

UNIVERSIDAD DE GUANAJUATO

CAMPUS IRAPUATO-SALAMANCA DIVISIÓN DE INGENIERÍAS

"Desarrollo de una herramienta computacional para optimizar la operación de redes de distribución activas"

TESIS

QUE PARA OBTENER EL GRADO DE:

MAESTRO EN INGENIERÍA ELÉCTRICA (Opción: Instrumentación y Sistemas Digitales)

PRESENTA: Ing. José Antonio Santacruz Granados

DIRECTORES:

Dr. Alejandro Pizano Martínez Dr. Iván Abel Hernández Robles

Dedicatoria

Dedico esta tesis a mis padres, José Antonio Santacruz Prieto y Alicia Granados Delgado por todo el apoyo y motivación que me han brindado para llegar hasta aquí.

A mis hermanos Víctor, Karina y Lucy que me han acompañado en este largo camino.

A mi esposa Juana Marisol López Rodríguez por estar a mi lado incondicionalmente, y creer siempre en mí.

Agradecimientos

Quiero agradecer a mis asesores, el Dr. Alejandro Pizano Martínez y el Dr. Iván Abel Hernández Robles por su valiosa colaboración en el desarrollo de esta tesis.

Al Dr. Víctor Javier Gutiérrez Martínez, por el apoyo en el desarrollo de la estancia de investigación, cuyos resultados fueron parte fundamental para este trabajo.

A mis sinodales el Dr. Miguel Ángel Gómez Martínez y la Dra. Dora Luz Almanza Ojeda por el valioso tiempo brindado en la revisión del presente documento de tesis.

Agradecimientos Institucionales

Agradezco a la Universidad de Guanajuato, especialmente a la División de Ingenierías del Campus Irapuato-Salamanca por la formación y el apoyo que he recibido desde la Licenciatura hasta el día de hoy. A los profesores por transmitirme sus conocimientos a lo largo de todos estos años, y que gracias a ello obtengo mi título de maestría.

Este trabajo de tesis se ha llevado a cabo gracias al apoyo recibido por el Consejo Nacional de Ciencia y Tecnología de México (CONACyT), bajo la beca otorgada en la convocatoria titulada "BECAS NACIONALES 2016 PRIMER PERIODO", con el número de becario 689039.

Por último, agradezco al Instituto Tecnológico de Morelia (ITM) por su colaboración para la realización de una breve estancia de investigación dentro de sus instalaciones, en las cuales se obtuvo el modelo del arreglo de paneles solares bajo la supervisión del Dr. Víctor Javier Gutiérrez Martínez.

Resumen

En el presente trabajo de tesis se muestra el desarrollo de una herramienta computacional implementada en MatLab® R2015a útil para optimizar la operación de redes de distribución activas. Esta herramienta permite determinar un punto óptimo de operación de estado estacionario físicamente factible en el que los voltajes nodales y las corrientes a través de los elementos que componen la red de distribución activa se encuentran dentro de límites permisibles. Para este fin, el problema se formula como un problema de optimización en el que el conjunto de variables de decisión está compuesto por las variables que representan usuarios con flexibilidad en su demanda de energía, la posición de los taps de los reguladores de voltaje y los voltajes de los nodos terminales. El objetivo es la minimización de la reducción de la demanda de energía, tomando como restricciones los límites permisibles de los voltajes nodales y corrientes a través de los elementos. La herramienta desarrollada determina el punto óptimo de operación resolviendo el problema de optimización mediante el acoplamiento del método de optimización de punto interior y el algoritmo de flujos de potencia de barrido hacia adelante y hacia atrás. En este sentido, la herramienta desarrollada puede ser adaptada para complementar las aplicaciones que constituyen el sistema para el manejo de redes de distribución activas.

Para el desarrollo de la herramienta computacional se han implementado una gran variedad de modelos de componentes que permiten la simulación de una extensa variedad de redes de distribución activas, teniendo entonces características destacadas de funcionalidad y generalidad. Para fines de claridad y autonomía de contenido, el trabajo presenta los modelos de los componentes de la red de distribución, así como los algoritmos utilizados para el desarrollo de la herramienta computacional. En relación a la representación de generación distribuida, se han implementado dos modelos para representar aerogeneradores con máquina de inducción y arreglos de paneles solares. Dichos modelos de generación distribuida dan la posibilidad de tomar en cuenta la integración de estas fuentes renovables de generación a la red de distribución.

Para validar e ilustrar el funcionamiento del algoritmo de solución y de la herramienta computacional desarrollada, se muestran los resultados obtenidos considerando alimentadores de prueba estandarizados por el IEEE.

Abstract

In the present thesis the development of a computational tool implemented on MatLab[®] R2015a useful to optimize the operation of active distribution networks is shown. This tool makes it possible to determine a physically feasible steady state operational optimum point at which nodal voltages and currents through the elements composing the active distribution network are within allowable limits. To this end, the problem is formulated as an optimization problem in which the set of decision variables is composed of the variables that represent users with flexibility in their energy demand, the position of the taps of the voltage regulators and the voltages of the end nodes. The objective is to minimize the reduction of energy demand, taking as constraints the permissible limits of nodal voltages and currents across the elements. The developed tool determines the optimum operating point by solving the optimization problem through coupling the interior-point optimization method and the forward-backward sweep power flow algorithm. In this sense, the tool developed can be adapted to complement the applications that constitute the system for the management of active distribution networks.

For the development of the computational tool, a great variety of component models have been implemented that allow the simulation of a wide variety of active distribution networks, having then outstanding characteristics of functionality and generality. For purposes of clarity and content autonomy, the thesis presents the models of the components of the distribution network, as well as the algorithms used for the development of the computational tool. In relation to the representation of distributed generation, two models have been implemented to represent wind turbines with induction machine and solar panel arrangements. Such distributed generation models give the possibility of taking into account the integration of these renewable generation sources into the distribution network.

To validate and illustrate the operation of the solution algorithm and the computational tool developed, the results obtained are presented considering test feeders standardized by the IEEE.

Índice General

ÍNDICE GENERAL	6
ÍNDICE DE TABLAS	8
ÍNDICE DE FIGURAS	11
CAPÍTULO 1: INTRODUCCIÓN	13
1.1 ANTECEDENTES	
1.2 Optimización de la operación de redes de distribución	15
1.3 OBJETIVOS	
1.4 Justificación	20
1.5 Estructura del trabajo	20
CAPÍTULO 2: FORMULACIÓN PARA LA OPTIMIZACIÓN DE REDES DE DISTRIBUCIÓN	22
2.1 Introducción	
2.2 Conceptos básicos de sistemas de distribución	
2.3 Subestaciones de Distribución	
2 4 Alimentadores Radiales	24
2 5 MODELOS DE LOS COMPONENTES DEL SISTEMA DE DISTRIBUCIÓN	26
2 5 1 Impedancia Serie de Líneas Aéreas	26
2 5 2 Admitancia en Derivación de Líneas Aéreas	30
2 5 3 Impedancia Serie de Líneas Subterráneas	35
2 5 3 1 Cable con neutro concéntrico	35
2.5.3.2 Cable con cinta blogueadora	
2.5.4 Admitancia en Derivación de Líneas Subterráneas	
2.5.4.1 Cable con neutro concéntrico	
2.5.4.2 Cable con cinta bloqueadora	41
2.5.5 Modelo de Línea del Sistema de Distribución	
2.5.5.1 Modelo Exacto del Segmento de Línea	
2.5.6 Modelo del Regulador de Voltaje a Pasos	
2.5.7 Modelo de Transformador	50
2.5.7.1 Conexión Delta – Estrella Aterrizada	
2.5.7.2 Conexión Estrella No Aterrizada – Delta	53
2.5.7.3 Conexión Estrella Aterrizada – Estrella Aterrizada	55
2.5.7.4 Conexión Delta – Delta	56
2.5.7.5 Conexión Estrella Abierta – Delta Abierta	57
2.5.8 Modelo de Carga	58
2.5.8.1 Cargas conectadas en Estrella	59
2.5.8.2 Cargas conectadas en Delta	61
2.5.8.3 Capacitores en Derivación	63
2.5.8.4 Motor de Inducción Trifásico	65
2.6 GENERACIÓN DISTRIBUIDA	70
2.6.1 Modelo del Aerogenerador	70
2.6.1.1 Turbina Eólica	
2.6.1.2 Generador de Inducción	
2.6.2 Modelo del Panel Solar	73

2.8 FORMULACIÓN DE RESTRICCIONES DE ESTACIONARIO. 78 2.9 MODELO DE OPTIMIZACIÓN 80 2.9.1 MÉtodo de Optimización: Algoritmo de Punto Interior 81 2.10 DESCRIPCIÓN DE LA HERRAMIENTA COMPUTACIONAL 88 CAPÍTULO 3: RESULTADOS 92 3.1 ALGORITMO DE SOLUCIÓN DE FLUIOS DE POTENCIA. 92 3.1.1 Alimentador de Prueba del IEEE de 13 Nodos. 92 3.1.2 Alimentador de Prueba del IEEE de 13 Nodos. 92 3.1.3 Alimentador de Prueba del IEEE de 13 Nodos. 97 3.1.4 Prueba de la Máquina de Inducción 100 3.1.5 Prueba del Arregio de Paneles Solares. 105 3.2.1 Alumentadoro DEL IEEE de 13 Nodos MODIFICADO. 106 3.2.1 Alumentadoro DEL IEEE de 123 NODOS MODIFICADO. 108 3.2.2 ALIMENTADOR DEL IEEE DE 13 NODOS MODIFICADO. 108 3.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO. 114 CAPÍTULO 4: CONCLUSIONES 117 ApénDICE A: RESULTADOS DE LALGORITMO DE SOLUCIÓN 119 A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS. 123 A.3 CASO DE PRUEBA DE LARGORITMO DE SOLUCIÓN 119 A.4 CASO DE PRUEBA DE LARGOENERADOR. 131 A.4 CASO DE PRUEBA DE LARGOENERADOR. 133	2.7 Algoritmo de Barrido Hacia Adelante-Hacia Atrás	76
2.9 MODELO DE OPTIMIZACIÓN 80 2.9.1 Método de Optimización: Algoritmo de Punto Interior 81 2.10 DESCRIPCIÓN DE LA HERRAMIENTA COMPUTACIONAL 88 CAPÍTULO 3: RESULTADOS 92 3.1 A LGORITMO DE SOLUCIÓN DE FLUIOS DE POTENCIA. 92 3.1.1 Alimentador de Prueba del IEEE de 13 Nodos. 92 3.1.2 Alimentador de Prueba del IEEE de 24 Nodos. 97 3.1.3 Alimentador de Prueba del IEEE de 123 Nodos 99 3.1.4 Prueba de la Máquina de Inducción 100 3.1.5 Prueba del Aerogenerador 102 3.1.6 Prueba del Arregio de Paneles Solares 105 3.2.1 Alumentador DUTACIONAL PARA EL ANÁLISIS DE FLUIOS DE POTENCIA ÓFTIMOS EN UNA RED DE DISTRIBUCIÓN ACTIVA 107 3.2.1 Alumentador DEL IEEE de 123 Nodos MODIFICADO 108 3.2.2 ALIMENTADOR DEL IEEE de 123 NODOS MODIFICADO 114 CAPÍTULO 4: CONCLUSIONES 117 APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN 119 A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 123 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 123 A.3 CAS DE PRUEBA DE LA MÁQUINA DE INDUCCIÓN 119 A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 123 A.3 CAS DE PRUEB	2.8 FORMULACIÓN DE RESTRICCIONES DE ESTADO ESTACIONARIO	
2.9.1 Método de Optimización: Algoritmo de Punto Interior 81 2.10 DESCRIPCIÓN DE LA HERRAMIENTA COMPUTACIONAL 88 CAPÍTULO 3: RESULTADOS 92 3.1 A LGORITMO DE SOLUCIÓN DE FLUIOS DE POTENCIA. 92 3.1.1 Alimentador de Prueba del IEEE de 13 Nodos. 92 3.1.2 Alimentador de Prueba del IEEE de 34 Nodos. 97 3.1.3 Alimentador de Prueba del IEEE de 123 Nodos. 99 3.1.4 Prueba de la Máquina de Inducción 100 3.1.5 Prueba del Arregio de Paneles Solares. 105 3.2 HERRAMIENTA COMPUTACIONAL PARA EL ANÁLISIS DE FLUIOS DE POTENCIA ÓPTIMOS EN UNA RED DE DISTRIBUCIÓN ACTIVA Mattentador DEL IEEE DE 123 NODOS MODIFICADO 108 3.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO 108 3.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO 114 CAPÍTULO 4: CONCLUSIONES 117 APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN 119 A.1 ALIMENTADOR DEL PRUEBA DEL IEEE DE 123 NODOS 123 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 123 A.3 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN 131 A.4 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN 131 A.4 CASO DE PRUEBA DEL IEEE DE 123 NODOS 133 A.5 C	2.9 MODELO DE OPTIMIZACIÓN	80
2.10 DESCRIPCIÓN DE LA HERRAMIENTA COMPUTACIONAL 88 CAPÍTULO 3: RESULTADOS 92 3.1 ALGORITMO DE SOLUCIÓN DE FLUIOS DE POTENCIA. 92 3.1.1 Alimentador de Prueba del IEEE de 13 Nodos. 92 3.1.2 Alimentador de Prueba del IEEE de 13 Nodos. 97 3.1.3 Alimentador de Prueba del IEEE de 123 Nodos. 99 3.1.4 Prueba de la Máquina de Inducción 100 3.1.5 Prueba del Arregio de Paneles Solares 105 3.2.1 Alimentador Del Arregio de Paneles Solares 105 3.2.1 Alimentador Del IEEE De 13 Nodos Modificado 107 3.2.1 Alimentador Del IEEE De 13 Nodos Modificado 108 3.2.2 ALIMENTADOR DEL IEEE DE 13 NODOS MODIFICADO 108 3.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO 114 CAPÍTULO 4: CONCLUSIONES 117 APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN 119 A.1 AUMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 119 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 123 A.3 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN 123 A.3 CASO DE PRUEBA DEL IEEE DE 123 NODOS 131 A.4 CASO DE PRUEBA DEL ARREGIO DE PANALES SOLARES 133 A.5 CASO DE PRUEBA DEL ARREGIO DE PANALES SOLARES<	2.9.1 Método de Optimización: Algoritmo de Punto Interior	81
CAPÍTULO 3: RESULTADOS 92 3.1 A LIGORITMO DE SOLUCIÓN DE FLUJOS DE POTENCIA. 92 3.1.1 Alimentador de Prueba del IEEE de 13 Nodos. 92 3.1.2 Alimentador de Prueba del IEEE de 13 Nodos. 97 3.1.3 Alimentador de Prueba del IEEE de 13 Nodos. 99 3.1.4 Prueba de la Máquina de Inducción 100 3.1.5 Prueba del Aerogenerador. 102 3.1.6 Prueba del Arregio de Paneles Solares. 105 3.2.1 Alimentador DEL IEEE DE 13 NODOS MODIFICADO. 108 3.2.1 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO. 108 3.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO. 114 CAPÍTULO 4: CONCLUSIONES 117 APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN. 119 A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS. 123 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS. 123 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS. 123 A.3 CASO DE PRUEBA DE LA MÁQUINA DE INDUCCIÓN 119 A.1 ALIMENTADOR DE PRUEBA DE LA MAQUINA DE INDUCCIÓN 131 A.4 CASO DE PRUEBA DE LA MAQUINA DE INDUCCIÓN 131 A.4 CASO DE PRUEBA DE LA ARGELO DE PANALES SOLARES 135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPU	2.10 Descripción de la herramienta computacional	88
3.1 ALGORITMO DE SOLUCIÓN DE FLUJOS DE POTENCIA	CAPÍTULO 3: RESULTADOS	92
3.1.1 Alimentador de Prueba del IEEE de 13 Nodos. .92 3.1.2 Alimentador de Prueba del IEEE de 34 Nodos. .97 3.1.3 Alimentador de Prueba del IEEE de 123 Nodos. .99 3.1.4 Prueba de la Máquina de Inducción .100 3.1.5 Prueba del Aerogenerodor. .102 3.1.6 Prueba del Arreglo de Paneles Solares. .105 3.2 Herramienta computacional para el análisis de fluios de potencia óptimos en una red de distribución activa .107 3.2.1 Alimentador del IEEE de 13 Nodos Modificado. .108 3.2.2 Alimentador del IEEE de 13 Nodos Modificado. .108 3.2.2 Alimentador del IEEE de 13 Nodos Modificado. .114 CAPÍTULO 4: CONCLUSIONES .117 APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN .119 A.1 Alimentador de Prueba del IEEE de 34 Nodos. .119 A.2 Alimentador de Prueba del INDUcción. .123 A.3 Caso de Prueba de LaGORITMO DE SOLUCIÓN. .131 A.4 Caso de Prueba de LaRogenerador. .133 A.5 Caso de Prueba de LaRogenerador. .133 A.5 Caso de Prueba del Arreglo de Panales Solares .135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL .143 B.1 Condición Inicial del Alimentador de Prueba del IEEE de 123 Nodos Mod	3.1 Algoritmo de Solución de flujos de potencia	
3.1.2 Alimentador de Prueba del IEEE de 34 Nodos	3.1.1 Alimentador de Prueba del IEEE de 13 Nodos	
3.1.3 Alimentador de Prueba del IEEE de 123 Nodos	3.1.2 Alimentador de Prueba del IEEE de 34 Nodos	
3.1.4 Prueba de la Máquina de Inducción 100 3.1.5 Prueba del Aerogenerador. 102 3.1.6 Prueba del Arregio de Paneles Solares. 105 3.2 HERRAMIENTA COMPUTACIONAL PARA EL ANÁLISIS DE FLUJOS DE POTENCIA ÓPTIMOS EN UNA RED DE DISTRIBUCIÓN ACTIVA 107 3.2.1 ALIMENTADOR DEL IEEE DE 13 NODOS MODIFICADO. 108 3.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO. 114 CAPÍTULO 4: CONCLUSIONES 117 APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN 119 A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS. 119 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS. 123 A.3 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN. 131 A.4 CASO DE PRUEBA DEL ALGORITMO DE IODUCCIÓN. 131 A.4 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN. 131 A.4 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN. 131 A.4 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN. 131 A.4 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN. 131 A.4 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN. 131 A.4 CASO DE PRUEBA DEL ALGORITMO DE SOLUCIÓN. 133 A.5 CASO DE PRUEBA DEL ALAGOGENERADOR. 133 A.5 CASO DE PRUEBA DEL ALAROGENERADOR 133 B.1 CO	3.1.3 Alimentador de Prueba del IEEE de 123 Nodos	
3.1.5 Prueba del Aerogenerador	3.1.4 Prueba de la Máquina de Inducción	100
3.1.6 Prueba del Arregio de Paneles Solares	3.1.5 Prueba del Aerogenerador	102
3.2 HERRAMIENTA COMPUTACIONAL PARA EL ANÁLISIS DE FLUJOS DE POTENCIA ÓPTIMOS EN UNA RED DE DISTRIBUCIÓN ACTIVA 107 3.2.1 ALIMENTADOR DEL IEEE DE 13 NODOS MODIFICADO 108 3.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO 114 CAPÍTULO 4: CONCLUSIONES 117 APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN 119 A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 119 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 123 A.3 CASO DE PRUEBA DEL IEEE DE 123 NODOS 131 A.4 CASO DE PRUEBA DEL AMÁQUINA DE INDUCCIÓN 133 A.5 CASO DE PRUEBA DEL ARREGIO DE PANALES SOLARES 135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL 143 B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO Y OPTIMIZADO 144 APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS 156 REFERENCIAS 161	3.1.6 Prueba del Arreglo de Paneles Solares	105
1073.2.1 ALIMENTADOR DEL IEEE DE 13 NODOS MODIFICADO1083.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO114CAPÍTULO 4: CONCLUSIONES117APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN119A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 34 NODOS119A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS123A.3 CASO DE PRUEBA DEL AEROGENERADOR131A.4 CASO DE PRUEBA DEL ARGOGENERADOR133A.5 CASO DE PRUEBA DEL ARREGLO DE PANALES SOLARES135APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL143B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO143B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO143B.4 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO143B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO143B.2 ALIMENTADOR DE LA HERRAMIENTA COMPUTACIONAL143B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO143B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO143B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO144APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE - HACIA ATRÁS156REFERENCIAS161	3.2 HERRAMIENTA COMPUTACIONAL PARA EL ANÁLISIS DE FLUJOS DE POTENCIA ÓPTIMOS EN UNA RED DE E	STRIBUCIÓN ACTIVA
3.2.1 ALIMENTADOR DEL IEEE DE 13 NODOS MODIFICADO 108 3.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO 114 CAPÍTULO 4: CONCLUSIONES 117 APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN 119 A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 34 NODOS 119 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 123 A.3 CASO DE PRUEBA DEL IEEE DE 123 NODOS 131 A.4 CASO DE PRUEBA DEL ARROGENERADOR 133 A.5 CASO DE PRUEBA DEL ARROGENERADOR 135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL 143 B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO Y OPTIMIZADO 144 APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS 156 REFERENCIAS 161		107
3.2.2 ALIMENTADOR DEL IEEE DE 123 NODOS MODIFICADO 114 CAPÍTULO 4: CONCLUSIONES 117 APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN 119 A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 34 NODOS 119 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 123 A.3 CASO DE PRUEBA DEL IEEE DE 123 NODOS 123 A.3 CASO DE PRUEBA DEL AROGENERADOR 131 A.4 CASO DE PRUEBA DEL ARROGENERADOR 133 A.5 CASO DE PRUEBA DEL ARREGLO DE PANALES SOLARES 135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL 143 B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 143 B.2 ALIMENTADOR DE PRUEBA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS 156 REFERENCIAS 161	3.2.1 Alimentador del IEEE de 13 Nodos Modificado	108
CAPÍTULO 4: CONCLUSIONES117APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN119A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 34 NODOS119A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS123A.3 CASO DE PRUEBA DE LA MÁQUINA DE INDUCCIÓN131A.4 CASO DE PRUEBA DEL AEROGENERADOR133A.5 CASO DE PRUEBA DEL ARREGLO DE PANALES SOLARES135APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL143B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO143B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO148APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS156REFERENCIAS161	3.2.2 Alimentador del IEEE de 123 Nodos Modificado	114
APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN 119 A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 34 NODOS. 119 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS 123 A.3 CASO DE PRUEBA DE LA MÁQUINA DE INDUCCIÓN 131 A.4 CASO DE PRUEBA DEL AEROGENERADOR. 133 A.5 CASO DE PRUEBA DEL ARREGLO DE PANALES SOLARES 135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL 143 B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO. 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 144 APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS 156 REFERENCIAS 161	CAPÍTULO 4: CONCLUSIONES	117
A.1 ALIMENTADOR DE PRUEBA DEL IEEE DE 34 NODOS. 119 A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS. 123 A.3 CASO DE PRUEBA DE LA MÁQUINA DE INDUCCIÓN 131 A.4 CASO DE PRUEBA DEL AEROGENERADOR. 133 A.5 CASO DE PRUEBA DEL ARREGLO DE PANALES SOLARES 135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL 143 B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 148 APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS 156 REFERENCIAS 161	APÉNDICE A: RESULTADOS DEL ALGORITMO DE SOLUCIÓN	119
A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS. 123 A.3 CASO DE PRUEBA DE LA MÁQUINA DE INDUCCIÓN. 131 A.4 CASO DE PRUEBA DEL AEROGENERADOR. 133 A.5 CASO DE PRUEBA DEL ARREGLO DE PANALES SOLARES 135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL 143 B.1 CONDICIÓN ÍNICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO. 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 148 APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS 156 REFERENCIAS 161	A.1 Alimentador de Prueba del IEEE de 34 Nodos	119
A.3 CASO DE PRUEBA DE LA MÁQUINA DE INDUCCIÓN 131 A.4 CASO DE PRUEBA DEL AEROGENERADOR 133 A.5 CASO DE PRUEBA DEL ARREGLO DE PANALES SOLARES 135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL 143 B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 148 APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS 156 REFERENCIAS 161	A.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS	123
A.4 CASO DE PRUEBA DEL AEROGENERADOR. 133 A.5 CASO DE PRUEBA DEL ARREGLO DE PANALES SOLARES 135 APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL 143 B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO. 143 B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO 148 APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS 156 REFERENCIAS 161	A.3 Caso de Prueba de la Máquina de Inducción	
A.5 CASO DE PRUEBA DEL ARREGLO DE PANALES SOLARES	A.4 Caso de Prueba del Aerogenerador	133
APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL	A.5 Caso de Prueba del Arreglo de Panales Solares	135
B.1 CONDICIÓN INICIAL DEL ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO	APÉNDICE B: RESULTADOS DE LA HERRAMIENTA COMPUTACIONAL	
B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO Y OPTIMIZADO	B.1 Condición Inicial del Alimentador de Prueba del IEEE de 123 Nodos Modificado	
APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE – HACIA ATRÁS 	B.2 ALIMENTADOR DE PRUEBA DEL IEEE DE 123 NODOS MODIFICADO Y OPTIMIZADO	148
	APÉNDICE C: DESCRIPCIÓN DETALLADA DEL ALGORITMO DE BARRIDO HACIA ADELANTE -	- HACIA ATRÁS
REFERENCIAS		
	REERENCIAS	161

Índice de Tablas

Tabla 3.1 Perfil de Voltaje obtenido con el algoritmo de solución para el Alimentador de Prueba
del IEEE de 13 Nodos
Tabla 3.2 Perfil de Voltaje del Alimentador de Prueba del IEEE de 13 Nodos. 94
Tabla 3.3 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el
Alimentador de Prueba del IEEE de 13 Nodos
Tabla 3.4 Resumen de Flujos de Potencia del Alimentador de Prueba del IEEE de 13 Nodos 96
Tabla 3.5 Error relativo porcentual y características de convergencia para el Alimentador de
Prueba del IEEE de 13 Nodos
Tabla 3.6 Error relativo porcentual y características de convergencia para el Alimentador de
Prueba del IEEE de 34 Nodos
Tabla 3.7 Error relativo porcentual y características de convergencia para el Alimentador de
Prueba del IEEE de 123 Nodos
Tabla 3.8 Perfil de Voltaje obtenido con el algoritmo de solución para el Caso de Prueba de la
máquina de inducción
Tabla 3.9 Perfil de Voltaje proporcionado por [30] para el Caso de Prueba de la máquina de
inducción
Tabla 3.10 Error relativo porcentual y características de convergencia para el Caso de Prueba de
la Máquina de Inducción
Tabla 3.11 Características de convergencia del Caso de Prueba del Aerogenerador. 104
Tabla 3.12 Curva Potencia VS Temperatura del Arreglo de Paneles Solares. 106
Tabla 3.13 Curva Eficiencia VS Potencia Entrante del Inversor. 106
Tabla 3.14 Error relativo porcentual para el Caso de Prueba de los Arreglos de Paneles Solares
como Potencia Aparente Cosntante
Tabla 3.15 Error relativo porcentual para el Caso de Prueba de los Arreglos de Paneles Solares
como Impedancia Constante
Tabla 3.16 Resultados de las pruebas de la sección 3.1. 107
Tabla 3.17 Resumen de Flujos de Potencia de la Condición Inicial del Alimentador del IEEE de 13
Nodos Modificado
Tabla 3.18 Perfil de Voltaje de la Condición Inicial del Alimentador del IEEE de 13 Nodos
Modificado
Tabla 3.19 Flujos de Potencia Parcial de la Condición Inicial del Alimentador del IEEE de 13 Nodos
Modificado
Tabla 3.20 Valores de Convergencia para la Condición Inicial del Alimentador del IEEE de 13
Nodos Modificado
Tabla 3.21 Información de los Reguladores de Voltaje del Alimentador del IEEE de 13 Nodos
Modificado y Optimizado
Tabla 3.22 Resultados de los Límites de Corriente del Alimentador del IEEE de 13 Nodos
Modificado y Optimizado

Tabla 3.23 Resumen de Flujos de Potencia Óptimos del Alimentador del IEEE de 13 Nodos
Modificado
Tabla 3.24 Perfil de Voltaje del Alimentador del IEEE de 13 Nodos Modificado y Optimizado. 113
Tabla 3.25Resumen de la Reducción de Carga del Alimentador del IEEE de 13 Nodos Modificado
y Optimizado. 113
Tabla 3.26 Reducción de Carga del Alimentador del IEEE de 13 Nodos Modificado y Optimizado.
Tabla 3.27 Valores de Convergencia para el Alimentador del IEEE de 13 Nodos Modificado y
Optimizado
Tabla 3.28 Valores de Convergencia para el Alimentador del IEEE de 123 Nodos Modificado 115
Tabla 3.29 Valores de Convergencia para el Alimentador del IEEE de 123 Nodos Modificado y
Optimizado
Tabla A.1 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el
Alimentador de Prueba del IEEE de 34 Nodos119
Tabla A.2 Resumen de Flujos de Potencia del Alimentador de Prueba del IEEE de 34 Nodos 120
Tabla A.3 Perfil de Voltaje obtenido con el algoritmo de solución para el Alimentador de Prueba
del IEEE de 34 Nodos
Tabla A.4 Perfil de Voltaje del Alimentador de Prueba del IEEE de 34 Nodos. 122
Tabla A.5 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el
Alimentador de Prueba del IEEE de 123 Nodos. 123
Tabla A.6 Resumen de Flujos de Potencia del Alimentador de Prueba del IEEE de 123 Nodos. 124
Tabla A.7 Perfil de Voltaje obtenido con el algoritmo de solución para el Alimentador de Prueba
del IEEE de 123 Nodos
Tabla A.8 Perfil de Voltaje del Alimentador de Prueba del IEEE de 123 Nodos. 128
Tabla A.9 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el Caso de
Prueba de la Máquina de Inducción
Tabla A.10 Resumen de Flujos de Potencia proporcionado por [30] para el Caso de Prueba de la
Máquina de Inducción
Tabla A.11 Perfil de Voltaje obtenido con el AS para el Caso de Prueba del Aerogenerador 133
Tabla A.12 Resumen de Flujos de Potencia obtenido con el AS para la Prueba del Aerogenerador.
Tabla A.13 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el Caso de
Prueba del Arregio de Paneles Solares modelado como Potencia Aparente Constante
Tabla A.14 Resumen de Flujos de Potencia obtenido con OpenDSS para el Caso de Prueba del
Arreglo de Paneles Solares modelado como Potencia Aparente Constante
Tabla A.15 Perfil de Voltaje obtenido con el AS para el Caso de Prueba del Arreglo de Paneles
Solares modelado como Potencia Aparente Constante
Tabla A.16 Perfil de Voltaje obtenido con OpenDSS para el Caso de Prueba del Arreglo de
Paneles Solares modelado como Potencia Aparente Constante
Tabla A.17 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el Caso de
Prueba del Arregio de Paneles Solares modelado como Impedancia Constante

Tabla A.18 Resumen de Flujos de Potencia obtenido con OpenDSS para el Caso de Prueba del	
Arregio de Paneles Solares modelado como Impedancia Constante1	40
Tabla A.19 Perfil de Voltaje obtenido con el AS para el Caso de Prueba del Arreglo de Paneles	
Solares modelado como Impedancia Constante	41
Tabla A.20 Perfil de Voltaje obtenido con OpenDSS para el Caso de Prueba del Arreglo de	
Paneles Solares modelado como Impedancia Constante.	42
Tabla B.1 Resumen de Flujos de Potencia Óptimos del Alimentador del IEEE de 123 Nodos	
Modificado.	43
Tabla B.2 Flujos de Potencia Parcial de la Condición Inicial del Alimentador del IEEE de 123	
Nodos Modificado.	44
Tabla B.3 Perfil de Voltaje de la Condición Inicial del Alimentador del IEEE de 123 Nodos	
Modificado1	44
Tabla B.4 Perfil de Voltaje de la Condición Inicial del Alimentador del IEEE de 123 Nodos	
Modificado.	48
Tabla B.5 Información de los Reguladores de Voltaje del Alimentador del IEEE de 123 Nodos	
Modificado y Optimizado.	51
Tabla B.6 Resumen de Flujos de Potencia Óptimos del Alimentador del IEEE de 123 Nodos	
Modificado.	52
Tabla B.7 Resumen de la Reducción de Carga del Alimentador del IEEE de 123 Nodos Modificad	0
y Optimizado1	53
Tabla B.8 Reducción de Carga del Alimentador del IEEE de 123 Nodos Modificado y Optimizado	•
	53
Tabla B.9 Resultados de los Límites de Corriente del Alimentador del IEEE de 123 Nodos	
Modificado y Optimizado.	55

Índice de Figuras

Figura 1.1 Sistema avanzado para el manejo de redes de distribución activas (adaptada de [2]).
	15
Figura 2.1 Mayoría de los componentes del sistema de potencia [1]	22
Figura 2.2 Subestación de distribución simple [1].	23
Figura 2.3 Alimentador de distribución simple [1]	25
Figura 2.4 Conductores y sus imágenes [1].	26
Figura 2.5 Segmento de línea de cuatro hilos con neutro aterrizado [1].	28
Figura 2.6 Modelo de segmento de línea [1].	30
Figura 2.7 Campo eléctrico de un conductor redondo cargado [1].	31
Figura 2.8 Arreglo de conductores redondos [1].	31
Figura 2.9 Conductores y sus imágenes [1].	32
Figura 2.10 Disposición trifásica subterránea con neutro adicional [1].	35
Figura 2.11 Cable con neutro concéntrico [1]	36
Figura 2.12 Espaciamiento de una disposición trifásica de cables con neutro concéntrico [1]	37
Figura 2.13 Cable con cinta bloqueadora [1].	38
Figura 2.14 Cable con neutro concéntrico básico [1].	39
Figura 2.15 Cable con cinta bloqueadora [1].	42
Figura 2.16 Modelo del segmento de línea trifásico [1].	42
Figura 2.17 Regulador de Voltaje a Pasos tipo B [1].	48
Figura 2.18 Circuito de Control del SRV [1].	48
Figura 2.19 Reguladores tipo B conectados en estrella [1]	49
Figura 2.20 Banco de transformadores trifásico general [1].	51
Figura 2.21 Conexión estándar delta-estrella aterrizada con voltajes [1]	52
Figura 2.22 Conexión estándar delta-estrella aterrizada con corrientes [1]	53
Figura 2.23 Conexión estándar estrella no aterrizada – delta con fasores de voltaje y corriente	e de
secuencia positiva [1].	54
Figura 2.24 Conexión estrella aterrizada –estrella aterrizada [1]	55
Figura 2.25 Conexión delta – delta [1].	56
Figura 2.26 Conexión estrella abierta – delta abierta usando las fases A y B del lado primario	[1].
	57
Figura 2.27 Carga conectada en estrella [1].	59
Figura 2.28 Carga conectada en delta [1].	61
Figura 2.29 Banco de capacitores conectados en estrella [1].	64
Figura 2.30 Banco de capacitores conectados en delta [1].	65
Figura 2.31 Redes de secuencia de las redes de secuencia [27].	65
Figura 2.32 Diagrama de flujo para encontrar la corriente de carga del motor al conocer la	
potencia mecánica del eje y desconocer el deslizamiento.	69
Figura 2.33 Modelo del Aerogenerador [27].	70
Figura 2.34 Diagrama de flujo para encontrar la corriente de generación del aerogenerador.	72

Figura 2.35 Diagrama de bloques del Modelo del Elemento PVSystem de OpenDSS.	73
Figura 2.36 Forma típica de las curvas i-v para valores diferentes de irradiación para una	
temperatura constante, con los puntos de máxima potencia indicados.	74
Figura 2.37 Ejemplo de variación Potencia-Temperatura para una irradiación de 1 kW/m ² .	75
Figura 2.38 Eficiencia vs Potencia Entrante al Inversor en p.u.	76
Figura 2.39 Diagrama de flujo del método de barrido hacia adelante – hacia atrás	78
Figura 2.40 Diagrama de Flujo de los Flujos de Potencia Óptimos [28].	87
Figura 2.41 Diagrama de flujo del proceso realizado por el algoritmo de solución	90
Figura 2.42 Diagrama de flujo del proceso realizado por la herramienta computacional	91
Figura 3.1 Diagrama Unifilar del Alimentador de Prueba del IEEE de 13 Nodos	93
Figura 3.2 Perfil de Voltaje para el Alimentador de Prueba del IEEE de 13 Nodos	94
Figura 3.3 Diagrama Unifilar del Alimentador de Prueba del IEEE de 34 Nodos	97
Figura 3.4 Perfil de Voltaje para el Alimentador de Prueba del IEEE de 34 Nodos	98
Figura 3.5 Diagrama Unifilar del Alimentador de Prueba del IEEE de 123 Nodos	100
Figura 3.6 Diagrama Unifilar del Caso de Prueba de la Máquina de Inducción.	100
Figura 3.7 Perfil de Voltaje para el Caso de Prueba de la Máquina de Inducción	101
Figura 3.8 Diagrama Unifilar del Alimentador de Prueba del IEEE de 34 nodos con dos	
aerogeneradores [27]	102
Figura 3.9 Potencia Real Inyectada por los Aerogeneradores.	104
Figura 3.10 Diagrama Unifilar del Alimentador de Prueba del IEEE de 34 Nodos con dos arr	eglos
de Paneles Solares.	105
Figura 3.11 Alimentador del IEEE de 13 nodos modificado.	108
Figura 3.12 Diagrama Unifilar del Alimentador del IEEE de 123 Nodos Modificado.	115
Figura C.1 Alimentador simple	156
Figura C.2 Niveles del Alimentador Simple	156
Figura C.3 Nomenclatura del ramal al analizar un nodo.	157

Capítulo 1: Introducción

1.1 Antecedentes

Desde un punto de vista tradicional las redes eléctricas de distribución son las encargadas de transportar y suministrar la energía eléctrica a los consumidores finales. En este sentido, las redes de distribución se encuentran en la penúltima etapa del proceso de generación, transmisión, distribución y consumo de la energía eléctrica. A pesar de su importancia en dicho proceso, su análisis, operación y control han sido estandarizados y efectuados por medio de sistemas para el manejo de sistemas de distribución (DMS por sus siglas en inglés) que dependen fuertemente de la gran experiencia, práctica común e intervención manual de los operadores [1]. No obstante a la gran intervención de los operadores (factor humano), los DMS se pueden considerar como el cerebro de los sistemas de distribución y en la actualidad algunas de las funciones (aplicaciones) que efectúan son las siguientes [2],

• Detección de fallas, aislamiento y restauración del sistema (Fault Detection, Isolation, and Service Restoration, FDIR). Está función está diseñada para mejorar la confiabilidad del sistema.

• Control integrado de voltaje/potencia reactiva (Integrated Voltage/Var Control, IVVC). Esta función tiene tres objetivos básicos: reducir las pérdidas en los alimentadores mediante la (des-)energización de bancos de capacitores, control de la posición de taps de los reguladores y transformadores. Lo cual pretende mantener un perfil de voltaje adecuado (dentro de límites).

• El procesador de topología (Topology Processor, TP). Esta función se ejecuta fuera de línea (offline) y determina la topología de la red y conectividad, lo cual es útil para para otras aplicaciones de la DMS.

• Análisis de flujos de potencia (Distribution Power Flow, DPF). Esta función evalúa la condición de operación de estado estacionario para diferentes escenarios de operación. Es una función medular del DMS, sus resultados son utilizados por otras funciones del DMS.

• Modelado de carga/estimación de carga (Load Modeling/Load Estimation, LM/LE) El LM/LE utiliza toda la información disponible de la red de distribución para estimar de manera precisa la energía demandada (carga) en los puntos de consumo. La efectividad de la entera DMS reside en la exactitud de los datos proveídos por el LM/LE. • Reconfiguración óptima de la red (Optimal Network Reconfiguration, ONR). Determina la reconfiguración óptima de la red de distribución para minimizar las pérdidas de energía, mantener perfiles de voltaje óptimos, etc.

• Análisis de contingencia (Contingency Analysis, CA). Su objetivo es determinar las condiciones de operación de pos-contingencia para un conjunto hipotético de contingencias. A partir de sus resultados los operadores diseñan y ejecuta acciones de control preventivas para reducir los efectos adversos.

• Análisis de corto circuito (Short-Circuit Analysis, SCA). Esta función se ejecuta fuera de línea para calcular la corriente de corto circuito para condiciones de falla hipotética con la finalidad de evaluar los posibles impactos de una falla en la red. El SCA después verifica las características de protección y operación de los relevadores, y recomiendan características de relevadores más exactas o configuración de la red.

• Colocación óptima de capacitores/colocación óptima de reguladores de voltaje (Optimal Capacitor Placement/Optimal Voltage Regulator Placement, OCP/OVP). Es una función fuera de línea que determina la localización óptima de bancos de capacitores y reguladores de voltaje para un control efectivo de potencia reactiva y del perfil de voltaje.

Sin embargo, en la actualidad los sistemas de distribución tienden a operar en un contexto de redes eléctricas inteligentes, las cuales se caracterizan por atributos tales como la disposición de mediciones eléctricas a partir de infraestructuras de medición avanzadas (AMI), penetración de tecnologías avanzadas para la comunicación de datos, automatización de sistemas de protección adaptivos, estrategias automatizadas para la operación y control, integración de fuentes de generación distribuida (DG), integración de sistemas para el almacenamiento de la energía, entre otros [3]. Es importante notar que la integración de fuentes de generación distribuida implica una transformación de los sistemas de distribución tradicionales a redes de distribución activas, en las que el flujo energético puede ser bidireccional; de la fuente hacia la carga y viceversa. En congruencia con esta modernización, se identifica la necesidad de desarrollar sistemas avanzados para el manejo de sistemas de distribución que integran en su infraestructura nuevas tecnologías, como se ilustra en la Figura 1.1 [2]. La Figura 1.1 muestra que los DMS convencionales deben adoptar un gran número de nuevas funciones que permitan operar el conservation modernos.

Las nuevas funciones que se espera desempeñen los DMS son el manejo de los datos de medición, control de generadores distribuidos, manejo de sistemas de almacenamiento, etc. Se hace notar que una de las nuevas funciones es la optimización de la demanda. Esto se debe a que en un contexto de redes inteligentes las redes de distribución activas integran generación distribuida, pero además abastecen consumidores cuya demanda de potencia puede ser regulada por el DMS con la finalidad de cumplir alguno de los siguientes dos objetivos; 1) mitigar problemas operativos o 2) lograr el aprovechamiento óptimo de la energía. Desde el punto de vista del primer

objetivo, la función de optimización de la demanda del DMS debe determinar la regulación óptima de la demanda con la finalidad de mitigar problemas operativos. Este es el aspecto en que se enfoca el presente trabajo.

Figura 1.1 Sistema avanzado para el manejo de redes de distribución activas (adaptada de [2]).

1.2 Optimización de la operación de redes de distribución

La modernización de las redes de distribución motiva el presente trabajo, el cual incide directamente en la función del DMS encargada de la optimización de la demanda para mitigar problemas operativos. Desde esta perspectiva, la optimización de la operación de estado estacionario de redes de distribución activas consiste en determinar la condición de operación óptima que minimiza la reducción de la demanda y mitiga sobrecargas en los componentes del sistema. Consecuentemente, el problema abordado se enmarca en el en el concepto de flujos de potencia óptimos (optimal power flow, OPF)[4].

El concepto de OPF fue introducido en los 1960's y fue enfocado principalmente a optimizar la operación de sistemas de potencia [4]. Es importante mencionar que el problema de OPF para sistemas de potencia considera condiciones de perfecto balance en las fases. Tal que el sistema de potencia se representa por medio de un modelo de secuencia positiva y frecuencia fundamental [5]. Sin embargo, a diferencia de los sistemas

de transmisión, la mayoría de las redes de distribución son de topología radial, no contienen una gran diversidad de fuentes de energía despachables (con capacidad de regular la generación de potencia eléctrica), contemplan diversidad en cuanto a la cantidad de fases, omiten la transposición de líneas de transmisión y operan predominantemente bajo condiciones de substancial desbalance [1], [6]–[8]. Por lo tanto, si se desea determinar con precisión su condición de operación óptima, el sistema de distribución debe representarse por medio de un modelo en el dominio de las fases. A continuación de describen trabajos representativos en los que se aborda la optimización de la operación de sistemas de distribución desde varias perspectivas.

En [9] se presenta una metodología de OPF trifásicos (TOPF o Three Phase Optimal Power Flow) desbalanceados para DMS en una red inteligente. En esta propuesta, las variables de control del problema de optimización son la demanda de potencia activa. La metodología está basada en el método Quasi-Newton y se acopla la herramienta OpenDSS para realizar el análisis de flujo de carga trifásico desbalanceado [10]. La herramienta OpenDSS es de código abierto y realiza la solución de flujos por medio de una formulación en inyecciones de corriente. La estrategia se implementó en MATLAB[®], el acoplamiento del método Quasi-Newton y OpenDSS se hace a través de la interfaz Component Objet Model (COM) proporcionada por OpenDSS.

En [11] se presenta una metodología para la reconfiguración de una red de distribución por medio de una metodología de OPF basado en un enfoque Descomposición de Bender. El objetivo del trabajo es minimizar las pérdidas de potencia, balanceando la carga de los alimentadores y sujeta a las restricciones: límite de la capacidad en las líneas, límites mínimo y máximo de la subestación o generador, mínima desviación de los voltajes nodales y la operación radial de la red. Se utiliza una variante del algoritmo de la descomposición de Bender para resolver el problema, tal que se formula un problema maestro y problema esclavo. El problema maestro es formulado como una programación cuadrática entera mixta para tener la posibilidad de representar el estado de los interruptores por medio de variables binarias. El problema esclavo se formula y resuelve como un problema de FPO, mediante el cual se determina la factibilidad y optimalidad de cada combinación de los estados de los interruptores determinada por el problema maestro.

En [12] se enfatiza el gran interés que ha surgido en la introducción de un gran número de fuentes pequeñas de distribución y almacenamiento a nivel de distribución y en manejo óptimo de éstas, ya que es un tópico que no se ha abordado suficientemente. Proponen una estrategia de manejo óptimo para sistemas de distribución con unidades de DG. Para este fin, utilizan un algoritmo que descompone el problema en dos componentes: 1) despacho económico de la energía y sistemas auxiliares basados en precios del mercado y 2) minimización de pérdidas considerando el impacto de bancos de capacitores. Utilizan un algoritmo combinando programación cuadrática y seccionada para encontrar la solución. En [13] se discuten las propiedades de la herramienta OPF y cómo estas propiedades pueden ser adaptadas y aplicadas en un ambiente en tiempo real para resolver problemas de control de flujo de potencia en redes de distribución activas. En este caso, el problema de optimización también se realiza de manera secuencial; iterando la solución de flujos de potencia con un método de optimización lineal. En particular, resuelven un problema de OPF considerando generación distribuida, donde asignan prioridades a las unidades DG para aportar o dejar de aportar energía cuando una línea está sobrecargada. Aunque el trabajo lo enfocan a ser aplicado en tiempo real, los autores destacan que hay muchas consideraciones que no se abordaron y que deben considerarse para lograrlo.

En [14] se propone una formulación para análisis de flujos de potencia óptimos flexibles en una red de distribución, basado en una técnica capaz de determinar la máxima capacidad conectable de generación renovable (variable) bajo un esquema de administración de redes activas (ANM o Active Network Management). Se incluye el control coordinado de voltaje, control de factor de potencia adaptativo, y corte de energía. Enfatizan que en la mayoría de los casos, el factor limitante para lograr la maximización de la integración de la energía renovable fue el límite térmico de los transformadores en los nodos de conexión de los generadores distribuidos.

En [15] se presenta una solución de OPF enfocado en maximizar la salida de potencia real de las fuentes de generación distribuida, considerando a la vez restricciones de pérdidas en redes de distribución radiales y malladas. El problema OPF se considera como un problema de programación no lineal multi-objetivo, donde se pondera mediante pesos la salida de potencia activa de las unidades de generación distribuida. Las pérdidas son representadas mediante aproximaciones lineales y resueltas por el método de punto interior. El trabajo se enfoca en mantener la velocidad de convergencia y exactitud. Evalúan el método en dos redes de distribución, una en malla y otra radial. El trabajo agrega penalizaciones para la DG por pérdidas de energía, y así prueban tres casos distintos, maximizando generación, minimizando pérdidas y la dual que maximiza generación y minimiza pérdidas al mismo tiempo.

En [16] se utiliza un OPF multi-periodo (o despacho de un día en adelanto) para determinar el manejo óptimo de la energía proveniente de unidades de generación distribuida. En dicho trabajo, se busca minimizar las pérdidas de energía del sistema. En adición, incluyen control coordinado de voltaje y el control del factor de potencia de las unidades de generación distribuida. Investigan la relación entre pérdidas de energía y mayor capacidad de generación. Se demuestra que si solamente se enfoca en minimizar las pérdidas de energía se tiende a comprometer la capacidad de generación que puede ser conectada a las redes de distribución. En este trabajo y en [14], los autores consideran únicamente la integración de energía eólica.

En [17] se emplea un método hibrido de algoritmos genéticos y OPF que pretende enfocarse en la capacidad para colocar y dimensionar eficientemente un número predefinido de unidades de generación distribuida. Esto con la finalidad de recomendar a los operadores del sistema de distribución el mejor sitio, y capacidades disponibles, para conectar estratégicamente un número definido de unidades de generación distribuida. La estrategia OPF maximiza la ganancia, beneficio o incentivo. Sus resultados demuestran que a mayor número de unidades de generación mayor energía puede ser aprovechada, pero también a mayor número de unidades habrá muchas más pérdidas. El algoritmo inserta el número de unidades de DG que se quieran y puede ser utilizado para una buena planificación por parte de los operadores del sistema de distribución.

En [18] se propone una estrategia para resolver el problema de OPF para sistemas trifásicos desbalanceados. En esta estrategia, el problema de optimización se formula en inyecciones de potencia y resuelve de manera unificada: es decir, para cada nodo del sistema se plantean tres ecuaciones de balance de potencia activa y tres ecuaciones de balance de potencia reactiva (una por cada fase).

Es importante mencionar que las propuestas reportadas en [11]-[17] contemplan únicamente modelos monofásicos de las redes de distribución, lo cual dista de la diversidad de fases y desbalance existente en sistemas de distribución reales. Por otra parte, los trabajos reportados en [9], [18] consideran modelos que tienen la capacidad de representar redes eléctricas con diversidad en la cantidad de fases y condiciones de desbalance. La propuesta reportada en [9], sin embargo, se limita a mitigar la sobrecarga del alimentador principal del sistema de distribución. En esta propuesta el proceso de optimización para mitigar la sobrecarga del alimentador principal se realiza de manera secuencial de acuerdo a una estrategia de búsqueda lineal (muy parecida al algoritmo de máximo descenso [19]). En este proceso de optimización secuencial, por cada variable de decisión de problema de optimización se debe ejecutar una simulación completa de flujos de potencia utilizando la herramienta denominada OpenDSS. Esto último con la finalidad de evaluar por medio de diferencias finitas el gradiente de la función objetivo a optimizar. En este sentido, manipular la sobrecarga de varios elementos del sistema de distribución a la vez por medio de dicha propuesta podría resultar ineficiente o no factible. Además, debido al proceso secuencial, su extensión para la solución del problema del manejo de la energía en un contexto de "look ahead [20]" podría resultar considerablemente complicada. En [18], el problema de optimización se resuelve mediante el método de Newton, pero utilizan una estrategia heurística para manipular las restricciones de desigualdad. En adición, la dimensión del problema de optimización se incrementa drásticamente por la consideración del modelo trifásico.

En este trabajo se propone desarrollar una herramienta que permita optimizar la operación de la red de distribución en base a una estrategia de optimización unificada en la que se acoplan el método de punto interior (Interior Point Method, IPM) [21] y el algoritmo de barrido hacia adelante y hacia atrás (Forward-Backward Sweep algorithm, FBS) [1]. Por un lado, es importante destacar que el método de punto interior ha probado ser robusto y eficiente en la solución de modelos de optimización asociados a problemas en el contexto de OPF. Por otro lado, en contraste a los métodos clásicos para el análisis de estado estacionario de redes eléctricas, el algoritmo FBS no requiere de la evaluación de un Jacobiano; cuya singularidad y dominancia diagonal son afectadas por la elevada relación R/X y por la topología radial de los sistemas de distribución [8]. En este contexto,

el método FBS es generalmente más robusto y rápido (eficiente) en la determinación de la condición de estado estacionario de sistemas de distribución que incluso el tradicional método de Newton-Raphson [22], [23]. En adición, el método FBS está diseñado para el análisis de sistemas de distribución estrictamente radiales. Sin embargo, utilizando los métodos de compensación propuestos en [6], [24], [25] también puede utilizarse para analizar sistemas de distribución ligeramente mallados. Por último, el método de FBS ha demostrado su robustez para el análisis de sistemas de distribución que contienen una gran diversidad en cuanto a la cantidad de fases, sin transposición de líneas de transmisión y que operan predominantemente bajo condiciones de sustancial desbalance. Debido a estas características, los métodos IPM y FBS son acoplados para desarrollar la herramienta objeto de este trabajo.

Por último, debido a las características predominantes de las redes de distribución reales, el trabajo contempla abordar un modelo de red de distribución con diversidad en la cantidad de fases y condiciones de operación desbalanceadas. Los componentes del sistema de distribución a considerar son líneas de transmisión (aéreas y subterráneas no transpuestas), transformadores convencionales, transformadores con tap variante bajo carga, reguladores de voltaje y fuentes de generación distribuida (paneles solares y generadores eólicos).

1.3 Objetivos

Objetivo General:

Desarrollar una herramienta computacional flexible en Matlab[®] que asista en la optimización de la operación de estado estado estacionario de redes de distribución activas para mitigar problemas de sobre carga de alimentadores, sobre voltajes y bajos voltajes nodales de dichas redes de distribución.

Objetivos Específicos:

- Formular modelos matemáticos de componentes para el análisis de estado estacionario de redes de distribución activas.
- Implementar en un programa computacional el algoritmo de barrido hacia adelante y atrás para el análisis de estado estacionario de redes de distribución activas.
- Formular el modelo matemático para la optimización de redes de distribución activas.
- Implementar computacionalmente el modelo asociado a la optimización de redes de distribución activas para su solución por medio del método de punto interior.
- Desarrollar un manual de usuario para describir la estructura, flexibilidad y estrategia de uso de la herramienta computacional desarrollada.

1.4 Justificación

Desde sus inicios las redes de distribución de energía eléctrica han operado en un contexto de redes pasivas, es decir, bajo la consideración de que el flujo energético tiene un sentido unidireccional; desde el sistema (fuente) hacia el punto de consumo (carga). Sin embargo, la integración de fuentes de generación distribuida implica una transformación de los sistemas de distribución tradicionales a redes de distribución activas, en las que el flujo energético es bidireccional. En adición, los sistemas de distribución modernos contemplan la inclusión de nueva infraestructura y su operación y control debe realizarse en un contexto de redes inteligentes. Consecuentemente, el sistema para el manejo de la red de distribución (DMS) debe actualizarse para desarrollar nuevas funciones. Una de las nuevas funciones que el DMS debe efectuar es la optimización de la demanda. Esta función del DMS debe regular la demanda con la finalidad de mitigar problemas operativos o para lograr el aprovechamiento óptimo de la energía. Desde el punto de vista de la mitigación de problemas operativos, la función de optimización de la demanda del DMS debe determinar la regulación óptima de la demanda con la finalidad de mitigar problemas que afectan la adecuada operación de los componentes de la red de distribución. Esta función está enfocada entonces a la optimización de la operación de estado estacionario de la red eléctrica de distribución.

Teniendo en mente lo anterior, en este trabajo se formula e implementa una herramienta que determina (diseña) la condición óptima de operación de estado estacionario de redes de distribución activas. Esta condición óptima minimiza la reducción de la potencia entregada a los usuarios (optimiza la demanda), pero a la vez garantiza que los componentes del sistema operan con un perfil de voltaje adecuado y dentro de sus límites admisibles de corriente. Debido a su robustez, el IPM y el algoritmo de barrido hacia adelante y hacia atrás FBS se acoplan para resolver el modelo de optimización asociado al problema abordado en este trabajo.

1.5 Estructura del trabajo

El presente trabajo de tesis se encuentra organizado en cuatro capítulos, los cuales se describen brevemente a continuación:

Capítulo I. En el primer capítulo se proporciona la introducción del trabajo presentado. Se exponen los objetivos planteados para el trabajo, así como los motivos y justificación del mismo.

Capítulo II. El segundo capítulo describe el modelado matemático de los componentes de redes de distribución activas, así como la formulación del problema de optimización y la estrategia utilizada para su solución. Así mismo, se describe la implementación computacional de la herramienta desarrollada.

Capítulo III. El tercer capítulo presenta los resultados numéricos obtenidos de la aplicación de la herramienta desarrollada para el estudio de casos que contemplan sistemas de distribución estandarizados por el IEEE, así como modificaciones de dichos sistemas para incluir generación distribuida.

Capítulo IV. Finalmente, se presentan las conclusiones resultantes del trabajo de investigación realizado en este trabajo de tesis.

Capítulo 2: Formulación para la Optimización de Redes de Distribución

2.1 Introducción

El presente capítulo inicia describiendo los componentes de un sistema de distribución clásico. Posteriormente, se presentan los modelos en el dominio de las fases de las líneas de transmisión (segmentos de alimentador), reguladores de voltaje, transformadores y cargas. Enseguida, se proporcionan los modelos de fuentes renovables de generación distribuida; aerogenerador y del panel solar. Estos modelos son expresados en tal forma que su incorporación en el algoritmo de barrido hacia adelante y hacia atrás (FBS) es directa. Se presenta entonces el algoritmo FBS para la solución de flujos de potencia de sistemas de distribución. Esto último permite establecer restricciones a ser consideradas en el modelo de optimización. Finalmente, se describe el método de punto interior para fines de establecer la estrategia de solución del modelo de optimización a través de la herramienta computacional desarrollada.

2.2 Conceptos básicos de sistemas de distribución

La mayoría de los sistemas eléctricos de potencia se dividen en tres secciones: la generación, transmisión y distribución, en ocasiones algunos sistemas cuentan con una cuarta sección que es la subtransmisión, la cual se podría considerar como una subsección de la transmisión, debido a que tienen una operación y control muy similar, este esquema del sistema eléctrico de potencia se muestra en la Figura 2.1. El sistema de distribución inicia con la subestación de distribución que es alimentada por una o más líneas de subtransmisión, o en algunos casos es alimentada directamente por una línea de transmisión en alto voltaje. Cada subestación de distribución alimenta a uno o varios alimentadores primarios los cuales son radiales, es decir, que solo existe un camino para el flujo de potencia desde la compañía suministradora hasta el usuario final [1].

Figura 2.1 Mayoría de los componentes del sistema de potencia [1].

Figura 2.2 Subestación de distribución simple [1].

2.3 Subestaciones de Distribución

Un diagrama unifilar muy simple de una subestación de distribución se muestra en la Figura 2.2, el cual contiene la mayoría de los componentes encontrados en toda subestación [1].

1. Interrupción del lado de alta y del lado de baja tensión: En la Figura 2.2 la interrupción del lado de alta tensión se realiza con una simple cuchilla. Las subestaciones más grandes pueden utilizar interruptores de alto voltaje en diferentes diseños de bus. La interrupción del lado de baja tensión en la figura es llevado a cabo con interruptores controlados por relevador. En muchos casos los reconectadores serán usados en lugar de una combinación interruptor/relevador. Algunos diseños de subestación incluirán un interruptor del bus de bajo voltaje en adición a los interruptores de cada alimentador. Como es el caso con el bus de alto voltaje, el bus de bajo voltaje puede tener diferentes diseños.

2. Transformación de voltaje: La función primaria de la subestación de distribución es reducir el voltaje a un nivel de voltaje de distribución. En la Figura 2.2 solo se muestra un transformador. Otros diseños de subestación contendrán dos o más transformadores trifásicos. Los trasformadores de la subestación pueden ser unidades trifásicas o unidades monofásicas conectadas en una conexión estándar. Hay distintos niveles de voltaje de distribución, algunos de los más comunes son 34.5 kV, 23.9 kV, 14.4 kV, 13.2 kV, 12.47 kV.

3. Regulación de voltaje: Ya que la carga en los alimentadores varía, la caída de voltaje entre la subestación y el usuario también lo hará. Para mantener los voltajes del usuario dentro de un rango aceptable, el voltaje en la subestación necesita cambiar

cuando la carga cambie. En la Figura 2.2 el voltaje es regulado por un regulador a pasos que modificará el voltaje ±10% en el bus del lado de bajo voltaje. Algunas veces esta función es llevada a cabo con un transformador de taps con carga (LTC – Load Tap Changing). Los LTC cambian los taps en los devanados de bajo voltaje del transformador cuando la carga varía. Muchos transformadores de la subestación tendrán taps fijos en los devanados del lado de alto voltaje. Estos son utilizados cuando el voltaje de la fuente está por arriba o por debajo del voltaje nominal. Los ajustes del tap fijo pueden modificar el voltaje ±5%. Muchas veces, en lugar de un regulador de bus, cada alimentador tendrá su propio regulador. Este puede estar en forma de un regulador trifásico o de reguladores monofásicos que operan independientemente.

4. Protección: La subestación debe estar protegida contra la ocurrencia de un corto circuito. En el diseño simple de la Figura 2.2, la protección automática contra corto circuitos dentro de la subestación se realiza con fusibles en el lado de alto voltaje del transformador. Ya que los diseños de las subestaciones son cada vez más complejos, esquemas de protección más extensos serán empleados para proteger el transformador, los buses de alto y bajo voltaje, y cualquier otro equipo. Los interruptores y reconectadores de los alimentadores individuales son utilizados para proveer interrupción de corto circuitos que ocurran fuera de la subestación.

5. Medición: Cada subestación tiene alguna forma de medición. Ésta puede ser tan simple como un amperímetro analógico desplegando el valor actual de la corriente de la subestación, tanto como las corrientes mínima y máxima que han ocurrido en un periodo de tiempo específico. Los medidores digitales se han vuelto muy comunes. Éstos medidores registran los valores mínimo, máximo y promedio de corriente, voltaje, potencia, factor de potencia, etc. Para un rango de tiempo especificado. Típicamente los rangos de tiempo son de 15 minutos, 30 minutos y 1 hora. Los medidores digitales pueden monitorear la salida de cada transformador de la subestación y/o la salida de cada alimentador.

2.4 Alimentadores Radiales

Los alimentadores de distribución radial se caracterizan por tener solo un camino para el flujo de potencia desde la fuente (subestación de distribución) a cada cliente. Un sistema de distribución típico estará compuesto por una o más subestaciones de distribución compuestas a su vez por uno o más alimentadores. Los componentes del alimentador pueden constituirse de lo siguiente [1]:

- 1. Alimentador "principal primario" trifásico
- 2. Laterales trifásicos, bifásicos (fase "V") y monofásicos.
- 3. Reguladores de voltaje a pasos.
- 4. Transformadores en línea.
- 5. Bancos de capacitores en derivación.

- 6. Transformadores de distribución.
- 7. Secundarios
- 8. Cargas trifásicas, bifásicas y monofásicas.

La carga de un alimentador de distribución es típicamente desbalanceado debido a la gran cantidad de cargas monofásicas que deben ser alimentadas. Un desbalance adicional es agregado por los espaciamientos inequitativos entre los conductores de los segmentos de línea trifásica aérea y subterránea [1].

Debido a la naturaleza de los sistemas de distribución, los programas convencionales de flujos de potencia y corto circuito utilizados para los estudios de sistemas de transmisión no son adecuados. Tales programas despliegan pobres características de convergencia para sistemas radiales, además los programas asumen un sistema perfectamente balanceado para que un sistema monofásico equivalente pueda ser utilizado. Para realizar estudios precisos de flujos de potencia y corto circuito, los modelos trifásicos de la mayoría de los componentes deben ser utilizados. Los modelos utilizados serán descritos más adelante [1].

La Figura 2.3 muestra un diagrama unifilar simple de un alimentador trifásico, el cual contiene la mayoría de los componentes de un sistema de distribución. Los puntos de conexión serán referidos como "nodos". Note que se muestra la fase de los segmentos de línea. Esto es importante si se van a desarrollar modelos muy precisos.

Figura 2.3 Alimentador de distribución simple [1].

2.5 Modelos de los Componentes del Sistema de Distribución

A continuación se muestran los modelos de los componentes que se encuentran en la mayoría de los sistemas de distribución presentados en [26]. Estos modelos son trifásicos ya que son necesarios para modelar de manera precisa un sistema de distribución. Los modelos funcionan tanto para líneas monofásicas, bifásicas (fase "V") como trifásicas, por lo que nos ayudan a representar de manera precisa los desbalances del sistema de distribución. Cabe aclarar que los cálculos para obtener la matriz de impedancia tanto de líneas aéreas como subterráneas, como los modelos de segmento de línea, reguladores de voltaje a pasos, transformadores, cargas, motor de inducción y banco de capacitores se tomaron de [1], y por tanto son su propiedad intelectual. Los cálculos y modelos de [1] se resumen en esta sección.

2.5.1 Impedancia Serie de Líneas Aéreas

La determinación de la impedancia serie de líneas aéreas es un paso crítico antes de iniciar el análisis de un alimentador de distribución. La impedancia serie de líneas de distribución monofásicas, bifásicas (fase "V") o trifásicas consiste de la resistencia de los conductores y de la inductancia propia y mutua resultantes de los campos magnéticos alrededor de los conductores. La resistencia de los conductores típicamente proviene de una tabla de datos de conductores como la proporcionada en [1]. En cambio la componente de reactancia inductiva (propia y mutua) es una función de los campos magnéticos alrededor de los de los conductores.

Figura 2.4 Conductores y sus imágenes [1].

Carson en uno de sus artículos de 1926 desarrolló una técnica que determina la impedancia propia y mutua para un número arbitrario de conductores aéreos. Las ecuaciones también pueden ser aplicadas a cables subterráneos. Carson asume que la tierra es infinita, sólida, uniforme con una superficie superior plana uniforme y una resistividad constante. Carson hizo uso de imágenes de conductores: esto es, que cada conductor a una distancia dada por encima de la tierra tiene un conductor imagen a la

misma distancia por debajo de la tierra como se ilustra en la Figura 2.4. Tomando en cuenta algunas consideraciones surgieron las ecuaciones modificadas de Carson. Refiriéndose a la Figura 2.4, las ecuaciones modificadas de Carson están dadas en las Ecuaciones 2.1 y 2.2, las cuales serán utilizadas para calcular la impedancia primitiva propia y mutua de líneas aéreas.

Impedancia Propia del conductor i:

$$\hat{z}_{ii} = r_i + 0.09530 + j0.12134 \left(ln \frac{1}{GMR_i} + 7.6786 + \frac{1}{2} ln \frac{\rho}{f} \right) \frac{\Omega}{milla}$$
(2.1)

Impedancia Mutua entre el conductor i y j:

$$\hat{z}_{ij} = 0.09530 + j0.12134 \left(ln \frac{1}{D_{ij}} + \frac{1}{2} ln \frac{\rho}{f} \right) \Omega/milla$$
(2.2)

donde

 \hat{z}_{ii} = impedancia mutua del conductor *i* en Ω /milla \hat{z}_{ij} = impedancia mutua entre el conductor *i* y *j* en Ω /milla r_i = resistencia del conductor *i* en Ω /milla GMR_i = Radio Geométrico Medio del conductor *i* en pies f = Frecuencia = 60 Hertz ρ = Resistividad de la tierra = 100 Ω ·metro D_{ij} = distancia entre los conductores *i* y *j* en pies (ver Figura 2.4)

Un segmento de línea de distribución aérea estrella aterrizada de 4 hilos resultará en una matriz de 4×4. La matriz de impedancia para una línea trifásica con neutro tendrá la forma:

$$\begin{bmatrix} \hat{z}_{primitiva} \end{bmatrix} = \begin{bmatrix} \hat{z}_{aa} & \hat{z}_{ab} & \hat{z}_{ac} & \hat{z}_{an} \\ \hat{z}_{ba} & \hat{z}_{bb} & \hat{z}_{bc} & \hat{z}_{bn} \\ \hat{z}_{ca} & \hat{z}_{cb} & \hat{z}_{cc} & \hat{z}_{cn} \\ \hat{z}_{na} & \hat{z}_{nb} & \hat{z}_{na} & \hat{z}_{nn} \end{bmatrix}$$
(2.3)

En forma particionada, la ecuación 2.3 toma la forma

$$\begin{bmatrix} \hat{z}_{primitiva} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \hat{z}_{ij} \end{bmatrix} & \begin{bmatrix} \hat{z}_{in} \end{bmatrix} \\ \begin{bmatrix} \hat{z}_{nj} \end{bmatrix} & \begin{bmatrix} \hat{z}_{nn} \end{bmatrix}$$
(2.4)

Para la mayoría de las aplicaciones la matriz de impedancia primitiva necesita ser reducida a una matriz en el marco de fase 3×3 que consiste del equivalente de impedancias propia y mutua para las tres fases. La Figura 2.5 muestra un segmento de línea de cuatro hilos con neutro aterrizado. Un método estándar de reducción es la reducción de Kron. Se supone que la línea tiene un neutro multi-aterrizado como lo

muestra la Figura 2.5. El método de reducción de Kron aplica la ley de voltajes de Kirchhoff al circuito.

Figura 2.5 Segmento de línea de cuatro hilos con neutro aterrizado [1].

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \\ V_{ng} \end{bmatrix} = \begin{bmatrix} V'_{ag} \\ V'_{bg} \\ V'_{cg} \\ V'_{ng} \end{bmatrix} + \begin{bmatrix} \hat{z}_{aa} & \hat{z}_{ab} & \hat{z}_{ac} & \hat{z}_{an} \\ \hat{z}_{ba} & \hat{z}_{bb} & \hat{z}_{bc} & \hat{z}_{bn} \\ \hat{z}_{ca} & \hat{z}_{cb} & \hat{z}_{cc} & \hat{z}_{cn} \\ \hat{z}_{na} & \hat{z}_{nb} & \hat{z}_{na} & \hat{z}_{nn} \end{bmatrix} \begin{bmatrix} I_a \\ I_b \\ I_c \\ I_n \end{bmatrix}$$
(2.5)

En la forma particionada la Ecuación 2.5 toma la forma

$$\begin{bmatrix} [V_{abc}] \\ [V_{ng}] \end{bmatrix} = \begin{bmatrix} [V'_{abc}] \\ [V'_{ng}] \end{bmatrix} = \begin{bmatrix} [\hat{z}_{ij}] & [\hat{z}_{in}] \\ [\hat{z}_{nj}] & [\hat{z}_{nn}] \end{bmatrix} \begin{bmatrix} [I_{abc}] \\ [I_n] \end{bmatrix}$$
(2.6)

Ya que le neutro está aterrizado, los voltajes V_{ng} y V'_{ng} son igual a cero. Sustituyendo los valores en la Ecuación (2.6) y expandiendo resulta en:

$$[V_{abc}] = [V'_{abc}] + [\hat{z}_{ij}][I_{abc}] + [\hat{z}_{in}][I_n]$$
(2.7)

$$[0] = [0] + [\hat{z}_{nj}][I_{abc}] + [\hat{z}_{nn}][I_n]$$
(2.8)

Se despeja $[I_n]$ de la Ecuación 2.8:

$$[I_n] = - [\hat{z}_{nn}]^{-1} [\hat{z}_{nj}] [I_{abc}]$$
(2.9)

Sustituyendo la Ecuación 2.9 en la ecuación 2.7:

$$[V_{abc}] = [V'_{abc}] + ([\hat{z}_{ij}] - [\hat{z}_{in}][\hat{z}_{nn}]^{-1} [\hat{z}_{nj}])[I_{abc}]$$

$$[V_{abc}] = [V'_{abc}] + [z_{abc}][I_{abc}]$$
(2.10)

donde

$$[z_{abc}] = [\hat{z}_{ij}] - [\hat{z}_{in}][\hat{z}_{nn}]^{-1} [\hat{z}_{nj}]$$
(2.11)

La Ecuación 2.11 es la forma final de la técnica de reducción de Kron. La matriz de impedancia de fase final es:

$$[z_{abc}] = \begin{bmatrix} z_{aa} & z_{ab} & z_{ac} \\ z_{ba} & z_{bb} & z_{bc} \\ z_{ca} & z_{cb} & z_{cc} \end{bmatrix} \Omega/milla$$
(2.12)

Para una línea de distribución que en la cual no se realizó ninguna transposición, los términos de la diagonal de la Ecuación 2.12 no serán iguales el uno del otro, y los elementos fuera de la diagonal tampoco serán iguales a los demás. Sin embargo, la matriz siempre será simétrica.

Para líneas bifásicas (fase "V") y monofásicas en sistemas estrella aterrizada, las ecuaciones modificadas de Carson pueden ser aplicadas las cuales darán matrices de impedancia primitiva iniciales 3×3 y 2×2. La reducción de Kron reducirá las matrices a 2×2 y a un único elemento respectivamente. Estas matrices pueden ser extendidas a un marco de matrices 3×3 con la adición de filas y columnas con elementos cero para las fases faltantes. Por ejemplo, una línea fase "V" entre las fases *a* y *c*, la matriz de impedancia de fase sería

$$[z_{abc}] = \begin{bmatrix} z_{aa} & 0 & z_{ac} \\ 0 & 0 & 0 \\ z_{ca} & 0 & z_{cc} \end{bmatrix} \Omega/milla$$
(2.13)

La matriz de impedancia de fase para una línea monofásica de la fase b sería

$$[z_{abc}] = \begin{bmatrix} 0 & 0 & 0 \\ 0 & z_{bb} & 0 \\ 0 & 0 & 0 \end{bmatrix} \Omega/milla$$
(2.14)

La matriz de impedancia de fase para una línea delta de 3 hilos es determinada por la aplicación de las ecuaciones modificadas de Carson sin realizar la reducción de Kron. La matriz de impedancia de fase puede ser utilizada para determinar de forma precisa las caídas de voltaje en los segmentos de línea de un alimentador una vez que las corrientes han sido determinadas. Ya que no se han hecho aproximaciones considerando el espaciamiento entre conductores, el efecto del acoplamiento mutuo entre fases es tomado en cuenta de forma precisa. La aplicación de las ecuaciones modificadas de Carson y la matriz en el marco de fase nos lleva al modelo de un segmento de línea más preciso.

La Figura 2.6 muestra el modelo trifásico general de segmento de línea presentado en [1].

Figura 2.6 Modelo de segmento de línea [1].

Se debe tener en cuenta que para líneas fase "V" y monofásicas algunos de los valores de impedancia serán cero. La ecuación del voltaje para el segmento de línea en su forma matricial se muestra en la Ecuación 2.15.

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_n = \begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_m + \begin{bmatrix} Z_{aa} & Z_{ab} & Z_{ac} \\ Z_{ba} & Z_{bb} & Z_{bc} \\ Z_{ca} & Z_{cb} & Z_{cc} \end{bmatrix} \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}$$
(2.15)

Donde $Z_{ij} = z_{ij} \cdot longitud \ de \ linea(millas), i = a, b, c; j = a, b, c.$

La ecuación 2.15 puede ser escrita en forma condensada como:

$$[VLG_{abc}]_n = [VLG_{abc}]_m + [Z_{abc}][I_{abc}]$$
(2.16)

2.5.2 Admitancia en Derivación de Líneas Aéreas

La admitancia en derivación de una línea es la conductancia y susceptancia capacitiva. La conductancia es usualmente ignorada debido a que es muy pequeña comparada a la susceptancia capacitiva. La capacitancia de una línea es el resultado de la diferencia de potencial entre conductores. Un conductor cargado crea un campo eléctrico que emana hacia fuera desde el centro. Líneas equipotenciales son creadas las cuales son concéntricas al conductor cargado, como lo ilustra la Figura 2.7.

Figura 2.7 Campo eléctrico de un conductor redondo cargado [1].

En la Figura 2.7 se muestra una diferencia de potencial entre dos puntos (P_1 y P_2) que es resultado del campo eléctrico del conductor cargado. Cuando se conoce la diferencia de potencial entre los dos puntos, se puede calcular la capacitancia entre los dos puntos. Si hay otros conductores cargados cerca, la diferencia de potencial entre los dos puntos será una función de la distancia a los otros conductores y la carga en cada conductor. Se utiliza el principio de superposición para calcular la caída de voltaje total entre los dos puntos, y por lo tanto la capacitancia entre ellos. Los puntos pueden ser puntos en el espacio, la superficie de dos conductores, o la superficie de un conductor y tierra.

La Figura 2.8 muestra un arreglo de N conductores redondos, sólidos cargados positivamente. Cada conductor tiene una densidad de carga uniforme única de *q* C/metro.

Figura 2.8 Arreglo de conductores redondos [1].

La caída de voltaje entre el conductor *i* y el conductor *j* como resultado de todos los conductores cargados está dada por

$$V_{ij} = \frac{1}{2\pi\varepsilon} \left(q_1 \ln \frac{D_{1j}}{D_{1i}} + \dots + q_i \ln \frac{D_{ij}}{RD_i} + \dots + q_j \ln \frac{RD_j}{D_{ij}} + \dots + q_N \ln \frac{D_{Nj}}{D_{Ni}} \right)$$
(2.17)

La Ecuación 2.17 puede ser escrita en forma general como:

$$V_{ij} = \frac{1}{2\pi\varepsilon} \sum_{n=1}^{N} q_n \ln \frac{D_{nj}}{D_{ni}}$$
(2.18)

donde:

 $\varepsilon = \varepsilon_0 \varepsilon_r$ = permitividad del medio ε_0 = permitividad del vacío = 8.85×10⁻¹² µF/metro ε_r = permitividad relativa del medio q_n = densidad de carga en el conductor *n* C/metro D_{ni} = distancia entre el conductor *n* y el conductor *i* (pies) D_{nj} = distancia entre el conductor *n* y el conductor *j* (pies) RD_n = radio del conductor *n*

Empleamos el método de conductores y sus imágenes en el cálculo de la capacitancia en derivación de líneas aéreas. Este es el mismo concepto utilizado en la aplicación de las ecuaciones de Carson. La Figura 2.9 muestra los conductores y sus imágenes, y será utilizada para desarrollar una ecuación de caída de voltaje general para líneas aéreas. En la Figura 2.9 se supone que: $q'_i = -q_i$, $q'_j = -q_j$.

Figura 2.9 Conductores y sus imágenes [1].

Aplicando la Ecuación 2.18 a la Figura 2.9:

$$V_{ii} = \frac{1}{2\pi\varepsilon} \left(q_i \ln \frac{S_{ii}}{RD_i} + q'_i \ln \frac{RD_i}{S_{ii}} + q_j \ln \frac{S_{ij}}{D_{ij}} + q'_j \ln \frac{D_{ij}}{S_{ij}} \right)$$
(2.19)

Debido a las suposiciones realizadas en la Figura 2.9, podemos simplificar la Ecuación 2.19:

$$V_{ii} = \frac{1}{2\pi\varepsilon} \left(q_i \ln \frac{S_{ii}}{RD_i} - q_i \ln \frac{RD_i}{S_{ii}} + q_j \ln \frac{S_{ij}}{D_{ij}} - q_j \ln \frac{D_{ij}}{S_{ij}} \right)$$
$$V_{ii} = \frac{1}{2\pi\varepsilon} \left(q_i \ln \frac{S_{ii}}{RD_i} + q_i \ln \frac{S_{ii}}{RD_i} + q_j \ln \frac{S_{ij}}{D_{ij}} + q_j \ln \frac{S_{ij}}{D_{ij}} \right)$$
$$V_{ii} = \frac{1}{2\pi\varepsilon} \left(2q_i \ln \frac{S_{ii}}{RD_i} + 2q_j \ln \frac{S_{ij}}{D_{ij}} \right)$$
(2.20)

donde

 S_{ii} = distancia del conductor *i* a su imagen *i*' en pies S_{ij} = distancia del conductor *i* a la imagen del conductor *j* en pies D_{ij} = distancia entre los conductores *i* y *j* en pies RD_i = radio del conductor *i* en pies

La Ecuación 2.20 calcula la caída de voltaje total entre el conductor *i* y su imagen. La caída de voltaje entre el conductor *i* y tierra será la mitad de lo calculado en la Ecuación 2.20:

$$V_{ig} = \frac{1}{2\pi\varepsilon} \left(q_i \ln \frac{S_{ii}}{RD_i} + q_j \ln \frac{S_{ij}}{D_{ij}} \right)$$
(2.21)

La Ecuación 2.21 puede ser escrita en forma general como:

$$V_{ig} = \hat{P}_{ii}q_i + \hat{P}_{ij}q_j \tag{2.22}$$

donde \hat{P}_{ii} y \hat{P}_{ij} son los coeficientes de potencial propio y mutuo. Para líneas aéreas la permitividad relativa del aire se asume como 1.0 por lo que:

$$\varepsilon_{air} = 1.0 \times 8.85 \times 10^{-12} \text{ F/metro}$$

 $\varepsilon_{air} = 1.4240 \times 10^{-2} \mu\text{F/milla}$ (2.23)

Usando el valor de permitividad en μ F/milla, los coeficientes de potencial propio y mutuo se definen como:

$$\hat{P}_{ii} = 11.17689 \ln \frac{S_{ii}}{RD_i} \ milla/\mu F$$
 (2.24)

$$\hat{P}_{ij} = 11.17689 \ln \frac{S_{ij}}{D_{ij}} \ milla/\mu F$$
 (2.25)

En la aplicación de las Ecuaciones 2.24 y 2.25, los valores de RD_i , S_{ii} , S_{ij} y D_{ij} deben estar en las mismas unidades. Para líneas aéreas la distancia entre conductores está

típicamente especificadas en pies, mientras que el valor del diámetro de los conductores en una tabla estará comúnmente en pulgadas. Se debe asegurar que los radios estén en pies para la aplicación de ambas ecuaciones.

Para una línea de *ncond* conductores, se puede construir la matriz de coeficientes de potencial primitiva $[\hat{P}_{primitiva}]$. La matriz de coeficientes de potencial primitiva será una matriz de *ncond* × *ncond*. Para una línea de cuatro hilos estrella aterrizada, la matriz de coeficiente de potencial primitivo tendrá la forma:

$$\begin{bmatrix} \hat{P}_{primitiva} \end{bmatrix} = \begin{bmatrix} \hat{P}_{aa} & \hat{P}_{ab} & \hat{P}_{ac} & \cdot & \hat{P}_{an} \\ \hat{P}_{ba} & \hat{P}_{bb} & \hat{P}_{bc} & \cdot & \hat{P}_{bn} \\ \hat{P}_{ca} & \hat{P}_{cb} & \hat{P}_{cc} & \cdot & \hat{P}_{cn} \\ \cdot & \cdot & \cdot & \cdot & \cdot \\ \hat{P}_{na} & \hat{P}_{nb} & \hat{P}_{nc} & \cdot & \hat{P}_{nn} \end{bmatrix}$$
(2.26)

Los puntos (\cdot) en la Ecuación 2.26 están particionando la matriz entre la tercera y cuarta filas y columnas. En la forma particionada, la ecuación (2.26) se convierte:

$$\begin{bmatrix} \hat{P}_{primitiva} \end{bmatrix} = \begin{bmatrix} \begin{bmatrix} \hat{P}_{ij} \end{bmatrix} & \begin{bmatrix} \hat{P}_{in} \end{bmatrix} \\ \begin{bmatrix} \hat{P}_{nj} \end{bmatrix} & \begin{bmatrix} \hat{P}_{nn} \end{bmatrix}$$
(2.27)

Debido a que el conductor neutro está aterrizado, la matriz puede ser reducida utilizando el método de reducción de Kron para una matriz de coeficientes de potencial de fase de $ncond \times ncond [P_{abc}]$:

$$[P_{abc}] = [\hat{P}_{ij}] - [\hat{P}_{in}][\hat{P}_{nn}]^{-1}[\hat{P}_{nj}]$$
(2.28)

La inversa de la matriz de coeficiente de potencial dará una matriz de capacitancia $ncond \times ncond [C_{abc}]$:

$$[C_{abc}] = [P_{abc}]^{-1} \tag{2.29}$$

Para una línea de dos fases, la matriz de capacitancia de la Ecuación 2.29 será 2×2, se debe insertar una fila y una columna de ceros para la fase faltante. Para una línea monofásica, la Ecuación 2.29 resultará en un único elemento. De nuevo, se deben insertar filas y columnas de cero para las fases faltantes. En el caso de la línea monofásica, el único elemento diferente de cero será el de la fase en uso.

Despreciando la conductancia en derivación, la matriz de admitancia en derivación por fase está dada por:

$$[y_{abc}] = j\omega[C_{abc}] \,\mu\text{F/milla}$$
(2.30)

donde $\omega = 2\pi f = 2 \cdot \pi \cdot 60 = 367.9911$

2.5.3 Impedancia Serie de Líneas Subterráneas

La Figura 2.10 muestra la configuración general de tres cables subterráneos (neutro concéntrico o con cinta bloqueadora) con un conductor neutro adicional. Las ecuaciones modificadas de Carson pueden ser aplicadas a cables subterráneos de la misma manera que para líneas aéreas. El circuito de la Figura 2.10 resultará en una matriz de impedancia primitiva de 7×7 . Para circuitos subterráneos que no tengan un conductor neutro adicional, la matriz de impedancia primitiva será de 6×6 .

Figura 2.10 Disposición trifásica subterránea con neutro adicional [1].

Los cables subterráneos más utilizados son los cables con neutro concéntrico y los cables con cinta bloqueadora. Para aplicar las ecuaciones de Carson, deben conocerse la resistencia y el radio geométrico medio (GMR) del conductor de fase y el equivalente del neutro.

2.5.3.1 Cable con neutro concéntrico

La Figura 2.11 muestra un detalle simple de un cable con neutro concéntrico. El cable consiste de un conductor de fase central cubierto por una delgada capa de pantalla no metálica semiconductora, la cual es rodeada por el material aislante. Después el aislamiento es cubierto por una pantalla de aislamiento semiconductor. El neutro concéntrico son hilos sólidos que cubren en forma de espiral la pantalla semiconductora manteniendo un espaciamiento uniforme entre hilos. Además algunos cables tienen una chaqueta de aislamiento que rodea los hilos del neutro. Para aplicar las ecuaciones de Carson a este cable, se deben extraer los siguientes datos de una tabla de cables subterráneos:

 d_c = diámetro en conductor por fase (pulgadas) d_{od} = diámetro nominal sobre los neutros concéntricos del cable (pulgadas) d_s = diámetro de un hilo del neutro concéntrico (pulgadas) GMR_c = radio geométrico medio del conductor de fase (pies) GMR_s = radio geométrico medio un hilo del neutro (pies) r_c = resistencia del conductor de fase (Ω /milla) r_s = resistencia del un hilo solido del neutro (Ω /milla) k = número de hilos del neutro concéntrico

Figura 2.11 Cable con neutro concéntrico [1].

El radio geométrico medio equivalente del neutro concéntrico se calcula usando la ecuación para el radio geométrico medio de un grupo de conductores usado en líneas de transmisión de alta tensión.

$$GMR_{cn} = \sqrt[k]{GMR_s \cdot k \cdot R^{k-1}} pies$$
(2.31)

donde

R = radio de un círculo que pasa a través del centro de los hilos del neutro concéntrico

$$R = \frac{d_{od} - d_s}{24} \ pies \tag{2.32}$$

La resistencia equivalente del neutro concéntrico es

$$r_{cn} = \frac{r_s}{k} \,\Omega/milla \tag{2.33}$$

Los distintos espaciamientos entre un neutro concéntrico y los conductores de fase y otros neutros concéntricos son:

Neutro concéntrico a su propio conductor de fase $D_{ij} = R$ (Ecuación 2.32 de arriba, en pies)

Neutro concéntrico a un neutro concéntrico adyacente D_{ij} = distancia centro a centro de los conductores de fase (pies)

Neutro concéntrico a un conductor de fase adyacente

La Figura 2.12 muestra la relación entre la distancia entre los centros de cables neutros concéntricos y el radio de un círculo que pasa a través de los centros d los hilos del neutro. La distancia media geométrica entre un neutro concéntrico y un conductor de fase adyacente está dada por:

$$D_{ij} = \sqrt[k]{D_{nm}^k - R^k} pies \qquad (2.34)$$

donde D_{nm} = distancia centro a centro entre conductores de fase. La distancia entre cables cuando están enterrados en una zanja será mucho más grande que R, de esta forma, se puede considerar que D_{ij} en la Ecuación 2.34 es igual a D_{nm} . Para cables en tubo conduit la consideración no es válida.

Figura 2.12 Espaciamiento de una disposición trifásica de cables con neutro concéntrico [1].

Al aplicar las ecuaciones modificadas de Carson, el número de conductores y neutros es importante. Por ejemplo, un circuito subterráneo trifásico con un cable neutro adicional debe ser numerado como:

- 1 = conductor de fase # 1
- 2 = conductor de fase # 2
- 3 = conductor de fase # 3
- 4 = neutro del conductor de fase # 1
- 5 = neutro del conductor de fase # 2
- 6 = neutro del conductor de fase # 3
- 7 = conductor neutro adicional (si presenta)

2.5.3.2 Cable con cinta bloqueadora

La Figura 2.13 muestra un detalle simple de un cable con cinta bloqueadora. El cable consiste de un conductor de fase central cubierto por una capa delgada de pantalla no metálica semiconductora, la cual es rodeada por el material aislante. El aislamiento está cubierto por una pantalla de aislamiento semiconductor. El bloqueador o blindaje es una cinta de cobre desnudo aplicada helicoidalmente alrededor de la pantalla de aislamiento. Una chaqueta aislante rodea la cinta bloqueadora. Los parámetros del cable con cinta bloqueadora son

 d_c = diámetro en conductor por fase (pulgadas) d_s = diámetro exterior de la cinta bloqueadora (pulgadas) d_{od} = diámetro exterior sobre la chaqueta aislante (pulgadas) T = grosor de la cinta bloqueadora de cobre (mils)

Figura 2.13 Cable con cinta bloqueadora [1].

Una vez más, se aplican las ecuaciones de Carson para calcular la auto impedancia de los conductores de fase y la cinta bloqueadora, así como la impedancia mutua entre el conductor de fase y la cinta bloqueadora. La resistencia y el GMR del conductor de fase se encuentran en una tabla de datos de conductores.

La resistencia de la cinta bloqueadora está dada por:

$$r_{blindaje} = 7.9385 \times 10^8 \frac{\rho}{d_s \cdot T} \ \Omega/milla \tag{2.35}$$

La resistividad (ρ) en la Ecuación 2.35 debe ser expresada en Ω ·metro a 50 °C. El diámetro exterior de la cinta bloqueadora (d_s) está dado en pulgadas y el grosor de la cinta bloqueadora (T) en mils.

El GMR de la cinta bloqueadora es el radio de un círculo que pasa a través de la mitad del blindaje o bloqueador y está dado por:

$$GMR_{blindaje} = \frac{d_s - \frac{T}{1000}}{24} pies$$
(2.36)

Los distintos espaciamientos entre una cinta bloqueadora y los conductores y otras cintas bloqueadoras son:

Cinta bloqueadora a su propio conductor de fase $D_{ij} = GMR_{blindaje} =$ radio a punto medio del blindaje (pies)

Cinta bloqueadora a una cinta bloqueadora adyacente D_{ii} = distancia centro a centro de los conductores de fase (pies)

Cinta bloqueadora a un conductor de fase o neutro adyacente D_{ij} = distancia centro a centro entre los conductores (pies)

2.5.4 Admitancia en Derivación de Líneas Subterráneas

2.5.4.1 Cable con neutro concéntrico

La mayoría de las líneas subterráneas de distribución consisten de uno o más cables con neutro concéntrico. La Figura 2.14 ilustra un cable con neutro concéntrico con conductor central (negro) siendo el conductor de fase y los hilos del neutro concéntrico (gris) dispuestos igualmente alrededor de un circulo de radio R_b . Refiriéndose a la Figura 2.14 se aplican las siguientes definiciones:

Figura 2.14 Cable con neutro concéntrico básico [1].

- R_b = radio de un círculo que pasa a través de los centros de los hilos del neutro
- $d_c = diámetro del conductor de fase$
- $d_s = diámetro de un hilo del neutro$
- k = número total de los hilos del neutro

Los hilos del neutro concéntrico están aterrizados por lo que todos ellos están al mismo potencial. Debido al hilado, se asume que el campo eléctrico creado por la carga en el conductor de fase será confinado a la frontera de los hilos del neutro concéntrico. Para calcular la capacitancia entre el conductor de fase y tierra, se aplica la caída de voltaje general de la Ecuación 2.18. Ya que todos los hilos del neutro están al mismo potencial, solo es necesario determinar la diferencia de potencial entre el conductor de fase p y el hilo 1.

$$V_{p1} = \frac{1}{2\pi\varepsilon} \left(q_p \ln \frac{R_b}{RD_c} + q_1 \ln \frac{RD_s}{R_b} + q_2 \ln \frac{D_{12}}{R_b} + \dots + q_i \ln \frac{D_{1i}}{R_b} + \dots + q_k \ln \frac{D_{1k}}{R_b} \right) (2.37)$$

$$RD_c = \frac{d_c}{2}$$
 $RD_s = \frac{d_s}{2}$

Considerando que cada hilo del neutro tiene la misma carga tal que:

$$q_1 = q_2 = q_i = q_k = -\frac{q_p}{k}$$

Se puede simplificar la Ecuación 2.37:

$$V_{p1} = \frac{q_p}{2\pi\varepsilon} \left[\ln \frac{R_b}{RD_c} - \frac{1}{k} \left(\ln \frac{RD_s \cdot D_{12} \cdot D_{1i} \cdot \dots \cdot D_{1k}}{R_b^k} \right) \right]$$
(2.38)

Se necesita expandir el numerador del segundo *ln* en la Ecuación 2.38. El numerador representa el producto del radio y las distancias entre el *hilo i* y todos los otros hilos. Refiriéndonos a la Figura 2.14, el ángulo entre el *hilo 1* y cualquier otro *hilo i* está dado por:

$$\theta_{1i} = \frac{(i-1) \cdot 2\pi}{k}$$
(2.39)

La distancia entre el *hilo 1* y cualquier otro *hilo i* está dado por:

$$D_{1i} = 2 \cdot R_b \cdot \sin\left(\frac{\theta_{1i}}{2}\right) = 2 \cdot R_b \cdot \sin\left(\frac{(i-1) \cdot \pi}{k}\right)$$
(2.40)

Se usa la Ecuación 2.40 para expandir el numerador del segundo *ln* de la Ecuación 2.38:

$$RD_{s} \cdot D_{12} \cdot D_{1i} \cdot \dots \cdot D_{1k}$$

$$= RD_{s} \cdot R_{b}^{k-1} \left[2\sin\left(\frac{\pi}{k}\right) \cdot 2\sin\left(\frac{2\pi}{k}\right) \cdot \dots \cdot 2\sin\left\{\frac{(i-1)\pi}{k}\right\} \cdot \dots \cdot 2\sin\left\{\frac{(k-1)\pi}{k}\right\} \right] (2.41)$$

El término dentro del paréntesis en la Ecuación 2.41 es una identidad trigonométrica que es meramente igual al número de hilos k [1]. Usando esta identidad, la Ecuación 2.38 se convierte en:

$$V_{p1} = \frac{q_p}{2\pi\varepsilon} \left[\ln \frac{R_b}{RD_c} - \frac{1}{k} \left(\ln \frac{k \cdot RD_s \cdot R_b^{k-1}}{R_b^k} \right) \right] = \frac{q_p}{2\pi\varepsilon} \left[\ln \frac{R_b}{RD_c} - \frac{1}{k} \left(\ln \frac{k \cdot RD_s}{R_b} \right) \right] \quad (2.42)$$

La Ecuación 2.42 da la caída de voltaje entre el conductor de fase al *hilo 1* del neutro. Típicamente, los espaciamientos subterráneos están en pulgadas, por lo que los radios del conductor de fase (RD_s) y los hilos del neutro (RD_s) deben ser especificados en pulgadas. Ya que todos los neutros están aterrizados, la Ecuación 2.42 da la caída de voltaje entre el conductor de fase y tierra. De esta manera, la capacitancia de fase a tierra para un cable con neutro concéntrico está dado por:

$$C_{pg} = \frac{q_p}{V_{p1}} = \frac{2\pi\varepsilon}{\ln\frac{R_b}{RD_c} - \frac{1}{k}\ln\frac{k \cdot RD_s}{R_b}}$$
(2.43)

donde

 $\varepsilon = \varepsilon_0 \varepsilon_r$ = permitividad del medio ε_0 = permitividad del espacio libre = 0.01420 $\mu F/milla$ ε_r = permitividad relativa del medio

El campo eléctrico del cable está confinado al material aislante. Se utilizan distintos tipos de materiales aislantes y cada uno tendrá un rango de valores para la permitividad relativa. El polietileno de enlace cruzado es un material aislante muy popular. Si se considera el valor mínimo de la permitividad (2.3), la ecuación para la admitancia en derivación del cable con neutro concéntrico está dada por:

$$y_{ag} = j \frac{77.3619}{\ln \frac{R_b}{RD_c} - \frac{1}{k} \ln \frac{k \cdot RD_s}{R_b}} \mu S/milla \qquad (2.44)$$

2.5.4.2 Cable con cinta bloqueadora

Un cable con cinta bloqueadora es mostrado en la Figura 2.15. Refiriéndonos a ésta, R_b es el radio de un círculo que pasa a través del centro de la cinta bloqueadora. Como con el cable con neutro concéntrico, el campo eléctrico es confinado al aislamiento por lo que también se aplica la permitividad relativa.

El conductor de cinta bloqueadora se puede visualizar como un cable con neutro concéntrico donde el número de hilos k es infinito. Cuando k se aproxima a infinito en la Ecuación 2.44, el segundo término en el denominador se aproxima a cero. De esta manera, la ecuación para la admitancia en derivación de un conductor con cinta bloqueadora es:

$$y_{ag} = j \frac{77.3619}{\ln \frac{R_b}{RD_c}} \mu S/milla$$
 (2.45)

Figura 2.15 Cable con cinta bloqueadora [1].

2.5.5 Modelo de Línea del Sistema de Distribución

El modelado de segmentos de línea aérea y subterránea de distribución es un paso crítico en el análisis de un alimentador de distribución. Es importante incluir la disposición de las fases de la línea y el correcto espaciamiento entre conductores. Anteriormente se desarrolló el método de cálculo de la matriz de impedancia de fase y de admitancia de fase sin asumir transposición de líneas. Estas matrices serán usadas en los modelos de segmentos de línea aérea y subterránea [1].

2.5.5.1 Modelo Exacto del Segmento de Línea

El modelo exacto de una línea aérea o subterránea trifásica, bifásica, o monofásica se muestra en la Figura 2.16. Cuando un segmento de línea es bifásico (fase "V") o monofásico, algunos valores de la impedancia y admitancia serán cero. En todos los casos tanto la matriz de impedancia como de admitancia son matrices 3×3. Las filas y columnas de ceros para las fases faltantes representan líneas bifásicas y monofásicas. Por lo tanto, un conjunto de ecuaciones puede ser desarrollado para modelar todos los segmentos de línea aérea y subterránea. Los valores de impedancia y admitancia en la Figura 2.16 representan la impedancia y admitancia totales para la línea. Es decir, las matrices de impedancia y de admitancia han sido multiplicadas por la longitud del segmento de línea.

Figura 2.16 Modelo del segmento de línea trifásico [1].

Para el segmento de línea de la Figura 2.16, las ecuaciones que relacionan los voltajes y corrientes de entrada (*Nodo n*) con los voltajes y corrientes de salida (*Nodo m*) son:

Ley de corrientes de Kirchhoff aplicada al Nodo m:

$$\begin{bmatrix} Ilinea_{a}\\ Ilinea_{b}\\ Ilinea_{c}\end{bmatrix}_{n} = \begin{bmatrix} I_{a}\\ I_{b}\\ I_{c}\end{bmatrix}_{m} + \frac{1}{2} \cdot \begin{bmatrix} Y_{aa} & Y_{ab} & Y_{ac}\\ Y_{ba} & Y_{bb} & Y_{bc}\\ Y_{ca} & Y_{cb} & Y_{cc} \end{bmatrix} \cdot \begin{bmatrix} V_{ag}\\ V_{bg}\\ V_{cg} \end{bmatrix}_{m}$$
(2.46)

En forma condensada la Ecuación 2.46 se puede escribir como:

$$[Ilinea_{abc}]_n = [I_{abc}]_m + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_m$$
(2.47)

Aplicando ley de voltajes de Kirchhoff:

$$\begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_{n} = \begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_{m} + \begin{bmatrix} Z_{aa} & Z_{ab} & Z_{ac} \\ Z_{ba} & Z_{bb} & Z_{bc} \\ Z_{ca} & Z_{cb} & Z_{cc} \end{bmatrix} \cdot \begin{bmatrix} Ilinea_{a} \\ Ilinea_{b} \\ Ilinea_{c} \end{bmatrix}_{m}$$
(2.48)

En forma condensada la Ecuación 2.48 se puede escribir como:

$$[VLG_{abc}]_n = [VLG_{abc}]_m + [Z_{abc}] \cdot [Ilinea_{abc}]_m$$
(2.49)

Sustituyendo la ecuación 2.47 en la Ecuación 2.49:

$$[VLG_{abc}]_{n} = [VLG_{abc}]_{m} + [Z_{abc}] \cdot \left\{ [I_{abc}]_{m} + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_{m} \right\}$$
(2.50)

Agrupando términos:

$$[VLG_{abc}]_{n} = \left\{ [U] + \frac{1}{2} \cdot [Z_{abc}] \cdot [Y_{abc}] \right\} \cdot [VLG_{abc}]_{m} + [Z_{abc}] \cdot [I_{abc}]_{m}$$
(2.51)
donde $[U] = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$

La Ecuación 2.51 es de la forma general:

$$[VLG_{abc}]_{n} = [a] \cdot [VLG_{abc}]_{m} + [b] \cdot [I_{abc}]_{m}$$
(2.52)

$$[a] = [U] + \frac{1}{2} \cdot [Z_{abc}] \cdot [Y_{abc}]$$
$$[b] = [Z_{abc}]$$

La corriente que entra al segmento de línea en el Nodo n es

$$\begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}_n = \begin{bmatrix} Ilinea_a \\ Ilinea_b \\ Ilinea_c \end{bmatrix}_m + \frac{1}{2} \cdot \begin{bmatrix} Y_{aa} & Y_{ab} & Y_{ac} \\ Y_{ba} & Y_{bb} & Y_{bc} \\ Y_{ca} & Y_{cb} & Y_{cc} \end{bmatrix} \cdot \begin{bmatrix} V_{ag} \\ V_{bg} \\ V_{cg} \end{bmatrix}_n$$
(2.53)

En forma condensada la Ecuación 2.53 se puede escribir como:

$$[I_{abc}]_n = [Ilinea_{abc}]_m + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_n$$
(2.54)

Sustituyendo la Ecuación 2.47 en la Ecuación 2.54:

$$[I_{abc}]_n = [I_{abc}]_m + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_m + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_n$$
(2.55)

Sustituyendo la Ecuación 2.51 en la Ecuación 2.55:

$$[I_{abc}]_{n} = [I_{abc}]_{m} + \frac{1}{2} \cdot [Y_{abc}] \cdot [VLG_{abc}]_{m} + \frac{1}{2} \cdot [Y_{abc}] \\ \cdot \left(\left\{ [U] + \frac{1}{2} \cdot [Z_{abc}] \cdot [Y_{abc}] \right\} \cdot [VLG_{abc}]_{m} + [Z_{abc}] \cdot [I_{abc}]_{m} \right)$$
(2.56)

Agrupando términos en la Ecuación 2.56:

$$[I_{abc}]_{n} = \left\{ [Y_{abc}] + \frac{1}{4} \cdot [Y_{abc}] \cdot [Z_{abc}] \cdot [Y_{abc}] \right\} \cdot [VLG_{abc}]_{m} + \left\{ [U] + \frac{1}{2} \cdot [Z_{abc}] \cdot [Y_{abc}] \right\} [I_{abc}]_{m}$$
(2.57)

La Ecuación 2.57 es de la forma:

$$[I_{abc}]_n = [c] \cdot [VLG_{abc}]_m + [d] \cdot [I_{abc}]_m$$
(2.58)

$$[c] = [Y_{abc}] + \frac{1}{4} \cdot [Y_{abc}] \cdot [Z_{abc}] \cdot [Y_{abc}]$$

$$[d] = [U] + \frac{1}{2} \cdot [Z_{abc}] \cdot [Y_{abc}]$$

Las Ecuaciones 2.52 y 2.58 pueden ponerse en una matriz particionada:

$$\begin{bmatrix} [VLG_{abc}]_n \\ [I_{abc}]_n \end{bmatrix} = \begin{bmatrix} [a] & [b] \\ [c] & [d] \end{bmatrix} \cdot \begin{bmatrix} [VLG_{abc}]_m \\ [I_{abc}]_m \end{bmatrix}$$
(2.59)

La Ecuación 2.59 es muy similar a la ecuación utilizada en análisis de líneas de transmisión donde se definen los parámetros ABCD. En este caso, los parámetros abcd son matrices de 3×3 en lugar de variables únicas y serán referidas como las "matrices de línea generalizadas".

La Ecuación 2.59 puede cambiarse para resolver los voltajes y las corrientes en el *Nodo m* en términos de los voltajes y corrientes del *Nodo n*:

$$\begin{bmatrix} [VLG_{abc}]_m \\ [I_{abc}]_m \end{bmatrix} = \begin{bmatrix} [a] & [b] \\ [c] & [d] \end{bmatrix}^{-1} \cdot \begin{bmatrix} [VLG_{abc}]_n \\ [I_{abc}]_n \end{bmatrix}$$
(2.60)

La inversa de la matriz abcd es simple ya que el determinante es [a][d] - [b][c] = [U], por lo que la Ecuación 2.60 se convierte en:

$$\begin{bmatrix} [VLG_{abc}]_m \\ [I_{abc}]_m \end{bmatrix} = \begin{bmatrix} [d] & -[b] \\ -[c] & [a] \end{bmatrix} \cdot \begin{bmatrix} [VLG_{abc}]_n \\ [I_{abc}]_n \end{bmatrix}$$
(2.61)

Ya que la matriz [a] es igual a la matriz [d], la Ecuación 2.61 se puede expandir como:

$$[VLG_{abc}]_m = [a] \cdot [VLG_{abc}]_n - [b] \cdot [I_{abc}]_n$$
(2.62)

$$[I_{abc}]_m = -[c] \cdot [VLG_{abc}]_n + [d] \cdot [I_{abc}]_n$$
(2.63)

Algunas veces es necesario calcular el voltaje en el *Nodo m* como una función del voltaje en el *Nodo n* y las corrientes que entran al *Nodo m*. Esta ecuación se utiliza en el algoritmo de barrido hacia adelante y hacia atrás.

Resolviendo la Ecuación 2.52 para el Nodo m los voltajes dan:

$$[VLG_{abc}]_m = [a]^{-1} \cdot [VLG_{abc}]_n - [a]^{-1} \cdot [b] \cdot [I_{abc}]_m$$
(2.64)

La Ecuación 2.64 es de la forma:

$$[VLG_{abc}]_m = [A] \cdot [VLG_{abc}]_n - [B] \cdot [I_{abc}]_m$$
(2.65)

$$[A] = [a]^{-1}$$

 $[B] = [a]^{-1} \cdot [b]$

Debido a que los acoplamientos entre fases del segmento de línea no son iguales, los valores de caídas de voltaje en cada una de las tres fases serán diferentes. Como resultado, los voltajes en un alimentador de distribución serán desbalanceados incluso cuando las cargas sean balanceadas.

Los interruptores se modelarán solamente cuando estén cerrados por medio del modelo de segmento de línea siendo la impedancia por fase de 0.0001 Ω . Cuando el interruptor esté abierto se considerará como si no hubiera conexión alguna entre líneas, es decir, como si no existiera. Las matrices generalizadas para el interruptor en estado cerrado son:

$$\begin{bmatrix} \boldsymbol{a} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \boldsymbol{b} \end{bmatrix} = \begin{bmatrix} 1 \times 10^{-4} & 0 & 0 \\ 0 & 1 \times 10^{-4} & 0 \\ 0 & 0 & 1 \times 10^{-4} \end{bmatrix},$$
(2.66)
$$\begin{bmatrix} \boldsymbol{c} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{d} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$
$$\begin{bmatrix} \boldsymbol{A} \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \boldsymbol{B} \end{bmatrix} = \begin{bmatrix} 1 \times 10^{-4} & 0 & 0 \\ 0 & 1 \times 10^{-4} & 0 \\ 0 & 0 & 1 \times 10^{-4} \end{bmatrix}.$$

2.5.6 Modelo del Regulador de Voltaje a Pasos

La regulación de voltaje es una importante función en un alimentador de distribución. Ya que las cargas en los alimentadores varían constantemente, se debe regular el voltaje para que cada voltaje en el punto de conexión de los clientes permanezca dentro de un nivel aceptable. Los métodos comunes de regulación de voltaje son la aplicación de reguladores de voltaje a pasos, transformadores con cambiador de taps con carga (LTC), y bancos de capacitores en derivación [1].

Un regulador de voltaje a pasos (SVR o Step Voltage Regulator) esta formado por la combinación de un autotransformador y un mecanismo para cambiar los taps con carga. El cambio de voltaje se obtiene al cambiar los taps del devanado serie del autotransformador, el cual se determina con un circuito de control (Compensador de caída de la línea). Los SVR regulan el voltaje comúnmente entre ±10%, divididos en 32 pasos, o un 0.625% de cambio por paso (0.75 V de cambio por paso, en una base de 120 V). Los SVR pueden ser conectados en conexión tipo A o tipo B de acuerdo al estándar

ANSI/IEEE C57.15-1986 [1]. La conexión más común tipo B se muestra en la Figura 2.17. El diagrama de bloques del circuito mostrado en la Figura 2.18 controla el cambio de taps en el SVR. El circuito de control de un SVR requiere las siguientes características [1]:

- 1. Nivel de Tensión: el voltaje deseado (en una base de 120 V) a ser mantenido en el centro de carga. El centro de carga puede ser la terminal de salida del regulador o un nodo remoto en el alimentador.
- 2. Ancho de banda: la variación permitida del voltaje en el centro de carga con el nivel de ajuste de voltaje. El voltaje mantenido en el centro de carga será más/menos la mitad del ancho de banda. Por ejemplo, si el voltaje es ajustado a 122 V y el ancho de banda es ajustado a 2 V, el regulador cambiará taps hasta que el voltaje en el centro de carga permanezca entre 121 y 123 V.
- 3. Retardo: duración para que una operación de aumento o disminución sea ejecutada ante la ejecución del comando. Esto previene el cambio de taps durante el cambio en la corriente en un transitorio o en un corto periodo de tiempo.
- 4. Compensador de caída de línea: conjunto para compensar la caída de voltaje (caída de línea) entre el regulador y el centro de carga. La configuración consiste en los valores de R y X en volts equivalentes a la impedancia entre el regulador y el centro de carga. Este valor puede ser cero si las terminales de salida del regulador son el centro de carga.

Debido a que los valores de impedancia en serie y admitancia en derivación del SVR son tan pequeños, serán despreciados en los modelos y circuitos equivalentes. Sin embargo, éstos pueden ser incorporados en los circuitos equivalentes de los autotransformadores del banco.

Tres reguladores de voltaje a pasos monofásicos pueden ser conectados externamente para formar un regulador trifásico. Cuando tres reguladores monofásicos están conectados juntos, cada regulador tiene su propio circuito compensador y, así, los taps en cada regulador pueden cambiar conjuntamente o separadamente. Las conexiones típicas para reguladores monofásicos son [1]

- 1. Monofásico
- 2. Dos reguladores conectados en "estrella abierta" (algunas veces referido como fase "V")
- 3. Tres reguladores conectados en estrella aterrizada
- 4. Dos reguladores conectados en delta abierta
- 5. Tres reguladores conectados en delta cerrada

Figura 2.17 Regulador de Voltaje a Pasos tipo B [1].

Figura 2.18 Circuito de Control del SRV [1].

En esta sección se analiza solamente el regulador de voltaje conectado en estrella tipo B ya que es el más utilizado. Tres reguladores de voltaje monofásicos tipo B se conectan en estrella como se muestra en la Figura 2.19, donde las terminales A, B, C indican el primario del regulador y a, b, c las terminales del secundario (lado donde se regula la tensión o del devanado serie del regulador). Sin importar si el voltaje aumenta o disminuye, las siguientes ecuaciones se aplican:

Figura 2.19 Reguladores tipo B conectados en estrella [1].

$$\begin{bmatrix} V_{An} \\ V_{Bn} \\ V_{Cn} \end{bmatrix} = \begin{bmatrix} \frac{1}{a_{Ra}} & 0 & 0 \\ 0 & \frac{1}{a_{Rb}} & 0 \\ 0 & 0 & \frac{1}{a_{Rc}} \end{bmatrix} \cdot \begin{bmatrix} V_{an} \\ V_{bn} \\ V_{cn} \end{bmatrix}$$
(2.67)

$$\begin{bmatrix} I_A \\ I_B \\ I_C \end{bmatrix} = \begin{bmatrix} a_{Ra} & 0 & 0 \\ 0 & a_{Rb} & 0 \\ 0 & 0 & a_{Rc} \end{bmatrix} \cdot \begin{bmatrix} I_a \\ I_b \\ I_c \end{bmatrix}$$
(2.68)

$$\begin{bmatrix} V_{an} \\ V_{bn} \\ V_{cn} \end{bmatrix} = \begin{bmatrix} a_{Ra} & 0 & 0 \\ 0 & a_{Rb} & 0 \\ 0 & 0 & a_{Rc} \end{bmatrix} \cdot \begin{bmatrix} V_{An} \\ V_{Bn} \\ V_{Cn} \end{bmatrix}$$
(2.69)

donde $a_{Ra} = 1 + 0.00625 \cdot tap_a$, $a_{Rb} = 1 + 0.00625 \cdot tap_b$, $a_{Rc} = 1 + 0.00625 \cdot tap_c$, para $tap_{abc} \in [-16,16]$ y representan la relación de vueltas para los tres reguladores de voltaje. Las ecuaciones 2.67 - 2.69 son de la forma:

$$[VLN_{ABC}] = [a] \cdot [VLN_{abc}] + [b] \cdot [I_{abc}]$$
(2.70)

$$[I_{ABC}] = [c] \cdot [VLN_{abc}] + [d] \cdot [I_{abc}]$$

$$(2.71)$$

$$[VLN_{abc}] = [A] \cdot [VLN_{ABC}] - [B] \cdot [I_{abc}]$$
(2.72)

Las Ecuaciones 2.70 – 2.72 son de la misma forma que las ecuaciones generalizadas que fueron desarrolladas para el segmento de línea de la sección 2.5.5. Para los reguladores de voltaje a pasos trifásico conectado en estrella, despreciando la impedancia

en serie y la admitancia en derivación, las matrices generalizadas se muestran en el grupo de Ecuaciones 2.73:

$$\begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} \frac{1}{a_{Ra}} & 0 & 0 \\ 0 & \frac{1}{a_{Rb}} & 0 \\ 0 & 0 & \frac{1}{a_{Rc}} \end{bmatrix}, \begin{bmatrix} \mathbf{b} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad (2.73)$$
$$\begin{bmatrix} \mathbf{c} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \mathbf{d} \end{bmatrix} = \begin{bmatrix} a_{Ra} & 0 & 0 \\ 0 & a_{Rb} & 0 \\ 0 & 0 & a_{Rc} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} a_{Ra} & 0 & 0 \\ 0 & 0 & a_{Rc} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} a_{Ra} & 0 & 0 \\ 0 & 0 & a_{Rc} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} a_{Ra} & 0 & 0 \\ 0 & 0 & a_{Rc} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} a_{Ra} & 0 & 0 \\ 0 & 0 & a_{Rc} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} a_{Ra} & 0 & 0 \\ 0 & 0 & a_{Rc} \end{bmatrix}, \quad \begin{bmatrix} \mathbf{a} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

En las matrices generalizadas [*a*], [*d*], y [*A*] la relación de vueltas efectiva para cada regulador debe satisfacer que: $0.9 < a_{Rabc} < 1.1$ en 32 pasos de 0.00625/paso (0.75 V/paso para una base de 120 V). La relaciones de vueltas (a_{Ra} , a_{Rb} y a_{Rc}) pueden tomar diferentes valores cuando los reguladores monofásicos están conectados en estrella, es decir, son independientes. Es posible tener un regulador trifásico conectado en estrella donde el voltaje y la corriente se miden en una sola fase, para que después las tres fases sean cambiadas al mismo número de tap. Con este mismo principio se puede tener un regulador monofásico, bifásico o trifásico.

2.5.7 Modelo de Transformador

Los bancos de transformadores trifásicos son utilizados en la subestación de distribución donde el voltaje es transformado de un nivel de transmisión o subtransmisión al nivel del alimentador de distribución. En la mayoría de los casos el transformador será una unidad trifásica, quizás con cambiadores de taps sin carga en el lado de alto voltaje, y quizás, con cambiadores de taps con carga en el lado de bajo voltaje (LTC). Para un alimentador de cuatro hilos en estrella, la conexión del transformador de la subestación más común es la delta – estrella aterrizada. Un alimentador de tres hilos en delta típicamente tendrá transformador con conexión delta-delta en la subestación. Los transformadores fuera de la subestación transformarán el voltaje final para las cargas de los clientes. Hay una gran variedad de conexiones que se pueden aplicar en las redes de distribución. En los análisis de un alimentador de distribución es importante modelar las distintas conexiones de los transformadores.

Los modelos de las conexiones de transformador que se presentan son:

- Delta Estrella Aterrizada
- Estrella No Aterrizada Delta
- Estrella Aterrizada Estrella Aterrizada
- Delta Delta
- Estrella Abierta Delta Abierta

La Figura 2.20 define los distintos voltajes y corrientes para los bancos de transformadores conectados entre el lado de la fuente *Nodo n* y el lado de carga *Nodo m*. Además los modelos se pueden presentar como un banco de transformadores reductor o elevador. La notación es tal que las letras mayúsculas *A*, *B*, *C*, *N* siempre se referirán al lado de la fuente (*Nodo n*) del banco y las letras minúsculas *a*, *b*, *c*, *n* siempre se referirán al lado de carga (*Nodo m*) del banco. Se asume que todas las variaciones de las conexiones estrella – delta están conectados en la conexión del "Estándar Americano de 30°". Con esto el estándar de desfasamiento para voltajes y corrientes son

Conexión Reductora: V_{AB} adelanta V_{ab} 30 °, I_A adelanta I_a 30 ° **Conexión Elevadora:** V_{ab} adelanta V_{AB} 30 °, I_a adelanta I_A 30 °

Figura 2.20 Banco de transformadores trifásico general [1].

Las ecuaciones matriciales para calcular el voltaje y las corrientes en el Nodo *n* como una función del voltaje y las corrientes de los voltajes y corrientes del Nodo *m* están dados por:

$$[VLN_{ABC}] = [a_t] \cdot [VLN_{abc}] + [b_t] \cdot [I_{abc}]$$
(2.74)

$$[I_{ABC}] = [c_t] \cdot [VLN_{abc}] + [d_t] \cdot [I_{abc}]$$
(2.75)

Los voltajes en el Nodo *m* como función de los voltajes en el Nodo *n* y las Corrientes en el Nodo *m* están dadas por:

$$[VLN_{abc}] = [A_t] \cdot [VLN_{ABC}] - [B_t] \cdot [I_{abc}]$$
(2.76)

En las Ecuaciones 2.74 – 2.76, los vectores $[VLN_{ABC}]$ y $[VLN_{abc}]$ representan los voltajes línea a neutro para una conexión estrella no aterrizada, o voltajes línea a tierra para una conexión estrella aterrizada. Para la conexión delta las matrices de voltajes representan los voltajes equivalentes línea a neutro. Los vectores de corrientes $[I_{abc}]$ representan las corrientes de línea sin importar la conexión del devanado del transformador.

2.5.7.1 Conexión Delta – Estrella Aterrizada

La conexión reductora delta – estrella aterrizada es una conexión popular que es típicamente utilizada en una subestación de distribución para suministrar servicio a un alimentador en estrella de 4 hilos. Otra aplicación de la conexión es proveer servicio a cargas monofásicas. Debido a la conexión estrella, tres circuitos monofásicos están disponibles, haciendo posible el balanceo de cargas monofásicas en el banco de transformadores [1]. Tres transformadores monofásicos se conectan en conexión reductora delta – estrella aterrizada en un estándar de 30° como lo muestra la Figura 2.21 y 2.22.

Figura 2.21 Conexión estándar delta-estrella aterrizada con voltajes [1].

Figura 2.22 Conexión estándar delta-estrella aterrizada con corrientes [1].

En esta conexión se tiene una relación de vueltas $n_t = \frac{VLL_{LADO DE ALTA NOMINAL}}{VLN_{LADO DE ALTA NOMINAL}}$

Las matrices generalizadas para la conexión delta – estrella aterrizada son:

$$\begin{bmatrix} \boldsymbol{a}_{t} \end{bmatrix} = -\frac{n_{t}}{3} \begin{bmatrix} 0 & 2 & 1 \\ 1 & 0 & 2 \\ 2 & 1 & 0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{b}_{t} \end{bmatrix} = -\frac{n_{t}}{3} \begin{bmatrix} 0 & 2 \cdot Zt_{b} & Zt_{c} \\ Zt_{a} & 0 & 2 \cdot Zt_{c} \\ 2 \cdot Zt_{a} & Zt_{b} & 0 \end{bmatrix},$$
(2.77)
$$\begin{bmatrix} \boldsymbol{c}_{t} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{d}_{t} \end{bmatrix} = \frac{1}{n_{t}} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix},$$
$$\begin{bmatrix} \boldsymbol{A}_{t} \end{bmatrix} = \frac{1}{n_{t}} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, \begin{bmatrix} \boldsymbol{B}_{t} \end{bmatrix} = \begin{bmatrix} Zt_{a} & 0 & 0 \\ 0 & Zt_{b} & 0 \\ 0 & 0 & Zt_{c} \end{bmatrix}.$$

2.5.7.2 Conexión Estrella No Aterrizada – Delta

Tres transformadores monofásicos se conectan en conexión reductora estrella aterrizada – delta. El neutro de la estrella puede estar aterrizado o no aterrizado. La conexión estrella aterrizada se utiliza raramente porque [1]:

• La estrella aterrizada provee un camino para la corriente a tierra en fallas línea a tierra hacia el lado de la fuente desde el banco de transformadores. Esto causa que los transformadores sean susceptibles a quemarse en fallas del lado de la fuente.

• Si se abre una fase del circuito del lado primario, el banco de transformadores continuará suministrando un servicio trifásico al operar como un banco estrella abierta – delta abierta. Sin embargo, los dos transformadores restantes pueden ser sujetos a una condición de sobrecarga que conducirá a que se quemen.

La conexión más común es la estrella no aterrizada – delta. Esta conexión es típicamente utilizada para proveer servicio a una combinación de cargas de iluminación monofásicas y cargas de potencia trifásicas tales como un motor de inducción [1]. También se utiliza para interconectar al sistema unidades de generación distribuida. Tres transformadores monofásicos se conectan en conexión estrella no aterrizada – delta estándar de 30° como se muestra en la Figura 2.23.

Figura 2.23 Conexión estándar estrella no aterrizada – delta con fasores de voltaje y corriente de secuencia positiva [1].

En esta conexión se tiene una relación de vueltas $n_t = \frac{VLN_{LADO DE ALTA NOMINAL}}{VLL_{LADO DE ALTA NOMINAL}}$

Las matrices generalizadas para la conexión estrella no aterrizada – delta son:

$$\begin{bmatrix} \boldsymbol{a}_{t} \end{bmatrix} = n_{t} \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}, \begin{bmatrix} \boldsymbol{b}_{t} \end{bmatrix} = \frac{n_{t}}{3} \begin{bmatrix} Zt_{ab} & -Zt_{ab} & 0 \\ Zt_{bc} & 2 \cdot Zt_{bc} & 0 \\ -2 \cdot Zt_{ca} & -Zt_{ca} & 0 \end{bmatrix},$$
(2.78)
$$\begin{bmatrix} \boldsymbol{c}_{t} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{d}_{t} \end{bmatrix} = \frac{1}{3 \cdot n_{t}} \begin{bmatrix} 1 & -1 & 0 \\ 1 & 2 & 0 \\ -2 & -1 & 0 \end{bmatrix},$$

$$[\mathbf{A}_{t}] = \frac{1}{3 \cdot n_{t}} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}, [\mathbf{B}_{t}] = \frac{1}{9} \begin{bmatrix} 2 \cdot Zt_{ab} + Zt_{bc} & 2 \cdot Zt_{bc} - 2 \cdot Zt_{ab} & 0 \\ 2 \cdot Zt_{bc} - 2 \cdot Zt_{ca} & 4 \cdot Zt_{bc} - Zt_{ca} & 0 \\ Zt_{ab} - 4 \cdot Zt_{ca} & -Zt_{ab} - 2 \cdot Zt_{ca} & 0 \end{bmatrix}.$$

2.5.7.3 Conexión Estrella Aterrizada – Estrella Aterrizada

La conexión estrella aterrizada – estrella aterrizada es principalmente utilizada para cargas monofásicas y trifásicas en sistemas multi-aterrizados de 4 hilos [1]. También se utiliza para interconectar unidades de generación distribuida al sistema. La conexión estrella aterrizada – estrella aterrizada se muestra en la Figura 2.24. A diferencia de las conexiones delta – estrella y estrella – delta, aquí no existe desfasamiento entre voltajes y corrientes de ambos lados del banco de transformadores.

Figura 2.24 Conexión estrella aterrizada –estrella aterrizada [1].

En esta conexión se tiene una relación de vueltas $n_t = \frac{VLN_{LADO DE ALTA NOMINAL}}{VLN_{LADO DE ALTA NOMINAL}}$

Las matrices generalizadas para la conexión estrella aterrizada – estrella aterrizada son:

$$\begin{bmatrix} \boldsymbol{a}_{t} \end{bmatrix} = n_{t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \boldsymbol{b}_{t} \end{bmatrix} = n_{t} \begin{bmatrix} Zt_{a} & 0 & 0 \\ 0 & Zt_{b} & 0 \\ 0 & 0 & Zt_{c} \end{bmatrix},$$
(2.79)
$$\begin{bmatrix} \boldsymbol{c}_{t} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{d}_{t} \end{bmatrix} = \frac{1}{n_{t}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$
$$\begin{bmatrix} \boldsymbol{A}_{t} \end{bmatrix} = \frac{1}{n_{t}} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} \boldsymbol{B}_{t} \end{bmatrix} = \begin{bmatrix} Zt_{a} & 0 & 0 \\ 0 & Zt_{b} & 0 \\ 0 & 0 & Zt_{c} \end{bmatrix}.$$

2.5.7.4 Conexión Delta – Delta

La conexión delta – delta se utiliza principalmente en sistemas delta de 3 hilos para proveer servicio a cargas trifásicas o una combinación de cargas trifásicas y cargas monofásicas [1]. Los transformadores monofásicos conectados en delta – delta se muestra en la Figura 2.25.

Figura 2.25 Conexión delta – delta [1].

En esta conexión se tiene una relación de vueltas $n_t = \frac{VLL_{LADO DE ALTA NOMINAL}}{VLL_{LADO DE ALTA NOMINAL}}$

Las matrices generalizadas para la conexión delta – delta son:

$$\begin{bmatrix} \mathbf{W} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \\ 1 & 0 & 2 \end{bmatrix}, \begin{bmatrix} \mathbf{G1} \end{bmatrix} = \frac{1}{Zt_{ab} + Zt_{bc} + Zt_{ca}} \begin{bmatrix} Zt_{ca} & -Zt_{bc} & 0 \\ Zt_{ca} & Zt_{ab} + Zt_{ca} & 0 \\ -Zt_{ab} - Zt_{bc} & -Zt_{bc} & 0 \end{bmatrix}, (2.80)$$

$$\begin{bmatrix} \mathbf{Zt}_{abc} \end{bmatrix} = \begin{bmatrix} Zt_{ab} & 0 & 0 \\ 0 & Zt_{bc} & 0 \\ 0 & 0 & Zt_{ca} \end{bmatrix}, \begin{bmatrix} \mathbf{AV} \end{bmatrix} = n_t \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$\begin{bmatrix} \mathbf{a}_t \end{bmatrix} = \frac{n_t}{3} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}, \begin{bmatrix} \mathbf{b}_t \end{bmatrix} = \begin{bmatrix} \mathbf{W} \end{bmatrix} \begin{bmatrix} \mathbf{AV} \end{bmatrix} \begin{bmatrix} \mathbf{Zt}_{abc} \end{bmatrix} \begin{bmatrix} \mathbf{G1} \end{bmatrix},$$

$$\begin{bmatrix} \mathbf{c}_t \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \mathbf{d}_t \end{bmatrix} = \frac{1}{n_t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix},$$

$$[A_t] = \frac{1}{3 \cdot n_t} \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}, [B_t] = [W][Zt_{abc}][G1].$$

2.5.7.5 Conexión Estrella Abierta – Delta Abierta

Una carga común que es servida en un alimentador de distribución es una combinación de una carga de iluminación monofásica y una carga de potencia trifásica. Muchas veces la potencia de carga trifásica será un motor de inducción. Esta combinación de cargas puede ser servida por una conexión estrella no aterrizada – delta o por una conexión estrella abierta – delta abierta. La conexión estrella abierta – delta abierta es comúnmente utilizada cuando la carga trifásica es pequeña comparada a la carga monofásica. La conexión estrella abierta requiere solo dos transformadores, pero la conexión suministrará voltajes trifásicos línea a línea para la combinación de cargas [1]. La Figura 2.26 la conexión estrella abierta – delta abierta.

Figura 2.26 Conexión estrella abierta – delta abierta usando las fases A y B del lado primario [1].

En esta conexión se tiene una relación de vueltas $n_t = \frac{VLL_{LADO DE ALTA NOMINAL}}{VLL_{LADO DE ALTA NOMINAL}}$

Las matrices generalizadas para la conexión estrella abierta – delta abierta para las fases A y B del lado primario son:

$$[\boldsymbol{a}_{t}] = n_{t} \begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 0 & 0 & 0 \end{bmatrix}, [\boldsymbol{b}_{t}] = n_{t} \begin{bmatrix} Zt_{ab} & 0 & 0 \\ 0 & 0 & -Zt_{bc} \\ 0 & 0 & 0 \end{bmatrix},$$
(2.81)

$$\begin{bmatrix} \boldsymbol{c}_t \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{d}_t \end{bmatrix} = \frac{1}{n_t} \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix},$$
$$\begin{bmatrix} \boldsymbol{A}_t \end{bmatrix} = \frac{1}{3 \cdot n_t} \begin{bmatrix} 2 & 1 & 0 \\ -1 & 1 & 0 \\ -1 & -2 & 0 \end{bmatrix}, \begin{bmatrix} \boldsymbol{B}_t \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 2 \cdot Zt_{ab} & 0 & -Zt_{bc} \\ -Zt_{ab} & 0 & -Zt_{bc} \\ -Zt_{ab} & 0 & 2 \cdot Zt_{bc} \end{bmatrix}.$$

La conexión estrella abierta – delta abierta descrita arriba utiliza las fases A y B en el primario, la cual es una de tres posibles conexiones. Las otras dos posibles conexiones usan las fases B y C, y las fases C y A. Estas pueden ser deducidas de la misma manera que lo hacen para las fases A y B en [1].

2.5.8 Modelo de Carga

Las cargas en los sistemas de distribución típicamente se especifican en potencia aparente consumida. La carga especificada será la demanda diversificada máxima. Esta demanda puede especificarse como kVA y factor de potencia, kW y factor de potencia, o kW y kVar. El voltaje especificado será siempre el voltaje en las terminales de bajo voltaje de la subestación de distribución. Esto crea un problema debido a que las corrientes de las cargas no pueden ser determinadas sin conocer el voltaje. Por esta razón, se debe emplear alguna técnica iterativa para conocer dichos voltajes [1].

Las cargas en los alimentadores de distribución se pueden modelar como si estuvieran conectadas en conexión delta o estrella y éstas pueden ser monofásicas, bifásicas o trifásicas con cualquier grado de desbalance, y pueden ser modeladas como:

- Potencia real y reactiva constante (Potencia Compleja Constante)
- Corriente constante
- Impedancia constante
- Cualquier combinación de las de arriba

Los modelos de carga desarrollados son utilizados en procesos iterativos de un programa de flujos de potencia donde se suponen los voltajes de carga inicialmente. Todos los modelos están inicialmente definidos por una potencia aparente por fase y un voltaje línea a neutro supuesto (carga en estrella) o un voltaje línea a línea supuesto (carga en delta). Las unidades de la potencia aparente pueden ser Volts-Ampere y Volts, o Volts-Ampere por unidad y Volts por unidad. Para todas las cargas se requieren las corrientes de línea que entran a la carga para realizar el análisis de flujos de potencia [1].

2.5.8.1 Cargas conectadas en Estrella

La Figura 2.27 muestra el modelo de una carga conectada en estrella. La notación para las potencias aparentes y voltajes modificados son:

Fase a: $|S_a| \measuredangle \theta_a = P_a + jQ_a \lor |V_{an}| \measuredangle \delta_a$ Fase b: $|S_b| \measuredangle \theta_b = P_b + jQ_b \lor |V_{bn}| \measuredangle \delta_b$ Fase c: $|S_c| \measuredangle \theta_c = P_c + jQ_c \lor |V_{cn}| \measuredangle \delta_c$

Figura 2.27 Carga conectada en estrella [1].

Cargas de Potencia Real y Reactiva Constante (Potencia Compleja Contante). Las corrientes de línea para cargas de potencia aparente constante están dadas por:

$$IL_{a} = \left(\frac{S_{a}}{V_{an}}\right)^{*} = \frac{|S_{a}|}{|V_{an}|} \measuredangle \delta_{a} - \theta_{a} = |IL_{a}| \measuredangle \alpha_{a}$$
$$IL_{b} = \left(\frac{S_{b}}{V_{bn}}\right)^{*} = \frac{|S_{b}|}{|V_{bn}|} \measuredangle \delta_{b} - \theta_{b} = |IL_{b}| \measuredangle \alpha_{b}$$
$$IL_{c} = \left(\frac{S_{c}}{V_{cn}}\right)^{*} = \frac{|S_{c}|}{|V_{cn}|} \measuredangle \delta_{c} - \theta_{c} = |IL_{c}| \measuredangle \alpha_{c}$$

En este modelo los voltajes línea a neutro cambiarán durante cada iteración hasta que se logre la convergencia.

Cargas de Impedancia Constante. Las cargas de impedancia constante se determinan primero con la potencia compleja especificada y los voltajes línea a neutro supuestos:

$$Z_{a} = \frac{|V_{an}|^{2}}{S_{a}^{*}} = \frac{|V_{an}|^{2}}{|S_{a}|} \measuredangle \theta_{a} = |Z_{a}| \measuredangle \theta_{a}$$

$$Z_{b} = \frac{|V_{bn}|^{2}}{S_{b}^{*}} = \frac{|V_{bn}|^{2}}{|S_{b}|} \measuredangle \theta_{b} = |Z_{b}| \measuredangle \theta_{b}$$

$$Z_{c} = \frac{|V_{cn}|^{2}}{S_{c}^{*}} = \frac{|V_{cn}|^{2}}{|S_{c}|} \measuredangle \theta_{c} = |Z_{c}| \measuredangle \theta_{c}$$
(2.83)

Las corrientes de carga como función de la impedancia de carga constante están dadas por:

$$IL_{a} = \frac{V_{an}}{Z_{a}} = \frac{|V_{an}|}{|Z_{a}|} \measuredangle \delta_{a} - \theta_{a} = |IL_{a}| \measuredangle \alpha_{a}$$

$$IL_{b} = \frac{V_{bn}}{Z_{b}} = \frac{|V_{bn}|}{|Z_{b}|} \measuredangle \delta_{b} - \theta_{b} = |IL_{b}| \measuredangle \alpha_{b}$$

$$IL_{c} = \frac{V_{cn}}{Z_{c}} = \frac{|V_{cn}|}{|Z_{c}|} \measuredangle \delta_{c} - \theta_{c} = |IL_{c}| \measuredangle \alpha_{c}$$
(2.84)

En este modelo los voltajes línea a neutro cambiaran durante cada iteración, pero la impedancia calculada en el grupo de Ecuaciones 2.83 permanecerá constante.

Cargas de Corriente Constantes. En este modelo las magnitudes de las corrientes se calculan de acuerdo a la Ecuación 2.82 y estas se mantienen constantes mientras que el ángulo del voltaje (δ) cambia, resultando en un ángulo de la corriente cambiante por lo que el factor de potencia de la carga permanece constante:

$$IL_{a} = |IL_{a}| \measuredangle \delta_{a} - \theta_{a}$$

$$IL_{b} = |IL_{b}| \measuredangle \delta_{b} - \theta_{b}$$

$$IL_{c} = |IL_{c}| \measuredangle \delta_{c} - \theta_{c}$$
(2.85)

donde δ_{abc} = Ángulos del voltaje línea a neutro y θ_{abc} = Ángulos del factor de potencia.

2.5.8.2 Cargas conectadas en Delta

El modelo para la carga conectada en delta se muestra en la Figura 2.28. La notación para las potencias aparentes especificadas y los voltajes son:

Fase ab: $|S_{ab}| \not\leq \theta_{ab} = P_{ab} + jQ_{ab} \lor |V_{ab}| \not\leq \delta_{ab}$ Fase bc: $|S_{bc}| \not\leq \theta_{bc} = P_{bc} + jQ_{bc} \lor |V_{bc}| \not\leq \delta_{bc}$ Fase ca: $|S_{ca}| \not\leq \theta_{ca} = P_{ca} + jQ_{ca} \lor |V_{ca}| \not\leq \delta_{ca}$

Figura 2.28 Carga conectada en delta [1].

Cargas de Potencia Real y Reactiva Constante (Potencia Compleja Contante). Las corrientes en las cargas conectadas en delta son:

$$IL_{ab} = \left(\frac{S_{ab}}{V_{ab}}\right)^* = \frac{|S_{ab}|}{|V_{ab}|} \measuredangle \delta_{ab} - \theta_{ab} = |IL_{ab}| \measuredangle \alpha_{ab}$$

$$IL_{bc} = \left(\frac{S_{bc}}{V_{bc}}\right)^* = \frac{|S_{bc}|}{|V_{bc}|} \measuredangle \delta_{bc} - \theta_{bc} = |IL_{bc}| \measuredangle \alpha_{bc} \qquad (2.86)$$

$$IL_{ca} = \left(\frac{S_{ca}}{V_{ca}}\right)^* = \frac{|S_{ca}|}{|V_{ca}|} \measuredangle \delta_{ca} - \theta_{ca} = |IL_{ca}| \measuredangle \alpha_{ca}$$

En este modelo los voltajes línea a línea cambiarán durante cada iteración resultando en nuevas magnitudes de corriente y ángulos al inicio de cada iteración.

Cargas de Impedancia Constante. Primero se determina la impedancia de carga constante con la potencia compleja especificada y los voltajes línea a línea:

$$Z_{ab} = \frac{|V_{ab}|^{2}}{S_{ab}^{*}} = \frac{|V_{ab}|^{2}}{|S_{a}b|} \not \pm \theta_{ab} = |Z_{ab}| \not \pm \theta_{ab}$$

$$Z_{bc} = \frac{|V_{bc}|^{2}}{S_{bc}^{*}} = \frac{|V_{bc}|^{2}}{|S_{bc}|} \not \pm \theta_{bc} = |Z_{bc}| \not \pm \theta_{bc}$$

$$Z_{ca} = \frac{|V_{ca}|^{2}}{S_{ca}^{*}} = \frac{|V_{ca}|^{2}}{|S_{ca}|} \not \pm \theta_{ca} = |Z_{ca}| \not \pm \theta_{ca}$$
(2.87)

Las corrientes de la delta como función de las impedancias de carga constante son

$$IL_{ab} = \frac{V_{ab}}{Z_{ab}} = \frac{|V_{ab}|}{|Z_{ab}|} \measuredangle \delta_{ab} - \theta_{ab} = |IL_{ab}| \measuredangle \alpha_{ab}$$

$$IL_{bc} = \frac{V_{bc}}{Z_{bc}} = \frac{|V_{bc}|}{|Z_{bc}|} \measuredangle \delta_{bc} - \theta_{bc} = |IL_{bc}| \measuredangle \alpha_{bc}$$

$$IL_{ca} = \frac{V_{ca}}{Z_{ca}} = \frac{|V_{ca}|}{|Z_{ca}|} \measuredangle \delta_{ca} - \theta_{ca} = |IL_{ca}| \measuredangle \alpha_{ca}$$
(2.88)

En este modelo los voltajes línea a línea cambiarán durante cada iteración hasta que se logre la convergencia.

Cargas de Corriente Constante. En este modelo las magnitudes de las corrientes se calculan de acuerdo a la Ecuación 2.86 y se mantienen constantes mientas el ángulo de voltaje (δ) cambia durante cada iteración. Esto mantiene constante el factor de potencia de la carga:

$$IL_{ab} = |IL_{ab}| \measuredangle \delta_{ab} - \theta_{ab}$$

$$IL_{bc} = |IL_{bc}| \measuredangle \delta_{bc} - \theta_{bc}$$

$$IL_{ca} = |IL_{ca}| \measuredangle \delta_{ca} - \theta_{ca}$$
(2.89)

Las corrientes de línea entrantes a la carga conectada en delta se determinan al aplicar la ley de corrientes de Kirchhoff en cada nodo de la delta. En forma matricial las ecuaciones son

$$\begin{bmatrix} IL_a \\ IL_b \\ IL_c \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} IL_{ab} \\ IL_{bc} \\ IL_{ca} \end{bmatrix}$$
(2.90)

La combinación de cargas puede modelarse al asignar un porcentaje de la carga total a cada uno de los tres modelos de carga. La corriente de carga total es la suma de las corrientes de carga de cada modelo. Tanto en las cargas conectadas en estrella como en las cargas conectadas en delta, las cargas monofásicas y bifásicas son modeladas al poner las corrientes de las fases faltantes en cero. Las corrientes en las fases presentes son calculadas al usar las ecuaciones apropiadas para la potencia compleja constante, impedancia constante y corriente constante.

2.5.8.3 Capacitores en Derivación

Los bancos de capacitores en derivación son comúnmente utilizados en sistemas de distribución para ayudar en la regulación de voltaje y proveer potencia reactiva. Los bancos de capacitores son modelados como susceptancias constantes conectadas o en estrella o en delta. Similar al modelo de carga, todos los bancos de capacitores están modelados como bancos trifásicos. Poniendo en cero la corriente de las fases faltantes pueden modelarse bancos monofásicos y bifásicos.

Banco de Capacitores Conectado en Estrella. El modelo del banco de capacitores en derivación trifásico se muestra en la Figura 2.29 las unidades de capacitor por fase se especifican en kVar y kV. La susceptancia constante para cada unidad puede calcularse en Siemens la cual es calculada con:

$$B_C = \frac{kvar}{1000 \cdot kV_{LN}^2} S \tag{2.91}$$

Con la susceptancia calculada, las corrientes de línea del banco de capacitores están dadas por:

$$IC_{a} = jB_{Ca} \cdot V_{an}$$

$$IC_{b} = jB_{Cb} \cdot V_{bn}$$

$$IC_{c} = jB_{Cc} \cdot V_{cn}$$
(2.92)

Figura 2.29 Banco de capacitores conectados en estrella [1].

Banco de Capacitores Conectado en Delta. El modelo para el banco de capacitores en derivación conectados en delta se muestra en la Figura 2.30. Las unidades de capacitor por fase se especifican en kVar y kV. Para los capacitores conectados en delta los kV deben ser los voltajes línea a línea. La susceptancia constante para cada unidad se calcula en Siemens, la cual se calcula con

$$B_C = \frac{kvar}{1000 \cdot kV_{LL}^2} S \tag{2.93}$$

Con la susceptancia calculada, las corrientes de la delta del banco de capacitores están dadas por:

$$IC_{ab} = jB_{Cab} \cdot V_{ab}$$

$$IC_{bc} = jB_{Cbc} \cdot V_{bc}$$

$$IC_{ca} = jB_{Cca} \cdot V_{ca}$$
(2.94)

Las corrientes de línea que fluyen dentro de los capacitores conectados en delta se calculan aplicando la ley de corrientes de Kirchhoff en cada nodo. En forma de matriz las ecuaciones son:

$$\begin{bmatrix} IC_a \\ IC_b \\ IC_c \end{bmatrix} = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} IC_{ab} \\ IC_{bc} \\ IC_{ca} \end{bmatrix}$$
(2.95)

Figura 2.30 Banco de capacitores conectados en delta [1].

2.5.8.4 Motor de Inducción Trifásico

El análisis de un motor de inducción que opera bajo condiciones de desbalance se realiza utilizando el método de componentes simétricas, en el cual se desarrollan los circuitos equivalentes de la máquina de secuencia positiva y negativa para calcular las corrientes de secuencia utilizando los voltajes línea a neutro. La red de secuencia cero no existe ya que las máquinas están típicamente conectadas en delta o estrella no aterrizada, lo que significa que no habrá corrientes y voltajes de secuencia cero. Las condiciones de operación interna se determinan con el análisis completo de redes de secuencia [1].

El circuito equivalente de secuencia línea a neutro de una máquina de inducción trifásica conectada en estrella se muestra en la Figura 2.31.

Figura 2.31 Redes de secuencia de las redes de secuencia [27].

La resistencia de carga **RL** está definida por:

$$RL_i = \frac{1 - s_i}{s_i} R_R \tag{2.96}$$

donde i = 1 para la secuencia positiva e i = 2 para la secuencia negativa.

Deslizamiento de la secuencia positiva: $s_1 = \frac{n_s - n_r}{n_s}$ Deslizamiento de la secuencia negativa: $s_2 = 2 - s_1$

donde n_s es la velocidad síncrona y n_r es la velocidad del rotor.

La resistencia de carga de secuencia negativa RL_2 tendrá un valor negativo. Esto conduce a una potencia negativa en el eje en la secuencia negativa. Las corrientes de secuencia negativa intentan hacer girar al motor en dirección reversa. Esta potencia negativa resulta en pérdidas de potencia y calentamiento en el motor.

Conociendo el deslizamiento de la máquina, las corrientes de secuencia positiva y negativa en el estator están dadas por:

$$I_{S}^{1} = \frac{V_{S}^{1} \left(j(X_{R} + X_{M}) + \frac{R_{R}}{S_{1}} \right)}{jX_{M} \left(jX_{R} + \frac{R_{R}}{S_{1}} \right) + (R_{S} + jX_{S}) \left(j(X_{R} + X_{M}) + \frac{R_{R}}{S_{1}} \right)}$$
(2.97)
$$I_{S}^{2} = \frac{V_{S}^{2} \left(j(X_{R} + X_{M}) + \frac{R_{R}}{S_{2}} \right)}{jX_{M} \left(jX_{R} + \frac{R_{R}}{S_{2}} \right) + (R_{S} + jX_{S}) \left(j(X_{R} + X_{M}) + \frac{R_{R}}{S_{2}} \right)}$$
(2.98)

Los voltajes de secuencia en el estator se pueden obtener con la siguiente expresión

$$\begin{bmatrix} \mathbf{V}_{S}^{012} \end{bmatrix} = \begin{bmatrix} V_{S}^{0} \\ V_{S}^{1} \\ V_{S}^{2} \\ V_{S}^{2} \end{bmatrix} = \frac{1}{3} \begin{bmatrix} 1 & 1 & 1 \\ 1 & a_{s} & a_{s}^{2} \\ 1 & a_{s}^{2} & a_{s} \end{bmatrix} \cdot \begin{bmatrix} V_{an} \\ V_{bn} \\ V_{cn} \end{bmatrix}$$
(2.99)

donde V_{an} , V_{bn} y V_{cn} son los voltajes línea a neutro en las terminales de la máquina de inducción y $a_s = e^{j2\pi/3}$.

Con las corrientes de secuencia se encuentra la corriente que entra a la máquina de inducción:

$$\begin{bmatrix} IM_a \\ IM_b \\ IM_c \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & a_s^2 & a_s \\ 1 & a_s & a_s^2 \end{bmatrix} \begin{bmatrix} 0 \\ I_s^1 \\ I_s^2 \end{bmatrix}$$
(2.100)

Este modelo permite modelar al motor bajo todas las condiciones de carga desde el inicio (deslizamiento = 1) hasta a plena carga (deslizamiento \approx 0.03). En este modelo los voltajes línea a neutro cambiarán durante cada iteración hasta que se logre la convergencia.

En el caso donde no se conozca el deslizamiento pero si la potencia mecánica en el eje, la máquina de inducción también puede ser modelada. Para ello se realiza un balance de energía en el rotor entre la potencia eléctrica y la potencia mecánica en el eje. La potencia eléctrica total consumida por el rotor de la máquina de inducción puede calcularse usando las redes de secuencia del modelo mostrado en la Figura 2.31, despreciando las pérdidas por fricción y devanados.

$$P_R = P_R^1 + P_R^2 = 3|I_R^1|^2 \left(\frac{1-s_1}{s_1}\right) R_R + 3|I_R^2|^2 \left(\frac{1-s_2}{s_2}\right) R_R$$
(2.101)

Las corrientes de secuencia en el rotor están dadas por

$$I_{R}^{1} = \frac{jX_{M}}{j(X_{R} + X_{M}) + \frac{R_{R}}{S_{1}}}I_{S}^{1}$$

$$I_{R}^{2} = \frac{jX_{M}}{j(X_{R} + X_{M}) + \frac{R_{R}}{S_{2}}}I_{S}^{2}$$
(2.102)

La potencia eléctrica consumida por el rotor P_R es igualada a la potencia mecánica en el eje P_M , de esta manera, se define una diferencia de potencia:

...

$$\Delta P_{eje} = P_M - P_R \tag{2.103}$$

La Ecuación 2.103 está en función del deslizamiento y los voltajes de secuencia en las terminales de la máquina de inducción. La ecuación de diferencia de potencia en el eje de la máquina es no lineal y puede ser resuelta numéricamente. Bajo operación de estado estacionario, los voltajes trifásicos en las terminales del motor son constantes, así, el deslizamiento puede ser considerado como la única variable de estado en la Ecuación 2.103. Entonces se utiliza el método Newton-Raphson para resolver la Ecuación 2.103 y encontrar el deslizamiento de operación bajo dichos voltajes en terminales de un estado estado estacionario específico:

$$s_1^{new} = s_1^{old} + \frac{\Delta P_{eje}}{\frac{d(\Delta P_{eje})}{ds_1}}$$
 (2.104)

$$\frac{d(\Delta P_{eje})}{ds_1} = -\frac{dP_R}{ds_1} = -\frac{dP_R^1}{ds_1} - \frac{dP_R^2}{ds_1}$$
(2.105)

$$\frac{dP_R^1}{ds_1} = Re\left(3R_R|jX_MV_S^1|^2 \left(\frac{2(b-bs_1)}{(as_1+b)^3} - \frac{|s_1|^2}{s_1^2|as_1+b|^2}\right)\right)\right)$$

$$\frac{dP_R^2}{ds_1} = Re\left(3R_R|jX_MV_S^2|^2 \left(\frac{2(b-bs_2)}{(as_2+b)^3} - \frac{|s_2|^2}{s_2^2|as_2+b|^2}\right)\right)\right)$$
(2.106)

donde

$$a = jX_M(R_S + jX_S) + jX_M(R_R + jX_R) + (R_S + jX_S)(R_R + jX_R) - R_R(R_S + jX_S + jX_M)$$

$$b = R_R(R_S + jX_S + jX_M)$$

El proceso de solución del Newton-Raphson iterativo continúa hasta que la diferencia de potencias de la Ecuación 2.103 que alcanza un criterio de convergencia permisible. En este proceso de solución, el valor del deslizamiento inicial se calcula al ignorar la red de secuencia negativa como en [27]:

$$s_{1,0} = \frac{R_R P_T^2}{P_T |V_R^1|^2 + R_R P_T^2}$$
(2.107)

donde

$$V_{R}^{1} = \frac{V_{S}^{1} - P_{T} \left(R_{R} + jX_{R} + R_{S} + jX_{S} + \frac{(R_{R} + jX_{R})(R_{S} + jX_{S})}{jX_{M}} \right) / V_{S}^{1}}{\left(1 + \frac{R_{S} + jX_{S}}{jX_{M}} \right)}$$
(2.108)

Una vez que el método Newton-Raphson converge y se encuentra el valor del deslizamiento, las corrientes que entran al motor de inducción pueden ser calculadas con la Ecuación 2.100. Nótese que la ecuación 2.104 tiene un signo "+" en lugar del signo "-" que normalmente se utiliza en el método de Newton-Raphson, este signo se modificó debido a que no se obtenía convergencia alguna, y que experimentalmente se llegó a la conclusión que al cambiar el signo a "+" el algoritmo convergía rápidamente. Este comportamiento se atribuye a que sólo se utilizó la parte real de $\frac{dP_R^1}{ds_1}$ y $\frac{dP_R^2}{ds_1}$. El diagrama de flujo que muestra el proceso de solución se muestra en la Figura 2.32.

Figura 2.32 Diagrama de flujo para encontrar la corriente de carga del motor al conocer la potencia mecánica del eje y desconocer el deslizamiento.

2.6 Generación Distribuida

En esta sección se presentan los modelos de generación distribuida que se implementaron tanto en el algoritmo de solución como en el optimizador. Se introdujeron dos tipos de unidades de generación distribuida de energías renovables: el aerogenerador y el arreglo de paneles solares, que al ser integrados a la red conforman una red de distribución activa. El optimizador también maneja unidades de generación distribuida convencional o de combustibles fósiles modelados como nodos PV, en el cual se fija la potencia real de generación y un rango de voltaje de operación, ya que al incluirse en un sistema de distribución que por naturaleza es desbalanceado no puede regular las fases de manera independiente debido a que la generación de potencia reactiva utilizada como variable de control es la misma en las tres fases.

2.6.1 Modelo del Aerogenerador

El modelo del aerogenerador comprime la turbina de viento y el generador de inducción que está directamente conectado a la red de distribución como se muestra en la Figura 2.33.

Figura 2.33 Modelo del Aerogenerador [27].

El modelo del aerogenerador puede considerar varias unidades para formar un parque de generación eólica. A continuación se detallan cada uno de los componentes del modelo del aerogenerador.

2.6.1.1 Turbina Eólica

Se utiliza el modelo aerodinámico para representar la turbina eólica. En este modelo, el coeficiente de potencia depende de la relación de velocidad de la punta la cual es la relación entre la velocidad de la punta del aspa y la velocidad del viento. La potencia aerodinámica es calculada como:

$$P_T = \frac{1}{2}\rho A \nu^3 C_p(\lambda) \tag{2.109}$$

donde $\lambda = \omega R/\nu$, ρ es la densidad del aire (1.225 kg/m³), A es el área del círculo que abarcan las aspas al girar en m^2 , ν es la velocidad del viento en m/s, R es el radio de las aspas medido del centro del aerogenerador a la punta del aspa en m, C_p es el coeficiente de potencia, λ es la relación de velocidad de la punta, ω es la velocidad angular de las aspas en rad/s.

La relación de C_p y λ es obtenida de los datos experimentales dados por el fabricante de la turbina eólica.

2.6.1.2 Generador de Inducción

Anteriormente se revisó el modelo de la máquina síncrona en la sección 2.5.8 como motor de inducción. Para éste caso simplemente se harán algunas consideraciones para su implementación como generador de inducción. Como sabemos ahora el eje de la máquina de inducción será movido por la energía del viento mediante la turbina eólica. La potencia de la turbina eólica se calcula con la Ecuación 2.109, y cuando el generador se conecte al sistema de distribución se conocerán los voltajes en terminales. Con esto el modelo se enfoca en calcular solamente el deslizamiento para que la máquina produzca energía en lugar de consumirla.

La turbina eólica hará girar el rotor en la misma dirección que si se tratase de un motor, la diferencia radica en que hay un cambio en la dirección de la corriente, ya que ahora en vez de consumirse se está generando, por lo que la diferencia de potencias de la Ecuación 2.103 cambia a:

$$\Delta P_{eje} = P_T - (-P_R) = P_T + P_R \tag{2.110}$$

donde ΔP_{eje} es la diferencia de potencias mecánica y eléctrica en el rotor al realizar un balance de energía despreciando pérdidas de potencia y devanados, P_T es la potencia aerodinámica producida por la turbina de viento y P_R es la potencia eléctrica generada en el rotor.

Dados estos cambios las ecuaciones para la resolución de Newton-Raphson cambian a:

$$s_1^{new} = s_1^{old} + \frac{\Delta P_{eje}}{\frac{d(\Delta P_{eje})}{ds_1}}$$
(2.111)

$$\frac{d(\Delta P_{eje})}{ds_1} = \frac{dP_R}{ds_1} = \frac{dP_R^1}{ds_1} + \frac{dP_R^2}{ds_1}$$
(2.112)
El diagrama de flujo del cálculo de la corriente de generación se muestra en la Figura 2.34.

Figura 2.34 Diagrama de flujo para encontrar la corriente de generación del aerogenerador.

2.6.2 Modelo del Panel Solar

El modelo del panel fotovoltaico que se implementó en la herramienta computacional fue replicado del modelo contenido en el programa OpenDSS [10]. La Figura 2.35 muestra un diagrama del modelo del PVSystem (Sistema Fotovoltaico) implementado en OpenDSS en la versión 7.4.1. El modelo combina un modelo de arreglo de paneles solares y del inversor para el sistema fotovoltaico que es un convertidor c.d./c.a. en un solo modelo para realizar estudios de impacto en sistemas de distribución.

Figura 2.35 Diagrama de bloques del Modelo del Elemento PVSystem de OpenDSS.

El modelo asume que el inversor es capaz de encontrar el punto de máxima potencia (mpp) del panel rápidamente. Esta característica simplifica el modelado de los componentes individuales (panel fotovoltaico e inversor) y debería adecuarse para la mayoría de los estudios de impacto en la interconexión.

El modelo básicamente aparece de la misma manera que un modelo de circuito tal como el generador, una carga o un dispositivo de almacenamiento, produciendo o consumiendo potencia de acuerdo a alguna función. En este caso, la potencia activa, P, es una función de la irradiación, temperatura (T), y de la potencia nominal en el mpp (Pmpp), a una temperatura seleccionada y una irradiación de 1.0 kW/m². En adición, la eficiencia del inversor en el voltaje y potencia de operación es aplicada.

Los datos básicos para el modelo son:

• Una Pmpp promedio para el panel a una irradiación de 1.0 kW/m² a una temperatura constante del panel tal como 25 °C o 50 °C.

- La variación en p.u. de Pmpp vs Temperatura a una irradiación de 1.0 kW/m².
- Una curva representativa de la eficiencia del inversor, eficiencia en p.u. vs potencia que entra al inversor en p.u.

La Figura 2.36 muestra la forma general de las curvas i-v para un panel fotovoltaico a una temperatura constante. La relación de Pmpp con la irradiación a una temperatura constante varia muy poco para un rango práctico, pero por lo general está lo suficientemente cercano a ser constante para estudios de impacto en sistemas de distribución.

V, volts

Figura 2.36 Forma típica de las curvas i-v para valores diferentes de irradiación para una temperatura constante, con los puntos de máxima potencia indicados.

Los parámetros del modelo son especificados para un valor de irradiación relativamente alto de 1000 W/m^2 por lo que se espera que el modelo sea más exacto en salidas de potencia más grandes donde cuestiones como el incremento de voltaje sería lo más importante.

Dado un valor de irradiación, la potencia de salida del panel es multiplicada por un factor que depende de la temperatura del panel. Por ejemplo, si la Pmpp es producida para una temperatura del panel de 25 °C, la curva de potencia vs temperatura podría ser similar a la curva mostrada en la Figura 2.37. Cuando la temperatura del panel incrementa de 25 a 75 °C, la potencia cae alrededor de un 22%. Por lo tanto, la potencia máxima de salida del panel es estimada por

$$P_{panel,kW} = P_{mpp} \cdot Irradiancia \cdot F_T \tag{2.113}$$

donde la potencia en el punto de máxima potencia (P_{mpp}) es medida en kW a una irradiación de 1 kW/m^2 y una temperatura de 25 °C, la Irradiación en kW/m^2 y el factor de temperatura F_T es debido a la temperatura del panel al momento de la medición.

Figura 2.37 Ejemplo de variación Potencia-Temperatura para una irradiación de 1 kW/m².

El modelo solo utiliza 4 puntos de la curva de la variación de potencia-temperatura mostrada en la Figura 2.37, en donde para un punto de temperatura intermedio se interpola encontrando así el factor de temperatura. Usualmente es suficiente introducir solo 4 o 5 puntos debido a que las curvas son relativamente suaves y monótonas.

Finalmente el modelo asume que el inversor es capaz de encontrar el mpp dentro de un paso de tiempo de simulación. La potencia de salida del inversor es determinada al aplicar la eficiencia de una curva como la de la Figura 2.38. Ésta es una curva típica del voltaje de operación de cd esperado a altos valores de irradiación.

$$P_{inversor,kW} = P_{panel,kW} \cdot E_{inversor}$$
(2.114)

donde $P_{inversor,kW}$ es la potencia que proporciona por el inversor en kW, y $E_{inversor}$ es la eficiencia del inversor obtenida por la curva eficiencia vs potencia entrante al inversor.

Al igual que para la curva de variación potencia-temperatura, el modelo utiliza sólo 4 puntos de la curva de eficiencia vs la potencia entrante al inversor mostrada en la Figura 2.38, y para puntos intermedios se interpola la eficiencia dada.

Figura 2.38 Eficiencia vs Potencia Entrante al Inversor en p.u.

Una vez encontrada la potencia que sale del inversor $P_{inversor,kW}$, se divide entre tres para asignar una misma potencia a cada una de las fases. La potencia asignada a cada fase es la potencia especificada, y con ella el arreglo de paneles solares se puede modelar como una carga de potencia aparente constante o una carga de impedancia constante, conectadas en estrella o en delta. El modelado de una carga de potencia aparente constante y de impedancia constante se encuentra en la sección 2.5.8. Cabe mencionar que dicha potencia se debe introducir con signo negativo a los modelos de carga para que proporcione una corriente de generación y no de carga.

OpenDSS tiene dos tipos de soluciones, la solución estática y la solución de tiempo secuencial. De acuerdo al algoritmo de solución que se está utilizando, la forma que nos interesa es la simulación estática, pero es posible realizar una solución de tiempo secuencial simplemente corriendo el programa una vez para cada valor de irradiación y temperatura correspondiente.

2.7 Algoritmo de Barrido Hacia Adelante–Hacia Atrás

Este trabajo se centra en la optimización de la operación de redes de distribución activas. Sin embargo, para dicho fin en este trabajo se propone que las restricciones que representan el estado estacionario del sistema de distribución se planteen en base a los principios establecidos por el Algoritmo de Barrido Hacia Adelante–Hacia Atrás (FBS). En este sentido, el algoritmo se describe de manera general enseguida y se ilustra mediante la Figura 2.39 (una descripción detallada se ilustra en el Apéndice C).

El algoritmo FBS se compone de la ejecución subsecuente de dos pasos principales: el barrido hacia adelante y el barrido hacia atrás [1]. Para realizar ambos barridos se requiere primeramente ordenar en forma ascendente todos los nodos del sistema en función de su distancia respecto al nodo fuente. Esto se realiza representando el sistema por medio de un diagrama de árbol. En este diagrama el nodo raíz es el nodo fuente (subestación de distribución), tal que el ordenamiento de los nodos del sistema de distribución queda definido por los niveles del árbol. Se procede entonces a identificar los nodos terminales. Estos se definen como aquellos nodos en los que incide un solo elemento de dos terminales. Como entrada del proceso de barrido hacia adelante se requiere proporcionar la condición inicial al vector de variables $V_{T in}$ que representa el conjunto de voltajes asociados a todos los nodos terminales. Est decir, $V_{T in} = [V_{1 in}, V_{2 in}, ..., V_{n in}]$, donde el subíndice T=1,2,..n denota el número de los nodos terminales.

Considerando el vector de voltajes $V_{T in}$, el barrido hacia adelante inicia calculando las corrientes demandadas en los nodos terminales. Posteriormente, siguiendo el ordenamiento de los nodos y utilizando los modelos descritos en las Secciones 2.5 y 2.6, este barrido procede a calcular voltajes y corrientes en el resto de nodos y componentes del sistema, respectivamente. Tal que el barrido hacia adelante termina con el cálculo del voltaje V_f y la corriente I_f en el nodo fuente (subestación de distribución). Si la diferencia de este voltaje V_f con respecto a voltaje medido en la subestación V_m es menor que una tolerancia especificada, entonces se cumple este criterio de convergencia y el algoritmo FBS termina. La condición de estado estacionario queda entonces definida por los vectores de voltajes nodales y de corrientes en los elementos V_{nod} y I_{elem} , respectivamente, calculados durante el barrido hacia adelante. Es importante mencionar que $V_{T in}$, $V_f \in V_{nod}$ y $I_f \in I_{elem}$. En caso de no cumplirse el criterio de convergencia, se procede a realizar el barrido hacia atrás.

El proceso de barrido hacia atrás inicia asignando el voltaje del nodo fuente V_f como el valor del voltaje medido V_m , es decir $V_f \leftarrow V_m$. Después, siguiendo en sentido inverso el ordenamiento de los nodos y utilizando los modelos descritos en las Secciones 2.5 y 2.6, el barrido hacia atrás procede a recalcular el voltaje de todos los nodos del sistema (incluyendo los voltajes en los nodos terminales). Los valores de los voltajes resultantes en los nodos terminales se representan por el vector de voltajes $V_{Tout} = [V_{1out}, V_{2out}, ..., V_{nout}]$. El vector de voltajes V_{Tout} es considerado como V_{Tin} ($V_{Tin} \leftarrow V_{Tout}$) y el algoritmo regresa al barrido hacia adelante mientras el contador de iteraciones denominado por *j* no exceda la cantidad permisible *Itermax*.

El algoritmo FBS antes descrito ha sido propuesto en [1] y utilizado ampliamente con la finalidad de determinar la condición de estado estacionario de sistemas de distribución. A diferencia, en este trabajo se propone utilizar únicamente los procesos de barrido hacia adelante y hacia atrás para formular restricciones que representan el estado estacionario de redes de distribución activas; tal como se describe en la Sección 2.8. En este sentido, se vuelve esencial validar el código generado (función de MatLab[®]) que realiza los procesos

de barrido hacia adelante y hacia atrás. Para este fin, se implementó el algoritmo FBS antes descrito, tal que la validación se realiza comparando los resultados obtenidos para los alimentadores de prueba de la IEEE, como se ilustra en el capítulo de resultados.

Figura 2.39 Diagrama de flujo del método de barrido hacia adelante – hacia atrás

2.8 Formulación de restricciones de estado estacionario

La formulación de las restricciones que representan el estado estacionario de la red de distribución se puede expresar en base a la siguiente implicación que se obtiene del principio general del algoritmo FBS descrito anteriormente. Considere que el algoritmo FBS ilustrado en la Figura 2.39 converge en la *j-ésima* iteración, tal que a partir del vector de voltajes V_{Tin}^{j} el barrido hacia adelante obtuvo el estado estacionario del sistema definido por los vectores V_{nod}^{j} y I_{elem}^{j} . Suponga que a pesar de cumplirse el criterio de convergencia, se procede a realizar el barrido hacia atrás. Tal que en la iteración *j+1* se obtiene el vector de voltajes V_{Tout}^{j+1} . Considere además que este vector de voltajes V_{Tout}^{j+1} es substancialmente distinto a V_{Tin}^{j} . Dado que el vector V_{Tout}^{j+1} será considerado como el nuevo vector V_{Tin}^{j+1} , entonces en la iteración *j+1* se determinará una condición de estado estado estado

distinta a la determinada en la *j-ésima* iteración. Note que esto contradice la satisfacción de la prueba de convergencia realizada en la *j-ésima* iteración. Tal que por contradicción, se debe aceptar que $V_{T in}^{j}$ y $V_{T out}^{j+1}$ deben ser prácticamente iguales cuando se ha determinado la condición de estado estacionario del sistema definida por V_{nod}^{J} y I_{elem}^{J} . Esta implicación natural permite establecer que el estado estacionario se logra cuando se cumplen las condiciones de las Ecuaciones 2.115 y 2.116. Donde Re e Im representan el operador de parte real e imaginaria, respectivamente.

$$Re\{V_{T in}\} - Re\{V_{T out}\} = 0$$
(2.115)

$$Im\{V_{T in}\} - Im\{V_{T out}\} = 0$$
(2.116)

También es importante notar que en el algoritmo FBS los voltajes representados por el vector V_{Tout} se obtienen a partir de los voltajes representados por V_{Tin} . Tal que es posible considerar que los voltajes representados por el vector V_{Tout} son función de los voltajes representados por $V_{T in}$, es decir,

$$Re\{\boldsymbol{V}_{T out_k}\} = f_k(Re\{\boldsymbol{V}_{Tin}\}, Im\{\boldsymbol{V}_{Tin}\})$$
(2.117)

$$Imag\{V_{T out_k}\} = g_k(Re\{V_{Tin}\}, Im\{V_{Tin}\})$$
(2.117)
$$Imag\{V_{T out_k}\} = g_k(Re\{V_{Tin}\}, Im\{V_{Tin}\})$$
(2.118)

donde el subíndice k representa el k-ésimo elemento de V_{Tout} . $f_k(\cdot)$ y $g_k(\cdot)$ representan las funciones que relacionan las partes real e imaginaria de $V_{T out_k}$ y $V_{T in}$. Desde esta perspectiva, la determinación de la condición de estado estacionario se transforma a determinar la parte real e imaginaria de los voltajes representados por el vector V_{Tin} que hacen se cumplan las condiciones 2.115 y 2.116. La solución de estas condiciones, sin embargo, no se puede realizar mediante manipulación algebraica porque no se conocen las funciones explicitas f_k y q_k . Pero es evidente que el barrido hacia adelante y el barrido hacia atrás proporcionan una alternativa numérica directa para establecer la dependencia que los voltajes V_{Tout} tienen de los voltajes V_{Tin} , es decir, el barrido hacia adelante y el barrido hacia atrás reemplazan las funciones explicitas $f_k(\cdot)$ y $g_k(\cdot)$, como sigue: Sabemos que V_{Tout} es resultado de evaluar los procesos de barrido hacia adelante y hacia atrás considerando como entrada los voltajes $V_{T in}$, tal que, $V_{Tout} = FBS(V_{T in})$. Donde FBS(·) representa la función en la que se codifica el proceso de barrido hacia adelante y hacia atrás. De esta forma, las condiciones (Ecuaciones 2.115 y 2.116) que representan el estado estacionario del sistema de distribución se pueden expresar ahora por medio de las Ecuaciones 2.119 y 2.120, respectivamente. En este contexto, la condición de estado estacionario se puede determinar resolviendo las Ecuaciones 2.119 y 2.120 haciendo uso de diferenciación numérica. Esta característica resulta especialmente útil para de determinar la condición óptima de operación de estado estacionario de redes de distribución activas, como se propone más adelante.

$$Re\{V_{T in}\} - Re\{FBS(V_{T in})\} = 0$$
(2.119)

$$Imag\{V_{T in}\} - Imag\{FBS(V_{T in})\} = 0$$
(2.120)

2.9 Modelo de Optimización

El objetivo de la optimización de la herramienta computacional desarrollada consiste en garantizar la correcta operación de una red de distribución activa evitando sobre voltajes, bajos voltajes y sobrecarga en los elementos de la red. Para ello se debe minimizar la reducción de carga o en casos extremos el tirado de carga (debido a sobrecarga de un componente en serie del alimentador), mediante la manipulación de taps de los reguladores de voltaje y la reducción de carga a factor de potencia constante. Las cargas "flexibles" son las únicas que se pueden reducir, dando la posibilidad al usuario de mantener cargas "no flexibles" que es importante no reducir. El modelo de optimización se muestra a continuación:

Minimizar
$$f(P_{load,i}^{r}) = \sum_{i=1}^{n} (P_{load,i}^{r} - P_{load,i}^{r})^{2}$$
 (2.121)

Sujeto a

$$Re(V_{j,en}^{r}) - Re\left(FBS\left(V_{j,en}^{r}, P_{load,i}^{r}, tap_{j}^{r}\right)\right) = 0$$
(2.122)

$$Im(V_{j,en}^{r}) - Im\left(FBS\left(V_{j,en}^{r}, P_{load,i}^{r}, tap_{j}^{r}\right)\right) = 0$$

$$(2.123)$$

$$0 \le P_{load,i}^r \le P_{load0,i}^r \tag{2.124}$$

$$\left|V_{j,FBS(min)}^{r}\right| \le \left|V_{j,FBS}^{r}\right| \le \left|V_{j,FBS(max)}^{r}\right| \tag{2.125}$$

$$\left|I_{jk,FBS}^{r}\right| \le \left|I_{jk,FBS(max)}^{r}\right| \tag{2.126}$$

$$-16 \le tap_j^r \le 16 \tag{2.127}$$

donde r es la fase r = a, b, c, i es el número de carga de n cargas flexibles totales del sistema (i = 1...n), cada carga pertenece a una sola fase, $P_{load0,i}^r$ es la potencia real de la carga flexible original i antes de la reducción de carga en la fase r, $P_{load,i}^r$ es la potencia real de la carga flexible i después de la reducción de carga en la fase r. $V_{j,en}^r$ es el voltaje en el nodo terminal j, en la fase r, $V_{j,en,FBS}^{r}$ es el voltaje en el nodo terminal j calculado por el proceso de barrido hacia adelante-hacia atrás, en la fase r. $|V_{i,FBS}^r|$ es la magnitud del voltaje calculado por el algoritmo de solución en el nodo j en la fase r, $\left|V_{j,FBS(min)}^{r}\right|$ es el límite inferior de la magnitud de voltaje en el nodo j en la fase r, $|V_{i(max)}^{r}|$ es el límite superior de la magnitud de voltaje en el nodo j y fase r, tap_j^r es el valor del tap fraccionario del regulador de voltaje en el nodo j y fase r, $|I_{ik,FBS}^r|$ es la magnitud de la corriente del ramal calculada por el algoritmo de solución entre el nodo emisor j y el nodo receptor k en la fase r, $|I_{ik,FBS(max)}^r|$ es el límite superior de la magnitud de la corriente del ramal entre el nodo emisor j y el nodo receptor k en la fase r. Las variables de decisión en este modelo son los voltajes nodales en los nodos terminales $V_{i,en}^r$, la potencia real de las cargas flexibles del sistema $P_{load,i}^r$ y los taps de los reguladores de voltaje tap_i^r .

Note que en la función objetivo (Ecuación 2.121) considera la minimización de la reducción de la demanda. Esto sujeto a que se satisfagan las restricciones (Ecuación 2.122) y (Ecuación 2.123), las cuales representan la condición de estado estacionario del sistema. Estas restricciones corresponden a las condiciones (Ecuación 2.119) y (Ecuación 2.120), planteadas en la Sección 2.8. Se hace notar que el voltaje calculado mediante el proceso de barrido hacia adelante y hacia atrás mediante la función FBS(·), sin embargo, es considerado dependiente de la potencia real de las cargas flexibles del sistema $P_{load,i}^r$ y los taps de los reguladores de voltaje tap_j^r , en adición a los voltajes de los nodos terminales. Ya que la adecuada operación del sistema (representada por las restricciones de desigualdad), se pretende lograr a través de modular dichas variables de decisión. La solución del modelo (Ecuaciones 2.121-2.127) se realiza mediante el método de punto interior a través de la función fmincon de Matlab.

2.9.1 Método de Optimización: Algoritmo de Punto Interior

El desarrollo de los flujos de potencia ha estado siguiendo de manera muy cerca el progreso de las técnicas de optimización numérica y de la tecnología computacional. Demasiados enfoques se han propuesto para resolver el problema de flujos de potencia. Estas técnicas incluyen programación no lineal (Nonlinear Programming o NLP), programación cuadrática (Quadratic Programming o QP), programación lineal (Linear Programming o LP), programación mixta (Mixed Programming o MP), así como algoritmos de punto interior e inteligencia artificial [28].

La programación lineal es una de las técnicas matemáticas más ampliamente aplicadas. Hasta hace poco, el método estándar para la solución de problemas de LP fue el método simplex, propuesto por Dantzig. Desde entonces, ha sido comúnmente utilizado en problemas de negocios, logística, economía, e ingeniería. Todas las formas del método simplex alcanzan el óptimo al atravesar una serie de soluciones básicas. Cada solución básica representa un punto extremo de la región factible, la trayectoria seguida por el algoritmo se mueve alrededor de la frontera de la región factible. En el peor de los casos, la trayectoria podría examinar la mayoría si no es que todos los puntos extremos. Esto podría ser muy ineficiente dado que el número de puntos extremos crece exponencialmente con el número de restricciones y variables del problema. Afortunadamente, el comportamiento del peor de los casos no ha sido experimentado para problemas prácticos [28].

Desde entonces muchos investigadores se enfocaron en crear un algoritmo para la resolución de problemas de LP que siga una trayectoria a través del politopo de la región factible en lugar de alrededor de su perímetro. Los algoritmos de punto interior lograron esto, e incluso pueden aplicarse tanto a problemas de LP como de QP, y más generalmente de NLP. Los algoritmos de punto interior más exitosos están basados en usar una formulación prima-dual y aplicando el método de Newton al sistema de ecuaciones que surge del método de barrera, o en otras palabras, que surge por la perturbación de las condiciones de optimalidad. Este método ha sido ampliamente

utilizado en problemas de optimización de sistemas de potencia debido a su favorable convergencia, robustez, e insensibilidad a puntos de inicio no factibles [28].

La idea principal del método de punto interior es aproximarse a la solución óptima estrictamente desde el interior de la región factible. Dos condiciones deben tomarse en cuenta: (1) iniciar desde un punto factible y (2) construir una barrera que prevenga que cualquier variable alcance la frontera. Pero es muy difícil encontrar un punto de inicio factible para problemas prácticos de gran escala. El método de punto interior siguiendo la trayectoria central (center path following interior-point method) reemplaza la condición del punto inicial factible por unas simples restricciones de desigualdad que buscan variables de holgura no nulas y multiplicadores de Lagrange [28]. Refiriéndonos al problema de optimización generalizado como un modelo óptimo no lineal expresado por las Ecuaciones 2.128 – 2.130,

$$obj\min f(\boldsymbol{x}), \tag{2.128}$$

Sujeto a

$$\boldsymbol{h}(\boldsymbol{x}) = \boldsymbol{0}, \tag{2.129}$$

$$\underline{g} \le g(x) \le \overline{g} \tag{2.130}$$

Donde la función objetivo 2.128, corresponde a la función objetivo de la formulación de flujos de potencia, que es una función no lineal, 2.129 son las restricciones de igualdad y 2.130 las restricciones de desigualdad con límites superiores $\overline{g} = [\overline{g}_1, ..., \overline{g}_r]^T$ y límites inferiores $\underline{g} = [\underline{g}_1, ..., \underline{g}_r]^T$. Se asume que hay *n* variables, *m* restricciones de igualdad y *r* restricciones de desigualdad en esta formulación.

Primero las restricciones de desigualdad 2.130 son transformadas a restricciones de igualdad introduciendo variables de holgura:

$$g(x) + u = \overline{g}, \tag{2.131}$$

$$g(x) - l = \underline{g}, \tag{2.132}$$

Donde las variables de holgura $\boldsymbol{l} = [l_1, ..., l_r]^T$, $\boldsymbol{u} = [u_1, ..., u_r]^T$ deben ser positivas:

$$u > 0, \quad l > 0, \quad (2.133)$$

Así el problema original se convierte en el problema de optimización A:

obj min f(x),

Sujeto a

$$h(x) = 0,$$

$$g(x) + u = \overline{g},$$

$$g(x) - l = \underline{g},$$

$$u > 0, \quad l > 0,$$

Entonces el " $\log(l_j)$ " y el " $\log(u_j)$ " son agregados a la función objetivo del problema A para construir una función objetivo de barrera la cual es equivalente a f(x) cuando l_j y u_j (j = 1, ..., r) son mayores a cero. La función objetivo de barrera se volverá muy grande si cualquiera de l_j o u_j (j = 1, ..., r) se aproximan a cero. La función objetivo de barrera del problema B es

$$obj\min f(\mathbf{x}) - \mu \sum_{j=1}^{r} \log(l_j) - \mu \sum_{j=1}^{r} \log(u_j),$$

Sujeto a

$$h(x) = 0,$$

$$g(x) + u = \overline{g},$$

$$g(x) - l = \underline{g},$$

Donde el factor (o parámetro de barrera) μ debe satisfacer $\mu > 0$. Un problema de optimización A con restricciones de desigualdad es transformado a un problema B con restricciones de igualdad al incorporar restricciones de igualdad en una función de barrera logarítmica que impone una restricción de penalización se aproxima a la frontera (uj = 0, lj = 0 para toda j). De esta manera el método de multiplicadores de Lagrange de los cálculos clásicos puede ser utilizado para resolver el problema B.

La función de Lagrange del problema B es

$$L = f(\mathbf{x}) - \mathbf{y}^{T} \mathbf{h}(\mathbf{x}) - \mathbf{z}^{T} \left[\mathbf{g}(\mathbf{x}) - \mathbf{l} - \underline{\mathbf{g}} \right] - \mathbf{w}^{T} \left[\mathbf{g}(\mathbf{x}) + \mathbf{u} - \overline{\mathbf{g}} \right] - \mu \sum_{j=1}^{r} \log(l_{j})$$

$$- \mu \sum_{j=1}^{r} \log(u_{j})$$
(2.134)

donde $\boldsymbol{y} = [y_1, \dots, y_m]^T$, $\boldsymbol{z} = [z_1, \dots, z_r]^T$, $\boldsymbol{w} = [w_1, \dots, w_r]^T$ son los multiplicadores de Lagrange.

Las condiciones necesarias para un punto estacionario del problema restringido B son que las derivadas parciales de la función de Lagrange (Ecuación 2.134) con respecto a cada variable deben ser igual a cero.

$$L_{x} = \frac{\partial L}{\partial x} \equiv \nabla_{x} f(x) - \nabla_{x} h(x) y - \nabla_{x} g(x)(x+w) = 0, \qquad (2.135)$$

$$\boldsymbol{L}_{\boldsymbol{y}} = \frac{\partial L}{\partial \boldsymbol{y}} \equiv \boldsymbol{h}(\boldsymbol{x}) = 0, \qquad (2.136)$$

$$\boldsymbol{L}_{\boldsymbol{z}} = \frac{\partial L}{\partial \boldsymbol{z}} \equiv \boldsymbol{g}(\boldsymbol{x}) - \boldsymbol{l} - \underline{\boldsymbol{g}} = \boldsymbol{0}, \qquad (2.137)$$

$$\boldsymbol{L}_{\boldsymbol{w}} = \frac{\partial L}{\partial \boldsymbol{w}} \equiv \boldsymbol{g}(\boldsymbol{x}) + \boldsymbol{u} - \overline{\boldsymbol{g}} = \boldsymbol{0}, \qquad (2.138)$$

$$\boldsymbol{L}_{\boldsymbol{l}} = \frac{\partial \boldsymbol{L}}{\partial \boldsymbol{l}} = \boldsymbol{z} - \mu \boldsymbol{L}^{-1} \boldsymbol{e} \Rightarrow \boldsymbol{L}_{\boldsymbol{l}}^{\mu} = \boldsymbol{L} \boldsymbol{Z} \boldsymbol{e} - \mu \boldsymbol{e} = \boldsymbol{0}, \qquad (2.139)$$

$$\boldsymbol{L}_{\boldsymbol{u}} = \frac{\partial L}{\partial \boldsymbol{u}} = -\boldsymbol{w} - \mu \boldsymbol{U}^{-1} \boldsymbol{e} \Rightarrow \boldsymbol{L}_{\boldsymbol{u}}^{\mu} = \boldsymbol{U} \boldsymbol{W} \boldsymbol{e} + \mu \boldsymbol{e} = 0, \qquad (2.140)$$

donde $L = \text{diag}(l_1, \dots, l_r)$, $U = \text{diag}(u_1, \dots, u_r)$, $Z = \text{diag}(z_1, \dots, z_r)$, $W = \text{diag}(w_1, \dots, w_r)$. Con las Ecuaciones 3.149 y 3.150 se obtiene

$$\mu = \frac{\boldsymbol{l}^T \boldsymbol{z} - \boldsymbol{u}^T \boldsymbol{w}}{2r} \tag{2.141}$$

Se define una brecha (Gap) dualidad como: $\mathbf{Gap} = \mathbf{l}^T \mathbf{z} - \mathbf{u}^T \mathbf{w}$, entonces se tiene

$$\mu = \frac{Gap}{2r} \tag{2.142}$$

Fiaccio y McCormick probaron que bajo ciertas condiciones, si \mathbf{x}^* es la solución óptima del problema A, $x(\mu)$ es la solución óptima del problema B mientras que μ es fijo y la secuencia $\{x(\mu)\}$ se acerca lo suficiente a \mathbf{x}^* cuando Gap \rightarrow 0 o cuando $\mu \rightarrow$ 0. Cuando se resuelve la secuencia del problema B, a medida que disminuye la fuerza de la función de barrera, el óptimo sigue una trayectoria bien definida (de ahí el término "siguiendo la trayectoria") que termina con la solución óptima del problema original. Cuando se pone μ de acuerdo a la Ecuación 3.152, la convergencia del algoritmo es algunas veces muy lenta, por lo que se sugiere la siguiente modificación:

$$\mu = \sigma \frac{Gap}{2r} \tag{2.143}$$

donde $\sigma \in (0,1)$ es llamado parametro central, usualmente se puede conseguir una convergencia satisfactoria al poner σ alrededor de 0.1. Debido a que $\mu > 0$, l > 0 y u > 0, de las Ecuaciones 2.139 y 2.140 se deduce que se debe satisfacer que z > 0 y w < 0.

Las condiciones para la optimalidad de las Ecuaciones 2.135 – 2.140, pueden ser resueltas por el método Newton. La dirección de la actualización de Newton se obtiene al resolver las siguientes ecuaciones linealizadas:

$$-[\nabla_x^2 f(x) - \nabla_x^2 h(x)y - \nabla_x^2 g(x)(z+w)]\Delta x + \nabla_x h(x)\Delta y + \nabla_x g(x)(\Delta z + \Delta w) = L_x,$$
(2.144)

$$\nabla_{\boldsymbol{x}} \boldsymbol{h}(\boldsymbol{x})^T \Delta \boldsymbol{x} = -\boldsymbol{L}_{\boldsymbol{y}}, \qquad 2.145)$$

$$\nabla_{\boldsymbol{x}} \boldsymbol{g}(\boldsymbol{x})^T \Delta \boldsymbol{x} - \Delta \boldsymbol{l} = -\boldsymbol{L}_{\boldsymbol{z}}, \qquad (2.146)$$

$$\nabla_{\mathbf{x}} \boldsymbol{g}(\mathbf{x})^T \Delta \boldsymbol{x} + \Delta \boldsymbol{u} = -\boldsymbol{L}_{\boldsymbol{w}}, \qquad (2.147)$$

$$\mathbf{Z}\Delta \mathbf{l} + \mathbf{L}\Delta \mathbf{z} = -\mathbf{L}_{\mathbf{l}}^{\mu}, \qquad (2.148)$$

$$W\Delta u + U\Delta w = -L_u^{\mu}, \qquad (2.149)$$

Las ecuaciones pueden ser reescritas en forma de matriz:

$$\begin{bmatrix} H & \nabla_{x}h(x) & \nabla_{x}g(x) & \nabla_{x}g(x) & 0 & 0 \\ \nabla_{x}h(x)^{T} & 0 & 0 & 0 & 0 & 0 \\ \nabla_{x}g(x)^{T} & 0 & 0 & 0 & -I & 0 \\ \nabla_{x}g(x)^{T} & 0 & 0 & 0 & 0 & I \\ 0 & 0 & L & 0 & Z & 0 \\ 0 & 0 & 0 & U & 0 & W \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \\ \Delta w \\ \Delta l \\ \Delta u \end{bmatrix} = \begin{bmatrix} L_{x} \\ -L_{y} \\ -L_{z} \\ -L_{w} \\ -L_{u}^{\mu} \\ -L_{u}^{\mu} \end{bmatrix}, \quad (2.150)$$

donde $H = -[\nabla_x^2 f(x) - \nabla_x^2 h(x)y - \nabla_x^2 g(x)(z+w)].$

El orden de la matriz de arriba es $(4r + m + n) \times (4r + m + n)$. La tarea más intensa computacionalmente se enfoca en formar la matriz de coeficientes del lado izquierdo de la Ecuación 2.150 y después resolver la ecuación. Para reducir el esfuerzo de cálculo, la Ecuación 2.150 se puede reescribir de la siguiente forma al cambiar algunas de las filas y columnas:

$$\begin{bmatrix} L & Z & 0 & 0 & 0 & 0 \\ 0 & -I & 0 & 0 & \nabla_{x}g(x)^{T} & 0 \\ 0 & 0 & U & W & 0 & 0 \\ 0 & 0 & 0 & I & \nabla_{x}g(x)^{T} & 0 \\ \nabla_{x}g(x) & 0 & \nabla_{x}g(x) & 0 & H & \nabla_{x}g(x) \\ 0 & 0 & 0 & 0 & \nabla_{x}h(x)^{T} & 0 \end{bmatrix} \begin{bmatrix} \Delta z \\ \Delta l \\ \Delta w \\ \Delta u \\ \Delta y \\ \Delta y \end{bmatrix} = \begin{bmatrix} -L_{l}^{\mu} \\ -L_{z} \\ -L_{w}^{\mu} \\ L_{x} \\ -L_{y} \end{bmatrix}.$$

Con una simple manipulación matemática alrededor de las filas y columnas, la ecuación de arriba puede ser reescrita como

$$\begin{bmatrix} I & L^{-1}Z & 0 & 0 & 0 & 0 \\ 0 & I & 0 & 0 & -\nabla_{x}g(x)^{T} & 0 \\ 0 & 0 & I & U^{-1}W & 0 & 0 \\ 0 & 0 & 0 & I & \nabla_{x}g(x)^{T} & 0 \\ 0 & 0 & 0 & 0 & H' & \nabla_{x}h(x) \\ 0 & 0 & 0 & 0 & \nabla_{x}h(x)^{T} & 0 \end{bmatrix} \begin{bmatrix} \Delta x \\ \Delta y \\ \Delta z \\ \Delta w \\ \Delta l \\ \Delta u \end{bmatrix} = \begin{bmatrix} -L^{-1}L_{l}^{\mu} \\ -L_{z} \\ -U^{-1}L_{u}^{\mu} \\ -L_{w} \\ L_{x}' \\ -L_{y} \end{bmatrix} (2.151)$$

donde

$$\begin{split} L'_x &= L_x + \nabla_x g(x) \big[L^{-1} \big(L^{\mu}_l + Z L_z \big) + U^{-1} \big(L^{\mu}_u - W L_w \big) \big] H' \\ H' &= H - \nabla_x g(x) [L^{-1} Z - U^{-1} W] \nabla_x g(x)^T, \end{split}$$

En este escenario, el mayor esfuerzo de cálculo para resolver la Ecuación 2.151 es la descomposición LDL^T de la matriz $\begin{bmatrix} H' & \nabla_x h(x) \\ \nabla_x h(x)^T & 0 \end{bmatrix}$ la cual es de orden $(m + n) \times (m + n)$, y es mucho más pequeña que la matriz de coeficientes del lado izquierdo de la Ecuación 2.150. Las variables se pueden obtener fácilmente con sustitución hacia atrás. Este enfoque se puede implementar de una manera muy eficiente porque $\begin{bmatrix} H' & \nabla_x h(x) \\ \nabla_x h(x)^T & 0 \end{bmatrix}$ es una matriz con muy pocos valores. La dirección de Newton para la k-esima iteración se obtiene al resolver la Ecuación 2.151, y las nuevas aproximaciones para la solución óptima son

$$\mathbf{x}^{(k+1)} = \mathbf{x}^{(k)} + \alpha_p \Delta \mathbf{x},$$
(2.152)

$$\boldsymbol{l}^{(k+1)} = \boldsymbol{l}^{(k)} + \alpha_p \Delta \boldsymbol{l}, \qquad (2.153)$$

$$u^{(k+1)} = u^{(k)} + \alpha_p \Delta u, \qquad (2.154)$$

$$y^{(k+1)} = y^{(k)} + \alpha_d \Delta y, \qquad (2.155)$$

$$\mathbf{Z}^{(k+1)} = \mathbf{Z}^{(k)} + \alpha_d \Delta \mathbf{Z}, \tag{2.156}$$

$$\boldsymbol{w}^{(k+1)} = \boldsymbol{w}^{(k)} + \alpha_d \Delta \boldsymbol{w}, \qquad (2.157)$$

donde α_p y α_d la longitud de paso prima y la longitud de paso dual respectivamente, estas se pueden obtener por las siguientes ecuaciones para asegurar que l > 0 y u > 0:

$$\alpha_p = 0.9995 \min\left\{\min_i \left(\frac{-l_i}{\Delta l_i}, \Delta l_i < 0, \frac{-u_i}{\Delta u_i}, \Delta u_i < 0\right), 1\right\}$$

$$\alpha_d = 0.9995 \min\left\{\min_i \left(\frac{-z_i}{\Delta z_i}, \Delta z_i < 0, \frac{-w_i}{\Delta w_i}, \Delta w_i > 0\right), 1\right\}$$

$$i = 1, 2, \dots, r \quad (2.158)$$

El diagrama de flujo para el método de punto interior se muestra en la Figura 2.40, con la inicialización que incluye:

- 1. Poner *l*, *u* cuidando que $[l, u]^T > 0$
- 2. Poner los multiplicadores de Lagrange z, w, y cuidando que $[z > 0, w < 0, y \neq 0]^T$
- 3. Poner el valor inicial de las variables del flujos de potencia óptimos original.

4. Poner $\sigma \epsilon(0,1)$, precisión de calculo $\epsilon = 10^{-6}$, número de iteraciones k = 0, y el número máximo de iteraciones $k_{max} = 50$.

Figura 2.40 Diagrama de Flujo de los Flujos de Potencia Óptimos [28].

La *fmincon* es una función de optimización de MatLab[®] que utiliza el método de punto interior antes descrito para determinar la solución óptima del modelo especificado por:

$$\min_{x} f(x) \text{ tal que} \begin{cases} c(x) \leq 0\\ c_{eq}(x) = 0\\ A \cdot x \leq b\\ A_{eq} \cdot x \leq b_{eq}\\ lb \leq x \leq ub \end{cases}$$

x, b, b_{eq} , lb, y ub son vectores, A y A_{eq} son matrices, c(x) y $c_{eq}(x)$ son functiones que regresan vectores, y f(x) es una función que retorna un escalar. f(x), c(x) y $c_{eq}(x)$ pueden ser no-lineales.

La sintaxis de la función *fmincon* es: [x,fval,exitflag,output,lambda,grad,hessian] = fmincon(fun,x0,A,b,Aeq,beq, lb,ub,nonlcon,options)

fmincon inicia en x0 e intenta encontrar un conjunto de variables de control x que minimice la función objetivo descrita en *fun*, sujeta a las desigualdades lineales $A*x \le b$ y a las igualdades lineales $Aeq*x \le beq$. También está sujeta a las desigualdades no lineales $c(x) \le 0$ y a las igualdades no lineales ceq(x) = 0 definidas en *nonlcon*. Define un conjunto de límites superiores e inferiores en las variables de control x para que la solución siempre se encuentre en el rango definido $lb \le x \le ub$. Todo esto utilizando las opciones de optimización especificadas en la estructura *options*.

x0 puede ser un escalar, vector o matriz. Sino existen desigualdades lineales se pone A = [] y b = []. Sino existen igualdades lineales se pone Aeq = [] y beq = []. Si no existen desigualdades e igualdades no lineales, se pone *nonlcon* = []. Si *x* no tiene un límite inferior, se pone *lb* = -*Inf*, y si *x* no tiene un límite superior, se pone *ub* = *Inf*. Sino existen límites, pones *lb* = [] y/o *ub* = [].

La estructura de opciones de optimización *options* de *fmincon* utiliza uno de cinco algoritmos: *interior-point(default), active-set, sqp, sqp-legacy* o *trust-region-reflexive*. En nuestro caso se utiliza el método de punto interior: *options* = *optimset('Algorithm', 'interior-point')*.

fmincon regresa el valor de la función objetivo *fun* en la solución *x*, con un valor en *exitflag* que define la condición de salida de *fmincon*, una estructura *output* con información sobre la optimización, una estructura *lambda* la cual contiene los multiplicadores de Lagrange de la solución *x*, el valor del gradiente *grad* de la función objetivo *fun* en la solución *x* y el valor del Hessiano *hessian* en la solución *x*. Para información más detallada se puede consultar la función *fmincon* en ayuda de MatLab[®].

2.10 Descripción de la herramienta computacional

La herramienta computacional se desarrolla en MatLab[®] para optimizar la operación de redes de distribución activas, es decir, mantener un perfil de voltaje dentro de los límites reglamentarios así como el evitar sobrecarga en líneas, interruptores y/o transformadores. Para ello el optimizador maneja la reducción o tirado de cargas "flexibles" y el valor de los taps en cantidades fraccionarias de los reguladores de voltaje.

Los modelos que maneja la herramienta computacional son:

Componentes de redes de distribución convencionales

1. Segmentos de línea aéreas y subterráneas multi-fase (una, dos o tres fases) en conexión delta (3 hilos) y estrella (4 hilos).

2. Transformadores monofásicos, bifásicos y trifásicos en conexiones delta-estrella aterrizada, estrella no aterrizada – delta, estrella aterrizada – estrella aterrizada, delta – delta y estrella abierta – delta abierta.

3. Reguladores de voltaje en conexión estrella mediante bancos, para poderse utilizar en una fase, dos fases o tres fases, independientes o anclados (solo trifásicos).

4. Interruptores para una, dos o tres fases.

5. Bancos de capacitores monofásicos, bifásicos y trifásicos en conexión delta y estrella.

6. Cargas de potencia aparente constantes, de impedancia constantes y de corriente constante de una, dos o tres fases en conexión delta y estrella.

- 7. Máquinas de Inducción (Motor jaula de ardilla) en conexión delta.
- 8. Generadores convencionales (de combustibles fósiles) manejados como nodos PV.

Componentes adicionales de redes de distribución activas

- 1. Aerogeneradores.
- 2. Arreglos de parques fotovoltaicos.

Para realizar la herramienta se tuvo que implementar primeramente el algoritmo de solución de flujos de potencia que es la base para el optimizador propuesto. Este algoritmo en sí, es una herramienta para realizar análisis de flujos de potencia de redes de distribución activas y maneja los mismos modelos que el optimizador (a excepción por los generadores convencionales), y que se puede tomar como base para la realización de optimizadores con otras aplicaciones en redes de distribución activas.

El algoritmo de solución toma las características de los componentes de la red de distribución de archivos con extensión .xls, el cual procesa para generar el resultado. Se manejaron archivos de Excel de manera separada ya que facilita la utilización a usuarios que no tengan idea de cómo programar, así como hace más rápida la formación de la red. Se utilizó MatLab® ya que es una plataforma con un "lenguaje de programación" de muy alto nivel que facilitará la modificación y mejoramiento del algoritmo, además de que al ser un sistema multi-fase facilita los algoritmos debido al sencillo manejo de vectores y matrices. El diagrama de flujo de la utilización del algoritmo de solución se presenta en la Figura 2.41.

Figura 2.41 Diagrama de flujo del proceso realizado por el algoritmo de solución.

La herramienta computacional de optimización trabaja de la misma manera que el algoritmo de solución. Se utilizó el optimizador por método de punto interior de la función *fmincon* de MatLab[®] en conjunto con el algoritmo de solución para realizar la herramienta. El diagrama de flujo de la utilización de la herramienta computacional se presenta en la Figura 2.42. Tanto el algoritmo de solución como la herramienta computacional muestran como resultado el perfil de voltajes, un resumen de flujos de potencia, flujos de potencia detallados e información de los reguladores de voltaje, además de que la herramienta computacional también muestra los límites de corriente y la reducción de carga, pudiendo seleccionar solamente la información que se desee visualizar. La herramienta computacional se programó en MatLab[®] versión R2015a de 64 bits.

Figura 2.42 Diagrama de flujo del proceso realizado por la herramienta computacional.

Capítulo 3: Resultados

A continuación se muestran los resultados obtenidos tanto del algoritmo de solución de flujos de potencia en redes de distribución activas como de la herramienta computacional para el análisis de flujos de potencia óptimos mediante reducción de carga para evitar una sobrecarga o mantener un perfil de voltaje correcto en el sistema.

Los resultados y tiempos de ejecución se obtuvieron corriendo el algoritmo de solución y la herramienta computacional en MatLab[®] versión R2015a de 64 bits, en una PC con Sistema Operativo Windows 7 de 64 bits, Procesador intel[®] Core[™] i5-4570R CPU @ 2.70 GHz, 8.00 GB de RAM.

3.1 Algoritmo de Solución de flujos de potencia

Para validar el algoritmo de solución de flujos de potencia, se simularon los alimentadores de prueba del IEEE y se compararon los resultados para comprobar su confiabilidad y efectividad. Los alimentadores de prueba del IEEE y todas sus características se pueden encontrar en [26].

Para ello se utilizó el error relativo porcentual (Ecuación 3.1) en las tensiones de cada una de las fases de los sistemas de distribución probados, y se presentan tanto el error promedio, como el error máximo y mínimo.

error relativo % =
$$\left| \frac{V_i^r - \overline{V_i^r}}{\overline{V_i^r}} \right| \times 100$$
 (3.1)

donde

 V_i^r es la tensión del nodo *i* en la fase r = a, b o *c* obtenido con la herramienta desarrollada. $\overline{V_i^r}$ es la tensión del nodo *i* en la fase r = a, b o *c* proporcionada como resultado por el documento de los alimentadores de prueba del IEEE.

3.1.1 Alimentador de Prueba del IEEE de 13 Nodos

El alimentador de prueba del IEEE de 13 nodos (Figura 3.1) es muy pequeño, pero tiene algunas características interesantes [29]:

- 1. Pequeño y relativamente muy cargado para un alimentador de 4.16 kV.
- 2. Un regulador de voltaje en la subestación que consiste de tres unidades monofásicas conectadas en estrella.
- 3. Líneas aéreas y subterráneas con variedad de fases.
- 4. Bancos de capacitores en derivación.
- 5. Un transformador.
- 6. Cargas nodales y distribuidas desbalanceadas.

Para un alimentador pequeño, éste proveerá una buena prueba para la mayoría de las características más comunes de software para análisis de sistemas de distribución.

Figura 3.1 Diagrama Unifilar del Alimentador de Prueba del IEEE de 13 Nodos.

La Tabla 3.1 muestra el perfil de voltaje obtenido para el Alimentador de Prueba del IEEE de 13 Nodos con el algoritmo de solución (AS) y la Tabla 3.2 los resultados proporcionados por el documento del IEEE. La Figura 3.2 muestra un gráfico del perfil de voltaje de ambos para una mejor comparación.

PERFIL DE VOLTAJE SUBESTACIÓN: IEEE 13 NODES ALIMENTADOR: IEEE 13 NODES									
NODO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO			
	A-N		B-N		C-N				
611					0.9738	115.78			
632	1.0209	-2.49	1.0421	-121.72	1.0174	117.83			
633	1.0179	-2.56	1.0402	-121.77	1.0148	117.83			
634	0.9939	-3.23	1.0218	-122.22	0.9960	117.35			
645			1.0329	-121.90	1.0155	117.86			
646			1.0312	-121.98	1.0134	117.90			
650	1.0000	0.00	1.0000	-120.00	1.0000	120.00			
652	0.9823	-5.25							
671	0.9898	-5.30	1.0530	-122.35	0.9778	116.03			
675	0.9804	-5.59	1.0552	-122.58	0.9741	116.04			
680	0.9898	-5.30	1.0530	-122.35	0.9778	116.03			
684	0.9878	-5.33			0.9758	115.93			
692	0.9898	-5.30	1.0530	-122.35	0.9778	116.03			
RG60	1.0625	0.00	1.0500	-120.00	1.0688	120.00			

Tabla 3.1 Perfil de Voltaje obtenido con el algoritmo de solución para el Alimentador de Pruebadel IEEE de 13 Nodos.

SUBI	SUBESTACIÓN: IEEE 13 NODES ALIMENTADOR: IEEE 13 NODES										
ΝΟΡΟ	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO					
NUDU	A-N	ſ	B-N	I	C-N	[
611					0.9750	115.80					
632	1.0208	-2.50	1.0418	-121.70	1.0175	117.80					
633	1.0178	-2.60	1.0399	-121.80	1.0149	117.80					
634	0.9938	-3.20	1.0216	-122.20	0.9961	117.30					
645			1.0326	-121.90	1.0155	117.80					
646			1.0309	-122.00	1.0135	117.90					
650	0.9999	0.00	1.0000	-120.00	0.9999	120.00					
652	0.9819	-5.30									
671	0.9894	-5.30	1.0533	-122.40	0.9790	116.10					
675	0.9829	-5.50	1.0556	-122.50	0.9771	116.10					
680	0.9894	-5.30	1.0533	-122.40	0.9790	116.10					
684	0.9874	-5.30			0.9770	116.00					
692	0.9894	-5.30	1.0533	-122.40	0.9790	116.10					
RG60	1.0623	0.00	1.0499	-120.00	1.0685	120.00					

Tabla 3.2 Perfil de Voltaje del Alimentador de Prueba del IEEE de 13 Nodos.

Perfil de Voltaje Alimentador de Prueba del IEEE de 13 Nodos

Figura 3.2 Perfil de Voltaje para el Alimentador de Prueba del IEEE de 13 Nodos.

La Tabla 3.3 y 3.4 muestran el resumen de flujos de potencia para el Alimentador de Prueba del IEEE de 13 Nodos obtenido con el AS y el proporcionado por el documento del IEEE respectivamente.

	RESUN	1EN DE	FLUJOS	DE PO	ΓΕΝCΙΑ			
	I	ENTRAI	DA DEL	SISTEM	Α			
Nodo: 650								
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL
POTENCIA ACTIVA (kW)	1252	2.893	977	.483	1349	9.067	3579.	444
POTENCIA REACTIVA								
(kVar)	683	.371	373	3.54	670	.586	1727.	497
POTENCIA APARENTE								
(kVA)	1427	7.143	1046	5.425	1506	6.542	3974.	502
FACTOR DE POTENCIA	0.8	779	0.9	341	0.8	955	0.90	06
			CARGA	S				
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
ροτενίζια αστινά (μω)	1170	0.501	1049	9.658	1245	5.906	3466.	064
	785.5	385.0	424.0	625.7	692.5	553.4	1902.0	1564.0
POTENCIA REACTIVA	612	.977	671	.117	817	.447	2101.	541
(kVar)	393.0	220.0	313.0	358.1	447.9	369.5	1153.9	947.7
POTENCIA APARENTE	1321	.293	1245	5.865	1490).134	4053.	403
(kVA)	878.3	443.4	527.0	720.9	824.8	665.4	2224.7	1828.7
ΕΛCTOR DE ΡΟΤΕΝCΙΛ	0.8	859	0.8	425	0.8	361	0.85	51
FACTOR DETOTENCIA	0.8943	0.8682	0.8045	0.8679	0.8397	0.8316	0.855	0.8553
		P	<u>ÉRDID</u>	AS				
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL
POTENCIA ACTIVA (kW)	40.7	746	-4.6	623	77.	257	113.	38
POTENCIA REACTIVA								
(kVar)	153	.294	42.	279	129	.913	325.4	185
POTENCIA APARENTE								
(kVA)	158	.616	42	.53	151	.149	344.6	667
	B	ANCOS	DE CAP	ACITOR	ES			
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
POTENCIA REACTIVA - R	200	.000	200	.000	300	.000	700.0	000
(kVar)	200.0	0.0	200.0	0.0	300.0	0.0	700.0	0.0
POTENCIA REACTIVA - A	192	.220	222	.692	284	.616	699.5	529
(kVar)	192.2	0.0	222.7	0.0	284.6	0.0	699.5	0.0

Tabla 3.3 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el Alimentador de Prueba del IEEE de 13 Nodos.

	RE	SUMEN I	DE FLUJO	OS DE PO	DTENCIA	L			
		ENTF	RADA DE	L SISTE	MA				
Nodo: 650									
	FAS	SE A	FAS	SE B	FAS	SE C	тот	TOTAL	
POTENCIA ACTIVA (kW)	1251	l.398	977	.332	1348	3.461	3577.1	191	
POTENCIA REACTIVA									
(kVar)	681	.570	373.	.418	669	.784	1724.2	772	
POTENCIA APARENTE									
(kVA)	1424	1.968	1046	5.241	1505	5.642	3971.2	289	
FACTOR DE POTENCIA	0.8	782	0.93	341	0.8	956	0.900	38	
			CARG	AS					
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL	
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA	
DOTENCIA ACTIVA (1440)	1170).563	1049	9.658	1245	5.907	3466.2	128	
	785.6	385.0	424.0	625.7	692.5	553.4	1902.1	1564.0	
POTENCIA REACTIVA	613.019		671	.117	817	.450	2101.	586	
(kVar)	393.0	220.0	313.0	358.1	447.9	369.5	1153.9	947.7	
POTENCIA APARENTE	1321.367		1245	5.865	1490).137	4053.4	481	
(kVA)	878.4	443.4	527.0	720.9	824.8	665.4	2224.8	1828.7	
EACTOR DE DOTENCIA	0.8	859	0.84	425	0.8361		0.855	51	
FACTOR DE POTENCIA	0.8943	0.8682	0.8045	0.8679	0.8397	0.8316	0.8550	0.8553	
			PÉRDI	DAS					
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL	
POTENCIA ACTIVA (kW)	39.	107	-4.6	697	76.	653	111.0	63	
POTENCIA REACTIVA									
(kVar)	152	.585	42.2	217	129	.850	324.6	53	
POTENCIA APARENTE									
(kVA)	157	.517	42.4	478	150	.787	343.1	.24	
		BANCO	OS DE CA	PACITO	RES				
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL	
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA	
POTENCIA REACTIVA - R	200	.000	200	.000	300	.000	700.0	00	
(kVar)	200.0	0.0	200.0	0.0	300.0	0.0	700.0	0.0	
POTENCIA REACTIVA - A	193	.443	222.	.747	285	.276	701.4	·66	
(kVar)	193.4	0.0	222.7	0.0	285.3	0.0	701.5	0.0	

Tabla 3.4 Resumen de Flujos de Potencia del Alimentador de Prueba del IEEE de 13 Nodos.

Los errores relativos porcentuales y características de convergencia para este sistema se muestran en la Tabla 3.5:

Tabla 3.5 Error relativo porcentual y características de convergencia para el Alimentador de
Prueba del IEEE de 13 Nodos.

Sistema de	Error relat	tivo porcei	ntual (%)	Itoracionac	Tiompo (c)	Tolerancia
Prueba	Promedio	Mínimo	Máximo	Iteraciones	Tiempo (S)	(p.u.)
IEEE de 13 Nodos	0.03	0.00	0.51	5	0.40	1×10 ⁻⁵

Cabe aclarar que los taps de los reguladores de voltaje se fijaron a los mismos del alimentador de prueba, ya que a pesar que la tensión se regulaba correctamente para el voltaje en los nodos deseados, los taps calculados eran diferentes, por lo cual el perfil de voltaje también lo era. De esta manera se comprueba que en las mismas condiciones el algoritmo trabaja correctamente. Esta misma consideración se realiza para los sistemas de los Alimentadores de Prueba del IEEE de 34 y 123 Nodos.

3.1.2 Alimentador de Prueba del IEEE de 34 Nodos

El alimentador de prueba del IEEE de 34 nodos (Figura 3.3) es un alimentador real localizado en Arizona. La tensión nominal del alimentador es de 24.9 kV y se caracteriza por [29]:

- 1. Muy grande y ligeramente cargado.
- 2. Dos reguladores requeridos para mantener un buen perfil de voltaje.
- 3. Un transformador que reduce la tensión a 4.16 kV en una pequeña sección del alimentador.
- Cargas desbalanceadas tanto con cargas "nodales" como con cargas "distribuidas". Las cargas distribuidas se consideran conectadas en el centro del segmento de línea.
- 5. Bancos de capacitores en derivación.

Debido a la longitud del alimentador y a la carga desbalanceada, éste puede tener problemas de convergencia.

Figura 3.3 Diagrama Unifilar del Alimentador de Prueba del IEEE de 34 Nodos.

Debido a la dimensión del alimentador de prueba del IEEE de 34 nodos los resultados del perfil de voltaje y del resumen de flujos de potencia tanto los obtenidos con el algoritmo de solución como los del documento del IEEE se muestra en el Apéndice A, sección A.1.

Perfil de Voltaje Alimentador de Prueba del IEEE de 34 Nodos ■ Fase A IEEE ■ Fase A (AS) ■ Fase B IEEE ■ Fase B (AS) ■ Fase C IEEE ■ Fase C (AS) Magnitud de Voltaje (p.u.) 0.6 0.3 0.4 0.5 0.1 0.2 0.7 0.8 0.9 1.1 Nodo RG10 RG11

La Figura 3.4 muestra la comparación del perfil de voltaje del alimentador de prueba del IEEE de 34 nodos entre el obtenido con el AS y el proporcionado por el documento.

Figura 3.4 Perfil de Voltaje para el Alimentador de Prueba del IEEE de 34 Nodos.

Los errores relativos porcentuales y las características de convergencia para este sistema se muestran en la Tabla 3.6:

Tabla 3.6 Error relativo porcentual y características de convergencia para el Alimentador dePrueba del IEEE de 34 Nodos.

Sistema de	Error relat	tivo porcei	ntual (%)	Itoracionos	Tiompo (c)	Tolerancia
Prueba	Promedio	Mínimo	Máximo	Iteraciones Tiempo (s)		(p.u.)
IEEE de 34 Nodos	0.02	0.00	0.06	7	0.50	1×10 ⁻⁵

3.1.3 Alimentador de Prueba del IEEE de 123 Nodos

El alimentador de prueba del IEEE de 123 Nodos (Figura 3.5) opera a una tensión nominal de 4.16 kV. A pesar de que éste no es un nivel común de tensión provee problemas de caída de tensión que deben ser resueltos con la aplicación de reguladores de voltaje y bancos de capacitores en derivación. Para programas que pueden "asignar" carga, éste será un buen alimentador de prueba. Hay suficientes interruptores para que se puedan probar procedimientos de configuración óptima. Este alimentador está caracterizado por [26]:

- 1. Segmentos de línea aéreos y subterráneos con distintas fases.
- 2. Carga desbalanceada con todas las combinaciones de tipos de carga (Potencia constante, corriente constante e impedancia constante).
- 3. Todas las cargas son "cargas puntuales" localizadas en los nodos.
- 4. Cuatro reguladores de voltaje tipo a pasos.
- 5. Bancos de capacitores en derivación.
- 6. Interruptores que proveen caminos alternos del flujo de potencia.

Este alimentador se comporta bien y no tiene problemas de convergencia. Éste provee una prueba del modelado de las fases de la línea. Los cuatro reguladores de voltaje proveen una buena prueba para asegurar que el cambio de taps de los reguladores individuales está coordinado con los otros reguladores.

Debido a que el alimentador de prueba de 123 nodos tiene una gran dimensión, el perfil de voltaje y el resumen de flujos de potencia tanto los obtenidos con el algoritmo de solución como los proporcionados por el documento del IEEE se muestran en el Apéndice A, sección A.2. En la Tabla 3.7 se muestran los errores relativos porcentuales y las características de convergencia obtenidos para este sistema:

Tabla 3.7 Error relativo porcentual y características de convergencia para el Alimentador dePrueba del IEEE de 123 Nodos.

Sistema de	Error rela	tivo porce	ntual (%)	Itoracionos	Tiomno (s)	Tolerancia
Prueba	Promedio	Mínimo	Máximo	Iteraciones	Tiempo (S)	(p.u.)
IEEE de 123 Nodos	0.08	0.00	1.68	5	0.70	1×10 ⁻⁵

Figura 3.5 Diagrama Unifilar del Alimentador de Prueba del IEEE de 123 Nodos.

3.1.4 Prueba de la Máquina de Inducción

El caso de prueba de la máquina de inducción [30] es la primera versión de un caso de prueba de una máquina de inducción para software de análisis de flujos de potencia en sistemas de distribución. Este caso de prueba fue desarrollado por el Subcomité de Análisis de Sistemas de Distribución de la IEEE con objeto de proveer una referencia a los desarrolladores para simular sus modelos de máquinas de inducción bajo condiciones de desbalance. En la Figura 3.6 podemos ver el diagrama unifilar del sistema de prueba. En [30] se pueden encontrar las características de todos los elementos del sistema.

Figura 3.6 Diagrama Unifilar del Caso de Prueba de la Máquina de Inducción.

En las Tablas 3.8 y 3.9 se muestran el perfil de voltaje del caso de prueba de la máquina de inducción obtenido por el algoritmo de solución y el proporcionado por [30] respectivamente. La Figura 3.7 muestra la comparación de los perfiles de voltaje.

PERFIL DE VOLTAJE SUBESTACIÓN: Induction Machine ALIMENTADOR: Induction Machine									
NODO	MAGNITUD ÁNGULO A-N		MAGNITUD B-N	ÁNGULO	MAGNITUD ÁNGULO C-N				
FUENTE	1.0498	0.00	1.0498	-120.00	1.0498	120.00			
1	1.0171	-33.12	1.0258	-152.39	1.0279	88.28			
2	0.9457	-36.43	1.0041	-154.85	1.0000	87.70			
2 LV	0.9112	-39.21	0.9686	-157.75	0.9572	85.05			

Tabla 3.8 Perfil de Voltaje obtenido con el algoritmo de solución para el Caso de Prueba de la máquina de inducción.

Tabla 3.9 Perfil de Voltaje proporcionado por [30] para el Caso de Prueba de la máquina de inducción.

PERFIL DE VOLTAJE SUBESTACIÓN: Induction Machine ALIMENTADOR: Induction Machine									
ΝΟΡΟ	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO			
NUDU	A-N		B-N		C-N				
FUENTE	1.0498	0.00	1.0498	-120.00	1.0498	120.00			
1	1.0170	-33.10	1.0260	-152.40	1.0280	88.30			
2	0.9460	-36.40	1.0040	-154.90	1.0000	87.70			
2 LV	0.9110	-39.20	0.9690	-157.80	0.9570	85.00			

En la Tabla 3.10 se muestran los errores relativos porcentuales y las características de convergencia obtenidos para este caso de prueba:

Tabla 3.10 Error relativo porcentual y características de convergencia para el Caso de Prueba dela Máquina de Inducción.

Sistama da Druaha	Error relat	tivo porce	ntual (%)	Itoracionos	Tolerancia	
	Promedio	Mínimo	Máximo	Iteraciones	Tiempo (s)	Tolerancia (p.u.) 1×10 ⁻⁶
Máquina de Inducción	0.04	0.00	0.09	14	0.40	1×10 ⁻⁶

La herramienta computacional calcula internamente el deslizamiento de la máquina al proporcionar el par del motor (986.6 kW) y el voltaje en terminales de la misma. El deslizamiento calculado por el AS es *slip* = 0.00727754 que es aproximadamente igual al deslizamiento proporcionado en [30] *slip* = 0.00727714.

El resumen de flujos de potencia para el Caso de Prueba de la Máquina de Inducción obtenido con el algoritmo computacional y el proporcionado por [30] se pueden consultar en el Apéndice A, sección A.3.

3.1.5 Prueba del Aerogenerador

Para probar el aerogenerador se utiliza el mismo caso de estudio de [27], en el cual toma el alimentador de prueba del IEEE de 34 nodos y se le conectan dos unidades de generación de turbina eólica o aerogeneradores. Los aerogeneradores están conectados al sistema mediante transformadores trifásicos en conexión Estrella No Aterrizada – Delta. Los transformadores están conectados a los nodos 840 y 848. El diagrama unifilar del sistema se muestra en la Figura 3.8.

Figura 3.8 Diagrama Unifilar del Alimentador de Prueba del IEEE de 34 nodos con dos aerogeneradores [27].

Para cada aerogenerador, la velocidad del viento es de 12.8 m/s, lo cual equivale a una potencia mecánica de la turbina de viento (potencia en el eje) de 300 kW para cada uno. También se fijan todos los taps de los reguladores de voltaje a cero. Lamentablemente en [27] no indican las características tanto de los transformadores que interconectan los aerogeneradores al sistema como de las máquinas de inducción de los aerogeneradores.

Otra característica que se visualiza en la Figura 3.8 es que se compensan los aerogeneradores con potencia reactiva mediante bancos de capacitores en derivación. Debido a que en [27] no mencionan ninguna compensación de potencia reactiva a pesar de que en su diagrama se indica claramente, para el caso de prueba no se ha realizado compensación alguna de potencia reactiva. Las características de la máquina de inducción que se utilizan en el caso de prueba se muestran en [31] que es donde [27] obtiene los datos para la turbina de viento, y las características de los transformadores se eligieron acorde al alimentador de prueba del IEEE de 34 nodos. Las características de ambos equipos se muestran a continuación:

Máquina de inducción

 $\begin{array}{l} R_{s} = 0.00708 \, \Omega \\ X_{s} = 0.07620 \, \Omega \\ X_{m} = 3.44979 \, \Omega \\ R_{r} = 0.00759 \, \Omega \\ X_{r} = 0.23289 \, \Omega \\ V = 480 \, V \\ S = 400 \, kVA \\ P = 330 \, kW \end{array}$

Transformador

Conexión Y/ Δ 24.9 – 14.37kV/480 V %R = 1.11 % %X = 4.36 % S = 500 kVA

La Figura 3.9 muestra la potencia real inyectada por los aerogeneradores en los puntos de acoplamiento común (PCC 1 y PCC 2).

Figura 3.9 Potencia Real Inyectada por los Aerogeneradores.

Como se observa en la Figura 3.9, la potencia real inyectada obtenida con la herramienta computacional y las mostradas en [27] varían ligeramente debido a que no se indican las características de las máquinas de inducción y de los transformadores, además no se especifica si realmente hubo alguna compensación de potencia reactiva con bancos de capacitores en derivación, y que en nuestro caso no se realiza compensación alguna. Lo importante es que el comportamiento de la potencia real que inyectan los aerogeneradores debido al desbalance en las tensiones es el mismo en ambos casos.

El resumen de flujos de potencia y el perfil de voltajes para el Caso de Prueba del Aerogenerador obtenidos con el algoritmo de solución se encuentran en el Apéndice A, sección A.4. No se puede realizar comparación ya que [27] no ofrece información alguna sobre el perfil de voltaje y el flujos de potencia. La Tabla 2.11 muestra las características de convergencia para el Caso Prueba del Aerogenerador.

Tabla 3.11	Características d	le convergencia	del Caso de	Prueba del A	Aerogenerador.

Sistema de Prueba	Error relativo porcentual (%)			Itorogionog	Tiomno (a)	Tolerancia
	Promedio	Mínimo	Máximo	iteraciones	Tiempo (s)	(p.u.)
Aerogeneradores	-	-	-	9	0.60	1×10 ⁻⁵

3.1.6 Prueba del Arreglo de Paneles Solares

Para probar el modelo del Arreglo de Paneles Solares se utiliza el alimentador de prueba del IEEE de 34 nodos, al igual que en la prueba del aerogenerador. Para la interconexión se introduce un transformador en cada nodo de conexión, los cuales son los nodos 840 y 848, los nodos de lado de baja tensión de los transformadores se nombran como nodo PCC1 y PCC2 respectivamente, que son el punto de acoplamiento común con los arreglos de paneles solares (Figura 3.10). Se utiliza una temperatura ambiente de 55 °C y un multiplicador de forma de carga de irradiación de 0.99. Los transformadores son iguales a los utilizados en la prueba de los aerogeneradores pero con una conexión estrella aterrizada-estrella aterrizada y de la misma manera los taps de los reguladores son puestos en cero. Las características del arreglo de paneles solares y del inversor se muestran a continuación:

Figura 3.10 Diagrama Unifilar del Alimentador de Prueba del IEEE de 34 Nodos con dos arreglos de Paneles Solares.

Cada arreglo consta de 2000 paneles solares tipo monocristalino de 250 *W* a 24 *V*. El controlador del sistema fotovoltaico obtiene una potencia máxima (*Pmpp*) del arreglo de paneles de 500 *kW* a una irradiación de 1 *kW/m*² y una temperatura de panel de 25 °C. Se asume un factor de potencia de 1.0 y la irradiación es de 0.8 *kW/m*². El inversor es de conexión estrella y su voltaje de 480 V, con una potencia nominal de 500 *kVA*. La curva de Potencia vs Temperatura del arreglo de paneles se muestra en la Tabla 3.12 y la curva de Eficiencia vs Potencia Entrante en p.u. del Inversor en la Tabla 3.13.

Tabla 3.12 Curva Potencia VS Temperatura del Arreglo de Paneles Solares.

Potencia p.u.	1.2	1.0	0.8	0.6
Temperatura (°C)	0	25	75	100

Tabla 3.13 Curva Eficiencia VS Potencia Entrante del Inversor.

Eficiencia	0.86	0.90	0.93	0.97
Potencia entrante al inversor en p.u.	0.1	0.2	0.4	1.0

Ya que el modelo se obtuvo del software de simulación de sistemas eléctricos de distribución OpenDSS, la comparación se realiza con los resultados obtenidos de este software. El modelo del arreglo de paneles que se utiliza se modela tanto como potencia aparente constante (modelo 1 en OpenDSS) como impedancia constante (modelo 2 en OpenDSS). Esto con el objeto de validar el modelo completo.

En las Tablas 3.14 y 3.15 se muestran los errores relativos porcentuales y las características de convergencia obtenidos para este caso de prueba:

Tabla 3.14 Error relativo porcentual para el Caso de Prueba de los Arreglos de Paneles Solares
como Potencia Aparente Cosntante.

Sistema de Prueba	Error relativo porcentual (%) Promedio Mínimo Máximo		Iteraciones	Tiempo (s)	Tolerancia (p.u.)	
Arreglo de Paneles Solares con Potencia Aparente Constante	0.04	0.00	0.09	7	0.50	1×10 ⁻⁵

Tabla 3.15 Error relativo porcentual para el Caso de Prueba de los Arreglos de Paneles Solarescomo Impedancia Constante.

Sistema de Prueba	Error relativo porcentual (%) Promedio Mínimo Máximo		Iteraciones	Tiempo (s)	Tolerancia (p.u.)	
Arreglo de Paneles						
Solares con	0.05	0.00	0.09	7	0.50	1×10 ⁻⁵
Impedancia Constante						

Los perfiles de voltaje y resúmenes de flujos de potencia obtenidos con el algoritmo de solución y los obtenidos con OpenDSS se pueden consultar en el Apéndice A, sección A.5.

Las seis pruebas anteriores muestran la validez y confiabilidad tanto del algoritmo de solución (barrido hacia adelante y hacia atrás) así como de los modelos de los principales componentes de una red de distribución activa.

3.2 Herramienta computacional para el análisis de flujos de potencia óptimos en una red de distribución activa

La herramienta de flujos de potencia óptimos también funciona para análisis simple de flujos de potencia, para ello deben desactivarse tanto los límites de voltaje en los nodos como los límites de corriente en cualquier componente (línea, interruptor o transformador), además se deben fijar los taps de los reguladores de voltaje. No es necesario poner las cargas (tanto nodales como distribuidas) como cargas no flexibles para obtener el resultado de flujos de potencia, pero si se ponen el resultado convergirá en menos iteraciones ya que el optimizador no las manejara como variables de control. En la Tabla 3.16 se muestran el número de iteraciones del optimizador, el tiempo de convergencia y los errores relativos porcentuales de las seis pruebas realizadas en la sección 3.1, cabe aclarar que todas las cargas se clasificaron como no flexibles.

Sistema de Drucha	Error relat	ivo porce	Itomacionac	Tiempo	
Sistema de Prueba	Promedio	Mínimo	Máximo	iteraciones	(s)
IEEE de 13 Nodos	0.03	0.00	0.51	2	1.03
IEEE de 34 Nodos	0.01	0.00	0.03	2	2.13
IEEE de 123 Nodos	0.07	0.00	1.68	3	19.21
Máquina de Inducción	0.04	0.00	0.09	2	0.88
Aerogeneradores	-	-	-	2	2.43
Arreglo de Paneles					
Solares Potencia Aparente					
Constante	0.04	0.00	0.09	2	2.28
Arreglo de Paneles					
Solares Impedancia					
Constante	0.04	0.00	0.08	2	2.30

Tabla 3.16 Resultados de las pruebas de la sección 3.1.

Como se puede ver en la Tabla 3.16, se obtiene un error menor o igual al proporcionado por la herramienta de flujos de potencia, pero el tiempo de computo incrementa dependiendo de la dimensión del sistema, ya que es un optimizador que maneja variables de control, y debido a su diseño entre más nodos terminales tenga el sistema, más variables de control manipulará y como consecuencia más tiempo de computo se necesitará para obtener el resultado.

A continuación se presentan dos sistemas que prueban la efectividad de la herramienta en flujos de potencia óptimos. Como primera parte se presentará el sistema sin ninguna optimización y con problemas en su operación, para después llevar el sistema a un punto de operación dentro de límites establecidos, minimizando la reducción de carga del sistema.
3.2.1 Alimentador del IEEE de 13 Nodos Modificado

El primer caso de estudio a analizar consiste en una modificación del alimentador del IEEE de 13 nodos, en la cual a los nodos 675 y 680 se conecta un transformador trifásico idéntico al conectado entre los nodos 633 y 634, los nodos del secundario de los transformadores se nombraron como 693 y 694 respectivamente. En el nodo 693 se conecta un arreglo de paneles solares idéntico a los utilizados en la prueba de los arreglos de los paneles solares del capítulo 3.1.6 con las mismas condiciones de irradiación y temperatura y utilizando un modelo de impedancia constante. Del mismo modo en el nodo 694 se conecta un aerogenerador idéntico al utilizado en la sección 3.1.5 con la misma velocidad del viento, pero compensado con un banco de capacitores en conexión estrella de 100 kVar/fase. Además se desactivan los reguladores de voltaje (fijamos los taps a 0) para obtener voltajes por de bajo de los permitidos por norma (0.95 p.u.). El diagrama unifilar del sistema se muestra en la Figura 3.11.

Figura 3.11 Alimentador del IEEE de 13 nodos modificado.

Los resultados de la condición inicial del sistema se muestran a continuación.

Tabla 3.17 Resumen de Flujos de Potencia de la Condición Inicial del Alimentador del IEEE de 13Nodos Modificado.

	RESUM	EN DE	E FLUJOS I	DE POTI	ENCIA			
	Е	NTRA	DA DEL S	ISTEMA				
Nodo: 650								
	FASE A	L	FAS	E B	FAS	SE C	тот	'AL
POTENCIA ACTIVA (kW)	1041.50	7	752.6	650	1109	9.502	2903	.659
POTENCIA REACTIVA (kVar)	630.987	7	353.3	395	638	.035	1622	.417
POTENCIA APARENTE (kVA)	1217.73	6	831.4	187	1279	9.876	3326	.179
FACTOR DE POTENCIA	0.8553		0.90	52	0.8	669	0.87	30
	GEI	VERAC	<mark>ción dis</mark> t	ribuid	A			
Nodo: 694 SISTEMA DE GEN	ERACIÓN DE	TURB	INA EÓLIC	A				
	FASE A	L	FAS	E B	FAS	SE C	тот	'AL
POTENCIA ACTIVA (kW)	89.973		102.1	161	103	.822	295.	956
POTENCIA REACTIVA (kVar)	32.116		30.6	75	24.	690	87.4	81
POTENCIA APARENTE (kVA)	95.533		106.6	667	106	.717	308.	615
FACTOR DE POTENCIA	0.9418		0.95	78	0.9	729	0.95	90
Nodo: 693 SISTEMA FOTOVO	OLTAICO							
	FASE A	L	FAS	E B	FAS	SE C	тот	'AL
POTENCIA ACTIVA (kW)	95.973		114.4	144	91.	853	302.2	271
POTENCIA REACTIVA (kVar)	0.000		0.000		0.000		0.0	00
POTENCIA APARENTE (kVA)	95.973		114.4	144	91.	853	302.	271
FACTOR DE POTENCIA	1.0000		1.00	00	1.0	000	1.00	00
			CARGAS					
	FASE A	L	FAS	E B	FAS	SE C	тот	'AL
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
	1157.13	4	1023.	409	1223	3.889	3404	432
	772.1 3	85.0	424.0	599.4	680.8	543.1	1876.9	1527.5
DOTENCIA DEACTIVA (LVar)	603.996	5	656.0)52	802	.801	2062	.849
	384.0 2	20.0	313.0	343.0	442.4	360.4	1139.4	923.5
DOTENCIA ADADENTE (LVA)	1305.28	6	1215.	635	1463	3.691	3980	.641
FOTENCIA AFARENTE (KVA)	862.3 4	43.4	527.0	690.6	811.9	651.8	2195.7	1785.0
ΕΔ ΩΤΩΡ DE ΡΩΤΕΝΩΙΔ	0.8865		0.84	19	0.8	362	0.85	52
	0.8954 0.	8682	0.8045	0.8679	0.8385	0.8332	0.8548	0.8558
]	PÉRDIDA	S				
			EAC	T D	EAG	SF C	тот	'AL
	FASE A		FAS	T B	ГА			
POTENCIA ACTIVA (kW)	FASE A 28.312		-0.5	68	69.	710	97.4	-54
POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar)	FASE A 28.312 220.675	5	-0.5 131.5	68 594	69. 194	710 .769	97.4 547.0	038
POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA)	FASE A 28.312 220.675 222.484	5	-0.5 131.5 131.5	68 594 595	69. 194 206	710 .769 .868	97.4 547.0 555.0	-54 038 651
POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA)	FASE A 28.312 220.675 222.484 BA	5 4 NCOS	-0.5 131.5 131.5 DE CAPA	68 594 595 CITORE	69. 194 206 S	710 .769 .868	97.4 547. 555.	038 651
POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA)	FASE A 28.312 220.675 222.484 BA FASE A	5 4 NCOS	-0.5 131.5 131.5 DE CAPA FAS	68 594 595 CITORE E B	69. 194 206 S FAS	710 .769 .868 SE C	97.4 547. 555. TOT	54 038 651 CAL
POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA)	FASE A 28.312 220.675 222.484 BA FASE A A-N	5 4 NCOS A-B	-0.5 131.5 DE CAPA FASI B-N	68 594 595 CITORE E B B-C	69. 194 206 S FAS	710 .769 .868 SE C C-A	97.4 547. 555. TOT ESTRELLA	254 038 651 AL DELTA
POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA) POTENCIA REACTIVA - R	FASE A 28.312 220.675 222.484 BA FASE A A-N 300.000	5 1 NCOS A-B	-0.5 131.5 131.5 DE CAPA FASI B-N 300.0	6 8 594 595 CITORE B B-C 000	69. 194 206 S FAS C-N 400	710 .769 .868 SE C <u>C-A</u> .000	97.4 547. 555.0 TOT ESTRELLA 1000	254 038 651 CAL DELTA 000
POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA) POTENCIA REACTIVA - R (kVar)	FASE A 28.312 220.675 222.484 BA FASE A A-N 300.000 300.0	5 1 NCOS A-B) 0.0	-0.5 131.5 131.5 DE CAPA FASI B-N 300.0 300.0	8 68 594 595 CITORE 8 B-C 000 0.0 0.0	69. 194 206 S FAS C-N 400 400.0	710 .769 .868 SE C C-A .000 0.0	97.4 547. 555. TOT ESTRELLA 1000 1000.0	238 238 251 2AL DELTA .000 0.0
POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA) POTENCIA REACTIVA - R (kVar) POTENCIA REACTIVA - A	FASE A 28.312 220.675 222.484 BA FASE A A-N 300.000 300.0 261.035	5 NCOS A-B) 0.0 5	-0.5 131.5 131.5 DE CAPA FASI B-N 300.0 300.0 308.2	B B 68 594 595 CITORE E B B-C 000 0.0 241 241	69. 194 206 S FAS C-N 400 400.0 330	710 .769 .868 SE C C-A .000 0.0 .713	97.4 547. 555. TOT ESTRELLA 1000 1000.0 899.9	54 038 551 AL 000 0.0 0.0 989

PERFIL DE VOLTAJE IEEE 13 N MOD SUBESTACIÓN: IEEE 13N MOD ALIMENTADOR: IEEE 13N MOD									
NODO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO			
NODO	A-N		B-N		C-N				
611					0.9046	116.33			
632	0.9620	-2.45	0.9940	-121.31	0.9487	118.07			
633	0.9587	-2.52	0.9921	-121.36	0.9459	118.07			
634	0.9332	-3.29	0.9728	-121.87	0.9256	117.52			
645			0.9847	-121.50	0.9470	118.10			
646			0.9831	-121.57	0.9451	118.14			
650	1.0000	0.00	1.0000	-120.00	1.0000	120.00			
652	0.9276	-5.16							
671	0.9346	-5.21	1.0074	-121.47	0.9088	116.59			
675	0.9260	-5.46	1.0112	-121.66	0.9059	116.68			
680	0.9360	-5.13	1.0084	-121.35	0.9100	116.74			
684	0.9329	-5.23			0.9067	116.49			
692	0.9346	-5.21	1.0074	-121.47	0.9088	116.59			
693	0.9327	-4.70	1.0185	-120.89	0.9124	117.44			
694	0.9463	-4.57	1.0186	-120.78	0.9206	117.48			
RG1	1.0000	0.00	1.0000	-120.00	1.0000	120.00			

Tabla 3.18 Perfil de Voltaje de la Condición Inicial del Alimentador del IEEE de 13 Nodos Modificado.

Tabla 3.19 Flujos de Potencia Parcial de la Condición Inicial del Alimentador del IEEE de 13 Nodos Modificado.

	NODO 650 -	NODO 632		NODO 632 - NODO 650				
FASE A:	507.01	-31.21 AMP/GD	FASE A:	507.02	-31.21 AMP/GD			
FASE B:	346.20	-145.15 AMP/GD	FASE B:	346.20	-145.15 AMP/GD			
FASE C:	532.89	90.10 AMP/GD	FASE C:	532.89	90.10 AMP/GD			
	NODO 632 -	NODO 645	NODO 645 - NODO 632					
FASE A:	0.00	0.00 AMP/GD	FASE A:	0.00	0.00 AMP/GD			
FASE B:	143.79	-143.39 AMP/GD	FASE B:	143.79	-143.39 AMP/GD			
FASE C:	61.55	57.79 AMP/GD	FASE C:	61.55	57.79 AMP/GD			
	NODO 632 -	NODO 633		NODO 633 -	NODO 632	_		
FASE A:	86.63	-37.80 AMP/GD	FASE A:	86.63	-37.80 AMP/GD			
FASE B:	64.20	-158.74 AMP/GD	FASE B:	64.20	-158.74 AMP/GD			
FASE C:	67.47	80.65 AMP/GD	FASE C:	67.47	80.65 AMP/GD			
	NODO 632 -	NODO 671		NODO 671 -	NODO 632			
FASE A:	421.08	-29.86 AMP/GD	FASE A:	412.45	-29.77 AMP/GD			
FASE B:	140.47	-140.80 AMP/GD	FASE B:	109.44	-137.77 AMP/GD			
			FACE C.	256 77	0770 AMD/CD			

Tabla 3.20 Valores de Convergencia para la Condición Inicial del Alimentador del IEEE de 13Nodos Modificado.

L.10

Todas las cargas tanto distribuidas como nodales se especificaron como cargas no flexibles.

Analizando los resultados vemos que la mayoría de los voltajes nodales en las fases A y C están por debajo de los permitidos por norma (0.95 p.u.), y que las corrientes de la línea comprendida entre los nodos 632 y 633 están por encima de los 60 A. En el optimizador fijaremos como límite de los voltajes nodales un valor comprendido entre 0.95 p.u. – 1.05 p.u., y como límite de corriente en la línea (622-633) 50 A para cada fase. Las cargas de los nodos 675 y 692 serán cargas no flexibles por lo cual no se les podrá reducir la carga. Los reguladores de voltaje estarán activos. Los resultados del análisis de flujos de potencia óptimos se muestran a continuación.

					_	ANCHO DE
[NODO]	[VREG]	-[SEG]	[NODO]	MODELO	OPCIÓN	BANDA
				FASE, A & B & C,		
650	RG1	632	632	Estrella	RX	24
	VOLT	AJE		VOLTAJE	VO	DLTAJE
	DESEA	DO		RESULTANTE	RESULT	ANTE (Base
FASE	(Base 1	20V)	TAP	(p.u.)	1	.20V)
1	120.0)0	12.90	1.0500	1	26.00
2	120.0	00	4.97	1.0245	1	22.94
3	120.0)0	14.88	1.0500	1	26.00

Tabla 3.21 Información de los Reguladores de Voltaje del Alimentador del IEEE de 13 Nodos Modificado y Optimizado.

Tabla 3.22 Resultados de los Límites de Corriente del Alimentador del IEEE de 13 Nodos Modificado y Optimizado.

NODO A	NODO B	LÍMITE DE CORRIENTE (AMP)			CORRIENT	E RESULTA	NTE (AMP)
		LÍNEA A	LÍNEA B	LÍNEA C	LÍNEA A	LÍNEA B	LÍNEA C
632	633	50.000	50.000	50.000	50.000	50.000	50.000

]	RESUME	EN DE F	LUJOS I	DE POTI	ENCIA			
	EN	TRADA	DEL S	ISTEMA				
Nodo: 650								
	FAS	E A	FAS	SE B	FAS	SE C	ТОТ	AL
POTENCIA ACTIVA (kW)	975.	362	728	.049	1113.570		2816.	981
POTENCIA REACTIVA (kVar)	542.	873	288	.234	565	.843	1396.951	
POTENCIA APARENTE (kVA)	1116	.263	783	.028	1249	9.086	3144.	336
FACTOR DE POTENCIA	0.87	738	0.9	298	0.8	915	0.89	59
	GEN	ERACIÓ	DN DIST	RIBUID	A			
Nodo: 694 SISTEMA DE GENE	RACIÓN	DE TUR	BINA EĆ	DLICA				
	FAS	EA	FAS	SE B	FAS	SE C	тот	AL
POTENCIA ACTIVA (kW)	100.	479	96.	185	99.	861	296.5	525
POTENCIA REACTIVA (kVar)	44.()41	46.	619	35.	552	126.2	213
POTENCIA APARENTE (kVA)	109.	707	106	.887	106	.001	322.2	.69
FACTOR DE POTENCIA	0.91	159	0.8	999	0.9	421	0.92	01
Nodo: 693 SISTEMA FOTOVO	LTAICO							
	FAS	EA	FAS	SE B	FAS	SE C	тот	AL
POTENCIA ACTIVA (kW)	116.	053	121	.328	115	.255	352.6	536
POTENCIA REACTIVA (kVar)	0.0	00	0.000		0.0	000	0.00	0
POTENCIA APARENTE (kVA)	116	053	121 328		115.255		352 636	
FACTOR DE POTENCIA	1 00	10000 10000 1000		000	1 0000			
THEFOR DE LOTENCIN	1.00	<u> </u>	ARGAS	000	1.0	000	1.00	00
	FAS	F A	FAS	FR	FAS	SF C	тот	ΔΙ
	1115		1110		111		ESTRELL	DELT
	A-N	A-B	B-N	B-C	C-N	C-A	A	A
	1121	.707	1030).194	1237	7.947	3389.	848
POTENCIA ACTIVA (kW)	736.7	385.0	400.8	629.4	678.4	559.5	1815.9	1573.9
	579.	296	655	.863	810	.481	2045.	640
POTENCIA REACTIVA (kVar)	3593	220.0	295.6	360.3	435.5	375.0	10904	955.3
	1262	462	1221	251	1470	9 660	3959	256
POTENCIA APARENTE (kVA)	8197	443.4	498.0	725.2	806.1	673.6	2118.1	18411
	012.7	285	0.8	436	000.1	366	0.85	<u> </u>
FACTOR DE POTENCIA	0.898	0.868	0.804	0.867	0.841	0.830	0.05	02
	8	2	8	9	6	7	0 8573	08549
	0	 PÉ	RDIDA	<u>s</u>	Ũ	•	0.007.0	010017
	FAS	EA	FAS	SE B	FAS	SE C	тот	AL.
POTENCIA ACTIVA (kW)	21 6	52	1 4	32	53	210	76.2	94
POTENCIA REACTIVA (kVar)	204	598	135	518	193	954	534 ()71
POTENCIA APARENTE (kVA)	201.	741	135	526	201	121	539.4	.93
	200. BAN			CITODE	<u>c</u>	121	557.1	
	EAC				БАС	EE C	тот	A T
	ГАЗ	EA	FAS	DE D	FAS	DE C	IUI ESTDELI	AL DEIT
	4 - N	۸-B	R-N	B-C	C-N	C-A		
ΡΟΤΕΝCΙΔ ΒΕΛΟΤΙΥΛ - Ρ	200	000	200	000	4.00	000	1000	<u>n</u>
(bVar)	300.	000	300 0	.000 0 0	400 400 0	0.000	1000.	000
	215	208	200.0	0.0	111	301	1000.0	547
i UI ENGIA NEACTIVA - A (kVar)	315.	200 0 0	3270	.057	414 1112		1050.	οπ/ ΛΛ
(Kvai j	313.4	0.0	547.0	0.0	714.3	0.0	10202	0.0

Tabla 3.23 Resumen de Flujos de Potencia Óptimos del Alimentador del IEEE de 13 Nodos Modificado.

PERFIL DE VOLTAJE IEEE 13 N MOD SUBESTACIÓN: IEEE 13N MOD ALIMENTADOR: IEEE 13N MOD									
NODO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO			
MODO	A-N		B-N		C-N				
611					1.0128	116.70			
632	1.0500	-1.89	1.0245	-121.23	1.0500	118.24			
633	1.0483	-1.92	1.0227	-121.26	1.0480	118.22			
634	1.0336	-2.32	1.0077	-121.64	1.0330	117.85			
645			1.0152	-121.41	1.0480	118.26			
646			1.0135	-121.49	1.0459	118.31			
650	1.0000	0.00	1.0000	-120.00	1.0000	120.00			
652	1.0177	-4.11							
671	1.0255	-4.16	1.0375	-121.39	1.0167	116.94			
675	1.0182	-4.39	1.0411	-121.57	1.0147	116.98			
680	1.0271	-4.09	1.0387	-121.30	1.0180	117.04			
684	1.0234	-4.18			1.0147	116.84			
692	1.0255	-4.16	1.0375	-121.39	1.0167	116.94			
693	1.0256	-3.62	1.0487	-120.80	1.0221	117.75			
694	1.0385	-3.59	1.0500	-120.85	1.0285	117.57			
RG1	1.0806	0.00	1.0311	-120.00	1.0930	120.00			

Tabla 3.24 Perfil de Voltaje del Alimentador del IEEE de 13 Nodos Modificado y Optimizado.

Tabla 3.25Resumen de la Reducción de Carga del Alimentador del IEEE de 13 Nodos Modificado y Optimizado.

	CARGA C	RIGINAL	RE	EDUCCIÓI	N DE CARG	A		
	P/kW	Q/kVar	P/kW	Q/kVar	P/kW	(P/%)	Q/kVar	(Q/%)
FASE A:	1175.000	616.000	1117.149	576.223	57.851	(4.92)	39.767	(6.46)
FASE B:	1039.000	665.000	1015.811	647.608	23.189	(2.23)	17.392	(2.62)
FASE C:	1252.000	821.000	1231.232	805.425	20.768	(1.66)	15.575	(1.90)
TOTAL:	3466.000	2102.000	3364.192	2029.267	101.808	(2.94)	72.733	(3.46)

Tabla 3.26 Reducción de Carga del Alimentador del IEEE de 13 Nodos Modificado y Optimizado.

NODO	P/kW	(P/%)	Q/kVar	(Q/%)	P/kW	(P/%)	Q/kVar	(Q/%)	P/kW	(P/%)	Q/kVar	(Q/%)
NODO		A	-N			B	-N			C	-N	
634	57.712	(36.07)	39.677	(36.07)	23.188	(19.32)	17.391	(19.32)	20.760	(17.30)	15.570	(17.30)
645					0.000	(0.00)	0.000	(0.00)				
646					0.000	(0.00)	0.000	(0.00)				
652	0.093	(0.07)	0.062	(0.08)								
671	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)	0.008	(0.00)	0.004	(0.00)
675	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)
692									0.000	(0.00)	0.000	(0.00)
611									0.000	(0.00)	0.000	(0.00)
695	0.046	(0.27)	0.027	(0.27)	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)

Tabla 3.27 Valores de Convergencia para el Alimentador del IEEE de 13 Nodos Modificado y Optimizado.

Sistema de Prueba	Iteraciones	Tiempo (s)
IEEE de 13 Nodos Modificado	70	16.80

Revisando los resultados podemos ver que el perfil de voltaje del sistema (Tabla 3.24) se encuentra dentro de los límites 0.95 p.u. y 1.05 p.u. a excepción del regulador de voltaje que esta libre de dicha restricción. Al elevar los voltajes nodales la generación distribuida crece, para el arreglo de paneles solares aumentó de 302.271 kW a 352.636 kW, y para el aerogenerador aumentó de 295.956 kW y 87.481 kVar a 296.525 kW y 126.613 kVar, por lo cual la energía suministrada por el sistema se verá reducida. La Tabla 3.22 muestra que la corriente en la línea comprendida entre los nodos 632 y 633 está dentro de los límites especificados, para ello tuvo que reducir carga en el nodo 634 como se visualiza en la Tabla 3.26. Para conseguir esta operación el sistema redujo la carga 101.808 kW y 72.733 kVar lo cual representa un 2.94% y un 3.46% de la carga total respectivamente y los taps del regulador de voltaje se posicionaron en A = 12.90, B = 4.97 y C = 14.88.

A excepción por la carga del nodo 634 que se redujo en gran cantidad para limitar la corriente, todas las demás cargas están por debajo de los 100 W, lo que equivale a apagar 5 lámparas fluorescentes ahorradoras de 20W. Este tipo de acciones se pueden realizar fácilmente sí existiera un sistema de información y comunicación desde la subestación al cliente indicando que apague dispositivos que no necesita en ese momento, y que se le pueda retribuir de alguna manera por su acción. Como se observa también en la Tabla 3.26, las cargas de los nodos 675 y 692 no redujeron carga alguna debido a que son cargas no flexibles, esto es importante ya que podría decidirse no reducir carga a un cliente determinado, y esta opción facilitaría aplicar dicha condición.

3.2.2 Alimentador del IEEE de 123 Nodos Modificado

Para el segundo caso de estudio se modifica el alimentador del IEEE de 123 nodos, en el cual al nodo 195 se conecta un transformador trifásico estrella aterrizada - estrella aterrizada de 500 kVA, 4.16 kV/2.40 kV - 480 V/277 V, con un %R = 1.11 y un %X = 4.36, el nodo del lado de baja es nombrado como 612 en el cual se interconecta un arreglo de paneles solares idéntico al utilizado en el caso de estudio anterior y con las mismas características de irradiación y temperatura. En el nodo 451 se interconecta otro transformador trifásico en conexión estrella no aterrizada – delta de 500 kVA, 4.16 kV/2.40 kV - 480 V, con un %R = 1.11 y un %X = 4.36, el nodo del lado de baja es nombrado como 611 al cual se conecta un aerogenerador idéntico al utilizado en el caso de estudio anterior pero con una velocidad del viento de v = 12 m/s y un $C_p = 0.363$, se compensará con un banco de capacitores trifásico en conexión delta de 100 kVar/fase.

Del mismo modo se desactivan los reguladores de voltaje (fijamos los taps a 0) para obtener voltajes por de bajo de los permitidos por norma (0.95 p.u.). Los interruptores comprendidos entre los nodos 95 – 195 y 450 – 451 se cierran. El diagrama unifilar del sistema se muestra en la Figura 3.12

Figura 3.12 Diagrama Unifilar del Alimentador del IEEE de 123 Nodos Modificado.

Las cargas se especifican como no flexibles para calcular la condición inicial. Los resultados de la condición inicial del sistema se pueden consultar en el Apéndice B, sección B.1. La Tabla 3.28 muestra las características de convergencia de la condición inicial.

Sistema de Prueba	Iteraciones	Tiempo (s)
IEEE de 123 Nodos		
Modificado	2	23.00

Observando el perfil de voltaje (Tabla B.3) vemos que algunos voltajes nodales en la fase A están por debajo de los permitidos por norma (0.95 p.u.), y que las corrientes de la línea comprendida entre los nodos 13 y 18 están por encima de los 150 A y dos fases de la línea comprendida entre los nodos 60 y 62 por encima de los 50 A (Tabla B.2). En el optimizador fijaremos como límite de los voltajes nodales un valor comprendido entre 0.96 p.u. – 1.04 p.u., y un límite de corriente en la línea 13-18 de 150 A para cada fase y de 50 A para la línea 60 - 62. Las cargas de los nodos 19, 20, 22, 24, 28, 29, 30, 62, 76, 77, 79, 80, 82 y 83 serán cargas no flexibles por lo cual no se les podrá reducir carga. Los reguladores de voltaje estarán activos. Los resultados del análisis de flujos de potencia óptimos pueden ser consultados en el Apéndice B, sección B.2. Las características de convergencia se muestran en la Tabla 3.29.

Tabla 3.29 Valores de Convergencia para el Alimentador del IEEE de 123 Nodos Modificado yOptimizado.

Sistema de Prueba	Iteraciones	Tiempo (s)
IEEE de 123 Nodos Modificado	76	930.00
mounicado		556166

Al igual que en el caso de estudio anterior todas las restricciones se han cumplido y el sistema está dentro de una operación adecuada y dentro de los límites deseados. Revisando los resultados podemos ver que el perfil de voltaje del sistema (Tabla B.4) se encuentra dentro de los límites propuestos de 0.96 p.u. y 1.04 p.u. La Tabla B.9 muestra que la corriente en las líneas comprendidas entre los nodos 13 y 18 y los nodos 60 y 62 están dentro de los límites especificados. Para conseguir esta operación el sistema redujo la carga 271.908 kW y 157.131 kVar lo cual representa un 7.79% y un 8.18% de la carga total respectivamente y los taps del regulador de voltaje se posicionaron en: RG1 [A = 0.16, B = 0.16 y C = 0.16], RG2 [A = -2.94], RG3 [A = -1.65 y C = -1.22], y RG4 [A = 8.33, B = -3.75 y C = -1.21]. Como se observa también en la Tabla B.8, las cargas no flexibles no redujeron carga alguna, a pesar de que son muy importantes en la reducción de la corriente de las líneas limitadas, como lo son las cargas no flexibles de los nodos 19, 20, 22, 24, 28, 29 y 30 para la línea 13 - 18, y de la carga no flexible 62 para la línea 60 - 62.

Capítulo 4: Conclusiones

En el presente trabajo de tesis se desarrolló una herramienta computacional con el fin de optimizar la operación de redes de distribución activas. La herramienta mantiene los voltajes nodales dentro de límites establecidos por el usuario para evitar sobre voltajes y bajos voltajes, además de poder limitar la corriente en interruptores, líneas y transformadores y así evitar sobrecarga en dichos elementos. La manera en la que la herramienta mantiene a la red de distribución activa en un punto de operación estable es reduciendo la carga y manipulando los taps de los reguladores de voltaje. La herramienta minimiza la reducción de carga ya que lo más importante es mantener un servicio confiable y de calidad para los clientes. Para ello la herramienta da la posibilidad de clasificar a los clientes como cargas flexibles o no flexibles, los clientes clasificados como carga flexibles dan la posibilidad de reducir la carga ya que son clientes donde una reducción de carga o pérdida del suministro de energía no afectará de manera crítica sus labores, actividades o procesos diarios tales como tiendas departamentales, escuelas, sectores residenciales, o comunidades, etc. Mientras que una reducción o pérdida de energía en los clientes clasificados como no flexibles significaría pérdidas económicas significativas como grades empresas o incluso pérdida de vidas humanas como hospitales, constructoras, empresas con procesos peligrosos, unidades de rescate, etc.

La herramienta computacional utiliza el método de punto interior, ya que se ha demostrado una rápida convergencia y buen comportamiento al manejarse en flujos de potencia óptimos, en conjunto con el algoritmo de solución método de barrido hacia adelante – hacia atrás que es fácil de comprender e implementar, y por ser un algoritmo de solución con una buena convergencia. Esta característica de la herramienta es muy importante ya que anteriormente no se había realizado esta combinación, y que como se mostró anteriormente ofrece buenos resultados en la minimización de la carga flexible. La herramienta implementa una gran cantidad de modelos para poder simular el comportamiento de una gran cantidad de redes de distribución, y que con la implementación de aerogeneradores y arreglos de paneles solares dan la posibilidad de hacer estudios de impacto en la red al incremento de penetración de energías renovables.

Para validar el algoritmo de solución de barrido hacia adelante – hacia atrás implementado en la herramienta computacional se implementaron cuatro alimentadores de prueba del IEEE y se obtuvieron resultados con errores similares a los obtenidos con el programa OpenDSS que comenzó su desarrollo en 1997 y es una herramienta muy confiable. La ventaja que se obtuvo con la herramienta desarrollada ante software especializado como OpenDSS es la sencillez en su programación, esto facilitará el uso en instituciones académicas para aquellos que no tienen grandes habilidades en programación, pero que MatLab[®] al ser un software con un "lenguaje de programación" de alto nivel da una mayor accesibilidad que software especializado en el cual se programa con lenguajes más complicados como Python, C, etc.

Para corroborar el funcionamiento de la herramienta computacional al combinar el optimizador con el algoritmo de solución se simularon nuevamente los alimentadores de prueba del IEEE sin aplicar ninguna restricción de voltaje y corriente pero manipulando las cargas como cargas flexibles, donde se obtuvieron los mismos resultados que al usar solo el algoritmo de solución. Esto comprueba que el funcionamiento de la herramienta computacional es correcto y da la confiabilidad y seguridad de que los resultados simulan de manera precisa la red que se está analizando.

Trabajos Futuros

Con respecto a las mejoras que se podrían implementar en la herramienta computacional se propone lo siguiente:

- La manipulación de las variables en un sistema por unidad que facilitaría los cálculos y mejoraría el rendimiento de la herramienta computacional.
- La implementación de nuevos y mejores modelos como líneas en CD, aerogenerador con motor de doble alimentación y unidades de almacenamiento de energía específicamente baterías, entre otros.
- Utilizar un método de optimización que maneje variables mixtas, esto daría la posibilidad de manejar variables continuas cómo tensiones y corrientes y variables discretas como los taps de transformadores, taps de reguladores de voltaje a pasos, activación o desactivación de bancos de capacitores, apertura o cierre de interruptores.
- Implementación de otras aplicaciones de optimización tales como despacho económico de carga, reconfiguración de la red, localización óptima de bancos de capacitores y unidades de generación distribuida.
- Realizar una interfaz gráfica de usuario para así simplificar su uso.

Apéndice A: Resultados del Algoritmo de Solución

A.1 Alimentador de Prueba del IEEE de 34 Nodos

Tabla A.1 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para elAlimentador de Prueba del IEEE de 34 Nodos.

	RESU	MEN DI	E FLUJO	S DE PO	TENCIA	1		
		ENTRA	DA DEL	SISTEN	/IA			
Nodo: 800								
	FAS	SE A	FAS	SE B	FAS	SE C	ТОТ	AL
POTENCIA ACTIVA (kW)	759	.080	666	.668	617	.050	2042.	798
POTENCIA REACTIVA								
(kVar)	171	.847	90.	155	28.	585	290.5	587
POTENCIA APARENTE								
(kVA)	778	.289	672	.736	617	.712	2063.	362
FACTOR DE POTENCIA	0.9	753	0.9	910	0.9	989	0.99	00
			CARGA	IS				
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
DOTENCIA ACTIVA (1440)	606	.323	582	.730	580	.764	1769.	817
POTENCIA ACTIVA (KW)	359.9	246.4	339.3	243.4	221.8	359.0	921.0	848.8
POTENCIA REACTIVA	359	.533	345	.649	346	.362	1051.	545
(kVar)	230.9	128.7	217.0	128.7	161.8	184.5	609.6	441.9
POTENCIA APARENTE	704.905		677	.531	676	.205	2058.	640
(kVA)	427.6	278.0	402.8	275.3	274.5	403.7	1104.5	956.9
EACTOR DE DOTENCIA	0.8	601	0.8	601	0.8	589	0.85	97
FACTOR DE POTENCIA	0.8417	0.8864	0.8425	0.8840	0.8078	0.8894	0.8339	0.8870
			PÉRDID	AS				
	FAS	SE A	FAS	SE B	FAS	SE C	ТОТ	AL
POTENCIA ACTIVA (kW)	114	.800	80.	354	77.	827	272.9	981
POTENCIA REACTIVA								
(kVar)	14.	346	10.	950	10.	042	35.3	38
POTENCIA APARENTE								
(kVA)	115	.693	81.	097	78.4	472	275.2	259
	E	BANCOS	DE CAF	PACITO	RES			
	FAS	SE A	FAS	SE B	FAS	SE C	ТОТ	AL
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
POTENCIA REACTIVA - R	250	.000	250	.000	250	.000	750.0	000
(kVar)	250.0	0.0	250.0	0.0	250.0	0.0	750.0	0.0
POTENCIA REACTIVA - A	265	.670	264	.801	265	.825	796.2	296
(kVar)	265.7	0.0	264.8	0.0	265.8	0.0	796.3	0.0

	RESU	MEN DI	E FLUJO	S DE PO	TENCIA	1		
		ENTRA	DA DEL	SISTEN	/IA			
Nodo: 800								
	FAS	SE A	FAS	SE B	FAS	SE C	ТОТ	AL
POTENCIA ACTIVA (kW)	759	.136	666	.663	617	.072	2042.	872
POTENCIA REACTIVA								
(kVar)	171	.727	90.	137	28.	394	290.2	.58
POTENCIA APARENTE								
(kVA)	778	.318	672	.729	617	.725	2063.	389
FACTOR DE POTENCIA	0.9	754	0.9	910	0.9	989	0.99	01
			CARGA	IS				
	FAS	FASE A FASE		SE B	FAS	SE C	ТОТ	AL
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
DOTENCIA ACTIVA (1447)	606	.322	582	.662	580	.840	1769.	824
POTENCIA ACTIVA (KW)	359.9	246.4	339.3	243.3	221.8	359.0	921.0	848.8
POTENCIA REACTIVA	359	.531	345	.609	346	.407	1051.	547
(kVar)	230.9	128.7	216.9	128.7	161.8	184.6	609.6	441.9
POTENCIA APARENTE	704.903		677	.452	676	.293	2058.	647
(kVA)	427.6	278.0	402.7	275.3	274.6	403.7	1104.5	957.0
EACTOR DE DOTENCIA	0.8	601	0.8	601	0.8	589	0.85	97
FACTOR DE FOTENCIA	0.8417	0.8864	0.8425	0.8840	0.8078	0.8894	0.8339	0.8870
			PÉRDID	AS				
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL
POTENCIA ACTIVA (kW)	114	.836	80.	389	77.	824	273.0	49
POTENCIA REACTIVA								
(kVar)	14.	200	10.9	989	9.8	810	34.9	99
POTENCIA APARENTE								
(kVA)	115	.711	81.	137	78.4	440	275.2	83
	E	BANCOS	DE CAF	PACITO	RES			
	FAS	SE A	FAS	SE B	FAS	SE C	ТОТ	AL
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
POTENCIA REACTIVA - R	250	.000	250	.000	250	.000	750.0	000
(kVar)	250.0	0.0	250.0	0.0	250.0	0.0	750.0	0.0
POTENCIA REACTIVA - A	265	.658	264	.760	265	.869	796.2	.87
(kVar)	265.7	0.0	264.8	0.0	265.9	0.0	796.3	0.0

Tabla A.2 Resumen de Flujos de Potencia del Alimentador de Prueba del IEEE de 34 Nodos.

PERFIL DE VOLTAJE SUBESTACIÓN: IEEE 34 NODES ALIMENTADOR: IEEE 34 NODES									
	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO			
NODO	A-N		B-N	[C-N				
800	1.0500	0.00	1.0500	-120.00	1.0500	120.00			
802	1.0475	-0.05	1.0484	-120.07	1.0484	119.95			
806	1.0457	-0.08	1.0474	-120.11	1.0474	119.92			
808	1.0136	-0.75	1.0296	-120.95	1.0288	119.30			
810			1.0295	-120.95					
812	0.9763	-1.58	1.0100	-121.92	1.0068	118.58			
814	0.9467	-2.26	0.9945	-122.70	0.9893	118.00			
816	1.0173	-2.27	1.0253	-122.71	1.0200	117.99			
818	1.0163	-2.27							
820	0.9926	-2.33							
822	0.9895	-2.34							
824	1.0082	-2.38	1.0159	-122.93	1.0115	117.74			
826			1.0157	-122.93					
828	1.0074	-2.39	1.0152	-122.95	1.0108	117.72			
830	0.9895	-2.65	0.9983	-123.39	0.9937	117.23			
832	1.0359	-3.13	1.0346	-124.18	1.0359	116.31			
834	1.0309	-3.26	1.0296	-124.38	1.0312	116.07			
836	1.0303	-3.25	1.0288	-124.38	1.0307	116.06			
838			1.0286	-124.39					
840	1.0303	-3.25	1.0287	-124.38	1.0307	116.06			
842	1.0309	-3.26	1.0295	-124.39	1.0312	116.06			
844	1.0307	-3.29	1.0292	-124.41	1.0310	116.03			
846	1.0309	-3.33	1.0292	-124.46	1.0312	115.98			
848	1.0310	-3.34	1.0292	-124.47	1.0313	115.98			
850	1.0177	-2.26	1.0256	-122.70	1.0202	118.00			
852	0.9581	-3.13	0.9681	-124.18	0.9637	116.31			
854	0.9890	-2.66	0.9978	-123.40	0.9933	117.21			
856			0.9978	-123.41					
858	1.0336	-3.19	1.0323	-124.27	1.0337	116.20			
860	1.0305	-3.25	1.0291	-124.38	1.0309	116.06			
862	1.0303	-3.25	1.0287	-124.38	1.0307	116.06			
864	1.0336	-3.19							
888	0.9996	-4.65	0.9984	-125.73	0.9999	114.78			
890	0.9167	-5.21	0.9237	-126.77	0.9176	113.95			
RG10	1.0177	-2.26	1.0256	-122.70	1.0202	118.00			
RG11	1.0360	-3.13	1.0346	-124.18	1.0359	116.31			

Tabla A.3 Perfil de Voltaje obtenido con el algoritmo de solución para el Alimentador de Pruebadel IEEE de 34 Nodos.

SU	PERFIL DE VOLTAJE SUBESTACIÓN: IEEE 34 NODES ALIMENTADOR: IEEE 34 NODES										
NODO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO					
NODO	A-N		B-N		C-N						
800	1.0500	0.00	1.0500	-120.00	1.0500	120.00					
802	1.0475	-0.05	1.0484	-120.07	1.0484	119.95					
806	1.0457	-0.08	1.0474	-120.11	1.0474	119.92					
808	1.0136	-0.75	1.0296	-120.95	1.0289	119.30					
810			1.0294	-120.95							
812	0.9763	-1.57	1.0100	-121.92	1.0069	118.59					
814	0.9467	-2.26	0.9945	-122.70	0.9893	118.01					
816	1.0172	-2.26	1.0253	-122.71	1.0200	118.01					
818	1.0163	-2.27									
820	0.9926	-2.32									
822	0.9895	-2.33									
824	1.0082	-2.37	1.0158	-122.94	1.0116	117.76					
826			1.0156	-122.94							
828	1.0074	-2.38	1.0151	-122.95	1.0109	117.75					
830	0.9894	-2.63	0.9982	-123.39	0.9938	117.25					
832	1.0359	-3.11	1.0345	-124.18	1.0360	116.33					
834	1.0309	-3.24	1.0295	-124.39	1.0313	116.09					
836	1.0303	-3.23	1.0287	-124.39	1.0308	116.09					
838			1.0285	-124.39							
840	1.0303	-3.23	1.0287	-124.39	1.0308	116.09					
842	1.0309	-3.25	1.0294	-124.39	1.0313	116.09					
844	1.0307	-3.27	1.0291	-124.42	1.0311	116.06					
846	1.0309	-3.32	1.0291	-124.46	1.0313	116.01					
848	1.0310	-3.32	1.0291	-124.47	1.0314	116.00					
850	1.0176	-2.26	1.0255	-122.70	1.0203	118.01					
852	0.9581	-3.11	0.9680	-124.18	0.9637	116.33					
854	0.9890	-2.64	0.9978	-123.40	0.9934	117.24					
856			0.9977	-123.41							
858	1.0336	-3.17	1.0322	-124.28	1.0338	116.22					
860	1.0305	-3.24	1.0291	-124.39	1.0310	116.09					
862	1.0303	-3.23	1.0287	-124.39	1.0308	116.09					
864	1.0336	-3.17									
888	0.9996	-4.64	0.9983	-125.73	1.0000	114.82					
890	0.9167	-5.19	0.9235	-126.78	0.9177	113.98					
RG10	1.0177	-2.26	1.0255	-122.70	1.0203	118.01					
RG11	1.0359	-3.11	1.0345	-124.18	1.0360	116.33					

Tabla A.4 Perfil de Voltaje del Alimentador de Prueba del IEEE de 34 Nodos.

A.2 Alimentador de Prueba del IEEE de 123 Nodos

RESUMEN DE FLUJOS DE POTENCIA								
		ENTRA	DA DEI	SISTE	MА			
Nodo: 150								
	FAS	E A	FAS	SE B	FAS	E C	ТОТ	AL
POTENCIA ACTIVA (kW)	1464	.033	963	.610	1193	.182	3620.	825
POTENCIA REACTIVA								
(kVar)	581.	143	343	.278	398.	407	1322.	829
POTENCIA APARENTE								
(kVA)	1575	.157	1022	2.929	1257	.940	3854.	900
FACTOR DE POTENCIA	0.92	295	0.9	420	0.94	485	0.93	93
			CARGA	4S				
	FAS	E A	FAS	SE B	FASE C		TOTAL	
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
ροτενία αστινά (μω)	1425	.276	931	.145	1169	.135	3525.	556
FOTENCIA ACTIVA (KW)	1242.9	182.3	822.9	108.2	1026.4	142.7	3092.3	433.2
POTENCIA REACTIVA	777.	920	524	.655	637.	925	1940.	500
(kVar)	651.1	126.8	447.4	77.3	536.0	101.9	1634.5	306.0
POTENCIA APARENTE	1623.752		1068	3.781	1331	.851	4024.	312
(kVA)	1403.2	222.1	936.7	133.0	1157.9	175.4	3497.7	530.4
EACTOR DE DOTENCIA	0.82	778	0.8	712	0.82	778	0.87	61
FACTOR DE POTENCIA	0.8858	0.8210	0.8786	0.8137	0.8864	0.8137	0.8841	0.8168
			PÉRDIC	DAS				
	FAS	E A	FAS	SE B	FAS	E C	ТОТ	AL
POTENCIA ACTIVA (kW)	50.4	461	10.	084	34.2	725	95.2	69
POTENCIA REACTIVA								
(kVar)	101.	642	38.	372	51.0	506	191.6	520
POTENCIA APARENTE								
(kVA)	113.	478	39.	675	62.2	201	213.9	97
	E	BANCOS	5 DE CAI	PACITO	RES			
	FAS	E A	FAS	SE B	FAS	E C	ТОТ	AL
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
POTENCIA REACTIVA - R	250.	000	250	.000	250.	000	750.0	000
(kVar)	250.0	0.0	250.0	0.0	250.0	0.0	750.0	0.0
POTENCIA REACTIVA - A	271	444	268	.058	269	790	809.2	.92
(kVar)	271.4	0.0	268.1	0.0	269.8	0.0	809.3	0.0

Tabla A.5 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el Alimentador de Prueba del IEEE de 123 Nodos.

	RESU	MEN D	E FLUJO	S DE PO	DTENCI	1		
		ENTRA	DA DEI	L SISTE	MА			
Nodo: 150								
	FAS	E A	FAS	SE B	FAS	E C	ТОТА	4L
POTENCIA ACTIVA (kW)	1463	.861	963	.484	1193	.153	3620.4	198
POTENCIA REACTIVA								
(kVar)	582.	.101	343	.687	398.	976	1324.7	/65
POTENCIA APARENTE								
(kVA)	1575	5.351	1022	2.947	1258	.092	3855.2	257
FACTOR DE POTENCIA	0.92	292	0.9	419	0.94	184	0.939	<i>)</i> 1
			CARGA	AS				
	FAS	E A	FAS	SE B	FASE C		TOTAL	
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
ροτενίζια αστινά (φω)	1425	.022	930	.965	1168	.900	3524.8	387
	1242.8	182.3	822.8	108.1	1026.3	142.6	3091.9	433.0
POTENCIA REACTIVA	777.	767	524	.544	637.	773	1940.0)83
(kVar)	651.0	126.7	447.3	77.2	535.9	101.8	1634.3	305.8
POTENCIA APARENTE	1623	.455	1068	3.570	1331	.571	4023.5	524
(kVA)	1403.0	222.0	936.6	132.9	1157.8	175.2	3497.3	530.1
FACTOR DE POTENCIA	0.82	778	0.8	712	0.87	778	0.876	51
	0.8858	0.8210	0.8786	0.8137	0.8864	0.8137	0.8841	0.8168
			PÉRDIE	DAS				
	FAS	E A	FAS	SE B	FAS	E C	TOTA	4L
POTENCIA ACTIVA (kW)	50.5	540	10.	134	34.9	937	95.61	1
POTENCIA REACTIVA								
(kVar)	102.	.653	38.	837	52.2	237	193.7	27
POTENCIA APARENTE								
(kVA)	114.	.420	40.	137	62.8	344	216.0	36
	E	BANCOS	5 DE CAI	PACITO	RES			
	FAS	E A	FAS	SE B	FAS	E C	ΤΟΤΑ	4L
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
POTENCIA REACTIVA - R	250.	000	250	.000	250.	000	750.0	00
(kVar)	250.0	0.0	250.0	0.0	250.0	0.0	750.0	0.0
POTENCIA REACTIVA - A	271.	290	268	.023	269.	733	809.0	46
(kVar)	271.3	0.0	268.0	0.0	269.7	0.0	809.0	0.0

Tabla A.6 Resumen de Flujos de Potencia del Alimentador de Prueba del IEEE de 123 Nodos.

PERFIL DE VOLTAJE SUBESTACIÓN: IEEE 123 NODES ALIMENTADOR: IEEE 123 NODES									
Nopo	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO			
NODO	A-N		B-N		C-N				
1	1.0313	-0.64	1.0413	-120.31	1.0349	119.62			
2			1.0411	-120.31					
3					1.0332	119.59			
4					1.0327	119.58			
5					1.0319	119.57			
6					1.0313	119.55			
7	1.0220	-1.10	1.0396	-120.56	1.0292	119.37			
8	1.0160	-1.41	1.0383	-120.72	1.0254	119.20			
9	1.0145	-1.44							
10	1.0062	-1.48							
11	1.0059	-1.49							
12			1.0380	-120.73					
13	1.0080	-1.84	1.0361	-120.96	1.0198	118.92			
14	1.0065	-1.47							
15					1.0184	118.89			
16					1.0174	118.87			
17					1.0179	118.88			
18	0.9990	-2.27	1.0320	-121.21	1.0124	118.85			
19	0.9977	-2.29							
20	0.9968	-2.31							
21	0.9985	-2.32	1.0321	-121.20	1.0112	118.83			
22			1.0306	-121.23					
23	0.9981	-2.37	1.0324	-121.19	1.0101	118.81			
24					1.0086	118.79			
25	0.9974	-2.43	1.0329	-121.18	1.0092	118.81			
26	0.9971	-2.45			1.0024	118.80			
27	0.9968	-2.47			1.0024	118.81			
28	0.9970	-2.45	1.0331	-121.18	1.0089	118.82			
29	0.9969	-2.48	1.0333	-121.17	1.0084	118.81			
30	0.9971	-2.48	1.0332	-121.16	1.0080	118.79			
31					1.0018	118.79			
32					1.0014	118.78			
33	0.9955	-2.50							
34					1.0188	118.90			
35	0.9962	-2.35	1.0295	-121.29	1.0113	118.79			
36	0.9953	-2.37	1.0290	-121.34					
37	0.9945	-2.39							
38			1.0283	-121.35					
39			1.0279	-121.36					

Tabla A.7 Perfil de Voltaje obtenido con el algoritmo de solución para el Alimentador de Pruebadel IEEE de 123 Nodos.

40	0.9947	-2.39	1.0283	-121.34	1.0103	118.74
41					1.0098	118.74
42	0.9931	-2.42	1.0272	-121.39	1.0094	118.71
43			1.0258	-121.41		
44	0.9920	-2.45	1.0265	-121.41	1.0086	118.68
45	0.9915	-2.46				
46	0.9911	-2.47				
47	0.9910	-2.47	1.0254	-121.45	1.0076	118.63
48	0.9907	-2.48	1.0251	-121.45	1.0073	118.62
49	0.9907	-2.48	1.0248	-121.45	1.0072	118.61
50	0.9907	-2.49	1.0249	-121.45	1.0069	118.59
51	0.9905	-2.50	1.0250	-121.45	1.0069	118.60
52	1.0021	-2.22	1.0349	-121.20	1.0165	118.67
53	0.9994	-2.40	1.0341	-121.31	1.0149	118.54
54	0.9978	-2.50	1.0335	-121.39	1.0140	118.46
55	0.9976	-2.50	1.0335	-121.40	1.0140	118.46
56	0.9976	-2.50	1.0333	-121.40	1.0141	118.46
57	0.9947	-2.80	1.0307	-121.59	1.0114	118.24
58			1.0301	-121.60		
59			1.0298	-121.61		
60	0.9882	-3.47	1.0257	-121.98	1.0054	117.79
61	0.9960	-2.67	1.0098	-121.97	1.0134	117.01
62	0.9876	-3.47	1.0247	-121.96	1.0036	117.77
63	0.9871	-3.47	1.0240	-121.95	1.0027	117.75
64	0.9869	-3.45	1.0224	-121.93	1.0009	117.71
65	0.9863	-3.47	1.0221	-121.89	0.9983	117.69
66	0.9865	-3.50	1.0224	-121.86	0.9969	117.69
67	1.0358	-3.72	1.0312	-122.15	1.0346	117.65
68	1.0342	-3.75				
69	1.0325	-3.78				
70	1.0312	-3.80				
71	1.0305	-3.82				
72	1.0362	-3.81	1.0303	-122.25	1.0344	117.53
73					1.0323	117.49
74					1.0304	117.46
75					1.0294	117.44
76	1.0361	-3.88	1.0298	-122.35	1.0350	117.48
77	1.0372	-3.94	1.0309	-122.43	1.0359	117.41
78	1.0375	-3.96	1.0313	-122.44	1.0361	117.39
79	1.0372	-3.97	1.0314	-122.45	1.0360	117.40
80	1.0396	-4.02	1.0330	-122.50	1.0370	117.28
81	1.0418	-4.10	1.0353	-122.54	1.0375	117.18
82	1.0427	-4.13	1.0365	-122.57	1.0383	117.15
83	1.0438	-4.15	1.0376	-122.59	1.0391	117.11
84					1.0350	117.13
85					1.0338	117.11
86	1.0352	-3.91	1.0280	-122.51	1.0365	117.45

87	1.0347	-3.93	1.0272	-122.60	1.0370	117.43
88	1.0346	-3.96				
89	1.0342	-3.92	1.0269	-122.65	1.0374	117.42
90			1.0268	-122.69		
91	1.0340	-3.92	1.0266	-122.66	1.0376	117.41
92					1.0376	117.35
93	1.0337	-3.93	1.0264	-122.68	1.0377	117.41
94	1.0330	-3.94				
95	1.0337	-3.92	1.0260	-122.70	1.0379	117.41
96			1.0258	-122.70		
97	1.0348	-3.77	1.0307	-122.18	1.0339	117.63
98	1.0345	-3.78	1.0304	-122.18	1.0337	117.62
99	1.0348	-3.77	1.0296	-122.19	1.0334	117.58
100	1.0350	-3.77	1.0295	-122.18	1.0329	117.57
101	1.0339	-3.81	1.0304	-122.19	1.0334	117.62
102					1.0319	117.60
103					1.0303	117.57
104					1.0285	117.53
105	1.0326	-3.85	1.0302	-122.23	1.0336	117.65
106			1.0291	-122.26		
107			1.0276	-122.28		
108	1.0311	-3.92	1.0309	-122.25	1.0335	117.69
109	1.0270	-4.00				
110	1.0250	-4.04				
111	1.0243	-4.05				
112	1.0244	-4.05				
113	1.0223	-4.09				
114	1.0219	-4.10				
135	0.9990	-2.27	1.0320	-121.20	1.0124	118.85
150	1.0000	0.00	1.0000	-120.00	1.0000	120.00
151	0.9905	-2.50	1.0250	-121.45	1.0069	118.60
152	1.0080	-1.84	1.0361	-120.96	1.0198	118.92
160	0.9882	-3.47	1.0257	-121.98	1.0053	117.79
197	1.0347	-3.77	1.0307	-122.18	1.0339	117.63
250	0.9971	-2.48	1.0332	-121.16	1.0080	118.79
300	1.0311	-3.92	1.0309	-122.25	1.0335	117.69
450	1.0350	-3.77	1.0295	-122.18	1.0329	117.57
610	0.9960	-2.67	1.0098	-121.97	1.0134	117.01
RG1	1.0437	0.00	1.0438	-120.00	1.0437	120.00
RG2	1.0082	-1.44				
RG3	0.9974	-2.43			1.0029	118.81
RG4	1.0376	-3.47	1.0321	-121.98	1.0368	117.79

PERFIL DE VOLTAJE SUBESTACIÓN: IEEE 123 NODES ALIMENTADOR: IEEE 123 NODES									
ΝΟΡΟ	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO			
NUDU	A-N		B-N		C-N				
1	1.0311	-0.66	1.0412	-120.33	1.0348	119.60			
2			1.0410	-120.33					
3					1.0331	119.57			
4					1.0326	119.56			
5					1.0318	119.55			
6					1.0311	119.53			
7	1.0218	-1.13	1.0395	-120.57	1.0291	119.35			
8	1.0158	-1.44	1.0382	-120.74	1.0253	119.18			
9	1.0144	-1.47							
10	1.0060	-1.50							
11	1.0057	-1.51							
12			1.0379	-120.74					
13	1.0079	-1.87	1.0360	-120.97	1.0196	118.90			
14	1.0063	-1.50							
15					1.0183	118.87			
16					1.0173	118.85			
17					1.0178	118.86			
18	0.9988	-2.29	1.0319	-121.22	1.0122	118.83			
19	0.9975	-2.31							
20	0.9967	-2.33							
21	0.9983	-2.34	1.0320	-121.22	1.0111	118.81			
22			1.0305	-121.25					
23	0.9979	-2.39	1.0323	-121.20	1.0100	118.79			
24					1.0085	118.77			
25	0.9972	-2.45	1.0328	-121.20	1.0091	118.80			
26	0.9970	-2.48			1.0023	118.79			
27	0.9966	-2.49			1.0022	118.79			
28	0.9968	-2.48	1.0330	-121.19	1.0087	118.80			
29	0.9967	-2.50	1.0332	-121.19	1.0083	118.79			
30	0.9969	-2.50	1.0331	-121.18	1.0078	118.77			
31					1.0017	118.77			
32					1.0013	118.77			
33	0.9953	-2.52							
34					1.0187	118.88			
35	0.9960	-2.38	1.0293	-121.31	1.0112	118.77			
36	0.9951	-2.40	1.0288	-121.36					
37	0.9943	-2.41							
38			1.0282	-121.37					
39			1.0278	-121.38					

Tabla A.8 Perfil de Voltaje del Alimentador de Prueba del IEEE de 123 Nodos.

40	0.9945	-2.42	1.0282	-121.36	1.0101	118.72
41					1.0097	118.71
42	0.9929	-2.45	1.0270	-121.41	1.0092	118.68
43			1.0257	-121.43		
44	0.9918	-2.48	1.0263	-121.44	1.0084	118.65
45	0.9913	-2.49				
46	0.9909	-2.50				
47	0.9908	-2.50	1.0253	-121.47	1.0074	118.61
48	0.9905	-2.51	1.0250	-121.47	1.0072	118.60
49	0.9905	-2.51	1.0247	-121.48	1.0071	118.58
50	0.9905	-2.52	1.0247	-121.47	1.0067	118.57
51	0.9903	-2.53	1.0248	-121.47	1.0067	118.58
52	1.0018	-2.26	1.0348	-121.22	1.0164	118.64
53	0.9991	-2.43	1.0340	-121.34	1.0148	118.51
54	0.9976	-2.53	1.0334	-121.41	1.0138	118.43
55	0.9974	-2.54	1.0334	-121.42	1.0139	118.43
56	0.9974	-2.53	1.0332	-121.43	1.0140	118.43
57	0.9945	-2.83	1.0306	-121.61	1.0113	118.21
58			1.0300	-121.63		
59			1.0296	-121.63		
60	0.9880	-3.51	1.0256	-122.00	1.0052	117.76
61	0.9880	-3.51	1.0256	-122.00	1.0052	117.76
62	0.9872	-3.50	1.0245	-121.98	1.0032	117.75
63	0.9866	-3.49	1.0236	-121.97	1.0022	117.74
64	0.9863	-3.47	1.0217	-121.93	1.0000	117.70
65	0.9856	-3.48	1.0214	-121.89	0.9970	117.70
66	0.9858	-3.51	1.0216	-121.87	0.9955	117.70
67	1.0355	-3.77	1.0311	-122.19	1.0345	117.61
68	1.0340	-3.79				
69	1.0322	-3.83				
70	1.0310	-3.85				
71	1.0303	-3.86	1 0000	100.00	1 00 40	11750
/2	1.0359	-3.86	1.0302	-122.29	1.0343	117.50
/3					1.0321	117.46
74	1 0250	2.06	1 0 2 0 2	122.20	1.0303	117.42
75	1.0359	-3.80	1.0302	-122.29	1.0293	117.40
70	1.0350	-3.92	1.0297	-122.30	1.0349	117.45
70	1.0370	-5.99	1.0300	-122.40	1.0350	117.37
/8	1.0373	-4.01	1.0312	-122.48	1.0360	117.35
/9	1.0370	-4.02	1.0313	-122.48 122 F4	1.0359	117.30
01	1.0394	-4.07	1.0329	122.54	1.0308	117.24
01 02	1.0415	-4.14	1.0352	-122.57	1.03/4	117.14
02	1.0424	-4.10	1.0304	-122.00	1.0302	117.11
03	1.0430	-4.20	1.0375	-122.03	1.0390	117.07
04 QE					1.0340	117.09
00	1 0240	2 0 5	1 0 2 7 0	100 55	1.0330	117.07
00	1.0349	-3.75	1.02/9	-177.22	1.0304	11/.42

87	1.0342	-3.97	1.0272	-122.63	1.0369	117.39
88	1.0342	-4.00				
89	1.0338	-3.96	1.0270	-122.68	1.0373	117.38
90			1.0269	-122.72		
91	1.0336	-3.96	1.0266	-122.69	1.0376	117.36
92					1.0375	117.31
93	1.0333	-3.97	1.0265	-122.71	1.0377	117.37
94	1.0326	-3.98				
95	1.0332	-3.96	1.0261	-122.73	1.0378	117.37
96			1.0258	-122.73		
97	1.0345	-3.82	1.0306	-122.21	1.0338	117.60
98	1.0343	-3.83	1.0303	-122.22	1.0336	117.59
99	1.0346	-3.82	1.0295	-122.23	1.0332	117.55
100	1.0348	-3.82	1.0294	-122.21	1.0328	117.53
101	1.0337	-3.86	1.0303	-122.22	1.0332	117.59
102					1.0318	117.56
103					1.0301	117.53
104					1.0283	117.49
105	1.0323	-3.90	1.0301	-122.27	1.0335	117.61
106			1.0290	-122.29		
107			1.0275	-122.32		
108	1.0309	-3.97	1.0308	-122.28	1.0334	117.65
109	1.0267	-4.05				
110	1.0248	-4.09				
111	1.0240	-4.10				
112	1.0241	-4.10				
113	1.0220	-4.14				
114	1.0216	-4.15				
135	0.9988	-2.29	1.0318	-121.23	1.0122	118.83
150	1.0000	0.00	1.0000	-120.00	1.0000	120.00
151	0.9903	-2.53	1.0248	-121.47	1.0067	118.58
152	1.0078	-1.88	1.0360	-120.98	1.0196	118.89
160	0.9880	-3.52	1.0256	-122.01	1.0052	117.75
197	1.0345	-3.82	1.0306	-122.21	1.0338	117.59
250	0.9969	-2.50	1.0331	-121.18	1.0078	118.77
300	1.0309	-3.97	1.0308	-122.28	1.0334	117.65
450	1.0348	-3.82	1.0294	-122.21	1.0328	117.53
610	0.9880	-3.51	1.0256	-122.00	1.0052	117.76
RG1	1.0437	0.00	1.0438	-120.00	1.0438	120.00
RG2	1.0080	-1.47				
RG3	0.9972	-2.45			1.0028	118.80
RG4	1.0374	-3.52	1.0320	-122.01	1.0366	117.75

A.3 Caso de Prueba de la Máquina de Inducción

Tabla A.9 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el Caso de Prueba de la Máquina de Inducción.

RESUMEN DE FLUJOS DE POTENCIA											
	EN	ITRADA	A DEL SI	STEMA							
Nodo: Source											
	FAS	SE A	FAS	SE B	FAS	SE C	TOTA	AL			
POTENCIA ACTIVA (kW)	2068	3.459	1612	2.023	2024	.512	5704.994				
POTENCIA REACTIVA (kVar)	1187	1187.316		.543	685	.641	2847.5	500			
POTENCIA APARENTE (kVA)	2385	5.003	1883	8.708	2137	'.464	6376.1	.44			
FACTOR DE POTENCIA	0.8	673	0.8	558	0.9	472	0.894	7			
CARGAS											
FASE AFASE BFASE CTOTAL											
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA			
ροτενίια αστινά (μω)	2306	5.667	1858	3.204	1335	5.132	5500.0	004			
	2306.7	0.0	1858.2	0.0	1335.1	0.0	5500.0	0.0			
DOTENCIA DEACTIVA (kVar)	798.934		641	.969	683	.866	2124.7	'69			
	798.9	0.0	642.0	0.0	683.9	0.0	2124.8	0.0			
DOTENCIA ADADENTE (LVA)	2441	.108	1965.972		1500.084		5896.158				
	2441.1	0.0	1966.0	0.0	1500.1	0.0	5896.2	0.0			
EACTOR DE BOTENCIA	0.9	449	0.9	452	0.8	900	0.932	28			
	0.9449	1.0000	0.9452	1.0000	0.8900	1.0000	0.9328	1.0000			
		PÉ	RDIDAS	5							
	FAS	SE A	FAS	SE B	FAS	SE C	TOTA	AL			
POTENCIA ACTIVA (kW)	-238	.208	-246	.181	689.380		204.991				
POTENCIA REACTIVA (kVar)	388	.382	332	.575	1.775		722.731				
POTENCIA APARENTE (kVA)	455	.613	413	.777	689	.382	751.2	40			

	RESUM	EN DE F	LUJOS I	DE POTI	ENCIA					
	EN	NTRADA	A DEL SI	STEMA						
Nodo: Source										
	FAS	SE A	FAS	SE B	FAS	SE C	TOTA	AL		
POTENCIA ACTIVA (kW)	2068	2068.400		2.100	2024	.600	5705.000			
POTENCIA REACTIVA (kVar)	1187	7.300	974	.700	685.	.700	2847.7	700		
POTENCIA APARENTE (kVA)	2384	4.900	1883	3.800	2137	.500	6376.2	200		
FACTOR DE POTENCIA	0.8	673	0.8	557	0.94	471	0.894	ł7		
CARGAS										
FASE AFASE BFASE CTOTAL										
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA		
ροτενίια αστινά (κω)	2306	5.600	1858	3.200	1335	5.200	5500.0	000		
	2306.6	0.0	1858.2	0.0	1335.2	0.0	5500.0	0.0		
POTENCIA REACTIVA (kVar)	799.00		641.900		683.	.900	2124.8	300		
	799.0	0.0	641.9	0.0	683.9	0.0	2124.8	0.0		
ροτενίια αραβέντε (μνα)	2441	1.066	1965.945		1500.159		5896.166			
	2441.1	0.0	1965.9	0.0	1500.2	0.0	5896.2	0.0		
FACTOR DE POTENCIA	0.9	449	0.9	452	0.89	900	0.932	28		
	0.9449	1.0000	0.9452	1.0000	0.8900	1.0000	0.9328	1.0000		
		PÉ	RDIDAS	5						
	FAS	SE A	FAS	SE B	FAS	SE C	TOTA	AL		
POTENCIA ACTIVA (kW)	-238	8.200	-246	5.200	689.400		205.0	00		
POTENCIA REACTIVA (kVar)	388	.300	332	.800	1.800		722.900			
POTENCIA APARENTE (kVA)	455	.539	413	.969	689	402	751.4	05		

Tabla A.10 Resumen de Flujos de Potencia proporcionado por [30] para el Caso de Prueba de la Máquina de Inducción.

A.4 Caso de Prueba del Aerogenerador

SU	BESTACIÓN: II	PERFII EEE 34N W	L DE VOLTAJE I TGU ALI	IEEE 34 N IMENTADO)R: IEEE 34N W	VTGU
NODO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO
NODO	A-N		B-N		C-N	
800	1.0500	0.00	1.0500	-120.00	1.0500	120.00
802	1.0481	-0.01	1.0488	-120.03	1.0489	119.99
806	1.0468	-0.01	1.0480	-120.04	1.0482	119.99
808	1.0225	-0.10	1.0341	-120.35	1.0359	119.96
810			1.0340	-120.36		
812	0.9941	-0.21	1.0189	-120.68	1.0209	119.95
814	0.9713	-0.29	1.0067	-120.94	1.0088	119.96
816	0.9710	-0.29	1.0066	-120.94	1.0086	119.96
818	0.9701	-0.29				
820	0.9453	-0.35				
822	0.9421	-0.36				
824	0.9649	-0.18	0.9994	-120.95	1.0031	119.95
826			0.9992	-120.95		
828	0.9644	-0.17	0.9989	-120.95	1.0027	119.95
830	0.9524	0.03	0.9864	-120.95	0.9914	119.95
832	0.9318	0.43	0.9643	-120.9	0.9718	119.99
834	0.9780	-0.81	0.9930	-120.65	0.9876	118.55
836	0.9291	0.60	0.9606	-120.83	0.9695	120.05
838			0.9604	-120.84		
840	0.9430	0.00	0.9569	-119.86	0.9521	119.34
842	0.9780	-0.81	0.9930	-120.66	0.9876	118.55
844	0.9780	-0.82	0.9927	-120.67	0.9875	118.54
846	0.9786	-0.83	0.9930	-120.68	0.9881	118.53
848	0.9787	-0.83	0.9931	-120.68	0.9882	118.53
850	0.9713	-0.29	1.0067	-120.94	1.0088	119.96
852	0.9318	0.43	0.9643	-120.9	0.9718	119.99
854	0.9521	0.04	0.9861	-120.95	0.9912	119.96
856			0.9860	-120.96		
858	0.9794	-0.86	0.9948	-120.66	0.9888	118.55
860	0.929	0.56	0.9607	-120.86	0.9693	120.02
862	0.9291	0.60	0.9605	-120.83	0.9695	120.05
864	0.9306	0.48				
888	0.8956	-1.25	0.9282	-122.59	0.9353	118.38
890	0.8131	-1.86	0.8534	-123.76	0.8526	117.53
PCC 1	0.9027	-28.61	0.9552	-149.42	0.9614	93.25
PCC 2	0.9390	-29.59	0.9916	-150.30	0.9975	92.25
RG10	0.9713	-0.29	1.0067	-120.94	1.0088	119.96
RG11	0.9318	0.43	0.9643	-120.90	0.9718	119.99

Tabla A.11 Perfil de Voltaje obtenido con el AS para el Caso de Prueba del Aerogenerador.

	RES	SUMEN D	E FLUJO	S DE POT	ΓENCIA						
		ENTR	ADA DEI	SISTEM	A						
Nodo: 800											
	FAS	SE A	FAS	SE B	FAS	SE C	ТОТА	AL			
POTENCIA ACTIVA (kW)	464	.869	410	.275	336	.224	1211.3	368			
POTENCIA REACTIVA (kVar)	265	.713	206	5.742	151	.672	624.1	27			
POTENCIA APARENTE											
(kVA)	535	.450	459	.421	368	.851	1362.6	598			
FACTOR DE POTENCIA	0.8	682	0.8	930	0.9	115	0.888	39			
		GENERA	ACIÓN DI	ISTRIBUI	DA						
Nodo: PCC1 SISTEMA DE GE	NERACIÓ	N DE TUF	RBINA EÓ	LICA							
	FAS	SE A	FAS	SE B	FAS	SE C	ΤΟΤΑ	AL .			
POTENCIA ACTIVA (kW)	96.	486	95.	.602	103	.703	295.7	92			
POTENCIA REACTIVA (kVar)	-58	.652	-65	.244	-64	.921	-188.8	17			
POTENCIA APARENTE											
(kVA)	112	.914	115	5.744	122	.348	350.9	20			
FACTOR DE POTENCIA	0.8	545	0.8	260	0.8	476	0.842	29			
Nodo: PCC2 SISTEMA DE GE	NERACIÓ	N DE TUF	RBINA EÓ	LICA							
	FAS	SE A	FAS	SE B	FAS	SE C	TOTA	AL			
POTENCIA ACTIVA (kW)	96.	892	95.	491	103	.713	296.0	96			
POTENCIA REACTIVA (kVar)	-59.	.352	-65	.756	-65	.969	-191.0	77			
POTENCIA APARENTE											
(kVA)	113.625		115	.941	122	.916	352.3	96			
FACTOR DE POTENCIA	0.8	527	0.8	236	0.8	438	0.840)2			
CARGAS											
	FAS	SE A	FAS	SE B	FAS	SE C	ΤΟΤΑ	AL .			
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA			
POTENCIA ACTIVA (kW)	569	.774	556	6.497	536	.727	1662.9	998			
	341.7	228.1	328.2	228.3	209.2	327.5	879.1	783.9			
POTENCIA REACTIVA (kVar)	337	.123	329	.599	320	.951	987.6	73			
	217.6	119.5	208.4	121.2	152.1	168.9	578.1	409.6			
POTENCIA APARENTE	662	.038	646	o.780	625	.368	1934.1	182			
(kVA)	405.1	257.5	388.8	258.5	258.6	368.5	1052.1	884.5			
FACTOR DE POTENCIA	0.8	606	0.8	604	0.8	583	0.859	98			
	0.8435	0.8857	0.8441	0.8833	0.8089	0.8888	0.8355	0.8863			
			PERDIL	DAS							
	FAS	SE A	FA	SE B	FAS	SE C	<u> </u>				
POTENCIA ACTIVA (kW)	61.	666	40.	338	38.	254	140.2	58			
POTENCIA REACTIVA (kVar)	-2.0	506	-5.	238	-5.	/91	-13.6	36			
POTENCIA APARENTE	(1	704	40		20	(00	140.0	10			
(KVA)	61.	/21	40.	6/6	38.	690	140.9	19			
		BANCO	S DE CAI	PACITOR	ES						
	FAS	SE A	FAS	SE B	FAS	SE C	TOTA				
	<u>A-N</u>	A-B	B-N	B-C	C-N	<u>C-A</u>	ESTRELLA	DELTA			
POTENCIA REACTIVA - R	250	.000	250	0.000	250	.000	750.0	00			
	250.0	0.0	250.0	0.0	250.0	0.0	750.0	0.0			
PUTENCIA REACTIVA - A	239	.31/	246	0.48/	244	.001	729.8	04			
(Kvar)	239.3	0.0	246.5	0.0	244.0	0.0	/29.8	0.0			

Tabla A.12 Resumen de Flujos de Potencia obtenido con el AS para la Prueba del Aerogenerador.

A.5 Caso de Prueba del Arreglo de Panales Solares

Tabla A.13 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el Caso dePrueba del Arreglo de Paneles Solares modelado como Potencia Aparente Constante.

	RESUME	N DE F	LUJOS D	E POTI	ENCIA						
	EN	TRADA	DEL SI	STEMA							
Nodo: 800											
	FAS	E A	FAS	E B	FAS	SE C	тот	AL			
POTENCIA ACTIVA (kW)	424.3	370	382.	631	324	.395	1131.	396			
POTENCIA REACTIVA (kVar)	145.3	373	68.9	923	13.	772	228.068				
POTENCIA APARENTE (kVA)	448.	579	388.789 324.		.688	1154.	154				
FACTOR DE POTENCIA	0.94	60	0.98	342	0.9	991	0.98	03			
	GEN	ERACIÓ	ÓN DIST	RIBUID	A						
Nodo: PCC1 SISTEMA FOTOVO	OLTAICO										
	FAS	E A	FAS	E B	FAS	SE C	тот	AL			
POTENCIA ACTIVA (kW)	110.3	328	110.	328	110	.328	330.9	985			
POTENCIA REACTIVA (kVar)	0.0	00	0.0	00	0.0	000	0.00	00			
POTENCIA APARENTE (kVA)	110.3	328	110.	328	110	.328	330.9	985			
FACTOR DE POTENCIA	1.00	00	1.00	000	1.0	000	1.00	00			
Nodo: PCC2 SISTEMA FOTOVO	OLTAICO										
	FAS	E A	FAS	E B	FAS	SE C	тот	AL			
POTENCIA ACTIVA (kW)	110.3	328	110.	328	110	.328	330.9	985			
POTENCIA REACTIVA (kVar)	0.0	00	0.0	00	0.0	000	0.00	00			
POTENCIA APARENTE (kVA)	110.3	328	110.	328	110	.328	330.9	985			
FACTOR DE POTENCIA	1.00	00	1.00	000	1.0	000	1.00	00			
CARGAS											
FASE A FASE B FASE C TOTAL											
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA			
DOTENCIA ACTIVA (1440)	569.	503	560.	582	546	.941	1677.	026			
	336.4	233.1	326.7	233.8	211.1	335.8	874.3	802.7			
DOTENCIA DEACTIVA (leVar)	335.2	291	331.	065	326	.510	992.8	367			
	213.2	122.1	207.2	123.9	153.5	173.0	573.9	418.9			
ροτενίζα αραρέντε (μνα)	660.8	373	651.	043	636	.988	1948.	897			
FOTENCIA AFARENTE (KVA)	398.3	263.1	386.9	264.6	261.0	377.8	1045.9	905.5			
EACTOR DE POTENCIA	0.86	17	0.86	511	0.8	586	0.86	05			
FACTOR DE L'OTENCIA	0.8446	0.8859	0.8446	0.8836	0.8087	0.8890	0.8360	0.8865			
		PÉ	RDIDAS								
	FAS	E A	FAS	E B	FAS	SE C	тот	AL			
POTENCIA ACTIVA (kW)	48.8	92	38.0)24	29.	425	116.3	341			
POTENCIA REACTIVA (kVar)	-17.6	548	-16.	487	-13	.589	-47.7	/23			
POTENCIA APARENTE (kVA)	51.9	80	41.4	44	32.	411	125.2	749			
	BAN	ICOS D	E CAPAC	CITORE	S						
	FASE A FASE B FASE C TOTAL										
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA			
POTENCIA REACTIVA - R	250.0	000	250.	000	250	.000	750.0)00			
(kVar)	250.0	0.0	250.0	0.0	250.0	0.0	750.0	0.0			
DOTENCIA DEACTIVA A											
PUTENCIA REACTIVA - A	227.8	329	242.	319	246	.927	717.0	075			

	RESUME	EN DE FI	LUJOS D	Е РОТЕ	ENCIA			
	EN	TRADA	DEL SI	STEMA				
Nodo: 800			_	_				
	FAS	EA	FAS	EB	FA	SE C	ТОТ	AL
POTENCIA ACTIVA (kW)	424.	353	382.	612	324	.395	1131.	360
POTENCIA REACTIVA (kVar)	145.	389	68.947		13.790		228.1	26
POTENCIA APARENTE (kVA)	448.	568	388.	774	324	.688	1154.	130
FACTOR DE POTENCIA	0.94	460	0.98	341	0.9	991	0.98	03
	GEN	ERACIĆ	N DIST	RIBUID	A			
Nodo: PCC1 SISTEMA FOTOVO	LTAICO							
	FAS	E A	FAS	EB	FA	SE C	TOT	AL
POTENCIA ACTIVA (kW)	110.	327	110.	327	110	.327	330.9	81
POTENCIA REACTIVA (kVar)	0.0	00	0.0	00	0.0	000	0.00	0
POTENCIA APARENTE (kVA)	110.327		110.	327	110	.327	330.9	81
FACTOR DE POTENCIA	1.0000		1.00	000	1.0	000	1.00	00
Nodo: PCC2 SISTEMA FOTOVO	LTAICO							
	FAS	E A	FAS	EB	FA	SE C	TOT	AL
POTENCIA ACTIVA (kW)	110.	327	110.	327	110	.327	330.9	81
POTENCIA REACTIVA (kVar)	0.0	00	0.000		0.000		0.00	0
POTENCIA APARENTE (kVA)	110.327		110.	327	110	.327	330.9	81
FACTOR DE POTENCIA	1.00	1.0000		000	1.0	000	1.00	00
CARGAS								
FASE A FASE B FASE C TOTAL								
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA
ροτενίια αστινά (κω)	562.	992	563.	641	550	.380	1677.	013
	336.4	226.5	326.7	236.9	211.1	339.3	874.3	802.7
POTENCIA REACTIVA (kVar)	334.	553	329.	081	329	.227	992.8	61
	213.2	121.3	207.1	121.9	153.5	175.7	573.9	418.9
POTENCIA APARENTE (kVA)	654.	894	652.	676	641	333	1948.	883
	398.3	257.0	386.9	266.4	261.0	382.0	1045.8	905.5
FACTOR DE POTENCIA	0.0446	0.001	0.0446	0.0001	0.007	0 0000	0.80	0.0065
	0.0440	0.0013		0.0091	0.0007	0.0000	0.0300	0.0003
	EAC	FE.			EA	CE C	тот	A T
ΡΩΤΕΝΟΙΑ ΑΟΤΙΜΑ (ΙΔΜΩ	ГАЗ		FA3	E D	ГА		1163	AL 27
POTENCIA REACTIVA (kW)			-			-	-47.6	52
$\frac{POTENCIA (EVA)}{POTENCIA (EVA)}$		<u> </u>		<u> </u>		-	125.7	<u>32</u> '17
TOTENCIA ALARENTE (KVA)	DAR			TTODE	c	-	125.7	1/
	DAI	F A			J E A (SE C	тот	A I
	ГАЗ 4-N	Δ.R	ГАЗ R-N	E D B-C	C-N		FSTRFIIA	AL DEI TA
POTENCIA REACTIVA - P	250	000	250	000	250	000	750 f	00
(kVar)	250.0	0.0	250.0	0.0	250.0	0.0	750.0	0.0
POTENCIA REACTIVA - A	227.	822	242	317	246	.923	717.0	62
(kVar)	227.8	0.0	242.3	0.0	246.9	0.0	717.0	0.0

Tabla A.14 Resumen de Flujos de Potencia obtenido con OpenDSS para el Caso de Prueba delArreglo de Paneles Solares modelado como Potencia Aparente Constante.

PERFIL DE VOLTAJE IEEE 34 N SUBESTACIÓN: IEEE 34N PV ALIMENTADOR: IEEE 34N PV											
NODO MAGNITUD ÁNGULO MAGNITUD ÁNGULO MAG	NITUD	ÁNGULO									
A-N B-N	C-N										
800 1.0500 0.00 1.0500 -120.00	1.0500	120.00									
802 1.0484 -0.02 1.0491 -120.04	1.0493	119.98									
806 1.0473 -0.03 1.0485 -120.07	1.0488	119.96									
808 1.0271 -0.28 1.0384 -120.57	1.0404	119.69									
810 1.0383 -120.57											
812 1.0035 -0.58 1.0277 -121.12	1.0301	119.39									
814 0.9846 -0.82 1.0191 -121.55	1.0218	119.16									
816 0.9843 -0.82 1.0189 -121.55	1.0216	119.16									
818 0.9834 -0.82											
820 0.9589 -0.88											
822 0.9558 -0.89											
824 0.9797 -0.80 1.0131 -121.67	1.0175	119.03									
826 1.0129 -121.67											
828 0.9793 -0.80 1.0127 -121.68	1.0171	119.02									
830 0.9702 -0.79 1.0031 -121.88	1.0086	118.78									
832 0.9550 -0.75 0.9861 -122.23	0.9941	118.36									
834 0.9540 -0.75 0.9843 -122.32	0.9932	118.23									
836 0.9542 -0.71 0.9842 -122.30	0.9935	118.25									
838 0.9840 -122.30											
840 0.9543 -0.71 0.9843 -122.30	0.9936	118.26									
842 0.9540 -0.75 0.9843 -122.33	0.9932	118.23									
844 0.9540 -0.77 0.9841 -122.35	0.9932	118.21									
846 0.9549 -0.79 0.9847 -122.37	0.9941	118.18									
848 0.9550 -0.79 0.9848 -122.38	0.9942	118.17									
850 0.9846 -0.82 1.0191 -121.55	1.0217	119.16									
852 0.9551 -0.75 0.9861 -122.23	0.9941	118.36									
854 0.9700 -0.79 1.0029 -121.89	1.0084	118.77									
856 1.0028 -121.89											
858 0.9545 -0.75 0.9852 -122.27	0.9936	118.30									
860 0.9539 -0.73 0.9842 -122.31	0.9932	118.24									
862 0.9542 -0.71 0.9842 -122.30	0.9935	118.25									
864 0.9545 -0.75											
888 0.9187 -2.38 0.9500 -123.87	0.9577	116.78									
890 0.8363 -2.95 0.8751 -125.02	0.8751	115.92									
PCC 1 0.9615 1.09 0.9913 -120.60	1.0005	119.92									
PCC 2 0.9622 1.00 0.9917 -120.68	1.0012	119.83									
RG10 0.9846 -0.82 1.0191 -121.55	1.0218	119.16									
RG11 0.9551 -0.75 0.9861 -122.23	0.9941	118.36									

Tabla A.15 Perfil de Voltaje obtenido con el AS para el Caso de Prueba del Arreglo de PanelesSolares modelado como Potencia Aparente Constante.

PERFIL DE VOLTAJE IEEE 34 N SUBESTACIÓN: IEEE 34N PV ALIMENTADOR: IEEE 34N PV												
NODO	MAGNITUD A-N	ÁNGULO	MAGNITUD B-N	ÁNGULO	MAGNITUD C-N	ÁNGULO						
800	1.0500	0.00	1.0500	-120.00	1.0500	120.00						
802	1.0484	0.00	1.0491	-120.00	1.0493	120.00						
806	1.0473	0.00	1.0485	-120.10	1.0488	120.00						
808	1.0271	-0.30	1.0384	-120.60	1.0404	119.70						
810			1.0383	-120.60								
812	1.0035	-0.60	1.0277	-121.10	1.0301	119.40						
814	0.9846	-0.80	1.0191	-121.50	1.0217	119.20						
816	0.9843	-0.80	1.0189	-121.60	1.0216	119.20						
818	0.9833	-0.80										
820	0.9589	-0.90										
822	0.9558	-0.90										
824	0.9797	-0.80	1.0131	-121.70	1.0175	119.00						
826			1.0129	-121.70								
828	0.9793	-0.80	1.0127	-121.70	1.0171	119.00						
830	0.9702	-0.80	1.0031	-121.90	1.0086	118.80						
832	0.9550	-0.80	0.9861	-122.20	0.9941	118.40						
834	0.9540	-0.80	0.9843	-122.30	0.9932	118.20						
836	0.9542	-0.70	0.9842	-122.30	0.9935	118.30						
838			0.9840	-122.30								
840	0.9543	-0.70	0.9843	-122.30	0.9936	118.30						
842	0.9540	-0.80	0.9843	-122.30	0.9932	118.20						
844	0.9540	-0.80	0.9841	-122.30	0.9932	118.20						
846	0.9549	-0.80	0.9847	-122.40	0.9941	118.20						
848	0.9550	-0.80	0.9848	-122.40	0.9942	118.20						
850	0.9846	-0.80	1.0190	-121.50	1.0217	119.20						
852	0.9550	-0.80	0.9861	-122.20	0.9941	118.40						
854	0.9700	-0.80	1.0029	-121.90	1.0084	118.80						
856			1.0028	-121.90								
858	0.9545	-0.80	0.9852	-122.30	0.9936	118.30						
860	0.9539	-0.70	0.9842	-122.30	0.9932	118.20						
862	0.9542	-0.70	0.9842	-122.30	0.9935	118.30						
864	0.9545	-0.80										
888	0.9187	-2.40	0.9500	-123.90	0.9577	116.80						
890	0.8363	-3.00	0.8751	-125.00	0.8751	115.90						
PCC 1	0.9615	1.10	0.9913	-120.60	1.0005	119.90						
PCC 2	0.9622	1.00	0.9917	-120.70	1.0012	119.80						
RG10	0.9846	-0.80	1.0191	-121.50	1.0217	119.20						
RG11	0.9550	-0.80	0.9861	-122.20	0.9941	118.40						

Tabla A.16 Perfil de Voltaje obtenido con OpenDSS para el Caso de Prueba del Arreglo dePaneles Solares modelado como Potencia Aparente Constante.

Tabla A.17 Resumen de Flujos de Potencia obtenido con el algoritmo de solución para el Caso dePrueba del Arregio de Paneles Solares modelado como Impedancia Constante.

]	RESUMI	EN DE F	LUJOS I	DE POTI	ENCIA					
	EN	NTRAD A	DEL SI	STEMA						
Nodo: 800										
	FAS	SE A	FAS	E B	FAS	SE C	ΤΟΤΑ	4L		
POTENCIA ACTIVA (kW)	443	.359	386	383	323	.861	1153.6	503		
POTENCIA REACTIVA (kVar)	146	.318	68.	742	14.	606	229.6	66		
POTENCIA APARENTE (kVA)	466.	.879	392	451	324	.190	1176.2	242		
FACTOR DE POTENCIA	0.94	496	0.98	345	0.9	990	0.980)8		
	GEN	ERACIÓ	N DIST	RIBUID	DA					
Nodo: PCC1 SISTEMA FOTOV	OLTAICO)								
	FAS	SE A	FAS	E B	FAS	SE C	ΤΟΤΑ	4L		
POTENCIA ACTIVA (kW)	100	.755	108	644	110	.271	319.6	69		
POTENCIA REACTIVA (kVar)	0.0	00	0.0	00	0.0	000	0.00	0		
POTENCIA APARENTE (kVA)	100	.755	108	644	110	.271	319.6	69		
FACTOR DE POTENCIA	1.00	000	1.0	000	1.0	000	1.000)0		
Nodo: PCC2 SISTEMA FOTOV	OLTAICO)								
	FAS	SE A	FAS	EB	FAS	SE C	ΤΟΤΑ	4L		
POTENCIA ACTIVA (kW)	100	.903	108	745	110	.411	320.0	59		
POTENCIA REACTIVA (kVar)	0.0	00	0.0	00	0.0	000	0.00	0		
POTENCIA APARENTE (kVA)	100	.903	108	745	110	.411	320.0	59		
FACTOR DE POTENCIA	1.00	000	1.0	000	1.0	000	1.000)0		
CARGAS										
FASE A FASE B FASE C TOTAL										
	A-N	A-B	B-N	B-C	C-N	C-A	Α	Α		
ΡΟΤΕΝΟΙΑ ΑΟΤΙΜΑ (Ι-ΜΖ)	567.	.300	560	801	546	.202	1674.3	303		
	334.9	232.4	327.1	233.7	210.9	335.3	872.9	801.4		
POTENCIA REACTIVA (kVar)	333.	.804	331	262	326	.084	991.1	50		
	212.1	121.7	207.4	123.8	153.4	172.7	572.8	418.3		
POTENCIA APARENTE (kVA)	658.	.221	651	331	636	.135	1945.6	580		
	396.4	262.4	387.3	264.5	260.8	377.2	1044.1	904.0		
	0.80	619	0.80	510	0.8	586	0.860)5		
FACTOR DE POTENCIA	0.844	0.885	0.844	0.883	0.808	0.889	0.00.00	0.00 (F		
	8	8	5	6	8	0	0.8360	0.8865		
		PE	RDIDAS)						
	FAS	SE A	FAS	E B	FAS	SE C	TOTA	<u>AL</u>		
POTENCIA ACTIVA (kW)	51.	543	37.8	337	29.	648	119.0	28		
POTENCIA REACTIVA (kVar)	-16.	322	-16.	467	-13	973	-46.7	62		
POTENCIA APARENTE (KVA)	54.0	065	41.2	265	32.	//6	127.8	84		
	BA	NCOS D	E CAPA	CITORE	S					
	FAS	SE A	FAS	EB	FAS	SE C	TOTA	AL		
	A . NI		DN	D.C.	C N	C A	ESTRELL	DELT		
	A-N	A-B	B-N	B-C	U-N	<u>U-A</u>	A 750.0	A		
ruiencia keaciiva - K	250.	.000	250.	000	250	000	750.0	00		
 ΔΟΤΕΝΟΙΑ ΔΕΛΟΤΙΜΑ Α	200.0	200	230.0	0.0	230.0	520	730.0	22		
FUIENCIA KEAUTIVA - A	223. 225.2	.309 0 0	242. 272.0	004 0 0	240 276 ピ	.527 00	/14./ 71/7	23 00		
[[V ari		0.0	242.7	0.0	240.3	0.0	/ 14./	0.0		

Tabla A.18 Resumen de Flujos de Potencia obtenido con OpenDSS para el Caso de Prueba delArreglo de Paneles Solares modelado como Impedancia Constante.

	RESUM	EN DE F	LUJOS I	DE POT	ENCIA					
	El	NTRAD/	A DEL S	ISTEMA						
Nodo: 800										
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL		
POTENCIA ACTIVA (kW)	443	.324	386	.349	323	.849	1153.5	522		
POTENCIA REACTIVA (kVar)	146	.321	68.	756	14.	616	229.6	93		
POTENCIA APARENTE (kVA)	466	.847	392	.419	324	.179	1176.2	168		
FACTOR DE POTENCIA	0.9	496	0.9	845	0.9	990	0.980	07		
	GEN	JERACIÓ	ÓN DIST	RIBUID	DA					
Nodo: PCC1 SISTEMA FOTOV)		1112012						
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL.		
POTENCIA ACTIVA (kW)	100	.758	108	.647	110	.273	319.6	78		
POTENCIA REACTIVA (kVar)	0.0	000	0.0	000	0.0	000	0.00	0		
POTENCIA APARENTE (kVA)	100	.758	108	.647	110	.273	319.6	78		
FACTOR DE POTENCIA	1.0	000	1.0	000	1.0	000	1.000	00		
Nodo: PCC2 SISTEMA FOTOV	OLTAICO)								
	FAS	SE A	FAS	SE B	FAS	SE C	тот	AL		
POTENCIA ACTIVA (kW)	100	.906	108	.748	110	.414	320.0	68		
POTENCIA REACTIVA (kVar)	0.0	000	0.0	000	0.0	000	0.00	0		
POTENCIA APARENTE (kVA)	100	.906	108	.748	110	.414	320.0	68		
FACTOR DE POTENCIA	1.0	000	1.0	000	1.0	000	1.000	00		
		С	ARGAS							
FASE A FASE R FASE C TOTAL										
							ESTRELL	DELT		
	A-N	A-B	B-N	B-C	C-N	C-A	Α	Α		
	560	.592	564	.168	549	.542	1674.3	302		
POTENCIA ACTIVA (KW)	334.9	225.7	327.1	237.0	210.9	338.6	872.9	801.4		
DOTENCIA DEACTIVA (IrVer)	332	.386	329	.401	329	.356	991.1	43		
	212.1	120.3	207.4	122.0	153.4	176.0	572.8	418.3		
ΔΟΤΕΝCΙΑ ΑΔΑΔΕΝΤΕ (ΙΔΥΑ)	651	.723	653	.292	640	.681	1945.6	675		
FOTENCIA AFARENTE (KVA)	396.4	255.8	387.3	266.6	260.8	381.6	1043.9	904.0		
	0.8	602	0.8	636	0.8	577	0.860	05		
FACTOR DE POTENCIA	0.844	0.882	0.844	0.889	0.808	0.887				
	8	4	5	2	8	3	0.8360	0.8865		
		PÉ	RDIDA	S						
	FAS	SE A	FAS	SE B	FAS	SE C	ΤΟΤΑ	AL		
POTENCIA ACTIVA (kW)		-		-		-	119.0	16		
POTENCIA REACTIVA (kVar)		-		-		-	-46.6	99		
POTENCIA APARENTE (kVA)		-		-		-	127.8	50		
	BA	NCOS D	E CAPA	CITORE	S					
	FAS	SE A	FAS	SE B	FAS	SE C	тоти	AL		
							ESTRELL	DELT		
	A-N	A-B	B-N	B-C	C-N	C-A	Α	Α		
POTENCIA REACTIVA - R	250	.000	250	.000	250	.000	750.0	00		
(kVar)	250.0	0.0	250.0	0.0	250.0	0.0	750.0	0.0		
POTENCIA REACTIVA - A	225	.304	242	.883	246	.527	714.7	14		
(kVar)	225.3	0.0	242.9	0.0	246.5	0.0	714.7	0.0		

PERFIL DE VOLTAJE IEEE 34 N SUBESTACIÓN: IEEE 34N PV ALIMENTADOR: IEEE 34N PV							
NODO	MAGNITUD	AGNITUD ÁNGULO MAGNITUD ÁNGULO				ÁNGULO	
NODO	A-N		B-N		C-N		
800	1.0500	0.00	1.0500	-120.00	1.0500	120.00	
802	1.0483	-0.02	1.0491	-120.04	1.0492	119.98	
806	1.0472	-0.04	1.0485	-120.07	1.0488	119.96	
808	1.0262	-0.32	1.0387	-120.57	1.0402	119.71	
810			1.0385	-120.57			
812	1.0017	-0.67	1.0281	-121.13	1.0298	119.43	
814	0.9820	-0.94	1.0197	-121.56	1.0213	119.22	
816	0.9817	-0.94	1.0196	-121.57	1.0212	119.21	
818	0.9808	-0.95					
820	0.9563	-1.01					
822	0.9531	-1.01					
824	0.9768	-0.94	1.0139	-121.69	1.0170	119.09	
826			1.0137	-121.69			
828	0.9764	-0.94	1.0135	-121.70	1.0167	119.08	
830	0.9666	-0.95	1.0040	-121.91	1.0081	118.85	
832	0.9502	-0.97	0.9872	-122.26	0.9933	118.45	
834	0.9488	-0.98	0.9854	-122.36	0.9924	118.33	
836	0.9489	-0.95	0.9854	-122.33	0.9927	118.36	
838			0.9852	-122.34			
840	0.9490	-0.95	0.9855	-122.33	0.9928	118.36	
842	0.9488	-0.99	0.9854	-122.36	0.9924	118.33	
844	0.9488	-1.00	0.9853	-122.38	0.9924	118.31	
846	0.9496	-1.03	0.9858	-122.41	0.9933	118.28	
848	0.9497	-1.03	0.9859	-122.41	0.9934	118.28	
850	0.9820	-0.94	1.0197	-121.56	1.0213	119.22	
852	0.9502	-0.97	0.9872	-122.26	0.9933	118.45	
854	0.9664	-0.95	1.0037	-121.91	1.0079	118.85	
856			1.0036	-121.92			
858	0.9495	-0.98	0.9863	-122.30	0.9929	118.40	
860	0.9487	-0.97	0.9853	-122.35	0.9924	118.34	
862	0.9489	-0.95	0.9853	-122.33	0.9927	118.36	
864	0.9495	-0.98					
888	0.9140	-2.61	0.9511	-123.90	0.9569	116.88	
890	0.8316	-3.20	0.8762	-125.05	0.8742	116.04	
PCC 1	0.9556	0.72	0.9923	-120.66	0.9997	120.03	
PCC 2	0.9563	0.63	0.9928	-120.74	1.0004	119.94	
RG10	0.9820	-0.94	1.0197	-121.56	1.0213	119.22	
RG11	0.9502	-0.97	0.9872	-122.26	0.9933	118.45	

Tabla A.19 Perfil de Voltaje obtenido con el AS para el Caso de Prueba del Arreglo de Paneles Solares modelado como Impedancia Constante.

PERFIL DE VOLTAJE IEEE 34 N SUBESTACIÓN: IEEE 34N PV ALIMENTADOR: IEEE 34N PV							
NODO	MAGNITUD A-N	ÁNGULO	MAGNITUD B-N	ÁNGULO	MAGNITUD ÁNGULO C-N		
800	1.0500	0.00	1.0500	-120.00	1.0500	120.00	
802	1.0483	0.00	1.0491	-120.00	1.0492	120.00	
806	1.0472	0.00	1.0485	-120.10	1.0488	120.00	
808	1.0262	-0.30	1.0387	-120.60	1.0402	119.70	
810			1.0385	-120.60			
812	1.0017	-0.70	1.0282	-121.10	1.0298	119.40	
814	0.9820	-0.90	1.0197	-121.60	1.0213	119.20	
816	0.9817	-0.90	1.0196	-121.60	1.0212	119.20	
818	0.9808	-0.90					
820	0.9563	-1.00					
822	0.9531	-1.00					
824	0.9768	-0.90	1.0139	-121.70	1.0170	119.10	
826			1.0137	-121.70			
828	0.9764	-0.90	1.0135	-121.70	1.0167	119.10	
830	0.9666	-1.00	1.0040	-121.90	1.0081	118.90	
832	0.9502	-1.00	0.9872	-122.30	0.9933	118.50	
834	0.9488	-1.00	0.9854	-122.40	0.9924	118.30	
836	0.9489	-1.00	0.9854	-122.30	0.9927	118.40	
838			0.9852	-122.30			
840	0.9490	-0.90	0.9855	-122.30	0.9928	118.40	
842	0.9488	-1.00	0.9854	-122.40	0.9924	118.30	
844	0.9488	-1.00	0.9853	-122.40	0.9924	118.30	
846	0.9496	-1.00	0.9858	-122.40	0.9933	118.30	
848	0.9497	-1.00	0.9859	-122.40	0.9934	118.30	
850	0.9820	-0.90	1.0197	-121.60	1.0213	119.20	
852	0.9502	-1.00	0.9872	-122.30	0.9933	118.50	
854	0.9664	-1.00	1.0037	-121.90	1.0079	118.80	
856			1.0036	-121.90			
858	0.9495	-1.00	0.9864	-122.30	0.9929	118.40	
860	0.9487	-1.00	0.9853	-122.30	0.9924	118.30	
862	0.9489	-1.00	0.9853	-122.30	0.9927	118.40	
864	0.9495	-1.00					
888	0.9140	-2.60	0.9511	-123.90	0.9569	116.90	
890	0.8316	-3.20	0.8762	-125.10	0.8742	116.00	
PCC 1	0.9556	0.70	0.9923	-120.70	0.9997	120.00	
PCC 2	0.9563	0.60	0.9928	-120.70	1.0004	119.90	
RG10	0.9820	-0.90	1.0197	-121.60	1.0213	119.20	
RG11	0.9502	-1.00	0.9872	-122.30	0.9933	118.50	

Tabla A.20 Perfil de Voltaje obtenido con OpenDSS para el Caso de Prueba del Arreglo dePaneles Solares modelado como Impedancia Constante.

Apéndice B: Resultados de la Herramienta Computacional

B.1 Condición Inicial del Alimentador de Prueba del IEEE de 123 Nodos Modificado

Tabla B.1 Resumen de Flujos de Potencia Óptimos del Alimentador del IEEE de 123 Nodos Modificado.

RESUMEN DE FLUJOS DE POTENCIA									
ENTRADA DEL SISTEMA									
Nodo: 150									
	FAS	E A	FAS	E B	FAS	SE C	ТОТ	AL	
POTENCIA ACTIVA (kW)	1211.439		738.463		950.406		2900.308		
POTENCIA REACTIVA (kVar)	534.700		300.549		364.029		1199.277		
POTENCIA APARENTE (kVA)	1324.193		797.281		1017.737		3138.479		
FACTOR DE POTENCIA	0.9149		0.9262		0.9338		0.9241		
GENERACIÓN DISTRIBUIDA									
Nodo: 611 SISTEMA DE GENERACIÓN DE TURBINA EÓLICA									
	FASE A		FASE B		FASE C		TOTAL		
POTENCIA ACTIVA (kW)	93.2	93.704		87.945		770	268.419		
POTENCIA REACTIVA (kVar)	35.2	239	42.662		35.464		113.365		
POTENCIA APARENTE (kVA)	100.	.111	97.2	97.747		737	291.377		
FACTOR DE POTENCIA	0.9360		0.8997		0.9257		0.9212		
Nodo: 612 SISTEMA FOTOVOLTAICO									
	FASE A		FASE B		FASE C		TOTAL		
POTENCIA ACTIVA (kW)	POTENCIA ACTIVA (kW) 100.836		109.060		105.675		315.571		
POTENCIA REACTIVA (kVar)	0.000		0.000		0.000		0.000		
POTENCIA APARENTE (kVA)	100.836		109.060		105.675		315.571		
FACTOR DE POTENCIA	1.00	000	1.0000		1.0000		1.0000		
CARGAS									
	FASE A FASE B FASE C			SE C	TOTAL				
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA	
ΡΩΤΕΝΟΙΑ ΑΟΤΙΜΑ (ΜΜ)	1377.295		904.834		1130.223		3412.352		
	1204.0	173.3	803.1	101.7	998.0	132.3	3005.1	407.3	
POTENCIA REACTIVA (kVar)	750.	.208	508.	643	614	.694	1873.	546	
	630.2	120.0	436.0	72.6	520.2	94.5	1586.4	287.1	
ροτενία αραβέντε (γνα)	1568.360		1037.999		1286.566		3892.855		
	1358.9	210.8	913.9	124.9	1125.4	162.5	3398.1	498.3	
ΕΔ (ΤΩ R DE Ρ ΩΤΕΝCΙΔ	0.8782		0.8717		0.8785		0.8766		
	0.8860	0.8221	0.8788	0.8137	0.8868	0.8137	0.8843	0.8173	
PÉRDIDAS									
FASE AFASE BFASE CTOTAL					AL				
POTENCIA ACTIVA (kW)	45.868		5.155		20.923		71.946		
POTENCIA REACTIVA (kVar)	173.840		132.710		135.619		442.168		
POTENCIA APARENTE (kVA)	179.789		132.810		137.223		447.983		
BANCOS DE CAPACITORES									
-----------------------	---------	-------	---------	-------	---------	-------	----------	-------	--
	FASE A		FAS	E B	FAS	SE C	C TOTAL		
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA	
POTENCIA REACTIVA - R	350	.000	350.000		350.000		1050.000		
(kVar)	250.0	100.0	250.0	100.0	250.0	100.0	750.0	300.0	
POTENCIA REACTIVA - A	324.107		345.138		333.827		1003.072		
(kVar)	228.4	95.7	247.1	98.0	235.4	98.4	711.0	292.1	

Tabla B.2 Flujos de Potencia Parcial de la Condición Inicial del Alimentador del IEEE de 123 Nodos Modificado.

	NODO 150	- NODO 1			NODO 1 - NODO 150			
FASE A:	551.34	-23.82	AMP/GD	FASE A:	551.34	-23.82 AMP/GD		
FASE B:	331.95	-142.15	AMP/GD	FASE B:	331.96	-142.15 AMP/GD		
FASE C:	423.74	99.04	AMP/GD	FASE C:	423.74	99.04 AMP/GD		
NODO 13 - NODO 18					NODO 18 - NODO 13			
FASE A:	229.04	-30.16	AMP/GD	FASE A:	229.04	-30.16 AMP/GD		
FASE B:	154.82	-155.03	AMP/GD	FASE B:	154.82	-155.03 AMP/GD		
FASE C:	156.15	88.99	AMP/GD	FASE C:	156.16	88.99 AMP/GD		
	NODO 60 -	NODO 62			NODO 62 - NODO 60			
FASE A:	45.12	-40.40	AMP/GD	FASE A:	45.12	-40.41 AMP/GD		
FASE B:	51.61	-149.95	AMP/GD	FASE B:	51.61	-149.95 AMP/GD		
FASE C:	80.35	92.86	AMP/GD	FASE C:	80.35	92.86 AMP/GD		

Tabla B.3 Perfil de Voltaje de la Condición Inicial del Alimentador del IEEE de 123 Nodos Modificado.

PERFIL DE VOLTAJE IEEE 13 N MOD SUBESTACIÓN: IEEE 13N MOD ALIMENTADOR: IEEE 13N MOD

NODO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO	MAGNITUD	ÁNGULO
NODO	A-N		B-N		C-N	
1	0.9887	-0.58	0.9984	-120.25	0.9920	119.70
2			0.9982	-120.25		
3					0.9903	119.67
4					0.9898	119.66
5					0.9891	119.65
6					0.9884	119.63
7	0.9802	-1.00	0.9973	-120.45	0.9869	119.52
8	0.9748	-1.28	0.9965	-120.59	0.9835	119.39
9	0.9733	-1.31				
10	0.9713	-1.35				
11	0.9710	-1.36				
12			0.9962	-120.59		
13	0.9676	-1.66	0.9949	-120.77	0.9785	119.17
14	0.9716	-1.34				

			1			
15					0.9771	119.14
16					0.9761	119.12
17					0.9766	119.13
18	0.9587	-2.10	0.9908	-121.02	0.9709	119.09
19	0.9574	-2.13				
20	0.9565	-2.15				
21	0.9582	-2.16	0.9908	-121.02	0.9697	119.06
22			0.9894	-121.05		
23	0.9578	-2.21	0.9912	-121.00	0.9685	119.04
24					0.9670	119.01
25	0.9572	-2.27	0.9916	-120.99	0.9676	119.04
26	0.9570	-2.30			0.9671	119.03
27	0.9566	-2.32			0.9671	119.04
28	0.9569	-2.30	0.9918	-120.99	0.9673	119.05
29	0.9567	-2.32	0.9920	-120.99	0.9668	119.04
30	0.9570	-2.32	0.9919	-120.97	0.9663	119.01
31	0.5570	2.02	0.7717	120.77	0.9665	119.01
32					0.9661	119.02
32	0 9553	-2.34			0.7001	117.01
24	0.9333	-2.54			0 0775	110 15
25	0.0560	2 10	0 0002	101 11	0.9773	119.13
26	0.9300	-2.19	0.9002	121.11	0.9090	119.02
27	0.9331	-2.21	0.9077	-121.10		
3/	0.9543	-2.23	0.0070	101 17		
38			0.9870	-121.17		
39	0.0544	0.00	0.9866	-121.18	0.0(00	110.00
40	0.9544	-2.23	0.9871	-121.16	0.9688	118.98
41	0.0500	0.05	0.00(0	404.04	0.9683	118.97
42	0.9528	-2.27	0.9860	-121.21	0.9679	118.94
43			0.9847	-121.24		
44	0.9518	-2.30	0.9853	-121.24	0.9671	118.90
45	0.9512	-2.31				
46	0.9508	-2.32				
47	0.9507	-2.32	0.9842	-121.27	0.9661	118.86
48	0.9505	-2.33	0.9839	-121.28	0.9659	118.85
49	0.9504	-2.33	0.9836	-121.28	0.9657	118.83
50	0.9504	-2.34	0.9836	-121.27	0.9654	118.82
51	0.9502	-2.35	0.9837	-121.27	0.9654	118.82
52	0.9627	-1.96	0.9944	-120.95	0.9761	119.02
53	0.9605	-2.09	0.9940	-121.04	0.9750	118.93
54	0.9593	-2.17	0.9937	-121.09	0.9743	118.88
55	0.9591	-2.17	0.9936	-121.10	0.9744	118.88
56	0.9591	-2.17	0.9934	-121.11	0.9745	118.88
57	0.9569	-2.39	0.9920	-121.23	0.9724	118.74
58			0.9913	-121.24		
59			0.9910	-121.25		
60	0.9517	-2.90	0.9892	-121.48	0.9678	118.44
61	0.9517	-2.90	0.9892	-121.48	0.9678	118.44
62	0.9511	-2.90	0.9883	-121.46	0.9660	118.42

63	0.9505	-2.89	0.9876	-121.46	0.9652	118.41
64	0.9504	-2.88	0.9860	-121.43	0.9633	118.36
65	0.9498	-2.90	0.9857	-121.39	0.9606	118.34
66	0.9501	-2.93	0.9860	-121.36	0.9592	118.34
67	0.9501	-3.09	0.9892	-121.59	0.9665	118.38
68	0.9485	-3.13				
69	0.9466	-3.17				
70	0.9452	-3.20				
71	0.9444	-3.21				
72	0.9506	-3.16	0.9887	-121.66	0.9663	118.29
73					0.9641	118.24
74					0.9623	118.21
75					0.9612	118.18
76	0.9506	-3.20	0.9884	-121.73	0.9670	118.26
77	0.9516	-3.27	0.9894	-121.82	0.9677	118.18
78	0.9518	-3.29	0 9898	-121.83	0.9679	118.16
70	0.9516	-3 30	0.9899	-121.00	0.9678	118.17
80	0.9510	-3 35	0.9914	-121.00	0.9685	118.05
81	0.9557	-3.44	0.9911	-121.07	0.9689	117.95
82	0.9564	-3.48	0.9937	-121.72	0.9696	117.02
83	0.9504	-3.40	0.9940	-121.75	0.9090	117.92
84	0.9374	-3.30	0.9900	-121.90	0.9704	117.00
95					0.9002	117.07
00	0.0501	214	0.0076	121 01	0.9049	117.07
00	0.9501	-3.14	0.9070	-121.01	0.9000	110.32
87	0.9497	-3.11	0.9873	-121.84	0.9699	118.35
00	0.9496	-3.14	0.0072	121.05	0.0705	110.20
89	0.9495	-3.07	0.9873	-121.85	0.9705	118.38
90	0.0404	2.04	0.9872	-121.89	0.0710	110.00
91	0.9494	-3.04	0.9873	-121.83	0.9710	118.39
92	0.0400	0.00	0.0074	404.00	0.9708	118.33
93	0.9492	-3.02	0.9874	-121.82	0.9714	118.42
94	0.9485	-3.04			0.0710	
95	0.9494	-2.97	0.9873	-121.79	0.9719	118.46
96			0.9871	-121.80		
97	0.9495	-3.13	0.9892	-121.60	0.9661	118.38
98	0.9497	-3.11	0.9895	-121.59	0.9663	118.40
99	0.9509	-3.04	0.9897	-121.56	0.9668	118.41
100	0.9516	-3.02	0.9902	-121.52	0.9668	118.42
101	0.9487	-3.18	0.9889	-121.61	0.9655	118.37
102					0.9639	118.34
103					0.9622	118.30
104					0.9602	118.26
105	0.9473	-3.22	0.9887	-121.66	0.9658	118.40
106			0.9875	-121.68		
107			0.9860	-121.71		
108	0.9458	-3.30	0.9894	-121.67	0.9656	118.44
109	0.9416	-3.38				
110	0.9396	-3.42				

111	0.9388	-3.44				
112	0.9390	-3.44				
113	0.9369	-3.48				
114	0.9365	-3.49				
135	0.9587	-2.10	0.9908	-121.02	0.9709	119.09
150	1.0000	0.00	1.0000	-120.00	1.0000	120.00
151	0.9502	-2.35	0.9837	-121.27	0.9654	118.82
152	0.9676	-1.66	0.9949	-120.77	0.9785	119.17
160	0.9517	-2.90	0.9892	-121.48	0.9678	118.44
195	0.9494	-2.97	0.9873	-121.79	0.9719	118.46
197	0.9495	-3.13	0.9892	-121.60	0.9661	118.38
250	0.9570	-2.32	0.9919	-120.97	0.9663	119.01
300	0.9458	-3.30	0.9894	-121.67	0.9656	118.44
450	0.9529	-2.93	0.9918	-121.46	0.9680	118.49
451	0.9529	-2.93	0.9918	-121.46	0.9680	118.49
610	0.9601	-2.06	0.9729	-121.45	0.9755	117.60
611	0.9834	-32.92	1.0080	-149.51	0.9696	90.28
612	0.9560	-1.31	0.9942	-120.13	0.9787	120.12
RG1	1.0000	0.00	1.0000	-120.00	1.0000	120.00
RG2	0.9733	-1.31				
RG3	0.9572	-2.27			0.9676	119.04
RG4	0.9517	-2.90	0.9892	-121.48	0.9678	118.44

B.2 Alimentador de Prueba del IEEE de 123 Nodos Modificado y Optimizado

Tabla B.4 Perfil de Voltaje de la Condición Inicial del Alimentador del IEEE de 123 Nodos Modificado.

MAGNITUD ÁNGULO MAGNITUD ÁNGULO MAGNITUD	ÁNGULO
NODO A-N R-N C-N	
	110 67
	119.07
2 0.9960 -120.23	110 64
<u> </u>	119.04
	119.03
6 0.0002	119.02
	119.00
7 0.9639 -0.62 0.9963 -120.41 0.9690 9 0.0917 1.05 0.0040 120.52 0.0967	119.40
0 0.0002 1.00 0.9949 -120.33 0.9007	119.32
	110.00
15 0.9703 -1.33 0.9923 -120.70 0.9023 14 0.0606 1.11	119.00
	110.05
	119.03
	110.03
	119.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	110.07
10 0.0700 1.01	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110.0/
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110.04
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	118.82
23 0.3713 -1.00 0.3007 -120.00 0.3732	110.02
27 0.0710 173 0.0873 120.87 0.0724	118.81
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	110.01
27 09608 -176 09614 118.80	
28 09707 -176 09875 -12087 09720	118.82
29 09705 -178 09877 -120.86 09716	118.81
<u>30</u> 09708 -178 09876 -120.85 09711	118.78
31 0.9609	118 79
32 0.9605	118.78
33 09600 -177	110.70
34 0.9813	119.06
35 0.9713 -1.59 0.9834 -120.97 0.9746	118.76
36 0.9707 -1.59 0.9827 -121.01	12017 0

	,				,	
37	0.9703	-1.60				
38			0.9821	-121.03		
39			0.9817	-121.04		
40	0.9709	-1.58	0.9817	-121.01	0.9737	118.69
41					0.9733	118.68
42	0.9704	-1.57	0.9800	-121.05	0.9729	118.62
43			0.9787	-121.07		
44	0.9701	-1.56	0.9789	-121.07	0.9721	118.57
45	0.9701	-1.56				
46	0.9700	-1.57				
47	0.9698	-1.56	0.9775	-121.09	0.9712	118.51
48	0.9696	-1.56	0.9772	-121.10	0.9710	118.50
49	0.9698	-1.55	0.9768	-121.10	0.9709	118.48
50	0.9700	-1.56	0.9768	-121.09	0.9706	118.46
51	0.9699	-1.56	0.9768	-121.09	0.9706	118.46
52	0.9719	-1.63	0.9920	-120.87	0.9807	118.95
53	0.9699	-1.76	0.9916	-120.96	0.9799	118.87
54	0.9688	-1.83	0.9912	-121.01	0.9794	118.82
55	0.9686	-1.84	0.9911	-121.02	0.9795	118.82
56	0.9686	-1.83	0.9909	-121.03	0.9796	118.82
57	0.9665	-2.05	0.9895	-121.15	0.9781	118.70
58			0.9888	-121.17		
59			0.9885	-121.17		
60	0.9618	-2.53	0.9867	-121.41	0.9748	118.44
61	0.9618	-2.53	0.9867	-121.41	0.9748	118.44
62	0.9612	-2.53	0.9858	-121.40	0.9739	118.42
63	0.9607	-2.52	0.9850	-121.40	0.9736	118.41
64	0.9605	-2.50	0.9834	-121.39	0.9728	118.37
65	0.9600	-2.51	0.9832	-121.37	0.9715	118.36
66	0.9601	-2.52	0.9833	-121.35	0.9709	118.35
67	1.0107	-2.70	0.9634	-121.52	0.9662	118.35
68	1.0092	-2.73				
69	1.0074	-2.77				
70	1.0061	-2.79				
71	1.0054	-2.81				
72	1.0114	-2.76	0.9626	-121.58	0.9661	118.25
73					0.9639	118.21
74					0.9620	118.17
75					0.9609	118.15
76	1.0115	-2.79	0.9622	-121.66	0.9668	118.22
77	1.0127	-2.86	0.9631	-121.74	0.9675	118.13
78	1.0131	-2.88	0.9635	-121.75	0.9676	118.11
79	1.0128	-2.89	0.9636	-121.76	0.9675	118.12
80	1.0152	-2.94	0.9650	-121.81	0.9682	118.00
81	1.0174	-3.02	0.9671	-121.83	0.9685	117.88
82	1.0183	-3.06	0.9683	-121.86	0.9692	117.85
83	1.0195	-3.08	0.9693	-121.89	0.9699	117.80
84					0.9657	117.83
	-					

85					0.9645	117.80
86	1.0113	-2.72	0.9611	-121.74	0.9687	118.27
87	1.0111	-2.68	0.9607	-121.78	0.9698	118.30
88	1.0111	-2.71				
89	1.0109	-2.64	0.9607	-121.79	0.9706	118.32
90			0.9606	-121.83		
91	1.0109	-2.61	0.9606	-121.77	0.9710	118.33
92					0.9709	118.27
93	1.0107	-2.58	0.9606	-121.76	0.9714	118.36
94	1.0100	-2.59				
95	1.0109	-2.53	0.9606	-121.74	0.9720	118.40
96			0.9603	-121.74		
97	1.0101	-2.73	0.9633	-121.52	0.9658	118.35
98	1.0103	-2.71	0.9636	-121.51	0.9660	118.36
99	1.0114	-2.64	0.9639	-121.48	0.9665	118.36
100	1.0120	-2.62	0.9645	-121.44	0.9666	118.36
101	1.0093	-2.77	0.9630	-121.54	0.9652	118.33
102					0.9637	118.30
103					0.9619	118.27
104					0.9600	118.23
105	1.0080	-2.81	0.9628	-121.59	0.9655	118.36
106			0.9616	-121.61		
107			0.9600	-121.65		
108	1.0065	-2.88	0.9635	-121.60	0.9654	118.41
109	1.0024	-2.96				
110	1.0004	-3.00				
111	0.9997	-3.02				
112	0.9998	-3.01				
113	0.9977	-3.05				
114	0.9973	-3.06				
135	0.9722	-1.58	0.9866	-120.90	0.9755	118.87
150	1.0000	0.00	1.0000	-120.00	1.0000	120.00
151	0.9699	-1.56	0.9768	-121.09	0.9706	118.46
152	0.9765	-1.34	0.9925	-120.70	0.9823	119.08
160	0.9618	-2.53	0.9867	-121.41	0.9748	118.44
195	1.0109	-2.53	0.9606	-121.74	0.9720	118.40
197	1.0101	-2.73	0.9633	-121.52	0.9658	118.35
250	0.9708	-1.78	0.9876	-120.85	0.9711	118.78
300	1.0065	-2.88	0.9635	-121.60	0.9654	118.41
450	1.0133	-2.54	0.9662	-121.37	0.9677	118.43
451	1.0133	-2.54	0.9662	-121.37	0.9677	118.43
610	0.9673	-1.98	0.9759	-121.40	0.9801	117.88
611	1.0400	-29.89	0.9807	-150.11	0.9751	88.07
612	1.0180	-0.86	0.9673	-120.07	0.9788	120.06
RG1	1.0010	0.00	1.0010	-120.00	1.0010	120.00
RG2	0.9623	-1.08				
RG3	0.9610	-1.73			0.9619	118.81
RG4	1.0119	-2.53	0.9636	-121.41	0.9675	118.44

					ANCHO DE	
[NODO]	[VREG][S	EG][NODO]	MODELO	OPCIÓN	BANDA	
			FASE A & B & C,			
150	RG1 1	l 1	Estrella Anclada	RX	24	
	VOLTAJI	Ξ	VOLTAJE	VOLTAJE		
	DESEAD	D	RESULTANTE	RESULT	ANTE (Base	
FASE	(Base 120	V) TAP	(p.u.)	1	.20V)	
1	120.00	0.16	0.9923	1	19.08	
2	120.00	0.16	0.9983	1	19.79	
3	120.00	0.16	0.9939	1	19.27	
					ANCHO DE	
[NODO]	[VREG][S	EG][NODO]	MODELO	OPCIÓN	BANDA	
9	RG2 1	4 14	FASE A, Estrella	RX	24	
	VOLTAJI	Ξ	VOLTAJE	VOLTAJE		
	DESEAD	C	RESULTANTE	RESULTANTE (Base		
FASE	(Base 120	V) TAP	(p.u.)	120V)		
1	120.00	-2.94	0.9606	115.28		
					ANCHO DE	
		[NODO][VREG][SEG][NODO]				
[NODO]	[VREG][S	EG][NODO]	MODELO	OPCIÓN	BANDA	
[NODO]	[VREG][S	EG][NODO]	MODELO FASE A & C,	OPCIÓN	BANDA	
[NODO] 25	[VREG][S RG3 2	EG][NODO] 6 26	MODELO FASE A & C, Estrella	OPCIÓN RX	BANDA 24	
[NODO] 25	[VREG][S RG3 2 VOLTAJE	EG][NODO] 6 26 E	MODELO FASE A & C, Estrella VOLTAJE	OPCIÓN RX VC	BANDA 24 DLTAJE	
[NODO] 25	[VREG][S RG3 2 VOLTAJH DESEADO	EG][NODO] 6 26 5 0	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE	OPCIÓN RX VC RESULT	BANDA 24 DLTAJE ANTE (Base	
[NODO] 25 FASE	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120	EG][NODO] 6 26 5 7 V) TAP	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.)	OPCIÓN RX VC RESULT 1	BANDA 24 DLTAJE ANTE (Base 20V)	
[NODO] 25 FASE 1	[VREG][S RG3 2 VOLTAJI DESEADO (Base 120 120.00	EG][NODO] 6 26 2 5 5 7 7 7 7 7 7 7 8 7 7 8 7 8 7 8 7 8 7	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610	OPCIÓN RX VC RESULT 1	BANDA 24 DLTAJE ANTE (Base 20V) 15.32	
[NODO] 25 FASE 1 3	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00	EG][NODO] 6 26 2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615	OPCIÓN RX VC RESULT 1 1 1	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38	
[NODO] 25 FASE 1 3	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00	EG][NODO] 6 26 2 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615	OPCIÓN RX VC RESULT 1 1 1	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38	
[NODO] 25 FASE 1 3	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00	EG][NODO] 6 26 3 5 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615	OPCIÓN RX VC RESULT 1 1 1	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38 ANCHO DE	
[NODO] 25 FASE 1 3 [NODO]	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00	EG][NODO] 6 26 7 7 7 7 7 7 7 7 7 7 7 7 7	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615 MODELO	OPCIÓN RX VC RESULT 1 1 1 0PCIÓN	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38 ANCHO DE BANDA	
[NODO] 25 FASE 1 3 [NODO]	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00	EG][NODO] 6 26 7 7 7 7 7 7 7 7 6 26 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615 MODELO FASE A & B & C,	OPCIÓN RX VC RESULT 1 1 1 0PCIÓN	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38 ANCHO DE BANDA	
[NODO] 25 FASE 1 3 [NODO] 160	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00 [VREG][S RG4 6	EG][NODO] 6 26 3 5 7 7 6 2 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7 6 7	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615 0.9615 MODELO FASE A & B & C, Estrella	OPCIÓN RX VC RESULT 1 1 1 1 1 2 0PCIÓN	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38 ANCHO DE BANDA 24	
[NODO] 25 FASE 1 3 [NODO] 160	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00 [VREG][S RG4 6 VOLTAJH	EG][NODO] 6 26 7 TAP -1.65 -1.72 EG][NODO] 7 67 2	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615 MODELO FASE A & B & C, Estrella VOLTAJE	OPCIÓN RX VC RESULT 1 1 1 1 2 0PCIÓN RX VC	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38 ANCHO DE BANDA 24	
[NODO] 25 FASE 1 3 [NODO] 160	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00 [VREG][S RG4 6 VOLTAJH DESEADO	EG][NODO] 6 26 7 TAP -1.65 -1.72 EG][NODO] 7 67 5 0	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615 0.9615 SEA & B & C, Estrella VOLTAJE RESULTANTE	OPCIÓN RX VC RESULT 1 1 1 1 0 PCIÓN RX VC RESULT	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38 ANCHO DE BANDA 24 DLTAJE ANTE (Base	
[NODO] 25 FASE 1 3 [NODO] 160 FASE	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00 [VREG][S RG4 6 VOLTAJH DESEADO (Base 120	EG][NODO] 6 26 5 V) TAP -1.65 -1.72 EG][NODO] 7 67 5 0 V) TAP	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615 MODELO FASE A & B & C, Estrella VOLTAJE RESULTANTE (p.u.)	OPCIÓN RX VC RESULT 1 1 1 1 1 1 2 0PCIÓN RX VC RESULT 1	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38 ANCHO DE BANDA 24 DLTAJE ANTE (Base 20V)	
[NODO] 25 FASE 1 3 [NODO] 160 FASE 1	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00 [VREG][S RG4 6 VOLTAJH DESEADO (Base 120 120.00	EG][NODO] 6 26 2 0 V) TAP -1.65 -1.72 EG][NODO] 7 67 2 0 V) TAP 8.33	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615 0.9615 KASE A & B & C, Estrella VOLTAJE RESULTANTE (p.u.) 1.0107	OPCIÓN RX VC RESULT 1 1 1 1 0PCIÓN RX VC RESULT 1 1 1	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38 ANCHO DE BANDA 24 DLTAJE ANCHO DE BANDA 24 DLTAJE ANTE (Base 20V) 21.29	
[NODO] 25 FASE 1 3 [NODO] 160 FASE 1 2	[VREG][S RG3 2 VOLTAJH DESEADO (Base 120 120.00 120.00 [VREG][S RG4 6 VOLTAJH DESEADO (Base 120 120.00 120.00 120.00	EG][NODO] 6 26 7 TAP -1.65 -1.72 EG][NODO] 7 67 5 0 V) TAP 8.33 -3.75	MODELO FASE A & C, Estrella VOLTAJE RESULTANTE (p.u.) 0.9610 0.9615 0.9615 VOLTAJE Estrella VOLTAJE RESULTANTE (p.u.) 1.0107 0.9634	OPCIÓN RX VC RESULT 1 1 1 1 0PCIÓN RX VC RESULT 1 1 1 1	BANDA 24 DLTAJE ANTE (Base 20V) 15.32 15.38 ANCHO DE BANDA 24 DLTAJE ANCHO DE BANDA 24 DLTAJE ANTE (Base 20V) 21.29 15.61	

Tabla B.5 Información de los Reguladores de Voltaje del Alimentador del IEEE de 123 Nodos Modificado y Optimizado.

Tabla B.6 Resumen de Flujos de Potencia Óptimos del Alimentador del IEEE de 123 Nodos Modificado.

	RESU	MEN DE	FLUJOS I	DE POTI	ENCIA				
ENTRADA DEL SISTEMA									
Nodo: 150									
	FAS	SE A	FAS	E B	FAS	E C	тот	'AL	
POTENCIA ACTIVA (kW)	1036	5.149	715.	678	882.	426	2634	.254	
POTENCIA REACTIVA (kVar)	396	.469	294.	543	317.	047	1008	.059	
POTENCIA APARENTE (kVA)	1109	9.411	773.	919	937.	654	2820	.543	
FACTOR DE POTENCIA	0.9	340	0.9247		0.9411		0.93	340	
	G	ENERAC	IÓN DIST	RIBUID	A				
Nodo: 611 SISTEMA DE GEN	ERACIÓN	DE TURE	SINA EÓL	ICA					
	FAS	SE A	FAS	E B	FAS	E C	тот	'AL	
POTENCIA ACTIVA (kW)	89.	134	93.()45	86.3	301	268.	479	
POTENCIA REACTIVA (kVar)	37.	828	39.()61	41.9	905	118.	794	
POTENCIA APARENTE (kVA)	96.	829	100.	911	95.9	936	293.	586	
FACTOR DE POTENCIA	0.9	205	0.92	220	0.89	996	0.91	45	
Nodo: 612 SISTEMA FOTOVO	OLTAICO								
	FAS	SE A	FAS	E B	FAS	E C	тот	'AL	
POTENCIA ACTIVA (kW)	114.325		103.	223	105.701		323.249		
POTENCIA REACTIVA (kVar)	0.0	000	0.000		0.000		0.000		
POTENCIA APARENTE (kVA)	114	.325	103.	223	105.	701	323.	249	
FACTOR DE POTENCIA	1.0	000	1.00	000	1.00	000	1.00	00	
			CARGAS						
FASE AFASE BFASE CTOTAL									
	A-N	A-B	B-N	B-C	C-N	C-A	ESTRELLA	DELTA	
DOTENCIA ACTIVA (LAN)	1229	9.967	877.	911	1059	.590	3167	.468	
	1063.4	166.6	795.0	82.9	946.7 112.9		2805.1	362.4	
POTENCIA REACTIVA (kVar)	666	.244	490.	397	575.953		1732	.595	
	549.0	117.3	431.2	59.2	495.3	80.6	1475.5	257.1	
ροτενίζα αραβέντε (μνα)	1398	3.821	1005	.593	1206	.007	3610	.366	
	1196.7	2037							
		200.7	904.4	101.9	1068.4	138.7	3169.5	444.3	
FACTOR DF POTENCIA	0.8	793	<u>904.4</u> 0.87	<u>101.9</u> 730	<u>1068.4</u> 0.82	138.7 786	3169.5 0.87	444.3 773	
FACTOR DE POTENCIA	0.8 0.8886	793 0.8177	904.4 0.87 0.8790	101.9 730 0.8137	1068.4 0.82 0.8861	138.7 786 0.8137	3169.5 0.87 0.8850	444.3 73 0.8156	
FACTOR DE POTENCIA	0.8 0.8886	793 0.8177 P	904.4 0.87 0.8790 ÉRDIDA	101.9 730 0.8137 S	1068.4 0.87 0.8861	138.7 786 0.8137	3169.5 0.87 0.8850	444.3 773 0.8156	
FACTOR DE POTENCIA	0.8 0.8886 FAS	793 0.8177 P SE A	904.4 0.87 0.8790 ÉRDIDAS FAS	101.9 730 0.8137 S E B	1068.4 0.83 0.8861	138.7 786 0.8137 SE C	3169.5 0.87 0.8850 TOT	444.3 73 0.8156 CAL	
FACTOR DE POTENCIA	0.8 0.8886 FAS 22.	793 0.8177 P SE A 050	904.4 0.87 0.8790 ÉRDIDA FAS 8.8	101.9 730 0.8137 S E B 17	1068.4 0.87 0.8861 FAS 27.0	138.7 786 0.8137 SE C 546	3169.5 0.87 0.8850 TOT 58.5	444.3 773 0.8156 CAL 113	
FACTOR DE POTENCIA POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar)	0.8 0.8886 FAS 22. 165	793 0.8177 P SE A 050 .837	904.4 0.87 0.8790 ÉRDIDAS FAS 8.8 122.	101.9 730 0.8137 S E B 17 169	1068.4 0.8 0.8861 FAS 27.0 133.	138.7 786 0.8137 56 C 546 706	3169.5 0.87 0.8850 TOT 58.5 421.	444.3 773 0.8156 7 AL 711	
FACTOR DE POTENCIA POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA)	0.8 0.8886 FAS 22. 165 167	20037 793 0.8177 P SE A 050 .837 .296	904.4 0.87 0.8790 ÉRDIDA FAS 8.8 122. 122.	101.9 730 0.8137 S E B 17 169 487	1068.4 0.8 0.8861 FAS 27.0 133. 136.	138.7 786 0.8137 546 706 534	3169.5 0.87 0.8850 TOT 58.5 421. 425.	444.3 773 0.8156 74L 711 751	
FACTOR DE POTENCIA POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA)	0.8 0.8886 FAS 22. 165 167 E	200377 793 0.8177 P SE A 050 .837 .296 SANCOS I	904.4 0.87 0.8790 ÉRDIDA FAS 8.8 122. 122. 122. DE CAPA	101.9 730 0.8137 S E B 17 169 487 CITORE	1068.4 0.83 0.8861 FAS 27.0 133. 136. S	138.7 786 0.8137 546 706 534	3169.5 0.87 0.8850 TOT 58.5 421. 425.	444.3 773 0.8156 7 AL 711 751	
FACTOR DE POTENCIA POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA)	0.8 0.8886 222. 165 167 E	793 0.8177 P SE A 050 .837 .296 SANCOS I SE A	904.4 0.87 0.8790 ÉRDIDA FAS 8.8 122. 122. DE CAPA FAS	101.9 730 0.8137 S E B 17 169 487 CITORE E B	1068.4 0.8 0.8861 FAS 27.0 133 136 S FAS	138.7 786 0.8137 5E C 546 706 534 554	3169.5 0.87 0.8850 TO1 58.5 421. 425. TO1	444.3 773 0.8156 7AL 711 751 7AL	
FACTOR DE POTENCIA POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA)	0.8 0.8886 22. 165 167 E FAS A-N	200377 793 0.8177 P SE A 050 .837 .296 BANCOS I SE A A-B	904.4 0.87 0.8790 ÉRDIDA: FAS 8.8 122. 122. 122. DE CAPA FAS B-N	101.9 730 0.8137 S E B 17 169 487 CITORE E B B-C	1068.4 0.8 0.8861 FAS 27.0 133. 136. S FAS C-N	138.7 786 0.8137 546 706 534 546 706 534	3169.5 0.8850 TOT 58.5 421. 425. TOT ESTRELLA	444.3 773 0.8156 74L 751 751 751 74L 751	
FACTOR DE POTENCIA POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA) POTENCIA REACTIVA - R	0.8 0.8886 222. 165 167 E FAS A-N 350	20077 793 0.8177 P SE A 050 .837 .296 SANCOS I SE A A-B .000	904.4 0.87 0.8790 ÉRDIDA: FAS 8.8 122. 122. DE CAPA FAS B-N 350.	101.9 730 0.8137 S E B 17 169 487 CITORE E B B-C 000	1068.4 0.8 0.8861 FAS 27.0 1333 1360 S FAS C-N 3500	138.7 786 0.8137 5E C 546 706 534 5534 5E C C-A 000	3169.5 0.8850 TOT 58.5 421. 425. TOT ESTRELLA 1050	444.3 773 0.8156 74L 751 751 74L DELTA .000	
FACTOR DE POTENCIA POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA) POTENCIA REACTIVA - R (kVar)	0.8 0.8886 FAS 22. 165 167 E FAS A-N 350 250.0	2000 793 0.8177 P SE A 050 .837 .296 BANCOS I SE A A-B .000 100.0	904.4 0.87 0.8790 ÉRDIDA FAS 8.8 122. 122. DE CAPA FAS B-N 350. 250.0	101.9 730 0.8137 S E B 17 169 487 CITORE E B B-C 000 100.0	1068.4 0.83 0.8861 FAS 27.0 1333 1360 S FAS C-N 3500 250.0	138.7 786 0.8137 546 706 534 5534 5E C C-A 000 100.0	3169.5 0.8850 TOT 58.5 421. 425. TOT ESTRELLA 1050 750.0	444.3 773 0.8156 7AL 13 711 751 7AL DELTA .000 300.0	
FACTOR DE POTENCIA POTENCIA ACTIVA (kW) POTENCIA REACTIVA (kVar) POTENCIA APARENTE (kVA) POTENCIA REACTIVA - R (kVar) POTENCIA REACTIVA - A	0.8 0.8886 222. 165 167 E FAS A-N 350 250.0 361	793 0.8177 P SE A 050 .837 .296 SANCOS I SE A A-B .000 100.0 .312	904.4 0.87 0.8790 ÉRDIDA 8.8 122. 122. 122. DE CAPA FAS B-N 350. 250.0 331.	101.9 730 0.8137 S E B 17 169 487 CITORE E B B-C 000 100.0 420	1068.4 0.83 0.8861 FAS 27.0 133 136 S FAS C-N 350 250.0 334	138.7 786 0.8137 546 706 534 546 706 534 55 C C - A 000 100.0 721	3169.5 0.8850 TOT 58.5 421. 425. TOT ESTRELLA 1050 750.0	444.3 73 0.8156 74L 751 751 751 74L 000 300.0 .453	

	CARGA ORIGINAL		CARGA REDU	CARGA TRAS LA REDUCCIÓN			EDUCCIÓN DE CARGA			
	P/kW	Q/kVar	P/kW	Q/kVar	P/kW	(P/%)	Q/kVar	(Q/%)		
FASE A:	1420.000	775.000	1249.276	677.688	170.724	(12.02)	97.312	(12.56)		
FASE B:	915.000	515.000	891.133	498.469	23.867	(2.61)	16.531	(3.21)		
FASE C:	1155.000	630.000	1077.685	586.713	77.315	(6.69)	43.287	(6.87)		
TOTAL:	3490.000	1920.000	3218.095	1762.870	271.905	(7.79)	157.130	(8.18)		

Tabla B.7 Resumen de la Reducción de Carga del Alimentador del IEEE de 123 Nodos Modificado y Optimizado.

Tabla B.8 Reducción de Carga del Alimentador del IEEE de 123 Nodos Modificado y Optimizado.

NODO	P/kW	(P/%)	Q/kVar -N	(Q/%)	P/kW	(P/%)	Q/kVar R-N	(Q/%)	P/kW	(P/%)	Q/kVar	(Q/%)
1	0.017		0.000	(0.04)		Ľ	-14				-11	
1	0.01/	(0.04)	0.008	(0.04)	0.000	(0.01)	0.001	(0.01)				
Z					0.002	(0.01)	0.001	(0.01)	0.000	(0.00)	0.000	(0.00)
4									0.000	(0.00)	0.000	(0.00)
5									0.000	(0.00)	0.000	(0.00)
6	0.020	(0.15)	0.015	(0.15)					0.000	(0.00)	0.000	(0.00)
/	0.029	(0.15)	0.015	(0.15)								
9	0.038	(0.10)	0.019	(0.10)								
10	0.036	(0.18)	0.018	(0.18)								
11	0.035	(0.09)	0.017	(0.09)	0.004	(0,02)	0.000	(0.02)				
12					0.004	(0.02)	0.002	(0.02)	0.000	(0,00)	0.000	(0,00)
10									0.000	(0.00)	0.000	(0.00)
1/	0.000	(0,00)	0.000	(0,00)					0.000	(0.00)	0.000	(0.00)
19	0.000	(0.00)	0.000	(0.00)								
20	0.000	(0.00)	0.000	(0.00)	0.000	(0,00)	0.000	(0,00)				
22					0.000	(0.00)	0.000	(0.00)	0.000	(0,00)	0.000	(0,00)
24	0.000	(0,00)	0.000	(0,00)					0.000	(0.00)	0.000	(0.00)
28	0.000	(0.00)	0.000	(0.00)								
29	0.000	(0.00)	0.000	(0.00)					0.000	(0,00)	0.000	(0,00)
30									0.000	(0.00)	0.000	(0.00)
31									1.668	(8.34)	0.834	(8.34)
32	16004	(40.04)	0.460	(40.04)					1.669	(8.34)	0.835	(8.35)
33	16.924	(42.31)	8.462	(42.31)						(0,00)	0.000	(0,00)
34	0.040	(00 (4)	4 504	(00 (1)					0.000	(0.00)	0.000	(0.00)
35	9.042	(22.61)	4.521	(22.61)								
37	16.550	(41.38)	8.275	(41.38)	0 550		0.075					
38					0.750	(3.75)	0.375	(3.75)				
39					0.764	(3.82)	0.382	(3.82)	4 ((0	(0.04)		(0.00)
41		(0= 00)		(0= 00)					1.663	(8.31)	0.832	(8.32)
42	17.579	(87.89)	8.790	(87.90)	0 700	(4.00)	0.045	(4.00)				
43	48054		0 500		0.733	(1.83)	0.367	(1.83)				
45	17.056	(85.28)	8.528	(85.28)								
46	17.584	(87.92)	8.792	(87.92)	0.004	(0.07)	0 50 4	(0.00)	4 885	(= 0.0)	1.0.00	(, , , ,)
47	18.558	(53.02)	13.256	(53.02)	0.831	(2.37)	0.594	(2.38)	1.777	(5.08)	1.269	(5.08)
48	17.989	(25.70)	12.849	(25.70)	0.812	(1.16)	0.580	(1.16)	1.727	(2.47)	1.233	(2.47)

49 50	9 19.137	(54.68)	13.670	(54.68)	0.851	(1.22)	0.608	(1.22)	1.724 1.673	(4.93) (4.18)	0.985 0.836	(4.92) (4.18)
5	1 17 580	(87 90)	8 790	(87 90)					1.07.5	(1.10)	0.000	(1.10)
52	2 0.073	(0.18)	0.037	(0,19)								
53	3 0.085	(0.21)	0.042	(0.21)								
5!	5 0.086	(0.43)	0.043	(0.43)								
56	5	(0.10)		(0000)	0.008	(0.04)	0.004	(0.04)				
58	3				0.011	(0.05)	0.005	(0.05)				
59	9				0.011	(0.05)	0.006	(0.06)				
60	0.155	(0.78)	0.078	(0.78)		()		()				
62	2	C J		C J					0.000	(0.00)	0.000	(0.00)
63	3 0.187	(0.47)	0.093	(0.46)								
64	4				0.000	(0.00)	0.000	(0.00)				
65	5 0.082	(0.23)	0.059	(0.24)	18.963	(54.18)	13.545	(54.18)	23.973	(34.25)	17.124	(34.25)
66	5								41.441	(55.25)	19.339	(55.25)
68	B 0.157	(0.78)	0.079	(0.79)								
69	9 0.158	(0.40)	0.079	(0.40)								
7(0.158	(0.79)	0.079	(0.79)								
73	1 0.158	(0.40)	0.079	(0.40)								
73	3								0.000	(0.00)	0.000	(0.00)
74	4								0.000	(0.00)	0.000	(0.00)
75	5								0.000	(0.00)	0.000	(0.00)
76	6 0.000	(0.00)	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)	0.000	(0.00)
77	7				0.000	(0.00)	0.000	(0.00)				
79	9 0.000	(0.00)	0.000	(0.00)								
80)				0.000	(0.00)	0.000	(0.00)				
82	2 0.000	(0.00)	0.000	(0.00)								
83	3								0.000	(0.00)	0.000	(0.00)
84	4								0.000	(0.00)	0.000	(0.00)
85	5				0.01.6	(0.00)		(0.00)	0.000	(0.00)	0.000	(0.00)
86					0.016	(0.08)	0.008	(0.08)				
8.		(0,40)	0.070	(0.40)	0.016	(0.04)	0.008	(0.04)				
80	3 0.159	(0.40)	0.079	(0.40)	0.01((0,0,4)	0.000	(0,04)				
90	J 2				0.016	(0.04)	0.008	(0.04)	0.000	(0,00)	0.000	(0.00)
94	4 0150	(0, 40)	0.070	(0, 40)					0.000	(0.00)	0.000	(0.00)
94	+ 0.159	(0.40)	0.079	(0.40)	0.017	(0.00)	0 000	(0.00)				
9.	5				0.017	(0.09)	0.009	(0.09)				
99	3 0158	(0.40)	0 079	(0.40)	0.017	(0.07)	0.007	(0.07)				
90	9 0.150 9	(0.40)	0.079	(0.40)	0.012	(0.03)	0.006	(0.03)				
10	0				0.012	(0.05)	0.000	(0.03)	0 000	(0, 00)	0.000	(0, 00)
10	2								0.000	(0.00)	0.000	(0.00)
10	3								0.000	(0.00)	0.000	(0.00)
10	4								0.000	(0.00)	0.000	(0.00)
10	6				0.015	(0.04)	0.008	(0.04)	01000	(0.00)	01000	(0.00)
10	7				0.016	(0.04)	0.008	(0.04)				
10	9 0.158	(0.40)	0.079	(0.40)		()		()				
11	1 0.159	(0.80)	0.079	(0.79)								
11	2 0.159	(0.80)	0.079	(0.79)								
11	3 0.158	(0.40)	0.079	(0.40)								
11	4 0.159	(0.80)	0.080	(0.80)								

LÍNEA A LÍNEA B LÍNEA C LÍNEA 13 18 150.000 150.000 150.000 150.00	A LÍNEAD LÍNEAC
	A LINEAB LINEAU
	00 150.000 150.000
60 62 50.000 50.000 50.000 39.0	57 46.641 50.000

Tabla B.9 Resultados de los Límites de Corriente del Alimentador del IEEE de 123 Nodos Modificado y Optimizado.

Apéndice C: Descripción Detallada del Algoritmo de Barrido Hacia Adelante – Hacia Atrás

El método de solución para el análisis de flujos de potencia se llama Algoritmo de Barrido Hacia Adelante – Hacia Atrás (Forward-Backward Sweep Algorithm) que consiste en una iteración sucesiva de dos pasos. Estos procedimientos de barrido actualizan las corrientes de los ramales y los voltajes en los nodos aprovechando la estructura radial de los alimentadores en los sistemas de distribución. Para describir el proceso nos referiremos al alimentador de la Figura C.1, el alimentador tiene cinco nodos, cuatro componentes en serie (en este caso segmentos de línea) y cuatro cargas.

Figura C.1 Alimentador simple.

El algoritmo de barrido hacia adelante – hacia atrás funciona de la siguiente manera: Primero se obtienen los niveles que tiene el alimentador, iniciando con el nodo fuente o nodo de la subestación como nivel 1, y terminando al final de los ramales más largos. Los El alimentador simple que se está analizando tiene cuatro niveles como se muestra en la Figura C.2.

Figura C.2 Niveles del Alimentador Simple

Una vez obtenidos los niveles se inicia con el barrido hacia adelante.

Barrido Hacia Adelante: Actualiza las Corrientes de los Ramales y los Voltajes Nodales. Primero se calculan las corrientes de carga, utilizando los voltajes nodales $[V_{abc}]_i$, $i = 0 \dots 4$. Al inicio del algoritmo los voltajes nodales son los voltajes nodales nominales ($[1.0 \measuredangle 0^\circ, 1.0 \measuredangle -120^\circ, 1.0 \measuredangle 120^\circ]^T$).

Las corrientes de carga pueden provenir de cargas de potencia aparente constante, de cargas de impedancia constante, de cargas de corriente constante, de una máquina de inducción e incluso de una combinación de ellas. También pueden provenir de bancos de capacitores e incluso de unidades de generación distribuida. El cálculo de las corrientes de carga para estos elementos se puede consultar en las Secciones 2.5.8 y 2.6.

Las corrientes de los ramales son actualizadas usando las corrientes de carga y las corrientes de los ramales que salen del nodo que se está analizando. Esto se realiza iniciando en el extremo final de los ramales moviéndose hacia la subestación (o nodo fuente). En este instante el nodo que se analiza se nombra como nodo receptor m, y el nodo que está en un nivel inferior conectado por medio del ramal se nombra como nodo emisor n como se muestra en la Figura C.3.

Figura C.3 Nomenclatura del ramal al analizar un nodo.

Ya que se considera que la corriente fluye desde la subestación hasta las cargas, la corriente total de un ramal es la suma de las corrientes de los ramales que salen del nodo receptor m más la corriente de carga neta en el nodo receptor m como se muestra en la Ecuación C.1.

$$[I_{abc}]_{mn} = \sum_{i=r}^{s} [I_{abc}]_{mi} + [I_{abc}]_{Lm}$$
(C.1)

donde $[I_{abc}]_{Lm}$ es la corriente de carga neta en el nodo receptor m, $[I_{abc}]_{mi}$ son las corrientes de los ramales que tienen como nodo emisor el nodo m, i = r...s son los nodos receptores de los ramales que tienen como nodo emisor el nodo m, $[I_{abc}]_{mn}$ es la corriente total del ramal que entra al nodo m.

Una vez calculada la corriente total del ramal que entra al nodo receptor $m [I_{abc}]_{mn}$, debemos calcular la corriente total del ramal que sale del nodo emisor $n [I_{abc}]_{nm}$ y el voltaje nodal en el nodo emisor $n [V_{abc}]_n$. Para ello se utilizan las Ecuaciones C.2 y C.3.

$$[V_{abc}]_n = [a][V_{abc}]_m + [b][I_{abc}]_{mn}$$
(C.2)

$$[I_{abc}]_{nm} = [c][V_{abc}]_m + [d][I_{abc}]_{mn}$$
(C.3)

donde $[V_{abc}]$ es un vector de dimensión $[3 \times 1]$ que contiene el voltaje línea a neutro (LN) de cada fase, $[I_{abc}]$ es también un vector de dimensión $[3 \times 1]$ que contiene la corriente de línea de cada fase, y las matrices [a], [b], [c] y [d] son de dimensión $[3 \times 3] y$ describen el comportamiento de cada componente en serie. En la Figura C.1 los componentes en serie son solo segmentos de línea, pero pueden ser reguladores de voltaje, transformadores, segmentos de línea o interruptores, las ecuaciones para calcular dichas matices se encuentran en las Sección 2.5.5 – 2.5.7.

Una vez calculados la corriente total del ramal que sale del nodo emisor $n [I_{abc}]_{nm}$ y el voltaje nodal en el nodo emisor $n [V_{abc}]_n$ podemos seguir analizando los nodos restantes del mismo nivel. Al terminar de analizar todos los nodos del nivel actual, se pude proseguir al nivel superior. Cuando en el barrido hacia adelante existen varios ramales que tienen el mismo nodo emisor n, se calcula un voltaje nodal para el nodo emisor n por cada ramal, en esta situación y a pesar de que los voltajes son distintos, se puede utilizar cualquiera, ya que cuando el sistema se acerque a la solución los voltajes nodales calculados por cada ramal tenderán a ser el mismo. En los algoritmos de cómputo se utiliza el último voltaje que se analizó, simplemente porque se están sobrescribiendo los valores y no es necesario realizar ajuste alguno al algoritmo.

Las corrientes en los ramales y los voltajes nodales se actualizan hasta llegar al nodo fuente, en donde se compara el voltaje línea a línea (LL) del nodo fuente calculado con el voltaje LL real del nodo fuente (ya que es el único voltaje que se conoce). Si la diferencia de voltajes es menor que una tolerancia especificada (generalmente 0.001 p.u.) el algoritmo concluye y los voltajes y corrientes actualizados en este barrido hacia adelante son la solución del sistema, de no ser así se prosigue con el barrido hacia atrás.

Barrido Hacia Atrás: Actualiza los Voltajes Nodales. Dadas las corrientes de los ramales calculadas en el barrido hacia adelante, los voltajes nodales son actualizados en este paso. La actualización inicia desde la subestación o nodo fuente ya que es el único voltaje conocido del alimentador. El voltaje real del nodo fuente $[V_{abc}]_{0,real}$ se mueve hasta el final de los ramales, actualizando los voltajes nodales usando la Ecuación C.4.

$$[V_{abc}]_m = [A][V_{abc}]_n - [B][I_{abc}]_{mn}$$
(C.4)

Al igual que las constantes a, b, c y d, las constantes A y B dependen del elemento en serie al que se refieran, también son de una dimensión $[3 \times 3]$ y los cálculos para obtenerlas pueden ser consultados en las Secciones 2.5.5 – 2.5.7.

Durante el barrido hacia atrás, el valor del voltaje nodal $[V_{abc}]_n$ es utilizado en la Ecuación C.4 para actualizar el voltaje $[V_{abc}]_m$. Una vez que se han actualizado todos los voltajes nodales llegando al final de los ramales termina el barrido.

En la siguiente iteración del barrido hacia adelante ya no se utilizaran los voltajes nodales nominales sino los voltajes nodales actualizados que se acaban de calcular en el barrido hacia atrás. Pero para comenzar el barrido hacia atrás siempre se tomará el valor del voltaje real en el nodo fuente.

Para ejemplificar el algoritmo de barrido hacia adelante - hacia atrás se realizará una iteración utilizando el alimentador de la Figura C.1.

Barrido Hacia Adelante

Iniciamos con el último nivel del alimentador que es el nivel 4. Este nivel solo cuenta con un nodo, el nodo 4.

- 1. Primero calculamos la corriente de carga $[I_{abc}]_{L4}$ utilizando el voltaje nodal $[V_{abc}]_4$ el cual es igual al voltaje nominal ($[1.0 \cancel{4}0^\circ, 1.0 \cancel{4}-120^\circ, 1.0 \cancel{4}120^\circ]^{\mathsf{T}}$) por ser la primera iteración.
- 2. Calculamos la corriente del ramal que entra al nodo 4, $[I_{abc}]_{42}$: $[I_{abc}]_{42} = [I_{abc}]_{L4}$.
- 3. Calculamos la corriente del ramal que sale del nodo 2, $[I_{abc}]_{24}$ y el voltaje del nodo 2, $[V_{abc}]_2$: $[V_{abc}]_2 = [a_{24}][V_{abc}]_4 + [b_{24}][I_{abc}]_{42}$, $[I_{abc}]_{24} = [c_{24}][V_{abc}]_4 + [d_{24}][I_{abc}]_{42}$.

Pasamos al siguiente nivel, que es el nivel 3, donde se encuentran dos nodos, el nodo 2 y el nodo 3. Comenzamos analizando el nodo 2.

- 4. Calculamos la corriente de carga $[I_{abc}]_{L2}$ utilizando el voltaje nodal $[V_{abc}]_2$ que ya se actualizó en el paso 3.
- 5. Calculamos la corriente del ramal que entra al nodo 2, $[I_{abc}]_{21}$: $[I_{abc}]_{21} = [I_{abc}]_{24} + [I_{abc}]_{L2}$.
- 6. Calculamos la corriente del ramal que sale del nodo 1, $[I_{abc}]_{I2}$ y el voltaje del nodo 1, $[V_{abc}]_{I}$: $[V_{abc}]_{1} = [a_{12}][V_{abc}]_{2} + [b_{12}][I_{abc}]_{21}$, $[I_{abc}]_{12} = [c_{12}][V_{abc}]_{2} + [d_{12}][I_{abc}]_{21}$.

Una vez terminado con el nodo 2, proseguimos con el nodo 3.

- 7. Calculamos la corriente de carga $[I_{abc}]_{L3}$ utilizando el voltaje nodal $[V_{abc}]_3$ el cual es el voltaje nominal ($[1.040^\circ, 1.04.120^\circ, 1.04.120^\circ]^T$) por ser la primera iteración.
- 8. Calculamos la corriente del ramal que entra al nodo 3, $[I_{abc}]_{31}$: $[I_{abc}]_{31} = [I_{abc}]_{L3}$.
- 9. Calculamos la corriente del ramal que sale del nodo 1, $[I_{abc}]_{I3}$ y el voltaje del nodo 1, $[V_{abc}]_{I}$: $[V_{abc}]_{1} = [a_{13}][V_{abc}]_{3} + [b_{13}][I_{abc}]_{31}$, $[I_{abc}]_{12} = [a_{13}][V_{abc}]_{3} + [b_{13}][I_{abc}]_{31}$.

Como se puede notar en el paso 6 y en el paso 9 se ha calculado el voltaje nodal $[V_{abc}]_I$ por dos ramales diferentes, como se mencionó anteriormente se puede utilizar cualquier voltaje, ya que conforme el sistema se acerque a la solución el voltaje nodal $[V_{abc}]_I$ calculado por cualquier ramal tenderá a ser el mismo. Ya que terminamos con el nivel 3, pasamos al nivel 2 que contiene solo un nodo, el nodo 1.

10. Calculamos la corriente de carga $[I_{abc}]_{LI}$ utilizando el voltaje nodal $[V_{abc}]_I$ que ya se actualizó en el paso 9.

11. Calculamos la corriente del ramal que entra al nodo 1, $[I_{abc}]_{I0}$:

 $[I_{abc}]_{10} = [I_{abc}]_{12} + [I_{abc}]_{13} + [I_{abc}]_{L1}.$

12. Calculamos la corriente del ramal que sale del nodo 0, $[I_{abc}]_{0I}$ y el voltaje del nodo 0, $[V_{abc}]_0$: $[V_{abc}]_0 = [a_{01}][V_{abc}]_1 + [b_{01}][I_{abc}]_{10}$, $[I_{abc}]_{01} = [a_{01}][V_{abc}]_1 + [b_{01}][I_{abc}]_{10}$.

Terminado con los nodos del nivel 2, pasamos al último nivel del barrido hacia adelante que es el nivel 1 donde se encuentra el nodo 0 (nodo fuente). En este nivel se realiza la comparación del voltaje nodal actualizado $[V_{abc}]_{\theta}$ con el voltaje nodal real de la subestación $[V_{abc}]_{\theta,real}$.

13. Transformamos el voltaje nodal LN actualizado $[V_{abc}]_{\theta}$ al voltaje nodal LL actualizado [1 -1 0]

$$[V_{LL}]_{0}: [V_{LL}]_{0} = D[V_{abc}]_{0}, \text{ donde } D = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & -1 \\ -1 & 0 & 1 \end{bmatrix}.$$

14. Se evalúa si la diferencia es menor que la tolerancia (generalmente tiene un valor de 0.001 p.u.). $|[V_{LL}]_{0,real} - [V_{LL}]_0| \le 0.001 p.u.$. Si el resultado es menor que la tolerancia los voltajes nodales y las corrientes de los ramales actualizados en el barrido hacia adelante corresponden a la solución del sistema. De no ser así, se prosigue con el barrido hacia atrás.

Barrido Hacia Atrás

Iniciamos con el segundo nivel del alimentador que es el nivel 2, ya que el voltaje real del nodo fuente $[V_{abc}]_{\theta,real}$ localizado en el nivel 1 es conocido. El nivel 2 solo cuenta con el nodo 1.

1. Calculamos el voltaje del nodo 1, $[V_{abc}]_I$: $[V_{abc}]_1 = [A_{01}][V_{abc}]_{0,real} - [B_{01}][I_{abc}]_{10}$. Pasamos al nivel 3, donde se encuentran los nodos 2 y 3.

2. Calculamos el voltaje nodal del nodo 2, $[V_{abc}]_2$: $[V_{abc}]_2 = [A_{12}][V_{abc}]_1 - [B_{12}][I_{abc}]_{21}$. 3. Calculamos el voltaje nodal del nodo 3, $[V_{abc}]_3$: $[V_{abc}]_3 = [A_{13}][V_{abc}]_1 - [B_{13}][I_{abc}]_{31}$.

Continuamos con el último nivel del barrido hacia atrás, que es el nivel 4 y cuenta con solo un nodo, el nodo 4.

4. Calculamos el voltaje nodal del nodo 4, $[V_{abc}]_4$: $[V_{abc}]_4 = [A_{24}][V_{abc}]_2 - [B_{24}][I_{abc}]_{42}$.

Con esto termina el barrido hacia atrás. Para la siguiente iteración, cuando se inicie el barrido hacia adelante se deben utilizar estos nuevos voltajes nodales actualizados para calcular las corrientes de carga, las corrientes de los ramales y los voltajes nodales.

REFERENCIAS

- [1] W. H. Kersting, *Distribution system modelling and analysis*. 2013.
- J. Fan and S. Borlase, "The evolution of distribution," *IEEE Power Energy Mag.*, vol. 7, no. 2, pp. 63–68, 2009.
- [3] "Energy independence and security act of 2007," *EISA*, 2007. [Online]. Available: https://www.congress.gov/bill/110thcongress/house-bill/6.
- [4] M. A. Abdel-Moamen and N. P. Padhy, "Power Flow Control and Transmission Loss Minimization Model with TCSC for Practical Power Networks," in *Power Engineering Society General Meeting*, 2003, pp. 880–884.
- [5] A. Pizano-Martinez, C. R. Fuerte-Esquivel, H. Ambriz-Pérez, and E. Acha, "Modeling of VSC-Based HVDC Systems for a Newton-Raphson OPF Algorithm," *IEEE Trans. Power Syst.*, vol. 22, no. 4, pp. 1794–1803, 2007.
- [6] D. Shirmohammadi, H. Hong, A. Semlyen, and G. Luo, "A compensation-based power flow method for weakly meshed distribution and transmission networks," *IEEE Trans. Power Syst.*, vol. 3, no. 2, pp. 753–762, 1988.
- [7] Y. Zhu and K. Tomsovic, "Adaptive power flow method for distribution systems with dispersed generation," *IEEE Trans. Power Deliv.*, vol. 17, no. 3, pp. 822–827, 2002.
- [8] G. Díaz, J. Gómez-Aleixandre, and J. Coto, "Direct Backward/Forward Sweep Algorithm for Solving Load Power Flows in AC Droop-Regulated Microgrids," *IEEE Trans. Smart Grid*, vol. 7, no. 5, pp. 2208–2217, 2015.
- [9] S. Bruno, S. Lamonaca, G. Rotondo, U. Stecchi, and M. La Scala, "Unbalanced threephase optimal power flow for smart grids," *IEEE Trans. Ind. Electron.*, vol. 58, no. 10, pp. 4504–4513, 2011.
- [10] R. C. Dugan and T. E. McDermott, "An open source platform for collaborating on smart grid research," *IEEE Power Energy Soc. Gen. Meet.*, no. lvvc, pp. 1–7, 2011.
- [11] H. Khodr, M. Matos, and J. Pereira, "Distribution optimal power flow," 2007 IEEE LausannePower Tech, pp. 1441–1446, 2007.
- [12] Y. Zhu and K. Tomsovic, "Optimal distribution power flow for systems with distributed energy resources," Int. J. Electr. Power Energy Syst., vol. 29, no. 3, pp. 260–267, 2007.
- [13] M. J. Dolan, E. M. Davidson, G. W. Ault, F. Coffele, I. Kockar, and J. R. McDonald, "Using optimal power flow for management of power flows in active distribution networks within thermal constraints," Univ. Power Eng. Conf. (UPEC), 2009 Proc. 44th Int., pp. 1–5, 2009.
- [14] L. F. Ochoa, C. J. Dent, and G. P. Harrison, "Distribution Network Capacity Assessment: Variable DG and Active Networks," *IEEE Trans. Power Syst.*, vol. 25, no. 1, pp. 87–95, 2010.
- [15] A. R. Ahmadi and T. C. Green, "Optimal power flow for autonomous regional active network management system," *Power Energy Soc. Gen. Meet. 2009. PES '09. IEEE*, pp. 1–7, 2009.
- [16] L. F. Ochoa and G. P. Harrison, "Minimizing energy losses: Optimal accommodation and smart operation of renewable distributed generation," *IEEE Trans. Power Syst.*,

vol. 26, no. 1, pp. 198–205, 2011.

- [17] G. P. Harrison, A. Piccolo, P. Siano, and A. R. Wallace, "Hybrid GA and OPF evaluation of network capacity for distributed generation connections," *Electr. Power Syst. Res.*, vol. 78, no. 3, pp. 392–398, 2008.
- [18] H. Ying-Yi and W. Fu-Ming, "Development of three-phase Newton optimal power flow for studying imbalance/security in transmission systems," *Electr. Power Syst. Res.*, vol. 55, no. 1, pp. 39–48, 2000.
- [19] J. Nocedal and S. J. Wright, *Numerical Optimization*. Springer, 1999.
- [20] C. A. Carreño-Meneses, L. O. Polanco-Vásquez, H. J. Estrada-García, J. M. Lozano-García, E. A. Zamora-Cárdenas, and A. Pizano-Martínez, "Flujos óptimos de Potencia en Microredes Eléctricas No Autónomas," *REVISTA DE CIENCIA E INGENIERÍA DEL INSTITUTO TECNOLÓGICO SUPERIOR DE COATZACOALCOS*, pp. 80–85, Dec-2015.
- [21] The MathWorks Inc., "Matlab[®] Optimization Toolbox." Users Guide Version 2.
- [22] U. Eminoglu and M. H. Hocaoglu, "Distribution systems for-ward/backward sweepbased power flow algorithms: A review and comparison study," *Elect. Power Compon. Syst.*, vol. 37, no. 1, pp. 91–110, 2008.
- [23] A. Lisboa, L. Guedes, D. Vieira, and R. Saldanha, "A fast power flow method for radial networks with linear storage and no matrix inversions," *Int. J. Elect. Power Energy Syst.*, vol. 63, pp. 901–907, 2014.
- [24] G. Luo and A. Semlyen, "Efficient load flow for large weakly meshed networks," *IEEE Trans. Power Syst.*, vol. 5, no. 4, pp. 1309–1316, 1990.
- [25] C. S. Cheng and D. Shirmohammadi, "A three-phase power flow method for realtime distribution system analysis," *IEEE Trans. Power Syst.*, vol. 10, no. 2, pp. 671– 679, 1995.
- [26] "Distribution Test Feeders." [Online]. Available: https://ewh.ieee.org/soc/pes/dsacom/testfeeders/.
- [27] M. Abdel-Akher and K. Mahmoud, "Unbalanced distribution power-flow model and analysis of wind turbine generating systems," *Int. Trans. Electr. Energy Syst.*, vol. 23, no. 5, pp. 689–700, Jul. 2013.
- [28] M. I. Xi-Fan Wang, Yonghua Song, *Modern Power Systems Analysis*, vol. 7, no. 11. 2015.
- [29] W. H. Kersting, "Radial Distribution Test Feeders." Distribution System Analysis Subcommittee Report, 2000.
- [30] R. C. Dugan, "Induction Machine Modeling for Distribution System Analysis Test Case Description," pp. 1–5.
- [31] A. E. Feijoo and J. Cidras, "Modeling of wind farms in the load flow analysis," *IEEE Trans. Power Syst.*, vol. 15, no. 1, pp. 110–115, 2000.

Salamanca, Gto., a 24 de Julio del 2017

M.I. HERIBERTO GUTIERREZ MARTÍN COORDINADOR DE ASUNTOS ESCOLARES P R E S E N T E.-

Por medio de la presente, se otorga autorización para proceder a los trámites de impresión, empastado de tesis y titulación al alumno José Antonio Santacruz Granados del Programa de Maestría en Ingeniería Eléctrica (Instrumentación y Sistemas Digitales) y cuyo número de NUA es: 143764 del cual soy director. El título de la tesis es: Desarrollo de una herramienta computacional para optimizar la operación de redes de distribución activas.

Hago constar que he revisado dicho trabajo y he tenido comunicación con los sinodales asignados para la revisión de la tesis, por lo que no hay impedimento alguno para fijar la fecha de examen de titulación.

ATENTAMENTE

ALEJANDRO PIZANO MARTÍNEZ DIRECTOR DE TESIS SECRETARIO

IVÁN ABEL HERNÁNDEZ ROBLES DIRECTOR DE TESIS

MIGUEL ÁNGEL GÓMEZ MARTÍNEZ PRESIDENTE

DORA LUZ ALMANZA OJEDA VOCAL