ȧ2

a4
M2

0 +
1

8π2

ȧ2

a4
M2

0 log
(

2Λ

aµ

)

+
1

8π2

ȧ2

a4
(δM2

pl)
f

− 1

4π2

[

11

240

ȧ4

a8
− 1

10

äȧ2

a7
− 1

40

ä2

a6
+

1

20

...
a ȧ

a6

]}

, (4.81)

where M0 = m is the mass of the }eld ψ. Then after the substraction in
equation (4.81), ρren is UV divergent. Changes in the arbitrary renormalization
scale µ ezectively amount to changes in the }nite values of these constants,
which are determined by appropriate renormalization conditions. In that sense,
observables that depend on the values of the counterterms are not predictions
of the quantum theory. Note that, the subtraction terms in Eq. (4.81) arise
from an adiabatic expansion of the vacuum energy of the regulators. Leaving
the counterterms aside, it is in fact straightforward to check that, when the
}eld is massive, ρsub is just the integral of the adiabatic expansion up to fourth
order of the vacuum integrand in Eq. (4.69).

Our regularization scheme reproduces and justi}es the often employed adi-
abatic scheme, but it goes beyond it because it makes the role of the countert-
erms explicit and it also explains the origin of the subtraction terms. Yet, from
the perspective of Pauli-Villars regularization, the subtraction of adiabatic ap-
proximations to the spectral density is not fully justi}ed [168]. In Pauli-Villars
the masses of the regulators are assumed to be much larger than any accessible
scale k, so their contribution to the spectral energy density at long distances
is highly suppressed. For this reason, we shall not distinguish between the
unrenormalized and renormalized spectral densities, as long as cosmological
scales k are concerned. The regularization and renormalization azorded by
the Pauli-Villars regulators is only of consequence in the ultraviolet, and only
there does it play a role. Hence, we shall subtract ρsub from the energy density
only when the mode integral includes the contributions of the ultraviolet.
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4.6.2 The Conformal Anomaly
The trace of the energy-momentum tensor for a classical Dirac }eld is given
by T µ

µ = mψ̄ψ. In the limit where m → 0 this trace vanishes. However,
after quantizing the }eld ψ̂, the renormalized value of 〈T µµ 〉 = 〈m ¯̂

ψψ̂〉 yields a
non-zero value. This phenomenon is known as the conformal anomaly. To see
this we need to renormalize the integral

〈T µµ 〉ren =
1

2π2a3

∫ ∞
dkk2[ρink +3pink ], with pk =

2k

3a

[

uink v
in∗
k + uin∗k vink

]

, (4.82)

and ρink given by Eq. (4.70a). In order to renormalize the vacuum expectation
value of the trace, we use the Pauli-Villars procedure. For this, we need to
expand the expression ρink +3pink up to fourth adiabatic order. We have already
calculated ρink up to fourth adiabatic order in Eq. (4.76). While p(0)k , p(2)k , and
p
(4)
k are given by

p
(0)
k = − 2k2

3aωk
, (4.83a)

p
(2)
k = −k

2m2ä

6ω5
+

5k2m4aȧ2

12ω7
+
k2m2ȧ2

12ω5a
, (4.83b)

p
(4)
k =

k2m2a(4)

24ω7
− 7k2m4aä2

16ω9
+
k2m2ä2

48ω7a
− 385k2m8a3ȧ4

64ω13

+
359k2m6aȧ4

192ω11
+

7k2m4ȧ4

128ω9a
− 7k2m4aa(3)ȧ

12ω9

−k
2m2a(3)ȧ

48ω7a
+

77k2m6a2ȧ2ä

16ω11
− 61k2m4ȧ2ä

96ω9
. (4.83c)

Following the same procedure in Section (4.6.1) for the renormalization of the
energy density ρin, we cut oz all momentum integrals to render them }nite,
and introduce a set of massive regulator }elds to keep the pressure }nite as
the cutoz is removed. At zero, two and fourth derivatives, by also including
the contribution of all the regulator }elds, we arrive at

p(0) = −
∑

i

σi

2π2

[

Λ4

6a4
− ΛM2

i

6a2
+

7

48
M4

i +
M4

i

4
log
(

Λ

Mia

)]

, (4.84a)

p(2) = −
∑

i

σiM
2
i

2π2

[(

ȧ2

36a4
− ȧ2

12a4
log
(

2Λ

Mia

))

−
(

2ä

9a3
− ä

6a3
log
(

2Λ

Mia

))]

,

(4.84b)

p(4) =
∑

i

σi

π2a3

[

− 11ȧ4

576a5
+

a(4)

240a2
− ä2

96a3
− a(3)ȧ

48a3
+

7ȧ2ä

144a4

]

, (4.84c)

which remain }nite as the cut-oz is sent to in}nity, as long as equations (4.77)
are satis}ed. Just like what happens with ρ(4)k , the integral of p(4)k in Eq. (4.82)
is divergent and independent of m. Furthermore, as the regulators are decou-
pled, by sending their masses to in}nity, the counterterms that were needed
to cancel the divergent contributions in the energy density, also cancel the
divergencies in the pressure. Finally, by collecting the contributions of the
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original spinor, the regulator }elds and the counterterms we arrive at the }nal
renormalized pressure

pren =

{

1

2π2a3

∫

dkk2pk

+
1

2π2

[

Λ4

6a4
− Λm2

6a2
+

7

48
m4 +

m4

4
log
(

Λ

µa

)]

+
m2

2π2

[(

ȧ2

36a4
− ȧ2

12a4
log
(

2Λ

µa

))

−
(

2ä

9a3
− ä

6a3
log
(

2Λ

µa

))]}

− 1

π2a3

[

− 11ȧ4

576a5
+

a(4)

240a2
− ä2

96a3
− a(3)ȧ

48a3
+

7ȧ2ä

144a4

]

. (4.85)

With these results, the trace (4.82) in the massless limit m→ 0 is given by

〈T µµ〉(4) =
1

2π2a3

[

− a(4)

40a2
+

3ä2

40a3
+

11ȧ4

240a5
+
a(3)ȧ

20a3
− 29ȧ2ä

240a4

]

(4.86)

In the Wolfram Mathematica notebook https://www.wolframcloud.com/obj/
e330fbd3-e35b-4abf-bf98-f8974492f127, the reader can review the previ-
ous calculations in detail.

4.7 Particle Production Formalism
Equation (4.53a) is su{cient to compute the energy density of the Dirac }eld
in the in vacuum at any time in cosmic history. All one needs is an in region to
single out the appropriate state of the }eld. Given the in region, we can set up
initial condition for the mode function uink and vink in the asymptotic past, and
equations (4.22) then determines its evolution all the way to the asymptotic
future. However, the use of uink and uink in equation (4.53a) is only a possible
choice, and the energy density can be expressed in any other basis of mode
functions.

Spectral Density. In order to write the spectral density of the in vacuum
in terms of the arbitrary functions uk, vk, is su{cient to plug the expressions
(4.49), that is uink = αkuk − βkv

∗
k and vink = αkvk + βku

∗
k, into the equation

(4.53b). Clearly, by construction, the }nal result does not depend on the nature
of the chosen mode functions uk and uk, as long the state of the }eld remains
unchanged. After some algebra, and using the relation |αk|2 + |βk|2 = 1, we
can to rewrite the spectral density (4.53b) as

ρk = −(2/a)
[

(1− 2|βk|2)Im{uku̇∗k + vkv̇
∗
k}+ 2Im{αkβ∗

k(vku̇k − ukv̇k}
]

. (4.87)

Comparing the above result with the expression (4.53c), reveals that the in
vacuum appears to ezectively contain nak+nbk = 4|βk|2 out particles that are not
in an eigenvector of the out number operator, and ma

k = αkβ
∗
k and mb

k = α∗
kβk.

This formal similarity is behind what is referred to as “particle production”. In
this approach, we can consider the spectral energy density expression (4.87) as
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the contribution of the out vacuum ρout plus the energy density of out produced
particles ρpk, such that ρk = ρout + ρ

p
k, where

ρout = (i/a)
[

uku̇
∗
k + vkv̇

∗
k − u∗ku̇k − v∗kv̇k

]

(4.88)

and

ρ
p
k = −(2/a)

[

(−2|βk|2)Im{vkv̇∗k + uku̇
∗
k}+ 2Im{αkβ∗

k(vku̇k − ukv̇k}
]

.

(4.89)

Note that the contribution of ρpk left over when βk = 0. The above expression
would associate the spectral energy density ρ

p
k to the “produced particles”.

Hence, one could regard equation (4.89) as the spectral density of the }eld
(4.87) from which the spectral density of the out vacuum (4.88) has been sub-
tracted. As a matter of fact, however, the out vacuum plays no role in our
analysis, }rst because it depends on the arbitrary choice of mode functions
uk and vk, and second because we assume that the }eld is in the in vacuum.
Furthermore, since we are interested in the gravitational ezects of the }eld,
there is no physical basis for the removal of the out vacuum energy density. In
the adiabatic scheme, if the }eld is massive, renormalization amounts to the
subtraction in the spectral density given in equation (4.81). But the latter is
the spectral density of the out vacuum only when the out adiabatic vacuum
is actually de}ned, in the adiabatic regime, and only up to factors of fourth
adiabatic order.

In any case, we shall no adopt adiabatic regularization here, and equation
(4.89) is not usually associated with particle production formalism. Instead,
see for instance Refs. [177, 178], the energy density is usually approximated by

ρ =
4

(2πa)3

∫

d3kEout|βk|2 =
4

2π2a4

∫

dkk2ωout|βk|2, (4.90)

where Eout = ωk/a is the energy of a particle in the out region and the four
factor come from the sum of particles and antiparticles, which neglects the
out vacuum contribution and assumes that the in vacuum is an eigenvector
of the out number operator, with eigenvalue |βk|2. To explore the potential
applicability of equation (4.90) it is useful to consider the spectral density when
the corresponding modes are in the adiabatic regime, and we can approximate
uk and vk by equation (4.29). This does not generally hold, but applies, for
instance, for massive }elds at late times or su{ciently large wavenumbers.
Now, using Eq. (4.29) into Eq. (4.89) and using the fact that αkβ∗

k = α∗
kβk, we

can write Eq. (4.89) as

ρ
p
k =

i

a

{

(−2|βk|2)
[(

ωk +ma

2ωk

)

(

2iΩ|F |2 + 2iIm(Ḟ ∗F )
)

+

(

ωk −ma

2ωk

)

(

2iΩ|G|2 + 2iIm(Ġ∗G
)

]

− 4iαkβ
∗
kIm

[(−kmȧ
2ω2

k

)

exp
(

−2i

∫

Ωdη̃

)

FG

+
k

2ω
exp

(

−2i

∫

Ωdη̃

)

(

FĠ−GḞ
)

]}

. (4.91)
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Which, up to second adiabatic order have the form

ρ
p
k =

i

a

{

(−2|βk|2)
(

2iωk + 2iωk
m2ȧ2

16ω4

)

− 4iαkβ
∗
kIm

[(−kmȧ
2ω2

k

)

exp
(

−2i

∫

Ωdη̃

)

+ exp
(

−2i

∫

Ωdη̃

)

i

4

[

kmä

ω3
k

− 2kȧ2m3a

ω5
k

]}

. (4.92)

In the adiabatic limit, when frequencies are large ωk � H, we can proximate
Ωk ≈ ωk, F (η) ≈ 1 and G(η) ≈ 1. In this approximation we can rewrite the
expression (4.91) as

ρ
p
k ≈

4ωk
a

|βad
k |2 + αkβ

∗
k

4kmȧ

2ω2
k

sin
(

2

∫

ωkdη̃

)

. (4.93)

In this expression the second term is doubly suppressed: }rst because opposed
to the }rst term proportional to ωk, this is proportional to H, and second
because this rapidly oscillates with time. But adiabaticity and high frequen-
cies are still not su{cient to guarantee the validity of the particle production
formula (4.90). In the limit |βad

k |2 → 1 when particle production is “ezective”,
the second term in Eq. (4.93), is |αad

k β
∗ad
k | ≈ 0. Therefore, we can only claim

that the terms on the }rst line in Eq. (4.92) are necessary “dominant” if, in
addition, particle production is “ezective”, |βad

k |2 → 1. So, if this is the case, in
the mode range in which these conditions are simultaneously met, the energy
density is well approximated by

ρp ≈ 4

2π2a4

∫ ∞

0

dkk2|βad
k |2ωk, (4.94)

which possesses an interpretation in terms of particles, once we identify 4|βk|2
with the number density of the particles na and the antiparticles nb created in
the mode k. We are referring to Eq. (4.94) whenever we invoke the “particle
production formalism”. For massless particles the dispersion relation is ωk = k,
and ρ

p
k scales like radiation. For massive particles ωk ≈ ma at late times,

and ρ
p
k would scale like dust. Those are the two behaviors usually attributed

to free particles. Although the meaning of the Bogoliubov coe{cients αk
and βk is tied in general to the arbitrary choice of mode functions uk and
vk in equation (C.44), in order to arrive at Eq. (4.94) we have employed the
adiabatic approximation (4.29). Hence, the βad

k in equation (4.94) are uniquely
determined by that choice of mode functions. Since Eq. (4.94) neglects terms
with one derivative, it is inconsequential to calculate βk beyond the zeroth
order adiabatic approximation. However, strictly speaking, even at the limit
of ezective particle production |βad

k |2 → 1, it is not possible to neglect the
contribution of the vacuum ρout (unlike what we did for the scalar case), so
the approximation ρren ≈ ρp is not valid even at this limit. For this reason,
we have used quotation marks around the terms “ezective” production and
“dominant” contribution. This is a consequence derived from Fermi-Dirac
statistics, so it is not possible, in general, to approximate ρren ≈ ρp even when
the three conditions mentioned are satis}ed.
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It is also worth pointing out that equation (4.94) fails at small frequen-
cies even when the modes themselves are in the adiabatic regime and particle
production is ezective, because to justify it we need to assume that ωk � H.
Conversely, since the validity of the adiabatic approximation demands that
Ω

(n)
k � Ω

(n+1)
k , F (n) � F (n+1), G(n) � G(n+1), for all n, it is conceivable for

one of these conditions to be violated even when frequencies are large.
In conclusion, the particle production formula (4.94) is “well-justi}ed” pro-

vided that

i) particle production is ezective (|βad
k |2 → 1),

ii) the relevant modes are in te abiabatic regime (that is Ω
(n)
k � Ω

(n+1)
k ,

F (n) � F (n+1), G(n) � G(n+1)),

iii) the modes frequencies are large (ωk � H).

Even then one should recognize that the approximation (4.94) does not
extend beyond the leading adiabatic order, since the terms that are neglected
in equation (4.91) are of }rst order. Note that when particle production is
inezective, that is |βad

k |2 = 0, the spectral density of the }eld is dominated
by that of the out vacuum equation (4.88). Table (4.3) lists the conditions
under which the various equations in this subsection are valid approximations
to the fermion }eld energy density. Again, we have used quotes around the
expression “well-de}ned” because even when the three conditions i), ii), and
iii) are satis}ed, due to Fermi-Dirac statistics, it is in general not possible to
disregard the contribution of the vacuum ρout, so, in general, the approximation
ρ ≈ ρp is not valid.

The adiabatic limit of the out mode functions in the ultraviolet also allows
us to determine under what conditions the renormalized energy density after
the transition remains }nite. By construction, the terms in equation (4.87)
that survive when |βk|2 is set to zero give rise to a ultraviolet divergent integral
that is regulated and renormalized by the subtraction terms in Eq. (4.76).
Therefore, the remaining terms must yield a }nite contribution to the energy
density. To estimate their behavior in the ultraviolet, we substitute the leading
approximation Ωk ≈ ωk ≈ k into equation (4.93). At leading order we obtain

ρ
p
k ≈

4

a
|βk|2k + αkβ

∗
k

4ma2H
2k

sin (2kη + ϕ), (4.95)

which implies that |βk|2 has to decay faster than 1/k2 in order for the inte-
gral (4.53a) to remain }nite, since αk ≈ 1 in the ultraviolet10. On the other
hand, note that the expression (4.50b) for βk, the above implies that it is not
necessary for the second derivative of the scale factor ä(t) to be continuous to
avoid divergences in ρ unlike the case for the scalar }eld. With |βk| ∼ 1/k3,
the energy density (4.94) is ultraviolet }nite.

A look at Cosmological Gravitational Particle Production. Now, let’s con-
sider the expression for β(ad)

k up to }rst adiabatic order n = 1. Using the
10Given the normalization condition |αk|2 + |βk|2 = 1, in the ultraviolet |βk|2 � 1 and

αk ≈ 1 .
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expression (4.50b) and the }rst order solutions (4.36), we can we see that
β
(1)
k ≈ ikm

4ω3
k

[ȧ(+)− ȧ(−)]. From this last expression, we can see that β(1)
k vanishes

when m→ 0, so we can anticipate that cosmological gravitational particle pro-
duction will be suppressed when dealing with spin 1/2 particles of light masses.
Also, let’s observe that β(1)

k vanishes when k → 0, so we expect particle pro-
duction to be suppressed for long-wavelength modes. So, an ezective particle
production requires considering the superheavy regime and short-wavelength
modes. We had already anticipated in previous sections that large modes
and light mass modes are suppressed in ρk. In Ref. [176], the authors found,
within the framework of in~ationary cosmology, that |βk|2 ∼ 1 if the }eld is
light H > m and k ∼ ma, that is, for a small mass compared to the Hubble
parameter, particle production is signi}cant. Gravitational production for spin
1/2 particles is typically more e{cient for masses in the superheavy regime,
around the in~ationary Hubble scale, m ∼ Hinf ∼ 1014GeV. Finally, let us note
that this behavior is also expected for a conformally-coupled scalar }eld.

Energy Density. Even though the spectral density ρk is particularly con-
venient to study the contribution of the dizerent modes to the total energy
density, it is not an actual observable. The Einstein gravitational equations
H2/a2 = a2ρ/3M2

p are sourced by the renormalized total energy density, which
is given by the integral of the spectral density once we have removed the sub-
traction terms ρren = ρ − ρsub. It is convenient to split ρren in terms of those
modes which are adiabatic, that is, the modes for which the adiabatic out
vacuum is de}ned ρad, which we shall label by “ad”, and those for which it is
not ρ

��ad, which we shall denote by “��ad”. The former are precisely those that
satisfy condition ii) above, whereas the latter typically include those beyond
the horizon when the }eld is light or massless. Then we can write

ρren = ρ
��ad + ρad, (4.96a)

where
ρad = ρ

p
ad +

(

ρoutad
)

ren , with
(

ρoutad
)

ren ≡ ρoutad − ρsub (4.96b)
and

ρ
��ad ≡

1

2π2a3

∫

��ad
dkk2ρ��adk , ρ

p
ad ≡

1

2π2a3

∫

ad
dkk2ρ

p
k, ρ

out
ad ≡ 1

2π2a3

∫

ad
dkk2ρout.

The energy density of the adiabatic modes is divided in two contributions,
one of “produced particles” ρ

p
ad and the other one of the renormalized out

vacuum for these modes, (ρoutad )ren. It is important to stress that the spectral
density that enters the energy density ρpad, here is the one in Eq. (4.89), since
only then is the quoted expression for ρren in Eq. (4.96a) exact. Because |βad

k |2
has to decay faster than 1/k2, the adiabatic energy density ρ

p
ad is ultraviolet

}nite, and we can directly set the cutoz Λ to in}nity therein. On the other
hand, both ρoutad and ρsub are ultraviolet divergent, and only the dizerence
between ρoutad and ρsub remains }nite as Λ → ∞. The value of ρ

��ad does not
depend on our choice of mode functions, since it corresponds to the energy
density of the non-adiabatic modes in the in vacuum, and neither does the
sum ρ

p
ad + (ρoutad )ren, which is that of the adiabatic modes in the same state. In
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the last case the individual ρpad and (ρoutad )ren do actually depend on the election
of mode functions, but adiabaticity singles out a “preferred” state, the out
adiabatic vacuum.

In the end, though, which of the three components in ρren dominates the
energy density, depends on the properties of the in vacuum and the evolution
of the universe since the beginning of in~ation. But the applicability of the
“particle production formalism” requires the validity of conditions i), ii) and
iii). Just as we did above, it is hence useful to split the adiabatic modes into
those that additionally satisfy conditions i) and iii) from those that do not.
When the terms of ρren that satis}es these conditions are dominant, we can
approximate

ρren ≈
4

2π2a4

∫

pp
dkk2|βk|2ωk (4.97)

where “pp” denotes that the integral only runs over the modes that satisfy
condition i), ii), and iii), and only under those circumstances it is then justi}ed
to write. With the integration range replaced by all modes, Eq. (4.97) is the
“particle production” equation often used in the literature. However, since
one or several of the conditions stated above typically fails, the latter is in
general not a valid approximation to the }eld energy density. In general, it is
not possible to neglect the vacuum energy density ρout, so, in that case, the
expression (4.97) is not always applicable.

Combining Eq. (4.53b) with Eqs. (4.87) and (4.89) we obtain an alternative
expression for the ezective particle number density that appears in equation
(4.97) as

|βad
k |2 = i

4ωk
(uink ∂0u

in∗
k + vink ∂0v

in∗
k − uin∗k ∂0u

in
k − vin∗k ∂0v

in
k ) +

1

2
. (4.98)

This expression is an adiabatic invariant, that is, it is a constant in the limit of a
constant scale factor. It is only useful when Eq. (4.97) is a valid approximation
to the particle ρpk, that is, when the three condition i), ii) and iii) are satis}ed.

At this point it becomes clear that in most cases the particle production
formalism is just an approximation at best. As far as the spectral density
is concerned, equation (4.87) remains true no matter whether the notion of
particle exists, and regardless of how the mode functions uk and vk are chosen.
Furthermore, if we knew the form of the in mode functions throughout cosmic
history, uink and vink , there would be no need to go through the process of intro-
ducing Bogolubov coe{cients and evaluating Eq. (4.87) or its approximations,
Eqs. (4.89) to (4.94); it would just su{ce to evaluate equations (4.53a) at any
desired time. The “particle production formalism” is useful in the adiabatic
regime and at high frequencies, where we can interpret the }eld excitations as
actual particles on top of the out adiabatic vacuum. However, it does not uni-
versally apply to all modes of the }eld, as it is sometimes implicitly assumed
in the literature, nor its use is restricted to asymptotically ~at spacetimes, as
it is often presented in the standard monographs.
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4.8 Classical Field Description
In which cases can the classical }eld formalism be applied? We have already
seen that if there is a solution to equation (4.64), the excitation of the mode
with ~k = 0 is macroscopic and its contribution to the energy density can be
considered as that of a homogeneous classical }eld of Dirac when m 6= 0. We
have also seen that this treatment can be extended to the range 0 < k < ΛIR
when the modes are relativistic or non-relativistic or if the modes are light
or heavy, we can also talk about particle production. Let’s now investigate
whether it is possible to extend this treatment to the range ΛIR < k < ∞,
where the state of the }eld is assumed to be the in vacuum.

Figure 4.4: Relativistic and non-relativistic modes. a) Modes in the
range ΛIR < k < ∞ for which ma > ΛIR consist of modes that are relativistic
and non-relativistic. b) Modes in the range ΛIR < k <∞ for which ma < ΛIR
consist of modes that are only relativistic.

We consider for this purpose that ρren is given by Eq. (4.81) such that, if
we split into the non-relativistic and relativistic modes, we obtain

ρren = ρ<ma + ρ>maren , where ρ>maren ≡ ρ>ma − ρ>masub (4.99a)

and

ρ<ma ≡
1

2π2a3

∫ ma

ΛIR

dkk2ρk, ρ>ma ≡
1

2π2a3

∫ ∞

ma

dkk2ρk. (4.99b)

Note that there is no ambiguity in this decomposition, as the energy density
refers to that of the in vacuum, as opposed to that of the particle and out
vacuum in Eq. (4.96a). In Eq. (4.99a) we have assumed that ΛIR < ma, that
is, the modes in ΛIR < k < ma are non-relativistic, see Figure 4.4. Remember
that in the relativistic case the dispersion relation is approximate by ωk ≈ k,
and in the non-relativistic case is approximate by ωk ≈ ma. So for ρ<ma, the
energy density corresponding to the modes that are non-relativistic and their
dispersion relation is k-independent, their mode functions must be of the form
uink (η) ≈ α∗

ku0+βkv
∗
0, vink (η) ≈ α∗

kv0−βku∗0. Substituting this into Eq. (4.70a),
we }nd that we can cast the energy density of the non-relativistic modes as
that of the homogeneous classical Dirac }eld, provided that

ρ<ma =
ρm,0(η)

a3
= − m

π2a3

∫ ma

ΛIR

dkk2
(

1− 2|βk|2
)

. (4.100a)
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Note that with nak+nbk = 2|βk|2 these equation dizer from Eq. (4.68) only in the
integration limits. If we assume that the upper limit is constant, and if we make
the identi}cation [

∑

λ |Aλ|2 − |Bλ|2] = 1
π2

∫ ma

ΛIR
dkk2 (1− 2|βk|2), we can think

of the }eld as a homogeneous classical Dirac }eld with ρ<ma = ρm,0/a
3. This is

the case where spacetime is asymptotically adiabatic, that is, ma ∼ constant
and H � ωk as η → ∞. In particular, for a universe that experiences a
transition from an in~ationary period to a radiation-dominated universe, we
have that a(t) = t1/2 and H → 0 as t → ∞. In Ref. [165], the authors have
calculated the renormalized energy density of the created particles for late
times t� m−1 in this particular universe. The result they report is analogous
to Eq. (4.100) dizering by the integration limits. There, the authors integrate
over all modes 0 < k <∞.

Now, let’s analyze the contribution ρ>ma, that is, the relativistic contribu-
tion to the energy density. Since the contribution to the energy density ρ>ma
comes from the relativistic modes and their dispersion relation is approximate
by ωk ≈ k we can use the approximated solutions um≈0

k and vm≈0
k . With these

we can write

ρ>ma =
ρr,0(η)

a4
= − 1

π2a4

∫ ∞

ma

dkk3
(

1− 2|βk|2
)

, (4.100b)

Again, note that if nak+nbk = 2|βk|2 these equation dizer from Eq. (4.67) only in
the integration limits. However, we can’t think of the this contribution as that
of homogeneous classical Dirac }eld of the form ρ>ma = ρr,0/a

4, since massless
}elds do not admit classical }eld interpretation. In Ref. [165], the authors
have calculated the renormalized energy density of the created particles for the
relativistic modes in a radiation-dominated universe at early times t � m−1,
where they report a behavior analogous to Eq. (4.100b) dizering again at the
integration limits. When, ΛIR > ma, the modes in the range ΛIR < k < ∞,
are relativistic (see Figure 4.4). In this case ρ>ma = ρoutren + ρr,0/a

4 where ρoutren
is the renormalized vacuum contribution and ρr,0/a4 = (1/π2a4)

∫∞
ΛIR

dkk3|βk|2
is the contribution of the relativistic created particles if conditions i), ii), and
iii) are satis}ed. We summarize the previous results in Table 4.2.

So, when ΛIR < ma and the classical contribution ρ<ma are well de}ned
and dominant, we can approximate ρren like that of a homogeneous classical
}eld whose energy density is given by

ρcl = i/2a(Ψ̄clγ
0∂0Ψcl − ∂0Ψ̄clγ

0Ψcl) (4.101)

with Ψcl =
∑

λ

[

AλUλ + BλVλ
]

. It is under these circumstances that the
classical }eld formalism becomes really useful. When the dominant modes are
adiabatic and non-relativistic and particle production is ezective, the “particle
production” and classical }eld formalisms yield the same results. We conclude
by emphasizing that, although we have discussed the energy density of the
Dirac }eld within the speci}c context of cosmic transitions, many of the results
in Section (4.5) are applicable to a much wider class of scenarios almost without
modi}cation. All that is essentially needed is for a subset of the Dirac }eld
modes to be in a preferred state |0in〉 such that âin~k |0in〉 = 0. In Table 4.3, we
summarize the main results of this chapter.
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Modes in range ΛIR < k <∞

ρ<ma
non-relativistic modes

ΛIR < k < ma

ω2
k ≈ m2a2,

χin
k ≈ αkχ

out
0 + βkχ

out∗
0

These modes admits classical
}eld interpretation
ρ(η) = ρm,0/a

3

ρ>ma
relativistic modes
ma < k <∞

ωk ≈ k,
χin
k ≈ αkχ

out
k + βkχ

out∗
k

These modes do not admit classical
}eld interpretation
ρ(η) = ρr,0/a

4

Table 4.2: Energy density for the modes in the range ΛIR < k < ∞, when
ΛIR < ma. In the }rst row ρ<ma is the contribution to ρren from the non-
relativistic modes ΛIR < k < ma, for which ω2 ≈ m2a2. These modes can be
interpreted in terms of a homogeneous classical }eld. The second row corre-
sponds to the relativistic modes for which ma < k < ∞. These modes does
not allow for a classical interpretation. When, ΛIR > ma, the modes in the
range ΛIR < k <∞, are relativistic, see Figure (4.4).

Mode state formalism
k = 0 unknown negligible contribution

0 < k < ΛIR unknown particles: posibly at high frequencies (Sec. 4.5.2)
classical }eld: non-relativistic modes (Sec. 4.5.2)

ΛIR < k < Λ in vacuum particles: posibly at high frequencies (Sec. 4.7)
classical }eld: non-relativistic modes (Sec. 4.7)

Table 4.3: Conditions under which the energy density of the dizerent modes
of the quantum fermion }eld ψ admits a description in terms of particles or a
classical }eld. In the range ΛIR < k < Λ the state of the }eld is determined
by the in a vacuum con}gured by in~ation, so we can predict its contribution
to the energy density, which in some cases can be computed using the particle
or classical }eld formalisms, whichever is applicable. See the quoted sections
for further details.
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Chapter 5

Conclusions

In Chapters 1 and 2 of this thesis, we have studied the equilibrium con}gura-
tions known as boson and Proca stars in the non-relativistic regimes. These
con}gurations constitute compact, self-gravitating, self-interacting objects of
}nite energy that do not disperse over time and constitute minima of the energy
functional for a }xed number of particles, whose ground state (or minimum-
energy state) is given by spherically symmetric con}gurations. Due to their
non-interacting nature (i.e., being }elds that interact only with gravity and
themselves, see Ref. [119]) and their mass and length ranges (that may reach
to astrophysical scales), they can serve as dark matter models that could allevi-
ate small-scale problems, such as the “cuspy” and “missing satellite” problems.
However, since they do not interact directly with any other }eld, these models
must account for the mechanism by which dark matter is produced. In this
vein, in Chapters 3 and 4 we study the gravitational particle production mech-
anism for scalar and fermion quantum }elds undergoing a cosmic transition.
Within this framework, we make an ezort to characterize the energy density
of the gravitationally produced particles and to distinguish their contribution
from the vacuum energy. To properly renormalize the vacuum contribution
of these }elds, we introduce Pauli-Villars renormalization, which allows us to
handle divergences in the vacuum energy density. We also make an ezort to
determine in which regimes it is possible to speak of a classical }eld description
for this quantum phenomenon. In Chapters 2 and 4, we recover the results
obtained in the published and forthcoming papers Nonrelativistic Proca stars:
Spherical stationary and multi-frequency states [1], Linear stability of nonrela-
tivistic Proca stars [2] and Cosmic Spinors and the Weight of the Vacuum [3].
Chapters 1 and 3 are intended to introduce the concepts and methodologies
used throughout the thesis, making its presentation more comprehensible.

The }rst part of the thesis, concerning self-gravitating objects, captures
the phenomenology of non-relativistic equilibrium con}gurations for massive,
complex, self-interacting scalar and vector }elds (for boson stars, we have
introduced the relativistic treatment for illustrative purposes and brie~y out-
lined the relativistic treatment for Proca stars). The parameter space for non-
relativistic boson stars is determined by the value of the }eld mass m0 and the
value of the self-interaction constant λn. The con}gurations that minimize the
energy functional evolve harmonically in time and constitute stationary boson
stars. Depending on whether the self-interaction is attractive or repulsive, the
energy of these con}gurations may be bounded from below. For an attrac-
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tive self-interaction, the energy value is not bounded from below. Spherically
symmetric con}gurations constitute solutions that minimize the energy. For
non-relativistic Proca stars, the parameter space grows, and the spectrum of
con}gurations is more diverse. The spectrum of Proca star solutions depends
on the spin-spin self-interaction parameter λs, which captures the ezect of the
spin of the }eld. When λs 6= 0 (called generic sector of the parameter space)
the Proca star’s wave function evolves in time harmonically with a single fre-
quency. These con}gurations constitute stationary (or single-frequency) Proca
stars. However, when λs = 0, the ezective theory acquires an additional (ac-
cidental) symmetry, resulting in a reduced parameter space called symmetry-
enhanced sector. In this sector, new types of equilibrium con}gurations appear
in addition to stationary states in which the wave function oscillates with two
or three distinct frequencies. These con}gurations constitute multi-frequency
Proca stars. This spectrum of con}gurations dizers from that of a boson star,
where we only }nd stationary con}gurations that evolve harmonically with a
frequency. The important dizerence is the spin term introduced by the vec-
tor }eld theory. Analogously to a boson star, depending on the nature of the
particle-particle λn and spin-spin λs self-interactions, the energy functional
may be bounded from below. We }nd that, for the cases when λn, λs ≥ 0 or
λn−|λs| ≥ 0 (with λn ≥ 0 and λs < 0), the energy functional is bounded from
below. Furthermore, we }nd that spherically symmetric con}gurations with
constant polarization constitute the minimum-energy state (i.e. the ground
state con}guration). When λn > 0 and λs > 0, the state that minimize the
energy is spherically symmetric with linear polarization. When λn > 0, λs < 0
and λn−|λs| ≥ 0 the state that minimizes the energy is spherically symmetric
with circular polarization. Radially polarized and multi-frequency states rep-
resent higher energy solutions. All of the above results have been implemented
and veri}ed numerically.

The second part of the thesis, concerning the gravitational particle produc-
tion of dark matter, studies the quantum phenomenon of cosmological particle
production for non-interacting scalar and fermion quantum }elds as a result
of cosmic transitions in an FLRW universe. In the semi-classical formalism,
the gravitational }eld is treated classically, while the matter }elds are treated
quantum mechanically. In this context, for scalar and spin-1/2 fermion }elds,
we }nd that, given a cosmic transition from an in (in~ationary) region to a sub-
sequent out (radiation-dominated) region, for asymptotically adiabatic FLRW
spacetimes, it is possible to characterize the energy density of the created par-
ticles, ρp, as the integral of the energy per particle ωk times the number of
particles Nk for each mode k, distinct from the vacuum energy density that
we renormalized using the Pauli–Villars scheme. However, whereas for bosons
an indeterminate number of particles can occupy the same quantum state, for
fermions the number of particles is limited to two per state. This implies that
for a scalar }eld, it will be possible to neglect the vacuum contribution when
the number of particles per mode k is large, whereas for the fermion case, this
is generally not possible; instead, it will depend on how the vacuum energy
compares to ρp. In any case, it is possible to interpret the energy density
ρren in terms of a classical }eld for non-relativistic modes if we can neglect
the contribution from relativistic modes. Finally, in both cases, for bosons
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and fermions, when the vacuum contribution is negligible and the dominant
modes are adiabatic and non-relativistic, the classical }eld interpretation and
the particle formalism may coincide, as might be expected in some dark-matter
models (as in some axion dark matter models).
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Appendix A

Appendix Chapter I

In this appendix, we will review in detail the derivation of the nonrelativistic
action from the relativistic Einstein-Klein-Gordon action (1.1). For this, we
will carry out the analysis in three steps. First, we will analyze the non-
relativistic limit of the free theory, which excludes self-interactions and the
ezects of gravity. Next, we will analyze the term with self-interaction, and
}nally, we will analyze the part of the action corresponding to the gravitational
ezects coming from the Einstein-Hilbert action and the kinetic term of the
scalar }eld. We will develop an identical process when dealing with the non-
relativistic limit of the Einstein-Proca action in Chapter 2.

A.1 Nonrelativistic Limit of the Relativistic
action

In the non-relativistic regime is convenient to write the spacetime line element
as

ds2 = −[1 + 2Φ(t, ~x)]dt2 + [1− 2Ψ(t, ~x)]δijdx
idxj, (A.1)

and to assume the complex scalar }eld in the form

φ(t, ~x) =
1√
2m0

e−im0tψ(t, ~x), (A.2)

where Φ(t, ~x) and Ψ(t, ~x) are scalar gravitational potentials in the Newtonian
gauge (we have neglected the traceless strain tensor sij and vector pertur-
bations ωj since these do not couple to nonrelativistic matter) and ψ(t, ~x) is
the wave function, whose role is clari}ed bellow. In the non-relativistic limit
the dizerent quantities in the action (1.1) scales like Φ(t, ~x) ∼ Ψ(t, ~x) ∼ ε,
ψ ∼

√

M2
plm0ε and ∂t ∼ ε1/2∂i ∼ εm0, with ε a small positive number. In

order to explore the non relativistic limit of the action (1.1) we will separate
the action (1.1) into the free theory Sλ=0, which excludes the ezects of the self-
interactions and gravity, the self-interacting terms Sλ and the gravity terms
SG which are codi}ed in the spacetime line element (A.1).

First, we analyze the free theory, that is when gravity and self-interactions
are absent. In this case we can obtain the system of equations by varying Sλ=0

with respect to the wave function ψ(t, ~x). The free theory is described in terms
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of the action

Sλ=0 =

∫

dt

∫

d3x

[

1

2m0

(

2im0ψ̇ψ
∗ − im0∂0(ψ

∗ψ)

+ ψ̇ψ̇∗ − [∂i(ψ
∗∂iψ)− ψ∗∆ψ]

)]

, (A.3)

where we have expanded −∂µφ∗∂µφ − m2
0|φ|2 in terms of the wave function

ψ(t, ~x) and their derivatives, lowered indices with the ~at spacetime metric
ηµν and use the relations ∂0(ψ∗ψ) = ψ̇∗ψ + ψ∗ψ̇ and ∂i(ψ

∗∂iψ) = ∂iψ
∗ψ +

ψ∗∂2ψ.1 Now, discarding the boundary terms and keeping to leading order in
ε (neglecting ψ̇ψ̇∗) we can approximate:

Sλ=0 =

∫

dt

∫

d3x

[

iψ∗
(

∂0ψ +
1

2m0

∆

)

ψ

]

. (A.4)

This is the Schrodinger action for a scalar wave function that describes a
particle of spin s = 0.

Second, we analyze the self-interacting theory, which include the self-interacting
term

Sλ =

∫

dt

∫

d3x

[

iψ∗
(

∂0ψ +
1

2m0

∆+
λ

4m2
0

|ψ|2
)

ψ

]

. (A.5)

The only dizerence with respect to the free theory (A.4) is the appearance of
one self-interaction term that depends of the particle density n = |ψ|2.

Third, in the Newtonian Gauge and in the non-relativistic limit, the Ein-
stein equations take the form

∆Ψ = 4πGρ (A.6)
(δij∆− ∂i∂j)(Φ−Ψ) = 0. (A.7)

where ∆ is the three-dimansinal ~at Laplace operator. The }rst equation is
the conventional Poisson equation for the static source ρ. Also, if we take
the trace of the second equation (that is, summing over δij), we can write
2∆(Φ − Ψ) = 0. Since we are looking for solutions that ere non-singular
and well-behaved at in}nity, then only these }elds that are sourced by the
right-hand side will be non-vanishing. So, this enforces the equality of the
scalars potential Φ(t, ~x) = Ψ(t,~t) ≡ U(t, ~x) where U(t, ~x) is the Newtonian
potential. Note that in the Newtonian limit the the sources are static and the
time derivatives of the gravitational potential U̇ vanish. It is also important
to note that we have discarded the vector and tensor modes of the metric for
simplicity, since in the non-relativistic limit, matter does not couple to these
modes. Next, we need to perform the kinetic terms considering the covariant
derivatives ∇µφ∇µφ in terms of the metric components in Eq. (A.1). The
procedure is a little more involved. We need to calculate √−g in term of
the metric potential Ψ(t, ~x) = Φ(t, ~x) = U(t, ~x) at leading order in ε, that is

1Note that in the absence of gravity, covariant derivatives ∇µ are replaced by partial
derivatives ∂µ.
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√−g = 1+2Ψ− 2Ψ2, where the second term is of order [ε] and the third term
of order [ε2]. Expanding the kinetic term of the action (1.1) we obtain

SG =

∫

dt

∫

d3x
√−g

[

1

8πG
U∆U

+
1

2m0

([

1 + 2U
]{

m2
0|ψ|2 + 2im0ψ̇ψ

∗ − im0∂0(ψ
∗∂0ψ)

}

− (1− 2U)[∂i(ψ∂iψ)− ψ∗∆ψ]−m2
0|ψ|2 + 2m0|ψ|4)

)]

where we have use the fact that gµν∇µφ
∗∇νφ whee g00 = [1 + 2U ] and gij =

[1− 2U ]δij. Keeping with the lowest orders in ε, and discarding the boundary
terms, we can write the gravity term of action as

SG =

∫

dt

∫

d3x

[

1

8πG
U∆U + Um0|ψ|2

]

(A.8)

where the }rst term comes from the Newtonian limit of the Einstein-Hilbert
action.

Finally, adding the previous results, we can write the non-relativistic limit
of the action (1.1) as

S[U , ψ] =
∫

dt

∫

d3x

[

1

8πG
U∆U

+ ψ∗
(

i
∂

∂t
+

1

2m0

∆− λ

4m2
0

|ψ|2
)

ψ −m0U|ψ|2
]

. (A.9)

First term describes the Newtonian gravity, terms in the parentheses describe
the sector of matter and the last term describes the interaction of the }eld with
the gravitational potential. In particular, we will consider a se~-interacting
potential V = λ|φ|4 with λ a dimensionless coupling constant, which can take
the values λ > 0 if the self-interaction is repulsive or λ < 0 if the self-interaction
is attractive. When λ = 0 we recover the case with no self-interaction, in
which the scalar }eld is only coupled to gravity. Variations with respect to
the gravitational potential U(t, ~x) produce the Poisson equation (A.6), and
variations with respect to the scalar }eld ψ(t, ~x) produce the Gross-Pitaevskii
equation (1.37a). Both equations constitute the s = 0 Gross-Pitaevski-Poisson
system (1.37).
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Appendix B

Appendix Chapter II

B.1 Example: Stationary Proca Star of Con-
stant Polarization.

In this section we present the numerical construction for a stationary Proca
star with constant polarization ε̂. This con}guration is given by the system
(2.87) with Latin indices omitted and γ = 0. Let us remember that this
con}guration is characterized by only one frequency given through the shifted
potential u(0) = E−U(r). We will present the numerical implementation of the
shooting method for the }rst excited state con}guration with n = 1 number
of nodes, in the repulsive, free and attractive cases λ∗ = −1, 0, 1 and central
amplitude σ(0) = 1.0.

In order to solve the system numerically, we need to rewrite the system
(2.87) as four }rst-order dizerential equation given by

f0 =
dσ0

dr
, (B.1a)

f1 = λ[σ0]
3r2γ − 2(1 + γ)

f0

r
− u0σ0, (B.1b)

f2 =
du0

dr
, (B.1c)

f3 = −[σ0]
2r2γ − 2f2

r
, (B.1d)

for r > 0, and

f0 =
dσ0

dr
, (B.1e)

f1 = [λ[σ0]
3r2γ − u0σ0]/(2γ + 3), (B.1f)

f2 =
du0

dr
, (B.1g)

f3 = − [σ0]
2r2γ

3
, (B.1h)

for r = 0, where we have use the ansatz σ(0)(r) = σ0r
γ, u(0) = u0, L’Hôpital’s

rule and we have use the boundary conditions (2.88). We have characterized
this system through the function System_Stationary in the Python language.
Given the parameters Lambda and gamma and the Vector of the boundary
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values (σ(0)(r), dσ(0)/dr, u(0)(r), du(0)/dr)|r=0, we solve the system of }rst-order
equations using the Scipy package called solve_ivp. Solving the value of
u0(r = 0) that satis}es the boundary conditions (2.88) will depend on the
shooting function Stationary_Shooting.
def System_Stationary(r, Vector, arg):

"""
##### System of equations (B.1) #####
[sigma(r), sigma'(r), u(r), u'(r)] ==> [sigma_0, sigma_1, u_0, u_1],
r ==> radial coordinate,
u_0 ==> u_0 = E-V(r),
Lambda = -1 (atractive case), 0 (free case), 1 (repulsive case),
gamma = 0 (circular or linear polarization), 1 (radial polarization).
"""
sigma_0, sigma_1, u_0, u_1 = Vector
Lambda, gamma = arg

if r > 0:
f0 = sigma_1
f1 = Lambda*sigma_0**3*r**(2*gamma)-2*(1+gamma)*sigma_1/r-u_0*sigma_0
f2 = u_1
f3 = -r**(2*gamma)*sigma_0**2-2*u_1/r

else:
f0 = sigma_1
f1 = (Lambda*sigma_0**3*r**(2*gamma)-u_0*sigma_0)/(2*gamma+3)
f2 = u_1
f3 = -r**(2*gamma)*sigma_0**2/3

return [f0, f1, f2, f3]

We show the algorithm of the shooting method in the Python function Stationary
Shooting. As we have already explained in the previous Chapter 2, given the
boundary conditions (2.88) for γ = 0, we must now determine the value of
u(0) = E−U(r) for Eqs. (B.1) that satis}es these conditions. These values will
be given by an in}nite number of discrete values for n = 0, 1, 2... number of
nodes in σ(0)(r). The state that minimizes the energy will be characterized by
the solution σ

(0)
n=0(r) with n = 0 number of nodes. Solutions σn(r) for which

En with n = 1, 2, 3... dizerent from zero will constitute states of higher energy.
Given the value σ(0)(r = 0) = σ0, we choose a seed value for u0 and we

solve the system (B.1) accordingly. If we choose u0 very large, then dσ(0)/dr
becomes negative at a }nite value of the radius, and if we choose u0 very
small, dσ(r)/dr becomes positive at a }nite radius, which causes the condition
limr→∞ σ(r) = 0 to be broken. Then, we most chose a more appropriate value
for the seed u0. We can do this by bisecting u0 = (u0,max + u0,min/2) in a
range [u0,max, u0,min] for a su{cient number of iterations until that we reach
the desired precision. These iterations based on the number of zeros present
in the pro}le σ(0)(r) and its derivative σ(0)′(r) are encoded in the shooting
algorithm presented below.
def Stationary_Shooting(sigma_0, u_max, u_min, Lambda, gamma, rmax_, rmin_, nodes,

sigma_1 = 0, u_1=0, met='RK45', Rtol=1e-09, Atol=1e-10):
"""
###### Shooting Algorithm #####

rmax ==> We must choose a maximum value for the radius r large enough so that
the code always stops due to the limit of numerical precision.

Events ==> The solve_ivp function can detect and respond to "events" in the
integration of a set of differential equations. One or more functions can
be provided in the events argument, which should return zero when the
state of the system to the event to be triggered. SEE [Learning Scientific
Programmming With Python, Christian Hill]. The functions for which we

are interested in finding the zeros are given by sigma(r) and sigma'(r).
For example, a solution that satisfies the boundary conditions for n=0
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will have 0 events in sigma(r) and 1 event in sigma'(r) given that sigma'(
r=0) =0.

U0 = [sigma_0, sigma_1, u0_, u_1] ==> Values at the boundary with the seed u0_
.

"""

arg = [Lambda, gamma]
def Sig(r, U, arg): return U[0]
def dSig(r, U, arg): return U[1]
Sig.direction = 0
dSig.direction = 0

while True:
u0_ = (u_max+u_min)/2
U0 = [sigma_0, df0, u0_, du0]
sol_ = solve_ivp(system, [rmin_, rmax_], U0, events=(Sig, dSig),

args=(arg,), method=met, rtol=Rtol, atol=Atol)

# If the solution satisfies the condition sigma'(r) ==> [n] = nodes+1 and
sigma(r) ==> [n] = nodes, we have found the sought solution. Here
t_events[1].size = [number of nodes] for sigma'(r) and t_events[0].
size = [number of nodes] for sigma(r).

if sol_.t_events[1].size == nodos+1 and sol_.t_events[0].size == nodos:

print('Found', u0_)
return u0_, rmax_, sol_.t_events[0]

# If sigma'(r) have [n]> nodes+1 and sigma(r) have [n]> nodes we have
chosee u_0 too much large. We need to reduce it u_max = u0_. If sigma
'(r) have [nodos]> n+1 and sigma(r) have [nodos]<= n we have chosee
u_0 too small. We need to increase it u_min = u0_.

elif sol_.t_events[1].size > nodos+1:

if sol_.t_events[0].size > nodos:
u_max = u0_
rTemp_ = sol_.t_events[0][-1]

else:
u_min = u0_
rTemp_ = sol_.t_events[1][-1]

# If sigma'(r) have [n]=< nodes+1 and sigma(r) have [n]> nodes we have
chosee u_0 too much large. We need to reduce it u_max = u0_. If sigma
'(r) have [n]=< nodes+1 and sigma(r) have [n]<= nodes we have chosee
u_0 too small. We need to increase it u_min = u0_.

elif sol_.t_events[1].size <= nodos+1:
# si hay menos nodos aumentar la energía
if sol_.t_events[0].size > nodos: # dos veces por nodo

u_max = u0_
rTemp_ = sol_.t_events[0][-1]

else:
u_min = u0_
rTemp_ = sol_.t_events[1][-1]

# If we have achieved the maximum precision:

if abs((u_max-u_min)/2) <= 1e-14: #1e-14
print('maximum precision achieved', u0_, 'radio', rTemp_)
return u0_, rTemp_, sol_.t_events[0]

Due to the numerical precision (about 16 decimal digits in our code), the
shooting method Stationary_Shooting only allows us to reach a }nite radius.
Beyond this radius, we utilize the asymptotic solutions

σ
(0)
i (r) ≈ Ci

r1+γ
e−

√

|Ei|r, u
(0)
i (r) ≈ Ei +

N

4πr
(B.2)

of Eqs. (2.87), with Ci, Ei, and N constants, where Ei and N represent the
dimensionless frequencies and trace of the Hermitian operator Q̂, respectively,
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and Ci is an amplitude scale. The value of Ei and N are computed according
to1

Ei = ui0 −
∑

i

∫ ∞

0

σ
(0)2
i (r)r2γ+1dr, (B.3a)

N = 4π
∑

i

∫ ∞

0

σ
(0)2
i (r)r2(γ+1)dr, (B.3b)

whereas the Ci coe{cients are obtained using a linear }tting methodology.
The value of γ is one for radial polarization and zero for all other cases. For
more details, see App. C in Ref. [87]. In the Energy function, we present the
algorithm to calculate the quantities (B.3a) and (B.3b). Given the solutions
obtained through the shooting method, we interpolate and integrate σ(0) using
the interp1d and quad packages, respectively.
def Energy(r, sigma_0, gamma, V0):

"""
#### Mass and Energy ####
sigma_0 ==> The solution sigma_0(r) that we obtained from Stationary_Shooting

and the solve_ivp package.
V0 ==> Value at the boundary of the gravitational potential. This is the u0_

value obtained in Stationary_Shooting.
"""

sigF = interp1d(r, sigma_0, kind='quadratic')
#sigF: An interpolation of sigma_0 that we will use in the subsequent

integration.

Af = lambda r: r**(2*gamma+1)*sigF(r)**2
# Af: Integrand in the equations (4.83a). To calculate the value of the

Energy.

Bf = lambda r: r**(2*(gamma+1))*sigF(r)**2
# Bf: Integrand into equations (4.83b). To calculate the value of the Mass (

m_0*N).

# Integration Intervals.
rmin = r[0]
rfin = r[-1]

# Eq. (4.91a).
Energy = V0 - quad(Af, rmin, rfin)[0]

# Eq. (4.91b).
Mass = quad(Bf, rmin, rfin)[0]

return Energy, Mass

Again, given that the numerical precision is limited and the shooting method
Stationary_Shooting only allows us to reach a }nite radius, we need to use
asymptotic solutions given by Eqs. (B.2). We present the implementation of
this concatenation in the extend function and in Figure (B.1) we present the
radial pro}le σ(0)(r) for a starionary Proca star with constant polarization in
the repulsive, free and attractive case. In the same }gure, we show the rela-
tionship of the ezective mass M99 as a function of the ezective radius R99 and
the relation of the energy eigenvalue |E| with the central amplitude σ0.
def extend(gamma, r, sigma_0, sigma_1, u_0, u_1, Ext, Np=1000, inf=False, ptos

=400):

1Alternatively, one can use the asymptotic form described in Eq. (B.2) to obtain Ei.
This alternative form to compute the energy eigenvalue was used to check the validity of
the results obtained from Eq. (B.3a).
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Figure B.1: Constant polarized stationary Proca star with n = 1 nodes:
Stationary and spherically symmetric solutions of the s = 1 Gross-Pitaevskii-
Poisson system with n = 1 nodes. Red (blue) lines correspond to repulsive
(attractive) case, and we have included the solutions to the s = 1 Schrodinger-
Poisson system (black lines) for reference. Left panel: The pro}le σ(0)(r) for
σ0 = 1. Center panel: The ezective mass of the con}guration M99 as a func-
tion of the ezective radius R99. Right panel: The magnitude of the energy
eigenvalue |E| as a function of the central amplitude σ0. The dots in the last
two panel correspond to the con}gurations of unit amplitude. For σ0 → 0 the
ezects of the self-interactions become negligible.

"""
### Extended solutions ###
We concatenate the asymptotic solutions with the solutions derived from

Stationary_Shooting.
"""
# Parameters k and C in (B.2).
def parametrosS(r, S):

yr1, yr2 = S[-2], S[-1]
r1, r2 = r[-2], r[-1]

k = np.real(np.log(np.abs(yr1*r1/(yr2*(r2)))))
s = np.exp(-k*r1)/r1
C = yr1/s
return C, k

# Asymptotic solutions (B.2).
def sigm_asym(r, C, k):

y = C*np.exp(-k*r)/r
dy = -(C*np.exp(-k*r)*(1+k*r))/r**2
return y, dy

def U_asym(r, A, B):
y = A+B/r
dy = -B/r**2
return y, dy

# Extended radius
rad = np.linspace(r[-1], r[-1]+Ext, Np)

# Calculating Parameters
En, Mas = energ(rD, sigma_0, gamma, u_0[0])
Ap, k = parametrosS(r, sigma_0)

# Joining data
sigma_0_Ext, sigma_1_Ext = sigm_asym(rad, Ap, k)
u_0_Ext, u_1_Ext = U_asym(rad, En, Mas)

r_new = np.concatenate((r[:-1], rad), axis=None)
sigma_0_new = np.concatenate((sigma_0[:-1], sigma_0_Ext), axis=None)
sigma_1_new = np.concatenate((sigma_1[:-1], sigma_1_Ext), axis=None)
u_0_New = np.concatenate((u_0[:-1], u_0_Ext), axis=None)
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u_1_New = np.concatenate((u_1[:-1], u_1_Ext), axis=None)

# Quadratic interpolation.
fsN = interp1d(r_new, sigma_0_new, kind='quadratic')
fprof = lambda x: x**2*fsN(x)**2
masa = quad(fprof, r_new[0], r_new[-1])[0]
# checking
if inf:

print('checking ')
print('Energia: ', En, ' ', uExt[-1]) #, ' ', k**2)
print('Masa: ', Mas, ' ', masa)

return r_new, sigma_0_new, sigma_1_new, u_0_New, u_1_New, [masa, En, sigma_0
[0]]

When γ = 0 and λs = 0 the system of dimensionless equations (B.1)
is identical to the system of equations (1.55a) for a non-relativistic, spher-
ically symmetric, and self-interacting boson star that we presented in Sec-
tion 1.3, of Chapter 1. Procedures analogous to those we have presented in
this Appendix B.1 were used to compute the solutions we present in Chapter 1,
for relativistic and non-relativistic con}gurations. In the repositories https:
//github.com/edgargovea/Relativistic-Boson-Stars.git and https://
github.com/edgargovea/Nonrelativistic-Boson-Stars.git, the reader can
review these procedures in detail.

B.2 Example: Multi-frequency Proca Star for
σx0 = 1.0, σy0 = 0.8, and σz0 = 0 with nx =

1, ny = 0, nz = 0.
In this section, we analyze the shooting method implemented for a multi-
frequency Proca star in the case where σ(0)

x (r = 0) = 1.0, σ(0)
y (r = 0) = 0.8

and σ
(0)
z (r = 0) = 0 with (nx = 1, ny = 0, nz = 0) nodes. For this, we must

reduce the dimensionless system (2.87) to a system of }rst-order dizerential
equations given by:

f0 =
dσ

(0)
x

dr
, (B.4a)

f1 = λ
∑

j

[

σ
(0)
j

]2

− 2
dσ

(0)
x

dr

1

r
− σ(0)

x u(0)x , (B.4b)

f6 =
du

(0)
x

dr
, (B.4c)

f7 = λ
∑

j

[

σ
(0)
j

]2

− 2
du

(0)
x

dr

1

r
, (B.4d)

and similarly for the y and z components on ~σ. We have written this system
in the function SystemMultiFrequency for r > 0 and r = 0 following the
same procedure as the previous example. The system depends on the values
at the boundary for the components [σx0, σy0, σz0] and the values of the fre-
quencies [ux0, uy0, uz0]. We have to solve this system numerically using the
scipy package in Python called solve_ivp with the method ‘RK45’: Explicit

Chapter B 157

https://github.com/edgargovea/Relativistic-Boson-Stars.git
https://github.com/edgargovea/Relativistic-Boson-Stars.git
https://github.com/edgargovea/Nonrelativistic-Boson-Stars.git
https://github.com/edgargovea/Nonrelativistic-Boson-Stars.git


Runge-Kutta method of order 5(4) [107]. Particularly we consider rtol and
atol, optional relative and absolute tolerances, as Rtol=1e-07 and Atol=1e-
8.2 The purpose is to solve the system numerically for the values [ux0, uy0, uz0]
that satisfy the boundary conditions (2.88). These solutions will constitute an
in}nite and discrete set of frequencies En = [Enx, Eny, Enz] that will conform
a mult-ifrequency con}guration with Enx 6= Eny 6= Enz. In order to }nd this
con}guration, we use the function MultFreq_Shooting.
def SystemMultiFrequency(r, Vector, arg):

"""
##### Multifrequency System of Equiations #####
[phi_x, phi_x', phi_y, phi_y', phi_z, phi_z', u_x, u_x', u_y, u_y', u_z, u_z']

==> [p0x, p1x, p0y, p1y, p0z, p1z, u0x, u1x, u0y, u1y, u0z, u1z]
Lambda ==> Atractive case: -1, SP = 0, Repulsive case = 1
"""
p0x, p1x, p0y, p1y, p0z, p1z, u0x, u1x, u0y, u1y, u0z, u1z = Vector
Lambda, = arg

# System of equations (B.4).
if r > 0:

sumpi = p0x**2 + p0y**2 + p0z**2
f0 = p1x
f1 = LambT*sumpi*p0x - (2*p1x)/r - p0x*u0x
f2 = p1y
f3 = LambT*sumpi*p0y - (2*p1y)/r - p0y*u0y
f4 = p1z
f5 = LambT*sumpi*p0z - (2*p1z)/r - p0z*u0z
f6 = u1x
f7 = -sumpi-(2*u1x)/r
f8 = u1y
f9 = -sumpi - (2*u1y)/r
f10 = u1z
f11 = -sumpi - (2*u1z)/r

else:
sumpi = p0x**2 + p0y**2 + p0z**2
f0 = p1x
f1 = (LambT*sumpi*p0x - p0x*u0x)/3
f2 = p1y
f3 = (LambT*sumpi*p0y - p0y*u0y)/3
f4 = p1z
f5 = (LambT*sumpi*p0z - p0z*u0z)/3
f6 = u1x
f7 = -sumpi/3
f8 = u1y
f9 = -sumpi/3
f10 = u1z
f11 = -sumpi/3

return [f0, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11]

To implement the function MultFreq_Shooting, we must introduce a seed
value for [ux0, uy0, uz0] given by u0x = [umax,x + umin,x]/2, u0y = [umax,y +
umin,y]/2 for a certain range [umin,x, umax,x],[umin,y, umax,y] and [umin,z, umax,z]
and solve the system SystemMultiFrequency accordingly. Then we analyze
the zeros for the pro}le σ(0)

j (r) and its derivative dσ(0)
j (r)/dr trough the func-

tions events =(Sigx , dSigx , Sigy , dSigy , Sigz , dSigz) for each
component x, y and z. So, as we explain below, the component that }rst
reaches one of the zeros according to the identify() function will be sub-
jected to the shooting algorithm described in the Stationary_Shooting func-
tion above. If we have chosen u0x (or u0y or u0z) very large or very small,

2The solver keeps the local error estimates less than atol + rtol * abs(y). Here rtol
controls a relative accuracy (number of correct digits), while atol controls absolute accuracy
(number of correct decimal places).
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we will need to expand or reduce the range in [umin,x, umax,x] and repeat the
process.
def MultFreq_Shooting(Initial0, Uintx, Uinty, Uintz, rmax, rmin=0, Lambda=1, nodes

=[1, 0, 0], met='RK45', Rtol=1e-09, Atol=1e-10, lim=1e-6, info=False, klim
=500, outval=13, delta=0.4):
"""
##### Multifrequency Shooting Algorithm #####
#Range of values Umin, Umax in which the Shooting will perform the search for

each component phi_x, phi_y, phi_z:
Uintx -> [Umin_x, Umax_x]
Uinty -> [Umin_y, Umax_y]
Uintz -> [Umin_z, Umax_z]

Initial0 -> [p0x, p1x, p0y, p1y, p0z, p1z, u1x, u1y, u1z] # Vector of initial
values for phi_x(r=0), phi_x'(r=0), u_x'(r=0), etc.

rmax, rmin -> Maximum and minimum radius values.
nodes ==> [nodos_p0x, nodos_p0y, nodos_p0z] # Number of nodes for each

component phi_x(r)==> n_x, etc.
klim ==> Maximum number of iterations for the shooting cycle.
outval ==> Number of times it moves once the <<shoot>> function has returned a

result.
delta ==> Amount we move the values returned by the <<shoot>> function,

defined below.

Order of the variables
[phi_x, phi_x', phi_y, phi_y', phi_z, phi_z', u_x, u_x', u_y, u_y', u_z, u_z']

-> [p0x, p1x, p0y, p1y, p0z, p1z, u0x, u1x, u0y, u1y, u0z, u1z]
"""

nodes = np.array(nodes)
p0x, p1x, p0y, p1y, p0z, p1z, u1x, u1y, u1z = Initial0

# Vector with central profiles phi_x(r=0), phi_y(r=0), phi_z(r=0)
p0Data = [p0x, p0y, p0z]

Uminx, Umaxx = Uintx
Uminy, Umaxy = Uinty
Uminz, Umaxz = Uintz

#Finding a profile with [nx, ny, nz] numer of nodes for phi_x(r), phi_y(r) and
phi_z(r).

# Events. Analogous to the case of a stationary Proca star, we base the
shooting algorithm on the number of zeros that exist in the profiles phi_x
(r), phi_y(r), and phi_z(r), and their derivatives phi_x'(r), phi_y'(r),
and phi_z'(r). To see when these zeros occurs, we define:

def Sigx(r, U, arg): return U[0]
def dSigx(r, U, arg): return U[1]
def Sigy(r, U, arg): return U[2]
def dSigy(r, U, arg): return U[3]
def Sigz(r, U, arg): return U[4]
def dSigz(r, U, arg): return U[5]
Sigx.direction = 0; dSigx.direction = 0
Sigy.direction = 0; dSigy.direction = 0
Sigz.direction = 0; dSigz.direction = 0

k = 0

arg = [Lambda]
Uintrs = np.array([[Uminx, Umaxx], [Uminy, Umaxy], [Uminz, Umaxz]])

out = 0
while True:

# As in the previous case, we start with a seed value u0_x, u0_y and u0_z
for each one of the components phi_x, phi_y and phi_z and solve the
system of equations accordingly.

##def shoot(imin, imax):##
#######return (imin+imax)/2#######
u0 = np.array([shoot(*i) for i in Uintrs])
V0 = [p0x, p1x, p0y, p1y, p0z, p1z, u0[0], u1x, u0[1], u1y, u0[2], u1z]
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sol = solve_ivp(MultFreq_Shooting, [rmin, rmax], V0, events=(Sigx, dSigx,
Sigy, dSigy, Sigz, dSigz),

args=(arg,), method=met, rtol=Rtol, atol=Atol)

# Next, we list the zeros of the solutions for u0.
eventos = np.array([[sol.t_events[0], sol.t_events[1]],

[sol.t_events[2], sol.t_events[3]],
[sol.t_events[4], sol.t_events[5]]], dtype=object)

#Next, we proceed to increase or decrease the value of u0_x, u0_y, or u0_z
according to the same criteria we described for a stationary Proca

star. Which of the different u0_x, u0_y, or u0_z we modify first is
determined by the component that reaches a zero in its profile (e.g.,
phi_x(r)) or its derivative (e.g., phi_x'(r)) before any other
component (e.g., phi_y(r) or phi_y'(r)). The function indentify()
allows this selection.

sigModif = identify(sol.t_events, nodes, p0Data, info=info)

# For axample sigModif = [True, False, False] if \phi_x(r=0) reaches a
zero in its profile or its derivative before any other component. So,
we use the previously described shooting algorithm (here the function
freq_shoot) if we need to increase or decrease u0_x. From this, we
obtain the new values u0 in iInterv and rTemp.

# Here, freq_shoot follows the shooting algorithm in Stationary_Shooting.
iInterv, rTemp = freq_shoot(eventos[sigModif], nodos[sigModif], u0[

sigModif], Uintrs[sigModif], rmax)

# If we have reached the maximum precision:
if abs((iInterv[1]-iInterv[0])/2) <= lim:

if info:
print(out)
print('We have reached the maximum precision: U0x = ', V0[6], '

U0y = ', V0[8], ' U0z = ', V0[10], 'radio', rTemp)

if out==outval:
print('Maxima precisión alcanzada: U0x = ', V0[6], ' U0y = ', V0

[8], ' U0z = ', V0[10], 'radio', rTemp)
return V0[6], V0[8], V0[10], rTemp, sol.t_events[0], sol.t_events

[2], sol.t_events[4]
else:

Uintrs[sigModif] = [iInterv[0]-delta, iInterv[1]+delta]
out += 1

#If we still haven't reached maximum precision , we rewrite u0.
else:

Uintrs[sigModif] = iInterv

if np.all(np.array([shoot(*i) for i in Uintrs])==u0):
print('Found: U0x = ', V0[6], ' U0y = ', V0[8], ' U0z = ', V0[10], '

radio', rTemp)
return V0[6], V0[8], V0[10], rTemp, sol.t_events[0], sol.t_events[2],

sol.t_events[4]

if k==klim:
print('loop limit reached')
break

k += 1

The use of the function identify allows us to identify which of the com-
ponents σ(0)

x (r), σ(0)
y (r) or σ(0)

z (r) = 0 has reached a zero (event) }rst. For
example, let’s suppose that in the j-th iteration for a given u0x and u0y we
obtain the results described in the Figure (B.2). Given that the solutions we
are looking for in this example satisfy σx(r = 0) = 1.0, σy(r = 0) = 0.8
and σz(r = 0) = 0 with (nx = 1, ny = 0, nz = 0), we observe that the solu-
tion for σx(r) satis}es nx = 1 but the zeros in the derivative function σ′

x(r)
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are greater than nx + 1 with the value of the nx zero at r = 4.022. On the
other hand, σy(r) satis}es ny = 0, but similarly, the number of zeros of the
derivative function σ′

y(r) is greater than ny + 1 with the value of ny zero at
r = 0.0. Then, the component that }rst reaches zero is σy(r), so sigModif
= [False, True, False] and σy(r) will be the next component subjected to
the shooting method. The logical sequence of this process is described below.

Figure B.2: identify function. The use of the function identify allows us
to identify which of the components σ(0)

x (r) (red line), σ(0)
y (r) (blue line) or

σ
(0)
z (r) = 0 has reached a zero (event) }rst.

The shooting method replicates the same procedure that we have described
for a stationary Proca star. We emphasize that the dizerence is that for a
multi-frequency Proca star this process is done successively for each component
σx(r), σy(r), and σz(r), as each one }rst reaches one of the zeros for the pro}le
or the derivative of the pro}le according to the identify function. The result
of this particular example for σ0x = 1.0 and σ0y = 0.8 with nx = 1 and ny = 0
(the component in the z direction equal to zero) is shown in Figure (B.3).
def identify(events, nodes, p0Data, info=False):

"""

Figure B.3: Multi-frequency Proca star. Multi-frequency con}guration for
σ0x = 1.0 and σ0y = 0.8 with nx = 1 and ny = 0
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##### identify function #####
Identifying which components have zeros in successive order. When a component

is taken as zero and excluded from the analysis
"""
dicNod = {'0': nodes[0], '2': nodes[1], '4': nodes[2]}
indices = np.fromiter(map(int, dicNod.keys()), dtype=int)
ind = list(map(bool, p0Data))
posit = indices[ind]
# posit = [0,2,4]

valR = [np.infty, np.infty, np.infty]
for i in posit:

valtemp = []
node = dicNod[str(i)]
numNod = events[i].size; numdSig = events[i+1].size
if numNod == node and numdSig == node+1:

valtemp.append(0)
elif numNod == node:

if numdSig < node+1:
valtemp.append(events[i+1][node-1])

elif numdSig > node+1:
valtemp.append(events[i+1][node])

elif numNod > node:
valtemp.append(events[i][node])

else:
if numNod != 0:

valtemp.append(events[i][-1])
else:

valtemp.append(0)

if i==0:
valR[0] = min(valtemp)

elif i==2:
valR[1] = min(valtemp)

elif i==4:
valR[2] = min(valtemp)

sigModif = [False, False, False]
test = np.min(valR)
for i in range(3):

if valR[i]==test:
sigModif[i]=True
break

return sigModif
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Appendix C

Appendix Chapter IV

C.1 Dirac Spinor in a de Sitter Universe
In a De Sitter universe, the scale factor is give by

a(η) = (−Hdsη)
−1 and da(η)

dη
=

1

Hdsη2
. (C.1)

With such a scale factor, the modi}ed Dirac equation (4.22) are given by
[

d2

dη2
+ k2 +

m2

H2
dsη

2
+ i

m

Hdsη2

]

uk = 0, (C.2a)
[

d2

dη2
+ k2 +

m2

H2
dsη

2
− i

m

Hdsη2

]

vk = 0. (C.2b)

Making the appropriate change of variable given by

z = −kη, and µ =
m

Hds

, −ν2± +
1

4
= µ2 ± iµ (C.3)

we can recast Eq. (C.2) as
[

d2

dz2
+ 1 +

ν2+ + 1
4

z2

]

uk = 0, (C.4a)
[

d2

dz2
+ 1 +

ν2− + 1
4

z2

]

vk = 0. (C.4b)

where ν± = −iµ± 1
2
. These equations admit solutions in terms of the Hankel

functions of the }rst
√
zH

(1)
ν+ and second kind

√
zH

(2)
ν+ for uk and

√
zH

(1)
ν− and√

zH
(2)
ν− for vk. The normalized solutions that has the correct asymptotic

behavior solutions (4.48) as η → −∞ are given by Eq. (4.27). When η → −∞
the asymptotic expression of Hankel function of }rst is given by H

(1)
ν (z) =

√

2
πz

exp
[

i(z − νπ
2
− π

4
)
]

, such that

u
(0)
k = lim

η→−∞
i

√
zπ

2
eπµ/2H(1)

ν+
(z) =

1√
2
e−ikη, (C.5)

v
(0)
k = lim

η→−∞

√
zπ

2
eπµ/2H(1)

ν−
(z) =

1√
2
e−ikη, (C.6)

which are the asymptotic adiabatic solutions (4.48) in the remote past.
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C.2 Dirac Spinor in a Radiation Dominated
Universe

In a radiation dominated universe, the scale factor is a linear function of con-
formal time as

a(η) = HRη, with da(η)

dη
= HR. (C.7)

With such a scale factor, the modi}ed Dirac equation (4.22) are given by
[

d2

dη2
+ k2 +m2H2

Rη
2 + imHR

]

uk = 0, (C.8a)
[

d2

dη2
+ k2 +m2H2

Rη
2 − imHR

]

vk = 0. (C.8b)

Making the appropriate change of variable given by

z =
√

mHRη, q =
k√
mHR

, and λ(±) = q2 ± i, (C.9)

we can recast (C.8) as
[

d2

dz2
+ z2 + λ(+)

]

uk = 0, (C.10a)
[

d2

dz2
+ z2 + λ(−)

]

vk = 0. (C.10b)

The modi}ed Dirac equation above immediately admits solutions in terms of
the parabolic cylinder functions Dα(z). These are given by

uk = c1Dα

(√
2eiπ/4z

)

+ c2D−α−1

(√
2ei3π/4z

)

, (C.11a)

vk = c3Dα−1

(√
2eiπ/4z

)

+ c4D−α

(√
2ei3π/4z

)

. (C.11b)

with α = −iq2/2. By imposing that equations (4.21) be satis}ed at late times,
and normalizing according to (4.19) we arrive at

uk = exp
{(

− πk2

8mHR

)}

Dα

(√
2eiπ/4z

)

, (C.12a)

vk =
eiπ/4k√
2mHR

exp
{(

− πk2

8mHR

)}

Dα−1

(√
2eiπ/4z

)

. (C.12b)

As in the scalar }eld case, the structure of this solution, through the value
α, reveals the presence of a new momentum scale, kJ ≡

√
mHR, the Jeans

length of a self-gravitating }eld. In addition, the argument of the cylinder
functions suggests dizerent behaviors the light }eld (ma � H) and heavy
}eld (ma� H) limits.
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C.3 Adiabatic Expansion for uk and vk up to
Fourth Order

Zeroth order In the adiabatic limit, following the reasoning of S. Gosh
[174, 161], we can propose the following ansatz to the dizerential equations
(4.22) such that

uk(η) ∼ exp
[ ∫

(

Xk(η̃)− iYk(η̃)
)

dη̃

]

(C.13)

where

Xk(η̃) =
1

h̄

∞
∑

n=0

h̄nXn(η̃), Yk(η̃) =
1

h̄

∞
∑

n=0

h̄nYn(η̃) (C.14)

where n indicates the adiabatic order expansion, and similarly for vk(η). Putting
Eq. (C.14) into Eq. (4.22a), we obtain, for the zero and }rst order in n, re-
spectively

X2
0 − Y 2

0 + ω2
k = 0, 2X0Y0 −Q = 0,

Ẋ0 + 2X0X1 − 2Y0Y1 = 0, Ẏ0 + 2X0Y1 + 2X1Y0 = 0.

where Q = mȧ. Solving this set of coupled dizerential equations up to }rst
adiabatic order, we obtain

X0 ≈ mȧ

2ωk
, X1 ≈ − ω̇k

2ωk
,

Y0 ≈ ωk, Y1 ≈ 0.

Then, the ansatz (C.13) can be written as

uk ∼ exp
[ ∫

(mȧ

2ωk
− ω̇k

2ωk

)

dη̃

]

exp
[

− i

∫

ωkdη̃

]

. (C.15)

The expression in the }rst integral can be recast as

mȧ

2ωk
− ω̇k

2ωk
=
mȧ

2ωk

[

ma+ ωk

ma+ ωk

]

− ω̇k

2ωk
=

d

dt

[

(

ωk +ma

2ωk

)1/2
]

(

ωk +ma

2ωk

)−1/2

.

So, the solution u
(0)
k at zero adiabatic order }nally is

u
(0)
k ∼

√

ωk +ma

ωk
exp

[

− i

∫

ωkdη̃

]

, (C.16)

and similarly for v(0)k .
Second order. Now, working up to adiabatic second order, from the

expression (4.33) and using Eq. (4.22), we can write

(ωk−ma)G(2) = (ωk−ma)F (2)+ω
(2)
k +iḞ (1)+

i

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

F (1),

(ωk+ma)F
(2) = (ωk+ma)G

(2)+ω
(2)
k +iĠ(1)+

i

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

G(1),

(ωk+ma)(F
(2)+F (1)F (1)∗+F (2)∗)+(ωk−ma)(G(2)+G(1)G(1)∗+G(2)∗) = 0.
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Similar to the above process we recast these equations as

(ωk −ma)(g(2)x − f (2)
x ) = ω

(2)
k − ḟ (1)

y − f
(1)
y

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

,

(ωk +ma)(g(2)x − f (2)
x ) = −ω(2)

k + ġ(1)y +
g
(1)
y

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

,

(ωk +ma)(2f (2)
x + (f (1)

y )2) + (ωk −ma)(2g(2)x + (g(1)y )2) = 0,

and after some manipulations, we can write

2ωk(g
(2)
x − f (2)

x ) = ġ(1)y − ḟ (1)
y − 1

2

(

mȧ− maω̇k

ωk

)

(

g
(1)
y

ωk −ma
+

f
(1)
y

ωk +ma

)

,

f (2)
x = −(f

(1)
y )2

2
− 1

2

ωk −ma

ωk +ma
(2g(2)x + (g(1)y )2).

From this we obtain the second order expression for g(2)x as

g(2)x = −(f
(1)
y )2

2
+
ωk +ma

4ω2
k

[

ġ(1)y − ḟ (1)
y

− 1

2

(

mȧ− maω̇k

ωk

)

(

g
(1)
y

ωk −ma
+

f
(1)
y

ωk +ma

)]

.

The function f
(2)
x is obtained using the condition f

(2)
x (−m) = g

(2)
x (m), and

from these we obtain ω(2)
k . On other hand, we calculate the imaginary part as

(ωk −ma)(g(2)y − f (2)
y ) = ḟ (1)

x +
f
(1)
x

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

, (C.17a)

(ωk +ma)(g(2)y − f (2)
y ) = −ġ(1)x − g

(1)
x

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

. (C.17b)

From here is straightforward to write

2ωk
(

g(2)y − f (2)
y

)

= 0 → g(2)y = f (2)
y . (C.18)

Here, the functions g(2)y and f
(2)
y remain undetermined. However, since the

local observables, e.g. the energy density ρ, regardless of the required adiabatic
order n, remains independent of these functions, this ambiguity can be resolved
by choosing g(2)y = f

(2)
y = 0. All the tedious calculus are more easily made in

Wolfram Mathematica, after some computational work we get

ω
(2)
k =

5m4a2ȧ2

8ω5
k

− m2ȧ2

8ω3
k

− m2aä

4ω3
k

, (C.19a)

F (2) = −5m4a2ȧ2

16ω6
k

+
5m3ȧ2a

16ω5
k

− m2ȧ2

32ω4
k

+
m2aä

8ω4
k

− mä

8ω3
k

. (C.19b)

and G(2) = g
(2)
x (m) = f

(2)
x (−m) = F (2)(−m).
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With the above results now is possible to write

u
(2)
k =

√

ωk +ma

2ωk
exp

(

−i
∫ [

ωk(η̃) +
5m4a2ȧ2

8ω5
k

− m2ȧ2

8ω3
k

− m2aä

4ω3
k

]

dη̃

)

×
[

1− imȧ

4ω2
k

− 5m4a2ȧ2

16ω6
k

+
5m3ȧ2a

16ω5
k

− m2ȧ2

32ω4
k

+
m2aä

8ω4
k

− mä

8ω3
k

]

, (C.20)

and similarly for v(2)k using the fact that u(2)k (−m) = v
(2)
k (m). The third and

fourth adiabatic order are calculated next.

Third and fourth adiabatic order. For completeness, we write the
third and fourth adiabatic order expression to get F (3), G(3) and F (4) and G(4).
Up to third adiabatic order, the real part of Eq. (4.33) is given by

(ωk−ma)(g(3)x −f (3)
x ) = ω

(3)
k −ḟ (2)

y +ω(2)f (1)
x −f

(2)
y

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

,

(ωk+ma)(g
(3)
x −f (3)

x ) = −ω(3)
k + ġ(2)y −ω(2)g(1)x +

g
(2)
y

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

,

(ωk +ma)(2f (3)
x + 2f (2)

y f (1)
y ) + (ωk −ma)(2g(3)x + 2g(2)y g(1)y ) = 0.

Using the fact that g(2)y = f
(2)
y = 0 in the above expressions, we have the

result f (3)
x = g

(3)
x . Using the relation G(n)(m) = F (n)(−m) then we have

g
(3)
x − f

(3)
x (−m) = g

(3)
x − g

(3)
x (−m) = 0 that is g(3)x (m) and f

(3)
x (m) are even

functions of m and using the third relation above we have f (3)
y = g

(3)
y = 0.

With these we }nd ω(3)
k = 0. On the other hand, the imaginary part results in

the expressions

(ωk −ma)(g(3)y − f (3)
y ) = ḟ (2)

x +
f
(2)
x

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

+ ω
(2)
k f (1)

y ,

(ωk +ma)(g(3)y − f (3)
y ) = −ġ(2)x − g

(2)
x

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

− ω
(2)
k g(1)y .

Recasting the expressions above, we obtain

2ωk(g
(3)
y − f (3)

y ) = ḟ (2)
x − ġ(2)x + ω(2)(f (1)

y − g(1)y )

+
1

2

(

mȧ− maω̇k

ωk

)

(

g
(2)
x

ωk −ma
+

f
(2)
x

ωk +ma

)

, (C.21)

from which, we can determine g(3)y and f
(3)
y with the condition f

(3)
y (−m) =

g
(3)
y (m). 1

1In order to get f (3)y we de}ne A ≡ g
(3)
y −f (3)y and we use the relation g(3)y (m) = f

(3)
y (−m).

With these we can write A = f
(3)
y (−m)− f

(3)(m)
y and we calculate the right side of (C.21).

If A is odd in m then f (3)y (m) is odd and f (3)y (m) = −1/2A which is the case.

Chapter C 167



In the same way, we can calculate the fourth adiabatic order. The real part is

(ωk−ma)(g(4)x −f (4)
x ) = ω

(4)
k +ω(2)f (2)

x −ḟ (3)
y −f

(3)
y

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

,

(ωk+ma)(g
(4)
x −f (4)

x ) = −ω(4)
k −ω(2)g(2)x + ġ(3)y +

g
(3)
y

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

,

(ωk+ma)(2f
(4)
x +2f (1)

y f (3)
y +(f (2)

x )2)+(ωk−ma)(2g(4)x +2g(1)y g(3)y +(g(2)x )2) = 0,

and the imaginary part is

(ωk −ma)(g(4)y − f (4)
y ) = ω(2)f (2)

y + ḟ (3)
x +

f
(3)
x

2

1

(ωk +ma)

(

mȧ− maω̇k

ωk

)

,

(ωk +ma)(g(4)y − f (4)
y ) = −ω(2)g(2)y − ġ(3)x − g

(3)
x

2

1

(ωk −ma)

(

maω̇k

ωk
−mȧ

)

.

Using the fact that f (2)
y = g

(2)
y = f

(3)
x = g

(3)
x = 0 into the above expression

for the imaginary part we have g
(4)
y − f

(4)
y = 0 where, again, the functions

g
(4)
y and f

(4)
y remains undetermined. However, since the local observables are

independent of these functions, this ambiguity can be resolved by choosing
g
(4)
y = f

(4)
y = 0. Next, from the real part we obtain

f (4)
x = −f (1)

y f (3)
y −

(

ωk +ma

2ωk

)

(f
(2)
x )2

2
−
(

ωk −ma

2ωk

)

(g
(2)
x )2

2

− ωk −ma

4ω2
k

[

ω
(2)
k (f (2)

x − g(2)x ) + ġ(3)y − ḟ (3)
y

+
1

2

(

maω̇k

ωk
−mȧ

)

(

g
(3)
y

ωk −ma
+

f
(3)
y

ωk +ma

)]

,

from which, again, is possible to obtain g4x with the condition f
(4)
x (−m) =

g
(4)
x (m) and once done this we can obtain ω

(4)
k through

ω
(4)
k = ma(f (4)

x − g(4)x )− w
(2)
k

2

(

f (2)
x + g(2)x

)

+
mȧf

(3)
y

2wk
.

Finally, up to fourth adiabatic order the mode functions are given by

u
(4)
k ∼

√

ωk +ma

2ωk

[

1 +
4
∑

i=1

F (η)(i)

]

×

exp
(

−i
∫

(

ωk + ω
(1)
k + ω

(2)
k + ω

(3)
k + ω

(4)
k

)

dη̃

)

(C.22)
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where

F (3) =
65im5a2ȧ3

64ω8
k

− 21im3ȧ3

128ω6
k

− 19im3aȧä

32ω6
k

+
im

...
a

16ω4
k

, (C.23)

F (4) =
2285m8a4ȧ4

512ω12
k

− 565m7a3ȧ4

128ω11
k

− 349m6a2ȧ4

256ω10
k

+
803m5aȧ4

512ω9
k

− 85m4ȧ4

2048ω8
k

−457m6a3ȧ2ä

128ω10
k

+
113m5a2ȧ2ä

32ω9
k

+
113m4aȧ2ä

256ω8
k

− 141m3ȧ2ä

256ω7
k

+
41m4a2ä2

128ω8
k

− 5m3aä2

16ω7
k

− m2ä2

128ω6
k

+
7m4a2ȧ

...
a

16ω8
k

− 7m3aȧ
...
a

16ω7
k

−m
2ȧ

...
a

64ω6
k

− m2a
....
a

32ω6
k

+
m

....
a

32ω5
k

. (C.24)

and

ω
(4)
k = −1105m8a4ȧ4

128ω11
k

+
29m6a2ȧ4

8ω9
k

− 11m4ȧ4

128ω7
k

+
221m6a3ȧ2ä

32ω9
k

− 89m4aȧ2ä

64ω7
k

−19m4a2ä2

32ω7
k

− 7m4a2ȧ
...
a

8ω7
k

+
m2ȧ

...
a

32ω5
k

+
m2a

....
a

16ω5
k

. (C.25)

with ω
(1)
k = ω

(3)
k = 0, and similarly for v

(4)
k remembering the condition

u
(n)
k (−m) = v

(n)
k (m).

C.4 Energy Density
The Dirac }eld ψ can be written in terms of creation and annihilation operators
for particles and antiparticles, â~k,λ and b̂~k,λ respectively, as

ψ =
∑

λ

∫

d3k
[

â~kλU~kλ + b̂
†
~kλ
V~kλ

]

, (C.26)

where the eigenfunctions U~kλ(x) and V~kλ(x) are given by

U~kλ =
ei
~k·~x

(2πa)3/2

(

ukξλ

vk
~σ·~k
k
ξλ

)

or U~kλ =
ei
~k·~x

(2πa)3/2

(

ukξλ
vkλξλ

)

, (C.27a)

V~kλ =
e−i

~k·~x

(2πa)3/2

( −v∗kξ−λ
−u∗k ~σ·

~k
k
ξ−λ

)

or V~kλ =
e−i

~k·~x

(2πa)3/2

(

−v∗kξ−λ
λu∗kξ−λ

)

, (C.27b)

and ξλ is the normalized two-component spinor satisfying ξ†λ′ξλ = δλ′λ with the
property ~σ·~k

2k
ξλ = (λ/2)ξλ where λ = ±1 represents the helicity. Also U~kλ and

V~kλ are related by charge conjugation operation (e.g. V~kλ = CU~kλ = iγ2U∗
~kλ

) 2

with uk(η) and vk(η) the two time-dependent mode functions.
2In order to obtain the expression (C.27b), we need to take into account the expression

−iσ2ξ∗λ = λξ−λ.
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Let’s compute the expectation value of the energy-momentum tensor using
the Dirac }eld decomposition (C.26) such that

ψ =
∑

λ

∫

d3k
[

â~kλU~kλ + b̂
†
~kλ
V~kλ

]

, (C.28)

ψ̄ = ψ†γ0 =
∑

λ

∫

d3k
[

â
†
~kλ
U

†
~kλ

+ b̂~kλV
†
~kλ

]

γ0. (C.29)

Putting these in the expectation value of Tm00 = i
2
[ψ̄γ(0∇0)ψ− (∇(0ψ̄)γ0)ψ], we

get

〈ψ†∂0ψ〉 − 〈∂0ψ†ψ〉 =
∫

d3~k

∫

d3~k′
∑

λ

∑

λ′

(

U
†
~kλ
∂0U~k′λ′ − ∂0U

†
~kλ
U~k′λ′

)

δ(~k − ~k′)naλλ′

+

∫

d3~k

∫

d3~k′
∑

λ

∑

λ′

(

U
†
~kλ
∂0V~k′λ′ − ∂0U

†
~kλ
V~k′λ′

)

δ(~k + ~k′)mb
λλ′

+

∫

d3~k

∫

d3~k′
∑

λ

∑

λ′

(

V
†
~kλ
∂0U~k′λ′ − ∂0V

†
~kλ
U~k′λ′

)

δ(~k + ~k′)ma
λλ′

+

∫

d3~k

∫

d3~k′
∑

λ

∑

λ′

(

V
†
~kλ
∂0V~k′λ′ − ∂0V

†
~kλ
V~k′λ′

)

×
[

δ(~k − ~k′)δλ,λ′ − δ(~k − ~k′)nbλλ′
]

,

where for an arbitrary state |ψ〉,

〈a†~k′λ′a~kλ〉 = δ(~k − ~k′)naλλ′ , (C.30a)

〈a†~k′λ′b
†
~kλ
〉 = δ(~k + ~k′)mb

λλ′ , (C.30b)

〈b~k′λ′a~kλ〉 = δ(~k + ~k′)ma
λλ′ (C.30c)

〈b~k′λ′b
†
~kλ
〉 = δ(~k − ~k′)δλλ′ − δ(~k − ~k′)nbλλ′ . (C.30d)

If we choose the |in, 0〉 vacuum state, then naλλ′ ,m
b
λλ′ ,m

a
λλ′ , n

b
λλ′ = 0. Using

the eigenfunctions (4.13) we can write

〈ψ̄γ0∂0ψ〉 − 〈∂0ψ̄γ0ψ〉 =
1

(2π)3a3

[

∫

d3~k
∑

λ

∑

λ′

δλλ′(u
∗
ku̇k + λλ′v∗kv̇k − u̇∗kuk − λλ′vv̇∗k)n

a
λλ′

+

∫

d3~k
∑

λ

∑

λ′

δ−λ−λ′(vkv̇
∗
k + λλ′uku̇

∗
k − v∗kv̇k − λλ′u∗ku̇)[1− nbλλ′ ]

−
∫

d3~k
∑

λ

∑

λ′

(u̇∗kv
∗
k(1 + λλ′)− u∗kv̇

∗
k(1 + λ′λ))ξ†

λ~k
ξ−λ′−~km

b
λλ′

−
∫

d3~k
∑

λ

∑

λ′

(ukv̇k(1 + λ′λ)− u̇kvk(1 + λλ′))ξ†−λ~kξλ′−~km
a
λλ′

]

.

After some straightforward algebra, and using the relations ξ
†
λ~k
ξ−λ′−~k =

−ξ†
λ~k
ξλ′~k = δλλ′ and ξ

†
−λ~kξλ′−~k = −ξ†−λ~kξ−λ′~k = δ−λ−λ′ (where in the rela-

tion ξ−λ−~k = eiφξλ~k we have choose φ = π) we can write the energy density
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expression as
ρ =

1

2π2a3

∫ ∞

0

dkk2ρk (C.31)

where

ρk =
i

2a

[

2i
(

2− [nb + na]
)

Im{uku̇∗k + vkv̇
∗
k}

+ 2mb(u̇∗kv
∗
k − u∗kv̇

∗
k) + 2ma(ukv̇k − u̇kvk)

]

(C.32)

or for a }nite volume V we have

ρ =
i

2a4V

∑

~k,λ

[

2i
(

1− [nb−λ−λ + naλλ]
)

Im{uku̇∗k + vkv̇
∗
k}

− 2mb
λλ(u̇

∗
kv

∗
k − u∗kv̇

∗
k)− 2ma

−λ−λ(ukv̇k − u̇kvk)

]

(C.33)

with

nak =
∑

λ

naλλ, n
b
k =

∑

λ

nb−λ−λ, m
a
k =

∑

λ

ma
−λ−λ, m

b
k =

∑

λ

mb
λλ,

or

ρ =
i

2a4V

∑

~k,λ

[

2i
(

〈a†~kλa~kλ〉 − 〈b~kλb
†
~kλ
〉
)

Im{uku̇∗k + vkv̇
∗
k}

− 2 〈a†
λ~k
b
†
λ~k
〉 (u̇∗kv∗k − u∗kv̇

∗
k)− 2 〈b~k−λa~k−λ〉 (ukv̇k − u̇kvk)

]

.

C.5 Second and Fourth Adiabatic Expansion
of ρin

k

Up to second adiabatic order, u(2)k can be written as

u
(2)
k ∼

√

ωk +ma

2ωk

[

1 + F (1) + F (2)
]

exp
{(

−i
∫

(ωk + ω
(2)
k )dη̃

)}

(C.34)

and v
(2)
k (η) = u

(2)
k (−m). Putting these in (4.53b) we get

ρ
(2)
k =

1

a

(

ωk +ma

ωk

)

[

ImḞ (1) − |F (1)|2ωk − 2F (2)ωk − ω
(2)
k

]

+
1

a

(

ωk −ma

ωk

)

[F → G]. (C.35)
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With the same steps, we can write the fourth-order term of ρink as

ρ
(4)
k =

ωk +ma

aωk

[

ImḞ (3) − Ḟ (2)
ImF (1) − (F (2))2ωk

− (F (3)∗F (1)+F (1)∗F (3)+2F (4))ωk+F (2)(ImḞ (1)− 2ω
(2)
k )− |F (1)|2ω(2)

k −ω
(4)
k

]

+
ωk −ma

aωk
[F → G]. (C.36)

C.6 Bogoliubov Transformation
The set of orthonormal basis (4.13), that is {U in

~k,λ
, V in

~k,λ
}, is not unique. Let’s

consider a dizerent orthonormal basis {U~k,λ, V~k,λ}, with the following relations

U in
~k,λ

= αkU~k,λ + βkV~k,λ, V in
~k,λ

= α∗
kV~k,λ − β∗

kU~k,λ (C.37)

where V~k,λ = iγ2U∗
~k,λ

. Using the fact that

Ψ̂ =
∑

~k

∑

λ

[âin~k,λU
in
~k,λ

+ b̂
in†
~k,λ
V in
~k,λ

] =
∑

~k

∑

λ

[â~k,λU~k,λ + b̂
†
~k,λ
V~k,λ] (C.38)

and substituting in this the relations (C.37) we obtain

â~k,λ = [âin~k,λαk − b̂
in†
~k,λ
β∗
k ], (C.39a)

b̂
†
~k,λ

= [âin~k,λβk + b̂
in†
~k,λ
α∗
k]. (C.39b)

With these relations, we can rewrite (C.39) as
(

â~k,λ
b̂
†
~k,λ

)

=

(

αk −β∗
k

βk α∗
k

)

(

âin~k,λ
b̂
in†
~k,λ

)

and

(

αk −β∗
k

βk α∗
k

)†(
αk −β∗

k

βk α∗
k

)

=

(

1 0
0 1

)

. (C.40)

On other hand, using the relations

U in
~kλ
(~x, η) =

ei
~k·~x

(2πa)3/2

(

uink ξλ
vink λξλ

)

, V in
~kλ
(~x, η) =

e−i
~k·~x

(2πa)3/2

(

−vin∗k ξ−λ
uin∗k λξ−λ

)

.(C.41a)

and the orthogonality of ξλ, the relation U in
~k,λ

= αkU~k,λ + βkV~k,λ, imply, after
some manipulations, that the solution corresponding to uink and vink are given
according to the transformation

uink (η) = αkuk − βkv
∗
k and vink (η) = αkvk + βku

∗
k, (C.42)

where again the functions uink and vink are those mode functions that satisfy
the in initial conditions and αk and βk are the Bogoliubov coe{cients of a
Bogoliubov transformation (C.40).
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Putting these into the normalization condition |uink |2 + |vink |2 = 1 we have
directly that

|αk|2 + |βk|2 = 1, (C.43)
provided that |uk|2 + |vk|2 = 1 is satis}ed. Then, the Bogoliubov coe{cients
αk and βk are constant. On other hand, using Eq. (C.43) and after some
manipulations we have

uk = α∗
ku

in
k + βkv

in∗
k , vk = α∗

kv
in
k − βku

in∗
k . (C.44)

Finally, using the normalization condition for |uink |2 + |vink |2 = 1 and manipu-
lating Eq. (C.44) we can write

αk = uink u
∗
k + vink v

∗
k, βk = ukv

in
k − vku

in
k . (C.45a)

We can also calculate βk considering the inner product between V in
~k,λ

and U~k,λ
given by Eq. (4.17), from which

βk = (V in
~kλ
, U~k′λ′) =

∫

dx3a3V
in†
~kλ
U~k′λ′ = [vku

in
k − ukv

in
k ]e

iφ (C.46)

with eiφ = ξ
†
λ,~k
ξ−λ,−~k. To make the Bogoliubov coe{cients independent of λ

and ~k as Eq. (C.44), we need to choose φ = π. Since |βk|2 is the quantity that
determines an observable, we can do this without loss of generality.
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