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Abstract 
 

An analytical and numerical research work related to the plate twist test of specially 
orthotropic plates is developed in this thesis. Two finite element models and two analytical 
closed-form solutions are developed for deflections and rotations of thick specially 
orthotropic materials under twisting loads by using the first-order shear deformation theory. 
These solutions show good agreement in the compliance predictions with respect to 
previously reported measurements and finite element estimations. The first solution 
considers the effect solely of the stiffness ��� and ��� , ��� in the compliance, assuming 
shear correction factors of 2/3 and a twisting moment ��� = �/4. The second solution not 
only considers the influence of D66 and ��� , ��� on the compliance but also that by ���, ���, ��� stiffnesses, varying the shear correction factors and ��� according to the 
material system and geometry. The results of the parametrical analysis show that both 
solutions are able to adequately predict the deflections of specially orthotropic plates from 
low to moderately high side-length to thickness ratios (1 ≤ side-lengths/thickness ≤ 20 and (1 ≤ side-lengths/thickness ≤ 61), respectively; also both solutions can be used for 
rectangular plates with ratios between sides-length (1 ≤side-length in � axis/side-length in  � axis ≤ 10). Examination of the in-plane shear modulus ratio between face sheets and core 
(����/����) points out that the first solution slightly underpredicts the compliance with 
respect to finite element method (FEM), specially for ����/���� ratios larger than 100, 
whilst the second solution match very well for those ratios. Examination of the ��� by finite 
element method showed that ��� has a parabolic behavior for sandwich panels with 
compliant cores, reaching a maximum value at the center of the plate different to �/4 and 
being dependent of the material properties.   
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Introduction 

Composite materials represent a big part of the available materials to use in engineering 
process and design. They are the result of combining on macroscopic scale two or more 
materials with different properties to form a useful third material [1, 2]. The study of these 
materials is conducted by experimental testing, numerical methods or theoretical analysis. 
The last one is performed using theory of elasticity or simplifications from this one, such as 
the classical laminate plate theory (CLPT) or the first-, second- or third-order shear 
deformation theories [3, 4] among others. Many problems like bending, vibration, buckling, 
torsion, fatigue in beams, columns, bars, plates, shells, etc., have been solved for composite 
materials by using these approaches [2-8].  

The plate twist (PT) is an interesting torsion problem to be studied for composite materials 
since many engineering components are subjected to torsion. Its study is important and may 
help to prevent failure in machinery components as turbine blades, helicopter propellers, 
transmission shafts among others throughout the determination of the shear modulus and 
prediction of the elastic behavior of the materials [9, 10]. The PT may be employed to 
determine the elastic behavior of moderate thick and thin plates before the action of torsional 
loads if the material properties are known, i.e., prediction of the deflections, rotations, stress 
and strain field over the material under the action of twisting loads [6, 11, 12]. The PT has 
been used to study the anticlastic bending of rectangular laminate composite plates [12] 
which is generated by the action of twisting couples along the edge of the plate which may 
lead to a failure known as delamination in composite materials (plies separation). The PT 
consists in a thin or moderate thick plate supported in two diagonal corners and subjected to 
two-point loads in the opposite other two corners [9]. This problem has been addressed by 
several researchers using CLPT and First-Order Shear Deformation Theory (FSDT), but 
until now there is not an accurate solution to predict the compliance of rigid and compliant 
composite plates. Therefore, this doctoral thesis devotes to analytical and numerically study 
the PT test in composite laminates and sandwich panels. 

The analysis of the PT specimen is addressed herein by using the FSDT. The study is divided 
in three chapters. In Chapter I some theoretical background needed to understand the border 
conditions, constitutive equations, equilibrium equations, governing equations and develop 
analytical and numerical solutions for the PT problem, is shown. In Chapter II is developed 
an analytical polynomial solution which considers the action of twisting moment (���), 
assuming that ��� has a constant value of �/4 in the whole plate; the bending moments (�� , ��) are vanished; and the shear forces (�� , ��) are considered as constants. In Chapter 
III another polynomial solution is developed considering a variable ��� (��� ≠ �/4), 
keeping ��, �� not negligible, and considering ��, �� as variables along the entire plate, 
and the general conclusions of this thesis work are presented at the end of this manuscript. 
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Hypothesis 
It is possible to deduce a mathematical expression that accurately predicts the compliance of 
thick laminated composite plates loaded in torsion considering the effects of transversal shear 
loads, bending and twisting moments by using FSDT. 

 

Objectives 
General 
To analyze theoretically and numerically the elastic response of laminated composite plates 
and sandwich panels under twisting loads using the PT configuration, considering the effects 
due to transverse shear forces, bending and twisting moments on the plate deflection. 

 
Specifics  

a. To develop compliance equations using polynomials for thick and thin specially 
orthotropic plates subjected to torsion under the PT configuration by using the FSDT. 

b. To determine the compliance, modeling composite laminates and sandwich panels 
subjected to torsion by using the finite element method. 

c. To determine and examine the transversal shear strain field of the plates predicted by 
FEM and the models developed. 

d. To determine and examine the influence of twisting moment on the plates by using 
FEM and the models developed. 

e. To stablish the validation of the developed models using the previously reported 
results. 

f. To define the range of application of the developed models conducting a parametric 
analysis. 
 

Justification 
Twisting behavior of laminated composite materials is important because structures and 
devices made with these materials may undergo torsion during their working life, inducing 
mechanical damage such as creep, degradation of elastic properties, fatigue, fracture of the 
constituents and delamination (separation of the layers that form the composite material). 
Common examples of composite structures under twisting loads includes rotatory blades of 
helicopters, wind turbines, rotating machinery, airplane wings and transmission shafts [13]. 
Some test methods as the torsion pendulum and the PT are standardized methods to study the 
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torsional behavior of isotropic materials [14], wood-based structural panels [9] and fiber-
reinforced unidirectional plastic composites [10, 15]. The PT test is a recognized 
international test method to determine the torsional stiffness of plywood [9] and metal panels 
[11, 15], also it has been employed to determine the in-plane shear modulus of the face sheets, 
transverse shear modulus of the soft core and twist stiffness in sandwich panels [16]. 

Despite the PT has been extensively studied [6, 17, 18], to date there is not an accurate closed-
form mathematical expression for the compliance of laminated composite and sandwich 
structures materials which includes the influence of shear forces (��, ��), bending moments 
(��, ��) and twisting moment (���). In fact, it is important to study the behavior and 
influence of the ��� in the problem of plate torsion, due to this resultant load seems to be 
the most important according to Avilés et al. [17], Timoshenko and Woinowsky-Krieger  [12] 
and Nadaí [19] solutions among others. Until now every reported research has considered ��� as a constant value of �/4 and have not considered its dependence to the material 
system, additionally, they have not analytically considered the influence of the transversal 
shear forces. On the other hand, FSDT employs a shear correction factor ��� which depends 
of the materials system [3] and becomes important to accurately predict the behavior of the 
PT specimen. Given this background, this research aims to develop closed-form expressions 
for the compliance of specially orthotropic laminates and sandwich panels considering all 
these parameters. 

 

Scope 
The scope of this research is to obtain, validate and establish the range of application of at 
least an analytical expression to analyze the torsional behavior of specially orthotropic 
composite laminate plates and sandwich panels with isotropic core and faces under PT 
configuration using FSDT. 
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Chapter I. The Plate Twist Specimen 
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1 Background  
1.1 Composite material  
A composite material is the combination of two or more materials on the macroscopic scale 
[2], where each part may have different mechanical and chemical properties [20] to form a 
useful third material with desirable properties that cannot be achieved with any of the 
constituents alone [3]. Composite materials are normally made of one or more discontinuous 
phases distributed in one continuous phase. The continuous phase is called the matrix and 
the discontinuous phase is called the reinforcement. The properties of a composite material 
depend on the properties of the constituents, their geometrical distribution, their interactions, 
among others [21]. Composite materials can be classified by the form of the reinforcement 
[2, 20] as fiber composites, particle composites, laminated composites and combinations of 
some or all of the three types mentioned. 

 

1.2 Composite laminates 
A composite is called a laminated when it consists of layers (at least two) or when two or 
more different materials are bonded together (see, Figure 1.1). Lamination combines the best 
aspects of the constituent layers to achieve a more useful material. The ability to structure 
and orient material layers (Figure 1.1) in a prescribed sequence leads to several significant 
advantages of composite materials compared with conventional monolithic materials. The 
most important ability is to tailor or align the lamina properties and orientations to the 
prescribed structural loads. Some properties that can be emphasized by lamination are 
strength, stiffness, corrosion resistance, low weight, etc. [20]. An international code to 
represent the stacking sequence of a composite laminate was presented in the 1973 edition 
of the “Advanced Composites Design Guide” and is explained widely by Adams et al.[1]. 
An example of this code is: [(0/90)�]�, where the square brackets “[]” indicates the 
beginning and end of the code. The subscript � indicates that there is a symmetric laminate. 
The parenthesis “()” contain in this case only the plies on the one side of the mid-plane due 
the laminates is a symmetric material. The numbers 0 and 90 represent the � orientation of 
each ply with respect to one reference system, where 0 normally is parallel to �-axis. The 
number 2 in this case is indicating that the stacking sequence is repeat twice. In this example, 
there are 8 plies and could be expressed in an extended form as follow: [0/90/0/90]� or 
[0/90/0/90/90/0/90/0]. The numbers 1,2,3 in Figure 1.1, represent the material coordinate 
system, where 1 identifies the orientation of the fiber, 2 is normal to the fiber, 3 is considered 
normal to the plane where the fibers are contained (1 − 2). The composite material employed 
in this thesis work is a cross ply laminate [(0/90)�]� which are typically employed in the 
automotive, sport and naval industries [2]. 
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Figure �. �. Schematic of a composite laminate and laminated construction. 
 

1.3 Sandwich panels 
Sandwich structures are a composite material that can be defined as a subset of multilayered 
composite structures, optimized for the anticipated lifetime loading conditions [22]. They are 
formed by two face sheets, which are relatively thin and stiff, enclosed by a core which is 
relatively thick and light, and which has adequate stiffness in a direction normal to the face 
sheets of the panel [21, 23-25]. Great alternative forms of sandwich structures may be 
obtained by combining different face sheets and core materials. Such face sheets may be 
steel, aluminum, wood, fiber-reinforced plastic or even concrete. The core may be made of 
cork, balsa wood, rubber, solid plastic material (polyethylene), rigid foam material 
(polyurethane, polystyrene, phenolic foam), mineral wool slabs or from honeycombs of metal 
or even paper, corrugated in single or double wall, etc. [25, 26]. The function of the core in 
a sandwich panel is to resist the shear effects, increase the strength/weight ratio, and avoid 
the buckling [7, 23, 25]; and the function of the face sheets in the sandwich panels is to resist 
the normal stress produced by bending loads [7, 24]. The objective of a sandwich 
construction is to make a structure combining lightness and flexural stiffness to allow 
optimization of structures that are weight-critical such as parts of airplanes, space structures, 
sporting goods, naval structures, and blades for wind-power generation [24]. Figure 1.2 
shows three sandwich structures with different core configurations. Some characteristics of 
sandwich structures that makes them frequently used are: Mass savings with respect to 
conventional structures, high specific stiffness (bending stiffness with respect to the mass), 
good fatigue properties, sound-damping properties, good thermal and acoustical insulation 
properties, excellent airtightness, economical mass production to pre-cut lengths of 
components of uniform high quality between others [25, 27]. This work employs typical 
sandwich structures made of polyurethane of high density with metal face sheets (Rigid 
sandwich), normally used in the airports, buildings, laboratories, electrical central, among 
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others, and sandwich structures with a core made of polyurethane of low density (compliant 
sandwich), frequently found in many industrial sectors, specially in the food industry to build 
frigorific chambers, also in the civil industry used to build administrative offices and 
furniture too fast, etc [23, 24]. 

 

Figure �. �. Schematic of typical sandwich cores. (a) Solid core. (b) Web core. (c) 
Corrugated core. 
 

1.4 The stress and strain relationship 
According to classical theory of elasticity, the generalized linear strain field for small 
displacements is given by [3, 28, 29], 

{�} = ⎩⎪⎨
⎪⎧ ��������������� ⎭⎪⎬

⎪⎫ =
⎩⎪⎪
⎪⎨
⎪⎪⎪
⎧ ��/����/����/������ + �������� + �������� + ����⎭⎪⎪

⎪⎬
⎪⎪⎪
⎫

 

(1.1) 
 

where �� , �� , �� are the generalized normal strain respect to the �-axis, �-axis, �-axis whereas ���, ��� , ��� are the generalized engineering shear strains at the planes ��, ��, ��, 
respectively. 

The stress field in the solid body is represented in Figure 1.3 by six components. Where �� ,  ��, �� are the normal stress in �-, �-, �-axis and ���, ��� , ��� are the shear stress at the planes ��, �� and ��, respectively.  

  

(c) (b) (a) 
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Figure �. �. Generalized stress components in a solid body. 
 

 

The Eq. (1.1) has a directly relationship with the stresses present in the body caused by the 
action of the external loads. The equations that establish the relations between stresses and 
strains are known as constitutive equations or Generalized Hooke’s Law equation for small 
deformations [3, 30].  

For homogeneous elastic body having anisotropy of a general type, i.e., without elastic 
symmetry, the relationship between stress and strains is stablished by 21 independent 
material constants [28]. The elastic symmetry depends on the internal structures of the body 
and some properties may be identical in some directions as is the case of natural wood, delta 
wood, plywood, composite laminates, etc [28]. When there is elastic symmetry in a body, the 
constants that establish the relationship between stress and strains is reduced [28]. The most 
important cases of elastic symmetry are: a) One plane of elastic symmetry: in this case the 
number of independent constants are reduced to 13; b) three planes of the elastic symmetry 
or also called orthogonal-anisotropic or simply orthotropic: the number of independent 
constants are reduced to 9; c) a plane of isotropy or commonly known as transversely 
isotropic: the number of independent constants are reduced to 5, and finally, d) complete 
symmetry or isotropic body: this is the simplest material and only have 2 independent 
constants. For a further explanation of this kind of elastic symmetric the reader is referred to 
reference [28]. 

 

The Hooke’s Law can be written in compact form as {�} = [�]{�} (1.2a) 
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Also, this law is written as 

 

⎩⎪⎨
⎪⎧ ���������������⎭⎪⎬

⎪⎫ = [�]��
⎩⎪⎨
⎪⎧ ���������������⎭⎪⎬

⎪⎫
 

 

(1.2b) 
where [�] and [�]�� are the stiffness and compliance matrices, respectively. [�]�� arranges 
the elastic properties of the elastic body according to Eq. (1.2c) in function of the 9 
engineering constants for an orthotropic body [3, 28, 29, 31]. 

 

[�]�� =
⎣⎢⎢
⎢⎢⎡

1/�� −���/�� −���/��−���/�� 1/�� −���/��−���/�� −���/�� 1/��
0            0        00            0        00           0        00            0            00            0            00            0            0 1/���       0    00 1/��� 00     0 1/���

 
⎦⎥⎥
⎥⎥⎤ (1.2c) ����� = ����� ;                  ����� = ����� ;                     ����� = �����  (1.2d) 

 

where ��, ��, �� are the modulus of elasticity or Young’s modulus in 1, 2, and 3 directions, 
respectively; ���, ���, ��� are the Poisson’s ratios at the planes 1 − 2, 2 − 3, and 1 − 3, 
respectively; and ���, ���, ��� are the shear modulus at the planes 1 − 2, 2 − 3, and 1 − 3, 
respectively. The subscripts 1,2,3 correspond to the directions of the material coordinate 
system (see, Figure 1.1). Eq. (1.2b) may be written in a most general form referred to a 
global coordinate system using the transformation matrix [�] given by [2, 3, 32], 

 

[�] =
⎣⎢⎢
⎢⎢⎡        cos� �               sin� �                0       sin� �               cos� �                0      0              0                1          0            0                sin (2�)         0            0             −sin (2�)         0             0              00     0            00     0            0−sin (�)cos (�) sin (�)cos (�)    0         ���(�) −sin (�)  0        sin (�)    ���(�)   0         0    0 cos� � − sin� �⎦⎥⎥

⎥⎥⎤ 
 

(1.2e) 
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⎩⎪⎨
⎪⎧ ��������������� ⎭⎪⎬

⎪⎫ = [�]��[�]��[�] ⎩⎪⎨
⎪⎧ ��������������� ⎭⎪⎬

⎪⎫
 (1.2f) 

 

1.5 Laminated plate theories 
A plate is defined as a solid material bounded by two parallel planes whose transverse 
dimension (thickness) is small compared to the other two dimensions [21]. The plate analysis 
is a simplification of the 3-D continuum problem to a 2-D problem, in which a heterogeneous 
laminated plate is treated as statically equivalent single layer having a complex constitutive 
behavior [3]. The equivalent single layer (ESL) theories are developed by assuming the form 
of the displacement field or stress field as a linear combination of unknown functions and the 
coordinate along the thickness [3]. The most relevant ESL laminated plate theories are the 
CLPT, the FSDT, the second-order shear deformation theory (SSDT) and the third-order 
laminated plate theory (TSDT) [3, 4], all these consider that the plate is under a state of plane 
stress because the thickness is small compared to the in-plane dimensions [3]. As the order 
of the theory increases, so does the difficulty of the analysis and its computational effort, 
increasing the accuracy of the calculations due to the reduction of the assumptions, 
approaching to the theory of elasticity. In the section 1.6.6, the FSDT is widely explained 
since this theory is employed to develop two closed-form solutions for the PT specimen. 

 

1.5.1 Classical laminate plate theory 
The CLPT is the simplest laminated plate theory and it is based on the Kirchhoff’s 
hypothesis. This hypothesis establishes that lines normal to the mid-plane remains 
perpendicular to such a plane without any change in length after deformation; i.e., a normal 
line to the mid-plane does not stretch after deformation; it simply translates and rotates as a 
consequence of the deformation [32]. As consequence of this, the transverse shear and 
transverse normal effects are neglected; i.e., deformation is due entirely to bending and in-
plane stretching [3]. The interpretation of this assumptions leads to the conclusion that the 
transverse displacement is independent of the coordinate along the thickness, and the 
transverse normal and shear strains are zero. 

In addition to the Kirchoff’s hypothesis, CLPT requires one additional assumption and some 
restrictions to develop its kinematic framework. The assumption required is that the layers 
are perfectly bonded together, i.e., there are not relative sliding between layers. The 
restrictions required are: the material of each layer is linearly elastic and has three planes of 
material symmetry (Orthotropic material); each layer has a constant thickness; the strain and 
displacements are small and finally the transverse shear stresses on the top and the bottom 
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surface of the laminate are zero [3, 32]. Therefore, CLPT is based on the following 
displacement field �(�, �) = ��(�, �) − �(��/��) (1.3a) �(�, �) = ��(�, �) − �(��/��) (1.3b) �(�, �) = ��(�, �) (1.3c) 
 
where �(�, �), �(�, �), �(�, �) are called the generalized displacement functions. ��, �� , �� 
denote the displacement of a point at mid-plane  � = 0. The displacement field given by Eqs. (1.3a − c) implies that straight lines normal to the ��-plane before deformation remain 
straight and normal to the mid-surface after deformation [3] (Figure 1.4), thus, the 
Kirchhoff’s hypothesis is satisfied.  

 
 
 
Figure �. �. Undeformed and deformed geometries of an edge of a plate under the 
assumptions of the CLPT [3]. 
 
 
 
1.5.2 First-order shear deformation laminated plate theory 
The next theory in the hierarchy of ESL plate theories is the FSDT, which is based on the 
following displacement field [3], �(�, �) = ��(�, �) + �∅�(�, �) (1.4a) �(�, �) = ��(�, �) + �∅�(�, �) (1.4b) �(�, �) = ��(�, �) (1.4c) 
 

where ∅� and ∅� denote the rotations about the �-axis and �-axis, respectively. The FSDT 
extends the kinematic of the CLPT by including a gross transverse shear deformation in its 
kinematic assumptions; i.e., the transverse shear strains are assumed to be constant along the 
plate thickness. Inclusion of this rudimentary form of shear deformation allows to determine 
the transverse shear stresses, representing an advantage with respect to CLPT, however the 

� 

� � 

� 

� 

�� 

�� 

������   

������   

 

ℎ 
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FSDT requires shear correction factors, which are difficult to determine for arbitrarily 
laminated composite plates [3, 33, 34]. 

If the inextensibility and/or straightness of transverse normal are removed, i.e., if the 
deformation and the warping along the thickness are considered, the second and higher-order 
ESL laminated plate theories can be formulated (The terms “inextensibility” makes reference 
to the Kirchhoff’s hypothesis, which assumes that the transversal lines does not change 
length; i.e., the thickness remains constant [32]).  

In theories of lamination, the FSDT seems to provide the best compromise of solution, 
accuracy and simplicity [3] for thin and moderately thick laminate plates to determine the 
stress and displacement fields in composite plates. The only difference between FSDT and 
CLPT is the fact that FSDT assumes that transverse shear strains are constant along the 
transversal normal (i.e., along the thickness) [3] and CLPT does not consider it. In this thesis 
work, only the FSDT will be explained in detail and used to develop the analytical models. 

 
1.5.3 Second-order laminated plate theory 
Second and higher-order ESL laminated plate theories use higher-order polynomials in the 
expansion of the displacement component through the thickness of the laminate [3]. The 
second-order theory with transverse inextensibility (deformation along the thickness is 
neglected) is based on the displacement field [3], �(�, �) = ��(�, �) + �∅�(�, �) + ����(�, �) (1.5a) �(�, �) = ��(�, �) + �∅�(�, �) + ����(�, �) (1.5b) �(�, �) = ��(�, �) (1.5c) 
 

where �� and �� are functions that are often difficult to interpret in physical terms; they give 
rise to the higher-order stress and increase the accuracy of calculations. This theory considers 
a quadratic variation of the transverse shear strain and does not require the shear correction 
factor employed in FSDT.  

 

1.5.4 Third-order shear deformation laminated plate theory 
The TSDT formulated by Reddy [3, 4] with transverse inextensibility is based on the 
displacement field �(�, �) = ��(�, �) + �∅�(�, �) + ����(�, �) + ����(�, �) (1.6a) �(�, �) = ��(�, �) + �∅�(�, �) + ����(�, �) + ����(�, �) (1.6b) �(�, �) = ��(�, �) (1.6c) 
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where ∅� , ∅� , �� , �� , �� , �� are functions to be determined. �� , �� are functions introduced 
to represent the parabolic behavior of the shear stresses and strains along the thickness of the 
plate. 

By imposing traction-free boundary conditions on the top and bottom faces of the laminate, 
ie., ���(�, �, ±ℎ/2) = 0 and ���(�, �, ±ℎ/2) = 0, Reddy [3, 4] found that �� and �� are 
zero and �� , �� are defined as follow �� = − 43ℎ� ��� + ����� � ;         �� = − 43ℎ� (�� + ����� ) 

(1.6d-e) 
 

Substituting Eqs. (1.6d − e) into (1.6a − c) the displacement field of the Reddy’s theory is 
finally rewritten as, �(�, �) = ��(�, �) − �∅�(�, �) + ��(−4/(3ℎ�))(∅� + ���/��) (1.6f) �(�, �) = ��(�, �) − �∅�(�, �) + ��(−4/(3ℎ�))(∅� + ���/��) (1.6g) �(�, �) = ��(�, �) (1.6h) 
 

where ℎ is the plate thickness. In Eqs. (1.6f − g) is observed that the displacement field 
accommodates quadratic variation of transverse shear strains (and hence stresses) and 
vanishing of transverse shear stresses on the top and bottom of a general laminate composed 
of monoclinic layers (imposed condition). Thus, there is no need to use shear correction 
factors in the TSDT. The assumptions of the Kirchhoff’s hypothesis are applied in TSDT 
with the particularity that the transversal line is not normal to the mid-plane; i.e., this line is 
not straight and has an additional rotation occasioned by the transversal shear forces [3] (see, 
Figure 1.5). The TSDT provides an increase in accuracy relative to the FSDT, at expense of 
an increase in computational effort [3]. The accuracy of this theory, and the other ESL 
theories are affected when the laminate becomes thicker, and have the  inconvenient that are 
often incapable of accurately describing the state of stress and strain at the ply level near 
geometric and material discontinuities or near regions of intense loading [3]. The CLPT and 
FSDT could be obtained from TSDT with the difference that to obtain the FSDT from TSDT, 
the shear correction factor must be introduced after the simplification of the TSDT.  
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Figure �. �. Undeformed and deformed geometries of an edge of a plate under the 
assumptions of the TSDT [3]. 
 
1.6 First-order shear deformation laminated plate theory 
 
1.6.1 Displacement field 
To describe the strains and displacement fields in FSDT (Eq. (1.4)), the assumptions of the 
Kirchhoff’s hypothesis are employed with the particularity that the transversal line normal to 
the mid-plane in CLPT is not normal to the mid-plane in FSDT; i.e., this line has an additional 
rotation occasioned by the transversal shear forces [3] (see, Figure 1.6). Since the FSDT 
assumes that transverse shear strains are constants along the plate thickness (Figure 1.6) a 
shear correction factor ��� is introduced in the constitutive equations [3] (Eq. (1.11c)). This 
factor depends not only on the geometric parameter, but also on the loading and boundary 
conditions of the plate [4]. More information about this factor have been annexed in 
appendices A and B. 

 

Figure �. �. Undeformed and deformed geometries of an edge of a plate under the 
assumptions of FSDT [3]. 
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1.6.2 Strain field 
Considering the strain field given by Eq. (1.1); the strains associated with the displacement 
field (Eqs. (1.4)) are given by, �� = ����� + � �∅��� = ��� + ��� (1.7a)  �� = ����� + � �∅��� = ��� + ��� (1.7b)  �� = 0 (1.7c) ��� = ������ + ����� � + � ��∅��� + �∅��� � = ���� + ���� (1.7d)  ��� = ����� + ∅� (1.7e)  ��� = ����� + ∅� (1.7f) 
 

where, ��, ��, �� are the longitudinal strains relatives to the �-, �- and �-axes; ��� is the in-
plane shear strain whereas ��� , ��� are the transverse shear strains associated with the ��, ��, 
and �� planes, respectively. The superscript "�" is used to designate mid-plane values. �� 
and �� are known as curvatures around �-axis and �-axis, respectively, and ��� is known as 
twist curvature of the middle surface, respectively.  

 

Note that the longitudinal strains ��, �� and the in-plane shear strain ��� are linear through 
the laminate thickness, while the transverse shear strains are constant through the thickness 
of the laminates in the FSDT (see, Figure 1.7).  

 

Figure �. �. Schematic general representation in a composite laminate of longitudinal strain ��, transversal shear strain ��� and shear stress ��� in FSDT and real shear stress ���. 
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1.6.3 Stress field 
The stresses in the �-th layer of a laminated composite can be expressed in terms of the mid-
surface strains and curvatures as [2, 3, 21], i.e., 

� ��������� = ����� ���� �������� ���� �������� ���� ������ ����������� = ����� ���� �������� ���� �������� ���� ������ ������������� � + � � �������� (1.8a) ��������� = ����� �������� ������ �������� (1.8b) 
 

here ������� are the transformed plane stress-reduced stiffness (�, � = 1, 2, 6 to Eq. (1.8a) and �, � = 4, 5 to Eq. (1.8b)) which are given by ���� = �������� + 2(��� + 2���)���������� + �������� ���� = (��� + ��� − 4���)���������� + ���(����� + �����) ���� = �������� + 2(��� + 2���)���������� + �������� ���� = (��� − ��� − 2���)��������� + (��� − ��� + 2���)(����� + ����) ���� = (��� − ��� − 2���)��������� + (��� − ��� + 2���)(���� + �����) ���� = (��� + ��� − 2��� − 2���)��������� + ���(����� + �����) ���� = �������� + �������� ���� = (��� − ���)�������� ���� = �������� + �������� 
(1.9) 

 

where � is the orientation angle of the fibers for the �-th layer (Figure 1.1). And ��� are the 
reduced stiffnesses (�, � = 1, 2, 4, 5, 6) which are related to the engineering constants as 
follows 

���(�) = ��(�)1 − ���(�)���(�) ;             ���(�) = ���(�)��(�)1 − ���(�)���(�) ;             ���(�) = ��(�)1 − ���(�)���(�) 
 ���(�) = ���(�);                            ���(�) = ���(�);                            ���(�) = ���(�) 
 ���(�)��(�) = ���(�)��(�) (1. 10) 

 

1.6.4 Laminate constitutive equations 
The resultant laminate forces and moments acting on a laminate (Figure 1.8) are obtained by 
integration of the stresses through each ply thickness as is indicated as [2, 3, 21, 28], 
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� �������� = � � ���������/�
��/� �� = � � � ���������

������
�

��� �� 

 
(1.11a) 

� �������� = � � ���������/�
��/� ��� = � � � ���������

������
�

��� ��� 

 
(1.11b) 

������ = ��� � �������� ���/�
��/� = ��� � � ��������� ��������

�
���  (1.11c) 

 

where �� and �� are normal forces along � and �-axes, ��� is an in-plane shear force relative 
to �� plane, �� and �� are bending moments relative to �- and �-axis, ��� is the twisting 
moment relative at the �� plane, and �� and �� are the transverse shear forces tangential to 
the �� and �� planes, respectively. All these loads are oriented as shown in Figure 1.8 and 
are measured per unit length of the corresponding plate side-length. 

 

 
Figure �. �. Force and moment resultants on a rectangular plate. 

 
Replacing Eqs. (1.7a − f) into (1.8a − b) and these last ones into (1.11a − c), the 
constitutive equations become, 
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� �������� = ���� ��� ������ ��� ������ ��� ����
⎩⎪⎪⎨
⎪⎪⎧ ����� + 12 ������ ��

����� + 12 ������ ��
����� + ����� + ����� ����� ⎭⎪⎪⎬

⎪⎪⎫ + ���� ��� ������ ��� ������ ��� ����
⎩⎪⎪⎨
⎪⎪⎧ �∅����∅����∅��� + �∅��� ⎭⎪⎪⎬

⎪⎪⎫
 

 
(1.12a) 

� �������� = ���� ��� ������ ��� ������ ��� ����
⎩⎪⎪⎨
⎪⎪⎧ ����� + 12 ������ ��

����� + 12 ������ ��
����� + ����� + ����� ����� ⎭⎪⎪⎬

⎪⎪⎫ + ���� ��� ������ ��� ������ ��� ����
⎩⎪⎪⎨
⎪⎪⎧ �∅����∅����∅��� + �∅��� ⎭⎪⎪⎬

⎪⎪⎫
 

 
(1.12b) 

������ = ������� ������������ ������� �∅� + �����∅� + ����� � (1.12c) 
 

where ��� , ��� and ��� are called the extensional stiffnesses, the bending-extensional coupling 
stiffnesses and the bending stiffnesses, respectively. The subscripts �, � take the values 1, 2 
and 6 in Eqs. (1.12a − b), and 4 and 5 in Eq. (1.12c).  ��� , ��� and ��� are defined in terms 
of �����  as 

��� = � ������
��� (���� − ��) (1.13a) 

��� = 12 � ������
��� ������ − ���� (1.13b) 

��� = 13 � ������
��� ������ − ���� (1.13c) 

 

In Eq. (1.13c), ��� are the shear correction factors, which should be selected according to 
the material system and boundary conditions of the problem as is shown in the Appendix A, 
or accord to the selection explained by Whitney and Pagano [35], Kaneko [36] and others; 
or could be determined as indicated in the Appendix B, by using a specific procedure, e.g., 
Chow [34], Whitney [37, 38], Bert [39] or Birman [33].  

 

1.6.5 Equilibrium equations 
The equilibrium equations by FSDT are obtained by making a balance of force and moment 
resultants [3], which results, 



 

16 
 

����� + ������ = 0 

 
(1.14a) ������ + ����� = 0 

 
(1.14b) ����� + ����� + � = 0 

 
(1.14c) ����� + ������ − �� = 0 

 
(1.14d) ������ + ������ − �� = 0 

 
(1.14e) 

where � is the total distributed transverse load over the plate.  

 

1.6.6 Governing equations 
The governing equations by FSDT result from the combination of equilibrium and 
constitutive equations (they are also called equation of motion in terms of displacements [3]), 
which are given by, ��� �������� + ����� ������� � + ��� ��������� + ����� ���������+ ��� ��������� + ������� + ������� ����� + ����� ��������� + ��� ��∅���� + ��� ��∅�����+ ��� ���∅����� + ��∅���� � + ��� ��������� + ����� ���������+ ��� �������� + ����� ������� � + ��� �������� + �������� + �������� ����� + ����� ������� �+ ��� ��∅����� + ��� ��∅���� + ��� ���∅���� + ��∅������ = 0 

 

(1.15a) 
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��� �������� + ����� ������� � + ��� ��������� + ����� ���������+ ��� ��������� + ������� + ������� ����� + ����� ��������� + ��� ��∅���� + ��� ��∅�����+ ��� ���∅����� + ��∅���� � + ��� ��������� + ����� ���������+ ��� �������� + ����� ������� � + ��� �������� + �������� + �������� ����� + ����� ������� �+ ��� ��∅����� + ��� ��∅���� + ��� ���∅���� + ��∅������ = 0 

 

 (1.15b)  ������ �������� + ∂∅��� � + ������ ��������� + ∂∅��� � + ������ ��������� + ∂∅��� �+ ������ �������� + ∂∅��� � + � = 0 

 

(1.15c)  ��� �������� + ����� ������� � + ��� ��������� + ����� ���������+ ��� ��������� + ������� + ������� ����� + ����� ��������� + ��� ��∅���� + ��� ��∅�����+ ��� ���∅����� + ��∅���� � + ��� ��������� + ����� ���������+ ��� �������� + ����� ������� � + ��� �������� + �������� + �������� ����� + ����� ������� �+ ��� ��∅����� + ��� ��∅���� + ��� ���∅���� + ��∅������ − ������ ������ + ∅��− ������ ������ + ∅�� = 0 

 

(1.15d)  ��� �������� + ����� ������� � + ��� ��������� + ����� ���������+ ��� ��������� + ������� + ������� ����� + ����� ��������� + ��� ��∅���� + ��� ��∅�����+ ��� ���∅����� + ��∅���� � + ��� ��������� + ����� ���������+ ��� �������� + ����� ������� � + ��� �������� + �������� + �������� ����� + ����� ������� �+ ��� ��∅����� + ��� ��∅���� + ��� ���∅���� + ��∅������ − ������ ������ + ∅��− ������ ������ + ∅�� = 0 

 

 
 
 

 (1.15e) 
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1.6.7 Theorem of minimum potential energy 
The strain energy � in composite laminated plates is obtained from the integration of the 
strain energy density function around the elastic body volume, plus the work of external 
forces [40, 41]. The strain energy in terms of displacement is given by, � = ∬ ����� ������ �� + ���� ����� �∅��� + ���� ��∅��� �� + ��� ����� ����� + ��� ������ �∅��� + ����� �∅��� � +���� �∅��� �∅��� + ��� ������ ����� + ����� ����� � + ��� ��∅��� �∅��� + �∅��� �∅��� � + ��� ������ �∅��� + ����� �∅��� +����� �∅��� + ����� �∅��� � + ���� ������ �� + ��� ����� �∅��� + ���� ��∅��� �� + ��� ������ ����� + ����� ����� � +��� ������ �∅��� + ����� �∅��� + ����� �∅��� + ����� �∅��� � + ��� ��∅��� �∅��� + �∅��� �∅��� � + ������ �∅�∅� + ∅� ���� +∅� ���� + ���� ����� + ������ �∅��� + ∅� ���� + �� ����� ��� + ������ �∅��� + ∅� ���� + �� �������� +��� ��� ������ �� + ����� ����� + �� ������ ��� + ��� ������ �∅��� + ����� �∅��� + ����� �∅��� + ����� �∅��� � +��� ��� ��∅��� �� + �∅��� �∅��� + �� ��∅��� ��� − �(�, �)�(�, �)� ����  (1.16) 

 � refers to the � − � mid-plane area of the plate whose dimensions are −��/2 ≤ � ≤ ��/2 
and −��/2 ≤ � ≤ ��/2 (see, Figure 1.9). The Theorem of Minimum Potential Energy can 
be stated as: “of all of the displacements satisfying compatibility and the prescribed boundary 
conditions, those which satisfy the equilibrium equations make the potential energy 
minimum” [40]. This is mathematically represented as, ����� = 0 (1.17) 

 

where �� is the variable which the potential energy is minimized.  

 

Figure �. �. Representation of the mid-plane area and global coordinate system. 
 

1.7 The plate twist specimen 
There are two loading configurations for the PT: the first one consists in a thin or moderate 
thick plate supported in three corners with a point-load � applied in one corner (Figure 
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1.10a) while the second configuration consists on a thin or moderate thick plate supported 
in two diagonal corners and subjected to two loads each one of magnitude �/2 in the opposite 
other two corners [9, 24] (Figure 1.10b). Both specimens have been employed to analyze 
isotropic materials [11, 15], composite materials [6, 9, 10, 15] and sandwich panels [6, 17, 
42] in order to determine not only the shear properties but also those of their constituents. 

  (a) (b) 
 

Figure �. ��. Loading configurations of the plate twist specimen. (a) First. (b) Second. 
 

1.7.1 Some analytical solutions previously reported for thin plates 
Many authors have reported the same polynomial expression as solution for the PTs 
employing the theory of elasticity [11, 19, 28, 43, 44], CLPT [17] and the theorem of 
minimum potential energy [6]; other two expressions were reported using a semi-empirical 
method [42] and a double Fourier series with  FSDT [45], and a geometrically nonlinear 
extended high-order sandwich plate theory was developed to be implemented using FEM 
[46]. 

Hearmon and Adams [11] carried out an extensive study about the bending and twisting 
behavior of anisotropic plates based on the previous study reported by Thielemann [43]. 
According to Hearmon and Adams, the deflection of �� of an isotropic thin plate is given 
by, 

  ℎ��� = 6��(��̅��� + �̅���� + ��̅���)            +6��(��̅��� + �̅���� + ��̅���)            +6���(��̅��� + �̅���� + ��̅���) 
(1.18) 
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where ��̅� represents the compliance coefficients, and � and � are aligned with the diagonals 
of the plate. By neglecting bending effects (��, �� = 0 [11, 12]) and considering a constant 
twisting moment ��� = �/4 [12, 44], Eq. (1.18) becomes 

 �� = 3�2ℎ� (�̅���� + ��̅��� + ��̅���) (1.19a) 
 

by considering an isotropic material (��� = ��� = 0 and ��� = 1/�), Eq. (1.19a) becomes 

  �� = 3�2ℎ�� �� (1.19b) 
 

Eq. (1.19b) coincides with equation employed by the international standard ASTM D3044-
95 [9] to determine the shear modulus of wood-based structural panels. 

Vinson [6] developed polynomial expressions for a specially orthotropic PTs using the 
theorem of minimum potential energy (Eq. (1.17))  

 �� = �� + ��� + ��� + ⋯ + ������ + ������� + ������ + ����� (1.20a) �� = �� + ��� + ��� + ���� + ���� + ���� (1.20b) �� = �� + ��� + ��� + ���� + ���� + ���� (1.20c) 
 

Vinson [6] also considered the following conditions to address the problem; i.e., he 
considered null displacements and null slopes at the center of the plate, maximum and equal 
displacements at the corners, and a free-edge border condition [4, 40, 47]. ��(0,0) = ��(0,0) = �(0,0) = ���� = ���� = 0 (1.21a-e) �� ���2 , ��2 � = �� �− ��2 , − ��2 � = �� ���2 , − ��2 � = �� �− ��2 , ��2 � (1.21f-i) �� , ���, �� , ��� = 0     �� � = ± ��2  (1.21j-m) �� , ���, �� , ��� = 0     �� � = ± ��2  
 

(1.21n-q) 
By substituting Eqs. (1.21) into the proposed polynomials, the deflection �� becomes, �� = �4��� �� (1.22) 
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If an isotropic materials is analyzed (��� = �ℎ�/12) the deflection given by Eq. (1.22) 
results in, �� = 3���/(�ℎ�) which coincides with Nadai’s solution [19]. An identical 
solution to Eq. (1.22) was obtained by Avilés et al. [17] with the exception that they 
employed a 45° rotated coordinate system and CLPT. In a subsequent paper, Avilés et al. 
[42] developed a semi-empirical equation for the deflection of sandwich structures. Such 
equation employed a calibration factor �� to account the deflection due to transverse shear 
deformation in compliant cores. In such a model, the maximum deflection attains the 
following form, 

� = �� ���2 , ��2 � = �����16��� �1 + 16���������ℎ��(���)�(���)�� (1.23) 

 

where �� is calculated from a parametric analysis of the panel dimensions and thicknesses 
by FEM, and the subscript � corresponds to the sandwich core. 

Hernández et al. [45] developed a solution for the PT by using Fourier series; representing  
the antisymmetric point load per unit area as, 

�(�, �) = � � �����
��

���� sin ������� � sin ������� ���
����  (1.24) 

 

where �� and �� are positive integers and the term ����� are determined using the classical 
Fourier theory [48]. Applying the constitutive (Eq. (1.12)), equilibrium (Eq. (1.14)) and 
governing equations (Eq. (1.15)), Hernández-Pérez et al. [45] found that the deflection of 
the plate can be predicted by using the Eq. (1.25) with �� = �� = 40, i.e., 

�(�, �) = � � �������� ������ �� + 2(��� + 2���) ������ �� ������ �� + ��� ������ ����
����

��
����  (1.25) 

 

Equation (1.25) was found suitable to predict deflections of compliant sandwich structures 
but inadequate for stiff composite laminates. From this section is concluded that the solutions 
previously developed do not consider the transverse shear strains which are important for 
sandwich structures as is mentioned in [17].  

 

1.8 Finite element method 
The FEM is a numerical method that approximate the differential equations that describe a 
physical phenomenon as an algebraic system using matrix algebra [49, 50]. FEM can be used 
to obtain an approximate solution of complex problems in areas of engineering such as 
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structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential 
[30, 49, 50]. FEM consists in modeling a body by dividing it into an equivalent of smaller 
bodies or units (finite elements) interconnected at points common to two or more elements 
(nodal points or nodes) and/or boundary lines or/and surfaces; this process of dividing is 
called discretization [30, 50]. This method lets to solve complex problems formulating the 
equations for each finite element that conform the body and combining them to obtain the 
solution of the whole body. In this thesis the commercial software (ANSYS11.0) is 
employed to develop the numerical models.   

 

1.8.1 Description of the SOLID185 element 
FEM was employed to compare predictions with the FSDT solutions developed herein. The 
SOLID185 element is suitable for modeling general 3-D solid structures [31]. This is a solid 
tetrahedral element defined by eight nodes (one node in each corner: 1,2,3,4,5,6,7,8, Figure 1.11a) with three free degrees of freedom at each node (translation in the nodal �,�, and � 
directions) and the orthotropic material properties. This element may be employed as 
Homogeneous structural solid for Sandwich panels (Figure 1.11a) or as Layered structural 
solid for composite laminates (Figure 1.11b) [31]. The unknown displacements in each node � of the element is given by, 

{�} =
⎩⎪⎪⎨
⎪⎪⎧������⋮������ ⎭⎪⎪⎬

⎪⎪⎫    ;        � = 1, … ,8 (1.26) 

 

 
 (a) (b) 

Figure �. ��. SOLID185 element. (a) Homogeneous structural solid. (b) Layered structural 
solid [31]. 
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SOLID185 considers the generalized stress components in a solid body shown in Figure 1.3 and considers 9 independent elasticity constants (orthotropic materials) which establish 
the proportionality between stress and strains (Eqs. (1.2)) [31]. SOLID185 is represented in 
global coordinates in Figure 1.12a by eight nodes and with isoparametric natural coordinates (�, �, �) in Figure 1.12b. The element faces are defined by �, �, � = ±1 and the functions 
used to describe the element geometry for �, �, � in terms of generalized degrees of freedom ��’s are: 

 � = �� + ��� + ��� + ��� + ���� + ���� + ���� + ����� 
 

(1.27a) � = �� + ���� + ���� + ���� + ����� + ����� + ����� + ������ 
 

(1.27b) � = ��� + ���� + ���� + ���� + ����� + ����� + ����� + ������ (1.27c) 
 

After a large algebraic manipulation, it is possible express the element geometry in terms of 
the shape function 

����� = � ���� 0 00 �� 00 0 ��� ������� ���
���  (1.28a) 

    

where �� is the shape function defined at �-th node. Such function is given by, �� = (1 + ���)(1 + ���)(1 + ���)8                 � = 1, … ,8 (1.28b) 
 

where ��, ��, �� are the coordinates of the �-th node.  

  (a) (b) 
Figure �. ��. Coordinate systems of the SOLID185 element. (a) Global. (b) Natural or 
intrinsic coordinates �,� and � [30]. 
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If the shape functions are evaluated in a specify node, the function corresponding of this node 
is 1 and the others are null [30]. Now, evaluating the Eq. (1.28a) in a specific node, it is 
observed that any point in the natural-coordinates system is mapped to one in the global-
coordinate system. The displacement functions of the element SOLID185 is a 3 × 24 matrix 
given by, 

����� = � ���� 0 00 �� 00 0 ��� ����������
���  (1.29) 

 

The linear strain field given by Eq. (1.1) can be expressed in terms of nodal displacement (Eq. 1.26) as {�} = [�]{�} (1.30a) 
where [�] is a function of � and � coordinates and is called strain-displacement matrix. [�] = [�� … ��] (1.30b) 
being 

�� =
⎣⎢⎢
⎢⎢⎡
���/�� 0 00 ���/�� 00 0 ���/�����/�� ���/�� 00 ���/�� ���/�����/�� 0 ���/��⎦⎥⎥

⎥⎥⎤   ;        � = 1, … ,8 (1.30c) 
 

Now, it is possible to determine the stresses applying the Hooke’s Law, Eqs. (1.2). The 
element stiffness matrix to each element is given by, [�] = � � � [�]�[�][�]|�|�������

��
�

��
�

��  (1.31a) 
 

where the Jacobian |�| is given by 

|�| =
⎣⎢⎢
⎢⎢⎢
⎡���� ���� �������� ���� �������� ���� ����⎦⎥⎥

⎥⎥⎥
⎤
 (1.31b) 

 



 

25 
 

SOLID185 element prevents the shear locking using the enhanced strain formulation method. 
This is applicable in bending-dominated problems where the shear strain could be 
considerable. The shear locking is a lock that could happen in FEM when transverse strain is 
considered within the finite element used. The trend to reach the shear locking increase when 
the ratio between length/thickness is very high [51] due to the stiffness matrix could become 
singular. For example, in a beam case, the global stiffness matrix results from the sum of the 
bending and shear stiffness matrices; when the shear stiffness matrix increases greatly with 
respect to the other, the lock could happen simulating a null deflection on the beam. Cook 
[51] points out that to overcome the shear locking the enhanced strain formulation method 
introduces automatically certain number of internal (and inaccessible) degrees of freedom 
into the element level and condensed out during the solution phase of the analysis. For 
example, three shape functions could be considered in SOLID185 to prevent the shear 
locking (this implies nine new degree of freedom), given a displacement function in � as 
follow, � = �� (�� (1 − �)(1 − �)(1 − �) + ��(1 + �)(1 − �)(1 − �) + ��(1 + �)(1 +�)(1 − �) + ��(1 − �)(1 + �)(1 − �) + ��(1 − �)(1 − �)(1 − �) + ��(1 +�)(1 − �)(1 + �) + ��(1 + �)(1 + �)(1 + �) + ��(1 − �)(1 + �)(1 + �)) +��(1 − ��) + ���(1 − ��) + ���(1 − ��)  

 
(1.32) ��, ���, and ��� represent the tree new degree of freedom associated with the � displacement. 

The other two displacement functions � and � can be expressed analogously [30, 31, 51]. 
The displacement function in matrix form considering the enhance strain formulation method 
to overcome the shear locking is: 

����� = � ���� 0 00 �� 00 0 ��� ����������
��� + � ���� 0 00 �� 00 0 ��� �����������

���  (1.33a) 
 

with �� = (1 − ��), ��� = (1 − ��), ��� = (1 − ��) (1.33b) 
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Chapter II. Examination of the plate 
twist specimen for thick specially 
orthotropic laminated composites 
and sandwich plates by using first-
order shear deformation theory 
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2.1 Introduction 
The two-point plate twist specimen (PTS) consists of a rectangular plate loaded by two-point 
forces of magnitude �/2 (where � is the total applied force) over two small diagonally 
opposite areas near the corners and pin supported in the other two [17, 45] (see Figure 2.1). 
As Timoshenko and Woinowsky-Krieger [12] pointed out, this specimen has been used to 
verify the bending theory of thin plates [19]since it is a recognized case of anticlastic bending 
[2, 5, 12, 52], i.e. the deformed shape is a surface with curvatures of opposite sign. Hearmon 
and Adams [11] employed the PTS to measure the in-plane shear moduli of metals and 
plywoods by measuring the maximum deflection along diagonals of the panel. Similarly, 
Tsai [44] used this specimen with three pin supports and one loading pin at the corners to 
measure the bending and twisting stiffnesses of unidirectional glass fiber/epoxy composites. 
Both Hearmon and Adams [11] and Tsai [44]employed a solution developed by Thielemann 
[43] (and also reported by Lekhnitskii [28]) for thin anisotropic plates under uniformly 
distributed bending and twisting moments. Due to all these developments, simplicity and 
accuracy, the PTS has become the recommended ���� �3044 − 95 standard test method 
to measure the in-plane shear modulus of thin wood-based structural panels [9]. Mure 
extended the use of the PTS to determine the twisting stiffness ��� of corrugated core 
carboard panels [24, 53]. Later, Vinson [6] applied energy principles to this specimen to 
determinate the in-plane shear strength of face sheets, core and adhesive material in sandwich 
panels. Avilés et al. [17] developed an algebraic expression using classical laminated plate 
theory (CLPT) to determinate ��� and analyzed its suitability in compliance calculations for 
sandwich panels. From their analysis, they concluded that such CLPT expression 
underestimates the deflections with respect to those computed by the finite element method (FEM) and experiments. In order to consider the effect of transverse shear strains in the 
deflections of thick PTSs, a semi-empirical shear-corrected expression was proposed by 
Avilés et al. [42]. However, such formulation required an unknown constant to be calibrated 
by FEM or experimental data. In a sequel paper, Avilés et al. [16] measured successfully the 
in-plane shear modulus of glass-vinylester and glass-vinylester/plywood laminated 
composites, twist stiffness and transverse shear modulus of the core in glass-
vinylester/Polyvinyl chloride (PVC) foam sandwich composites by using their shear-
corrected formulation. In order to obtain an analytical solution for thick PTSs, Hernández-
Pérez et al. [45] developed a Fourier series solution by applying first-order shear deformation 
theory (FSDT). Such a solution, however, it is only suitable for compliant-cored sandwich 
materials where the transverse shear strains dominates the elastic response, is mathematically 
complex and does not provide an easy to implement closed-form solution. Elmalich and 
Rabinovitch [46] recently analyzed the twist behavior of compliant-cored sandwich panels 
by developing expressions based on geometrically nonlinear extended high-order plate 
theory, which considers all stiffness components of the core. They concluded that the in-
plane normal and in-plane shear stiffnesses of the core do not contribute significantly to the 
twist rigidity and that the main contribution comes from the in-plane shear stiffness of the 
face sheets and transverse shear stiffness of the core; they also pointed out that the actual 
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stress state is considerably different to the one given by the constant twisting moment stated 
by CLPT. Beyond its use for shear characterization of laminated composites and sandwich 
structures, the PTS can assist in understanding complex in-plane shear and tearing fracture 
mechanisms of composite materials. By including an edge crack along the mid-plane of the 
PTS, Lee [18] developed the edge crack torsion (ECT) specimen in order to measure the 
mode III fracture toughness of composite laminates using CLPT. The ECT specimen is still 
under research for potential standardization of fracture mode III in composite laminates, since 
FEM analysis has shown important mode II loading contributions along the edges of this 
specimen [54, 55]. As noticed from this literature background, several authors have rightfully 
addressed the solution to the deflections of thick composite plates and sandwich panels in the 
PTS configuration by using different approaches, but to date, an analytical closed-form 
solution which is free from calibration parameters, independent of FEM and easy to 
implement is inexistent. Thus, in this work an analytical closed-form expression for the 
compliance and rotations of thick specially orthotropic PTSs is developed by using FSDT. 
This solution is compared to experiments, FEM simulations and a previous CLPT solution, 
conducting an extensive parametric analysis of dimensions and elastic properties. It is 
expected that this novel and versatile solution contribute to the design of sandwich panels 
and composite laminates loaded in torsion, the determination of elastic shear properties by 
using the PTS experimentally, guide to further developments of anticlastic bending problems 
using shear deformation theories and potentially assist in the compliance solution of cracked 
composite specimens loaded in torsion. 

 

2.2 Analytical solution using first-order shear deformation theory 
 

2.2.1 The plate twist specimen 
The PTS considered here consists in a rectangular panel with side-lengths ���  and ���  and 
thickness ℎ, as depicted in Figure 2.1 for composite laminates (Figure 2.1a) and sandwich 
plates (Figure 2.1b). For the case of composite laminates, ℎ� represents the thickness of the �-th ply, Figure 2.1a. For sandwich panels, ℎ� and ℎ� denote the face sheet and core thickness, 
respectively, Figure 2.1b. In the PTS, the vertical forces and pin supports are placed inside 
the panel in order to avoid sliding of these loads at corners. The distances between the pin 
supports (span length) along the � and � directions are denoted as �� and ��, respectively. 
In the FSDT solution developed herein, no overhang is considered, i.e., only the in-plane area 
inside the vertical forces is considered (�� × �� area), i.e., for analytical solutions �� and �� 
dimensions will be used instead of ���  and ��� . The free body diagram of the PTS is shown in 
Figure 2.2a, where the pin supported conditions were replaced by upward transverse force 
reactions of magnitude �/2. According to plate theory, these four transverse forces at the 
corners can be represented by four transverse loads per unit length (�� and ��) and four 
twisting moments per unit length (���) applied at the edges, Figure 2.2b. In this figure, �� 
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and �� are the through-thickness forces per unit length, tangential to the �� and �� planes, 
respectively, which are defined as [47], 

 

�� = � ���������� ;                �� = � ���������� ;                 ��� = � �������/�
��/�   (2.1a-c) 

 

where ���, ��� and ��� are the shear stresses acting on the ��, �� and �� planes. Because of 
the PTS symmetry, only one quarter plate can be analyzed as is shown in Figure 2.2c. 
According to this figure, equilibrium of forces along the � direction and equilibrium of 
moments around � and � axes require that 

 ���(�, �) = �4 ;               �� ���2 , − ��2 � = − �2�� ;               �� �− ��2 , ��2 � = − �2�� (2.2a-c) 
 

Equations (2.2a − c) point out that inside the PTS exist transverse uniformly distributed 
loads �� and �� with constant magnitudes −�/(2��) and −�/(2��), respectively (negative 
signs indicate downward direction), which both equilibrate �/2 at (��/2, −��/2). 
Moreover, there is a uniformly distributed twisting moment per unit of length of constant 
magnitude �/4 on the entire plate, as Timoshenko and Woinowsky-Krieger [12] have 
pointed out. It should be noted that �� and �� from Eqs. (2.2b) and (2.2c) are not considered 
in the CLPT solutions (which consider only ��� = �/4 [2, 5, 9, 11, 12, 17, 19, 28, 43, 44, 
52] ), but they are considered in the FSDT solution. 

  (a) (b) 
 

Figure �. �. The PTS. (a) Composite laminate. (b) Sandwich panel. 
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 (a) (b) (c) 

 
Figure �. �. Equivalent force and moment diagrams for the PTS. (a) Original free body 
diagram. (b) Equivalent free body diagram with force and moment resultants. (c) Resultant 
transverse shear loads and twist moments in one quarter plate. 
 

The boundary conditions of the PTS can be determined from Figure 2.1. According to this 
figure, at the pin support positions (−��/2, ��/2) and (��/2, −��/2), the transverse 
deflection � must vanish, i.e., � �− ��2 , ��2 � = � ���2 , − ��2 � = 0 (2.3) 
 

In order to employ the FSDT, two rotation functions ∅� and ∅� are needed to represent the 
rotation of the plate cross-section with respect to the mid-plane (� = 0) along � and � 
directions. These rotations additionally denote the difference between transverse shear strains 
and slopes of the deformed mid-plane surface. Because of the symmetry of the PTS and its 
anticlastic deformed shape, it is expected that at the plate center (0,0), the slope of the 
deformed mid-plane surface becomes zero. This geometric condition leads to consider that 
both slopes (��/�� and ��/��) and rotating functions (∅� and ∅�) must vanish at the 
center of the plate, i.e.,  

 ���� (0,0) = 0;                       ���� (0,0) = 0 (2.4a-b) 
∅�(0,0) = 0;                        ∅�(0,0) = 0 (2.4c-d) 

 
In this work, two specially orthotropic material systems are employed as baseline for the 
parametric analysis. The first one is a cross-ply composite laminate formed by 24 plies with 
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a [(90/0)�]� stacking sequence, which represents a “stiff” material. Figure 2.1a. 90 and 0 
denote the angular orientation of the fibers of each ply according to the �-�-� global 
coordinate system, with 0 coinciding with the � direction. This cross-ply laminate is a square 
plate with side-lengths ��� = ��� = 78 mm and ply thickness ℎ� = 0.1875 mm (ℎ =4.5 mm). Each ply of the [(90/0)�]� laminate is made of a unidirectional glass/epoxy 
prepreg, whose specially orthotropic elastic properties are listed in Table 2.1. The second 
baseline material is a sandwich plate with aluminum face sheets and a PVC foam core, both 
considered isotropic, Figure 2.1b; this material system is labeled as “AL/H45” and represent 
a compliant sandwich material. AL/H45 consists of a square panel with side lengths ��� =��� = 305 mm, face sheet thickness ℎ� = 2.51 mm and core thickness ℎ� = 13 mm. The 
elastic properties of the aluminum and PVC foam are listed in Table 2.1. PVC foam cores 
may be slightly orthotropic but for simplicity in the parametric analysis they are considered 
isotropic, without significant changes in the outcomes of this elastic analysis [16]. Both 
baseline material systems were chosen because they are typically employed in engineering 
applications where light weight is priority [8, 56, 57]. 

 
Table 2.1. Elastic properties of baseline panels. 
 Unidirectional glass/epoxy prepreg Stiffness [(0/90)�]� �� =  47.7 GPa �� =  12.3 GPa �� =  12.3 GPa 

��� = 0.278 ��� = 0.278 ��� = 0.403 

��� = 4.83 GPa ��� = 4.83 GPa ��� = 4.48 GPa 

��� = 36.9 Nm ��� = 20.9 MN/m ��� = 20.9 MN/m 
 Aluminum �45 Stiffness AL/H45 � = 70 GPa  �� =  39.6 MPa ��� = 8.20 N m 
 � = 0.3  ��� = 0.32 ��� = 195 kN/m ��� = 195 kN/m 

 
2.2.2 First-order shear deformation solution 
FSDT was employed to provide accurate predictions of transverse deflections and strains in 
thick laminated composites and sandwich panels. The displacement fields in FSDT are given 
by [3], �(�, �) = ��(�, �) + �∅�(�, �) (2.5a) �(�, �) = ��(�, �) + �∅�(�, �) (2.5b) �(�, �) = ��(�, �) (2.5c) 
 

where ��, �� and �� denote the mid-plane displacements of an (�, �) point along the �, � and � axes, respectively. Considering that displacements are much smaller than the thickness of 
the plate (�, �, � << ℎ) and that strains are much lower than unity (infinitesimal strains, �, � < < 1), the strain fields in FSDT are customarily defined by [3, 47], 
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��� = ����� + � �∅��� ;                         ��� = ����� + � �∅��� ;                      ��� = 0         (2.6a-c) 
��� = ������ + ����� � + � ��∅��� + �∅��� � ;      ��� = ����� + ∅�  ;        ��� = ����� + ∅� (2.6d-f) 

 

According to FSDT, the contribution of both ��� and ��� to the deflections are considered by 
the rotations ∅� and ∅� as described by Eqs. (2.6e) and (2.6f). An alternative representation 
of ∅� and ∅� is obtained by rewriting Eqs. (2.6e) and (2.6f) as, 

∅� = ��� − ����� ;                        ∅� = ��� − �����   (2.7a-b) 
 

It should be noticed from Eqs. (2.7a, b) that when ��� = ��� = 0, the rotation functions 
become ∅� = −���/�� and ∅� = −���/��, which returns to the CLPT assumption. 
According to FSDT, the bending curvatures along the � and � axes (�� and ��, respectively) 
and twisting curvature ���  are defined as [3], 

�� = �∅��� ;                               �� =  �∅��� ;                           ��� = �∅��� + �∅���  (2.8a-c) 
 

Since there are not in-plane forces acting in the PTS (Figure 2.2c) and considering specially 
orthotropic materials, their constitutive equations are given by [3, 47], 

� �������� = ���� ��� 0��� ��� 00 0 ���� � ��������          (2.9a) 
������ = ������� 00 ������� �������� (2.9b) 

 

where �� and  �� are the bending moment resultants along the � and � axes. ��� and ��� 
are the shear correction factors employed in FSDT for the �� and �� planes, which correct 
the discrepancy between the actual transverse shear force distribution through the specimen 
thickness (parabolic or higher order) and that computed by FSDT (uniform) [24, 47]. ��� 
and ��� are the transverse shear stiffness corresponding to the �� and �� planes. These and 
the other extensional ��� and bending stiffnesses ��� are defined as [3], 
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��� = ��������(���� − ��)�
���    (2.9c) 

��� = 13 ��������(����� − ���);   (�, � =  1,2, … ,6)�
���  (2.9d) 

 

where ������� is the transformed reduced stiffness of the �th ply (� =  1, 2, … , �), �� is the 
transverse coordinate of the �th ply, and � is the total number of layers (� = 24 for the 
cross-ply laminate and � = 3 for the sandwich panel). From Figure 2.2b and 2.2c, it is 
observed that in the PTS only �� , �� and ��� are present. Thus, bending moment resultants 
are zero, i.e., �� = �� = 0. Including this condition into Eqs. (2.9a) and (2.9b) yields �� = ����� + ����� = 0;               �� = ����� + ����� = 0 (2.10a-b) ��� = ������ (2.10c) �� = ���������;                                  �� = ���������           (2.10d-e) 
 

Since bending stiffnesses ���, ���, and ��� are not negligible, the bending curvatures must 
vanish according to Eqs. (2.10a) and (2.10b), i.e., �� and �� = 0. Therefore, from Eqs. (2.10) is deduced that �� = �∅��� = 0;                                      �� = �∅��� = 0 (2.11a-b) 

��� = ��� ��∅��� + �∅��� �   
 

(2.11c) 
�� = ������ ������ + ∅�� ;   �� = ������ ������ + ∅�� (2.11d-e) 

 

In order to represent the deformed shape of the PTS and fulfill the equilibrium equations 
given by Eqs. (2.2) and boundary conditions given by Eqs. (2.3) and (2.4), the following 
algebraic polynomials are proposed, �(�, �) = �� + ��∅� + ��∅� + ��∅�∅� (2.12a) ∅�(�, �) = �� + ��� + ��� (2.12b) ∅�(�, �) = �� + ��� + ��� (2.12c) 
 

where ��  (� =  0, 1, … , 9) are unknown constants to be determined. Introducing Eqs. (2.12) 
into (2.4) and (2.11) yields, ��  = �� = �� =  �� =  �� =  �� = 0  
 (2.13a) 
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Substituting Eqs. (2.12b) and (2.12c) into (2.12a) and using the Eq. (2.3) yields, �� = ������ ����4  (2.13b) 
 

The constants ��, ��, ��, �� are determined in two steps. The first step consists in substituting 
Eqs. (2.12b) and (2.12c) into (2.8c), and then into Eq. (2.10c), and finally equating to Eq. (2.2a). In the second step Eqs. (2.12b) and (2.12c) are substituted into Eqs. (2.6e) and (2.6f), and then into Eqs. (2.9b), (2.2b) and (2.2c), yielding, �� = �����8 � 14��� + 1��� ������ + 1��� ������� 

(2.13c) 
�� = �2 � 14��� + 1��� ������ − 1��� ������� 

(2.13d) 
�� = �2 � 14��� − 1��� ������ + 1��� ������� 

(2.13e) 
 

Finally, substituting the constants ��, ��, ��, �� into Eq. (2.12), the proposed closed-form 
solution becomes �(�, �) = − �2 � 14��� + 1��� ������ + 1��� ������� �����4 + ��� (2.14a) 

∅�(�) = �2 � 14��� + 1��� ������ − 1��� ������� � (2.14b) 
∅�(�) = �2 � 14��� + 1��� ������ − 1��� ������� � (2.14c) 

 

Eqs. (2.14a − c) represent the FSDT solution developed herein for the PTS. The maximum 
deflection (����) takes place at both loaded corners (��/2, ��/2) and (−��/2, −��/2) and 
is given by ���� = − �4 �����4��� + ���������� + ����������� (2.15a) 
 

The compliance � is defined as the ratio between the maximum deflection and the total 
applied force, i.e., � = ����/� [24]. Thus, according to Eq. (2.15a) the compliance 
predicted by FSDT is, ����� = 14 �����4��� + ���������� + ����������� (2.15b) 
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The selection of the shear correction factors (��� and ���) is yet a matter of controversy 
because they depend on Poisson’s ratio, specimen aspect ratio, method of evaluation and type 
of problem [33, 35, 36]. The most typically accepted ones are ��� = ��� = 1, 5/6, 2/3 and ��/12. However, specific shear correction factors for torsion problems have been scarcely 
discussed in the literature [33, 36, 58]. Therefore, after a dedicated analysis shown in section 2.4.4, ��� = ��� = 2/3 were selected, which matches the suggestions by Whitney [35], 
Uflyand [59] and Timoshenko [60]. Furthermore, in order to employ Eq. (2.15b) for 
sandwich composite materials, Zenkert [8] and Avilés et al. [42] have pointed out that 
transverse shear stiffnesses of a sandwich plate with an isotropic compliant core ��� ≪ ��� 
and thin face sheets �ℎ� ≪ ℎ�� are reduced to ��� = ��� = ��ℎ�. This agrees with sandwich 
theory [23], which assumes that the transverse shear contribution from thin and stiff face 
sheets is negligible and the core carries almost all shear forces (�� and ��). Thus, considering ��� = ��� = ��ℎ� and ��� = ��� = 2/3 for sandwich materials [8, 35, 59], Eq. (2.15b) 
becomes ����� = ����16��� + 38��ℎ� ����� + ����� (2.15c) 
Eqs. (2.15b) and (2.15c) are employed for the parametric analysis of composite laminates 
and sandwich materials herein, respectively. It should be noticed that when the material 
studied is stiff or thin, i.e. low ratio of in-plane elastic moduli to interlaminar shear moduli 
(��/���) and width-to-thickness ratios higher than 10 [47], Eq. (2.15b) is reduced to the 
solution based on CLPT developed by Avilés et al. [17], which is given by,  ����� = ����16��� (2.16) 
 

It should be noticed that Eq. (2.16) does not consider the stiffnesses ��� and ��� which are 
important for shear deformable plates. In addition, if a monolithic isotropic stiff material is 
analyzed, both Eqs. (2.15b) and (2.16) are reduced to the equation developed in the ASTM 
standard D3044-94 [9] and discussed in Nádai [19], Jones [2], Hearmon and Adams [11], 
and Tsai [44]. By differentiating Eq. (2.14a) with respect to � and � the slopes of the 
deformed mid-plane along the � and � axes are obtained ����� ����� = − �2 � 14��� + 1��� ������ + 1��� ������� � 

(2.17a) 
����� ����� = − �2 � 14��� + 1��� ������ + 1��� ������� � 

(2.17b) 
 ��� and ��� are computed by substituting Eqs. (2.17) and (2.14) into Eqs. (2.6e) and (2.6f), 
which yields 
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��� = − ���� ������ �;                  ��� = − ���� ������ � (2.18a-b) 
 

For comparison, the displacement field �(�, �), slopes ��/�� and ��/�� obtained by 
Avilés et al. [17] using CLPT are employed in this work, i.e. �(�, �) = − �8��� �����4 + ��� 
 

(2.19a) ����� ����� = − �8��� �;               ����� ����� = − �8��� � (2.19b-c) 
 

2.3 Finite element analysis 
Finite element modeling was conducted in order to analyze and compare the deflections, 
compliances and transverse shear strains of the investigated panels with those predicted by 
FSDT. Three-dimensional finite element models were carried out in ANSYS11.0 [31] for 78 mm long square composite laminates and 305 mm long square sandwich panels, both 
modeled as linear elastic materials, see Figure 2.3 and Table 2.1. The total thickness (ℎ) of 
both baseline materials was variable due to the parametric analysis conducted. All models 
employed the SOLID185 element in order to be able to capture the transverse shear 
deformation. SOLID185 is a brick element defined by eight corner nodes with linear 
displacement interpolation between nodes. Each node has three translations along �, � and � 
orthogonal directions, i.e. 24 degrees of freedom. To model [(0/90)�]� composite laminates, 
the layered option of the SOLID185 element was used whereas the AL/H45 specimen 
employed the homogeneous option. In order to assign the orientation, elastic properties and 
thicknesses for each ply of the [(0/90)�]� laminate, the SOLID185 layered element was 
SOLID185 layered solid used the enhanced strain formulation method to prevent shear 
locking during twisting [31]. The elastic properties of both baseline models are listed in Table 2.1. In order to produce twisting in the [(0/90)�]� model, two point loads of 500 N (� =1 kN) were applied at two diagonally opposite nodes on the top surface at (−��/2, +��/2, +ℎ/2) and (+��/2, −��/2, +ℎ/2) considering a small (1 mm) overhang in each plate 
side accord to Browning et al. [61], which recommend to use small overhangs to reduce their 
influence in the compliance of the plate, i.e, ��� = ��� = 78 mm and �� = �� = 76 mm, 
according to figures 2.1a and 2.3a. These loaded nodes were coupled in the � transverse 
direction in order to obtain symmetric anticlastic bending of the plate, i.e., that both 
diagonally opposite corners experience the same deflection. The pin supports were modeled 
by prescribing zero transverse displacements (� = 0) in two nodes diagonally opposite at 
the bottom surface located at (+��/2, +��/2, −ℎ/2) and (−��/2, −��/2, −ℎ/2). 
Additionally, the nodes at the center of the plate (0,0) and corner (��/2, ��/2) were fixed 
in the � and � directions (i.e., � = � = 0 at (0,0) and (��/2, ��/2)). The AL/H45 model 
used the same forces and boundary conditions than the cross-ply laminate; however, since its 
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size is much larger, the AL/H45 panel employed 5 mm overhang with point forces applied 
to central areas of 10 × 10 mm� (0.22 % of the panel area) instead of single nodes, see 
Figure 2.3b. Considering that between plies there is a perfect union without sliding between 
them, a static analysis was performed in ANSYS employing a single load step, solving static 
equilibrium matrices by using the sparse direct solver (a Gaussian elimination approach). 
The compliance was computed as the nodal � displacement of the loaded node located at �−��/2, ��/2, ℎ/2 � divided by the value of the total applied force (� = 1 kN). In order to 
subtract indentation effects to the compliance, � was calculated by subtracting the deflection 
of the mid-plane node at ���/2, ��/2,0� to that located at �−��/2, ��/2,0� and dividing 
such difference by the magnitude of applied force. The element size and total numbers of 
nodes were chosen after obtaining convergence on the values of compliance in models with 
different mesh sizes. The aspect ratio of the finite elements for sandwich panels varied from 0.5 to 4, whereas for composite laminates varied from 4.16 to 21.3. Such refinements 
increased the computational time exponentially with no significant change in the compliance (only 0.13 % after 119,072 and 6,084 elements for sandwich panels and composite 
laminates, respectively). Thus, after the convergence analysis, the models for ��/�45 and [(0/90)�]� panels employed 119,072 and 6,084 elements, respectively. 

  (a) (b) 
 
Figure �. �. Finite element models of the baseline materials. (a) Laminated composite. (b) 
Sandwich panel. 
 
2.4 Results and discussion 
2.4.1 Displacement, rotations, and strain fields 
Figure 2.4 illustrates the deformed mid-plane surface (� = 0) of the [(0/90)�]� composite 
laminate calculated by FSDT (Figure 2.4a) and FEM (Figure 2.4b). A comparison of 
normalized mid-plane deflections (�/P) between FSDT (Eq. (2.14�)), FEM and CLPT (Eq. (2.19�)) is conducted in Figure 2.4c. It is observed in Figure 2.4a that the FSDT solution 
truly represents an anticlastic bending surface; its curvature along the pin supports (��/2, ��/2) and (−��/2, −��/2) is concave (downwards) and its curvature along loading 
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points is convex. As expected, zero and maximum normalized deflections (−9.88 μm/N) are 
obtained at pin supports and loading points, respectively. At the plate center (0,0), where 
both curvatures coincide, a local minimum value of 4.94 μm/N is attained. Similarly, the 
FEM in Figure 2.4b agrees with the anticlastic deformed surface predicted by FSDT with 
maximum normalized deflections of −10.33 μm/N at loading points and a minimum local 
value of 5.07 μm/N at the plate center. It was observed (not shown) that the CLPT solution 
developed by Avilés et al. [17] (Eq. 2.19a) adequately represents the anticlastic deformed 
shape of the [(0/90)�]� baseline laminate, in agreement with FSDT and FEM. Figure 2.4c 
shows that all approaches predict a linear deflection per unit force along � = ��/2, 
increasing from 0 at pin support (�/�� = +0.5) to ~ − 9.9 μm/N at loading point (�/�� =−0.5). The agreement between plate theories and FEM points out that CLPT and FSDT can 
be employed to predict the twist behavior of rigid and thin cross-ply laminates. 

 

 (a) 
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 (b) 
 

 (c) 
 

Figure �. �. Normalized mid-plane deflection (�/�) for the square [(0/90)�]� composite 
laminate. (a) FSDT. (b) FEM. (c) Along � = ��/2. 
 
The transverse displacement field (at the mid-plane) of the AL/H45 panel is also plotted by 
using FSDT (Figure 2.5a) and FEM (Figure 2.5b). Similar to Figure 2.5a, the FSDT solution 
adequately represents the anticlastic bending surface of the PTS, reaching a maximum value 
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of −4.55 μm/N at (+��/2, − ��/2) and (−��/2, +��/2) and with a local minimum value 
of −2.28 μm/N at the panel center. FEM (Figure 2.5b) also predicts an anticlastic deformed 
shape with similar deflections to those calculated by FSDT. The normalized deflection (�/�) is also plotted along � = ��/2 of the AL/H45 panel (Figure 2.5c). In this figure, 
FSDT predicts a linear �/� response, increasing from 0 at �/�� = 0.5 to −4.55 μm/N at �/��  = −0.5. The deflections computed by FEM coincide with those calculated by FSDT 
along � = ��/2. However, two small undulations are noticed for FEM, which may be due to 
influence of the ��� distribution in the deflection, which is caused by the applied point forces, 
as will be discussed later. On the other hand, the CLPT approach also presents a linear �/� 
behavior with a maximum of −0.71 μm/N at �/�� = −0.5, i.e., much lower deflections than 
FSDT and FEM. This is because the CLPT formulation does not consider the contribution of ��� and ��� to the deflection of the AL/H45 sandwich, whose core is compliant and prone to 
bend and shear. 

 

 

 (a) 
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 (b) 
 

 (c) 
 

Figure �. �. Normalized mid-plane deflection (�/�) of the square AL/H45 sandwich panel. (a) FSDT. (b) FEM. (c) Along � = ��/2. 
 
Transverse shear strain ��� is plotted along � = ��/2 (Figure 2.6a) and along the � = 0 
centerline (Figure 2.6b) for AL/H45. Here ��� is plotted only for AL/H45 since it was 
observed (not shown) that contribution of ��� to the maximum deflection of the stiff [(0/90)�]� laminate was only 3.37 % (with respect to FEM), which is considered negligible. 
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This shear contribution was calculated as 1 − �����/����, and in this case ����� ≈ ���� 
according to Figure 2.6c. In Figure 2.6a, it is observed that ��� predicted by FEM has a 
symmetric M-shaped behavior, raising from 0.75 × 10�� rad at �/�� = 0.5 to a maximum 
of 19.9 × 10�� rad at �/�� = 0.35, and then decreasing parabolically until a valley of 14.1 × 10�� rad is reached at � = 0. This predicted shape is due to the two transverse point 
forces which locally disrupt the constant ��� distribution along the edge. On the other hand, 
the FSDT solution predicts a constant ��� = 12.6 × 10�� rad along the entire edge (−0.5 ≤�/�� ≤ 0.5). At � = 0 (away from the applied forces), reasonable agreement between the ��� values predicted by FEM and FSDT is obtained. This points out that the FSDT solution 
predicts similar ��� than those by FEM in positions sufficiently far from the zone of applied 
forces, when compliant or/and shear deformable materials are used as cores. Figure 2.6b 
shows that FEM predicts a linear ��� behavior with negative slope along the � = 0 centerline 
with maximum and minimum values of ��� = ±14.1 × 10�� rad at panel ends. Good 
agreement is noticed between the ��� distribution computed by FEM and FSDT along the � = 0 centerline, which confirms that the proposed functions ∅� and ∅� are suitable to 
describe the ��� and ��� strain fields of the PTS. 
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 (b) 
 

Figure �. �. Mid-plane transverse shear strain ��� distribution along the AL/H45 sandwich 
panel. (a) � = ��/2. (b) � = 0 centerline. 
 
Further investigation of the transverse shear strain components from FSDT was conducted 
for the baseline plates. Figure 2.7 displays ∅� (Eq. (2.14c)), ��� (Eq. (2.18a)), slopes (��/��)���� (Eq. (2.17a)) and (��/��)���� (Eq. (2.19b)) at the �� plane of the cross-
ply laminate (Figure 2.7a) and sandwich panel (Figure 2.7b). For the cross-ply laminate, (��/��)���� and (��/��)���� have identical linear behaviors with negative slopes, 
attaining maximum and minimum values of ±130 × 10�� rad at panel ends. This agreement 
points out that the contribution of ��� and ��� to the rotations of stiff PTS composites is 
negligible, which is therefore dominated by ���. It is also noticed that ��� vanishes. On the 
other hand, the rotation ∅� presents a linear behavior with equal magnitude but opposite signs 
to those obtained for (��/��)���� and (��/��)����, i.e., ∅� = −��/��. This confirms 
that the current FSDT solution converges to CLPT when stiff materials are employed. 
Moreover, ∅� and ��/�� fulfill the condition of symmetry of being zero at the center of the 
plate (Eqs. (2.4a) and (2.4c)). 

Figure 2.7b shows that all transverse shear strain components keep linear trends along the 
normalized �/�� axis, but with different values than those shown in Figure 2.7a. For this 
compliant-cored sandwich, (��/��)���� predicts values 5.43 times higher than (��/��)����, which indicates that the cross-section rotation in compliant PTS is mainly due 
to ��� and ���. It is noticed that ��� can be estimated as the difference between (��/��)���� 
and (��/��)����. In other words, the shear contribution to the rotation is approximately ��� ≈ (��/��)���� − (��/��)����. Furthermore, ��� is 4.43 times larger than (��/
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��)����, which again points out its importance for compliant materials. As expected, ∅� 
results from the difference between ��� and (��/��)����. 

 

 (a) 

 (b) 
 

Figure �. �. Rotation function ∅�, slope (��/��)����, slope (��/��)���� and transverse 
shear strain ��� at the �� plane for the (a) [(0/90)�]� laminate. (b) AL/H45 sandwich panel. 
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2.4.2 Parametric investigation 
Since panel dimensions, orthotropy and stiffness strongly affect the deflections of the PTS, 
they are investigated here by using the FSDT solution. Figure 2.8 displays the compliance of 
square [(0/90)�]� cross-ply composite laminates (Figure 2.8a) and AL/H45 sandwich panel (Figure 2.8b) with different length-to-thickness ratios (��/ℎ). For cross-ply laminates, the 
total thickness ℎ was increased by adding more (0/90) layers (with ℎ� = 0.1875 mm ply) 
to its stacking sequence, i.e., the subscript � varies from 3 to 10. Figure 2.8a shows that 
compliance predicted by FEM increases monotonically from 1.87 μm/N at ��/ℎ = 10.1 (thick plates) to 65.4 m/N at ��/ℎ = 33.8 (thin plates). This is because ��� (and ���) vary 
linearly with ℎ, while ��� does it cubically. This means that for thick specimens, extensional 
stiffnesses ��� dominate their bending response whereas for thin specimens, stiffnesses ��� 
does, which is typically observed in the synclastic bending of thick beams [24, 47]. FSDT 
also predicts a monotonically rise in compliance from 2.15 to 78.8 m/N in the 10.1 ≤��/ℎ ≤ 33.8 range. For the majority of the ��/ℎ interval, good agreement is observed 
between � predicted by FEM and FSDT, although an exception is found at ��/ℎ = 33.8, 
where a difference of 20.5 % is attained. The CLPT solution predicts practically the same 
compliance values than FSDT for thick and thin plates. Consequently, both CLPT and FSDT 
approaches can be employed to predict deflections of stiff composite laminates in a wide 
range of ��/ℎ slender ratios. 

For AL/H45 sandwich plates, Figure 2.8b, the compliance computed by FEM increases 
linearly from 1.30 m/N for ��/ℎ = 4.0 to 8.05 m/N for plates with ��/ℎ = 30.5. 
Likewise, the FSDT solution predicts a monotonically increasing behavior of compliance 
with respect to the ��/ℎ ratio. � increases from 0.73 m/N at ��/ℎ = 4.0 to 11.6 m/N 
when ��/ℎ = 30.5. For the 4.0 ≤ ��/ℎ ≤ 19.1 range, FEM and FSDT predict similar �; 
however, for extremely thin plates with compliant cores (��/ℎ = 30.5), the FSDT approach 
overpredicts �, possibly because the transverse shear contribution dominates the deflection 
response in the FSDT formulation and/or the in-plane twist stiffness (���) plays ℎ a minor 
role in this extreme case. Regardless of the aspect ratios of the compliant-cored sandwich 
plates shown in Figure 2.8b, CLPT largely underpredicts the compliance with respect to 
FEM and FSDT, since ��� is not considered in the CLPT formulation (see, Eq. (2.16)). 
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 (a) 

 (b) 
 

Figure �. �. Effect of normalized side-length ��/ℎ on the compliance of square composites. (a) Cross-ply [(0/90)�]� laminate. (b) AL/H45 sandwich panel. 
 
 
Since FSDT and CLPT solutions strongly depend on ��� (due to ���), an analysis of the in-
plane shear modulus ratio between the face sheet and core (����/����) was conducted, 
keeping ���� = 29.6 MPa fixed. Figure 2.9 illustrates the effect of ����/���� ratio on the 
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compliance of square sandwich panels with isotropic cores and face sheets. A close-up of � 
for 1 ≤ ����/���� ≤ 50 is included in such a figure. The compliance predicted by FEM 
increases in a power law fashion from 0.075 to 0.184 μm/N in the 1 ≤ ����/���� ≤ 10 
range. For ����/���� ratios higher than 10, a linear behavior with a positive slope is 
observed. This linear trend starts from 0.184 μm/N at ����/���� = 10 to until 1.44 μm/N 
at ����/���� = 1000. These two different compliance behaviors seem to indicate that ��� 
is the dominant stiffness for ����/���� < 10, whereas ��� and ��� control the plate 
deflection for ����/���� > 10. Similarly, the FSDT approach predicts a compliance that 
rises from 0.048 to 0.141 μm/N in a power law form between 1 ≤ ����/���� ≤ 10. Larger 
ratios of ����/���� yield a linear growth in compliance, increasing from 0.141 to 0.985 μm/N for 10 ≤ ����/���� ≤ 1000. However, these FSDT predictions of � are slightly 
lower than those by FEM, possibly due to the shear corrected factor employed, which may 
not be constant in this case due to the high ����/���� mismatch between plies. This agrees 
with the examples of Birman and Bert [39], who pointed out that � approaches to zero as the ��/�� ratio increases, which would increase �. Also, the distributions of �� and �� (Eqs. (2.2b) and (2.2c)) assumed uniform may not be adequate and high order shear deformation 
theory may be needed for such extremely flexible sandwich cores. On the other hand, CLPT 
highly underestimates � for the 10 ≤ ����/���� ≤ 1000 range. This confirms that for the 1 ≤ ����/���� ≤ 10 range, the ��� stiffness dominates the elastic response of the PTS and 
for the 10 ≤ ����/���� ≤ 1000 interval the ���(= ���) stiffness dominates. 

 

 
Figure �. �. Effect of the ratio between in-plane shear stiffness of the face sheet and core (����/����) on the compliance of square sandwich twist panels. 



 

49 
 

The effect of variations in the anisotropy of cross-ply laminates is analyzed in Figure 2.10 
by plotting their ���/��� shear stiffness ratio against the plate compliance. It is observed that 
all approaches predict practically constant values of their corresponding compliances for the 1 ≤ ���/��� ≤ 5 interval. This points out that for stiff cross-ply laminates, slight differences 
between ��� and ��� do not affect significantly the deflections of the PTS. FEM predicts 
compliance values from 1.10 to 1.04 μm/N, whereas FSDT and CLPT predict � values 
between 1.25 and 1.23 μm/N, i.e., a 13 % difference between plate theories and FEM 
predictions. This indicates that FSDT and CLPT solutions are suitable to estimate the 
compliance of cross-ply laminates with moderated ���/��� ratios. 

 

 
Figure �. ��. Effect of ���/��� shear stiffness ratio on the compliance of cross-ply 
laminates. 
 

The compliance of [(0/90)��]� laminates is plotted versus their width/length ratio (��/��) 
in Figure 2.11. FEM predicts a 1.16 m/N compliance for square specimens (��/�� = 1), 
and as the ��/�� ratio enhances, � diminishes monotonically to ~ 0.24 μm/N for ��/�� =10 (slender rectangular specimens). This is due to the second moment of inertia of the plate 
cross-sections, which is high for large ��/�� ratios and low for small ��/�� ratios. The FSDT 
is in very good agreement with FEM for all ratios, while the CLPT diverts for ��/�� > 4. 
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Figure �. ��. Effect of in-plane aspect ratio ��/�� in the compliance of [(0/90)��]� 
laminates. 
 

2.4.3 Comparison with experiments 
Table 2.2 lists the compliance of several monolithic and composite plates measured and 
predicted by previous works using FEM and CLPT and those predicted by the FSDT solution, 
Eq. (2.15b). For almost all 14 panels analyzed, good agreement is observed between the 
compliance measured and that predicted by FSDT. This agreement covers a wide range of 
materials, from very stiff materials like metals and Maple plywoods [11], moderate stiff 
sandwich panels like “H200/Thick” [17] to moderate compliant sandwich plates like 
“AL/H100” [42]. In general, the compliance computed by FEM also agrees well with that 
measured. Consistently, the CLPT approach underestimates the compliance for moderate and 
very compliant materials, while it predicts it well for stiff materials. 
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Table 2.2. Compliance, measured and predicted by other authors and by the current FSDT 
solution [16, 17, 42] in (μm/N) and [11] in (10-4  in/Lb). 

Reference Panel 

Previously reported  Eq. (�. ���) Difference (%) 

EXP CLPT FEM  FSDT  �� − ������� � ��� 

Avilés et al.  
[17] 

H80/Thin 4.26 1.42 3.56  3.44 19.2 
H100/Thick1 2.85 0.85 2.23  2.31 18.9 
H200/Thin 2.51 1.42 2.16  2.15 14.3 
H200/Thick 1.82 0.85 1.56   1.59 12.6 

Avilés et al.  
[42] 

Al/H45 4.45 0.71 ----  4.56 -2.47 
Al/H100 2.85 0.84 ----  2.51 11.9 
Al/H200 1.82 0.89 ----   1.6 12.1 

Avilés et al. 
[16]  

G-VE/PW 1.43 1.55 ----  1.66 -16.1 
G-VE/H45 2.82 0.27 ----   2.11 25.2 

Hearmon and 
Adams 

[11]  

Maple Plywood (1) 30.7-36.5 ---- ----  31.8* 5.36 
Maple Plywood (2) 31.0-31.5 ---- ----  32.7* -4.64 
Aluminum 5.8-6.0 ---- ----  6.03* -2.2 
Brass 4.4-4.6 ---- ----  4.55* -1.11 
Mild steel 8.6-9.4 ---- ----   8.96* 0.44 

* FSDT equation is divided by 2 here because the maximum deflection measured in [11] is taken from the 
plate center to one loading point, i.e., half the displacement between pin support and loading point. “EXP” 
stands for experiment. 
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2.5 Conclusions 
A closed-form solution based on FSDT has been developed for the PTS. As a reference, the 
PTS was also analyzed by the FEM and a previously reported solution based on CLPT. A 
parametric analysis was conducted by employing two baseline materials, viz. a [(0/90)�]� 
cross-ply laminate made of a unidirectional glass/epoxy prepreg and a sandwich panel with 
aluminum face sheets and PVC foam core. The results indicate that FSDT solution is suitable 
to predict the transverse deflections of thick specially orthotropic PTS sandwich and 
laminated composite materials. Analysis of the transverse shear distributions showed that the 
FSDT approach predicts similar mid-plane transverse shear strains of sandwich panels with 
compliant cores, with respect to FEM. The analysis of plate size revealed that the FSDT 
approach properly predicts the compliance of square and rectangular plates (1 ≤width/length ≤ 10), thick (4.0 ≤ length/thickness ≤ 8.5) and thin plates (8.5 ≤length/thickness ≤ 19.1). It was also noticed that moderate changes in the transverse shear 
to in-plane shear moduli ratio (���/���) do not significantly affect the accuracy of the FSDT 
compliance for 1 ≤ ���/��� ≤ 5. On the other hand, for sandwich panels with large 
differences between in-plane shear modulus of the face sheet and core (����/����  ≥  200), 
FSDT underpredicts the compliance (~ 40 % for ����/���� = 200) with respect to FEM. 
Comparison between the FSDT predicted compliance and that previously measured in 
previous works yielded good agreement for specially orthotropic sandwich panels and Maple 
plywoods. The proposed FSDT closed-form solution is adequate for stiff and compliant 
specially orthotropic sandwich and laminated composite materials of moderate compliance 
with dimensions 1 ≤ width/length ≤ 10 and 4 ≤ length/thickness ≤ 19. Moreover, it is 
simple and rather accurate, and contributes to the existent knowledge of the PTS. Thus, this 
solution can be widely applied in the analysis and design of shear deformable specially 
orthotropic laminates and sandwich panels loaded in torsion, to predict in-plane and 
transverse shear moduli of face sheets and cores. The proposed solution may also assist in 
future developments of shear stress analysis of plates with mid-plane cracks under twisting 
loads. 
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Chapter III. A closed-form solution 
for anticlastic bending of laminated 
composite plates 
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3.1 Introduction 
Laminated composites plates and sandwich panels are widely employed in structural 
applications where a high stiffness/weight ratio is need. These structures may experience 
torsion and/or bending during their life-time, as part of wind turbine blades, helicopter rotors, 
composite shafts, airplanes, and naval structures, among others [7, 24, 40]. Torsion and/or 
bending loads may lead to a deformed anticlastic surface, which is characterized by having 
two curvatures with opposite sign at a given point, curved convexly along the longitudinal 
plane and concavely along the perpendicular section [62]. Investigation about anticlastic 
bending is important because is a fundamental case of pure bending mentioned in elementary 
theory of plates [12, 63], being the other fundamental case synclastic bending. Both represent 
extreme cases, which other general bending loading may be theoretically decomposed in. 
Pure anticlastic bending is produced if solely twisting moments are uniformly distributed (constants) along the edges of a plate [12]. To achieve this strict condition on thin isotropic 
plates, Lord Kelvin and Tait in 1883 [64] proposed an statically equivalent replacement of 
twisting couples at the edges of the plate by two downward concentrated forces at diagonally 
opposite corners and two upward concentrated forces at the remaining corners. Nowadays, a 
plate under this antisymmetric loading is named the plate twist specimen (PTS) [9, 10]. In 
the PTS, each concentrated force bears half of the applied force (�/2) yielding a constant �/4 twisting moment per unit length (���) along the edges of the thin plate [12, 64], i.e. ��� = �/4. However, the limits of applicability of this condition on compliant materials 
and/or thick laminated and sandwich plates have not yet been studied. In 1925, Nádai 
conducted experiments using the PTS, verifying the elementary solution of anticlastic 
bending for thin homogeneous plates [19]. Because of the simplicity and accuracy of the 
PTS, it has been standardized to measure the in-plane shear modulus of plywood panels and 
unidirectional fiber-reinforced plastic composites [9, 10]. The use of the PTS has also been 
extended to measure diverse elastic properties and strengths of orthotropic laminated 
composites. Vinson [6] determined the in-plane shear strength of the face sheets of an 
aluminum/PVC foam core sandwich panel. To achieve that, Vinson [6] developed a solution 
for the deflection based on the Ritz method. Tsai [44] used the original PTS configuration to 
measure the bending and twisting compliances (���, ���, ���, ���) of unidirectional glass 
epoxy composites; a similar work was developed by Hearmon and Adams [11, 43] to measure 
the compliances of aluminum, brass, mild steels and plywood plates obtaining good 
correlation between the measurements and predicted values of bending and twisting 
stiffnesses in metals and plywoods. Avilés et al. [17] used the Classical Laminated Plate 
Theory (CLPT) to determine the twisting stiffness (���) of thin sandwich panels, concluding 
that such a theory is no appropriate to determine ���. Later, Avilés et al. [42] developed a 
semi-empirical shear correct formulation for the PTS applied to sandwich panels in order to 
measure the out-of-plane shear modulus (���) of the core [16]. Most solutions of the PTS 
have been developed under the assumptions of CLPT, and only a few works have analytically 
predicted the elastic response of compliant and/or thick plates under anticlastic bending using 
higher order theories than CLPT [45, 46, 65]. Hernández-Pérez et al. [45] proposed a solution 
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for thick PTS using First-Order Shear Deformation Theory (FSDT) and Fourier series. This 
last solution considered the shear effects and is applicable to compliant-core sandwich 
materials where the shear contribution is important, but in practice, it may not be easy to 
implement as a standard reduction model due to the absence of a closed-form. Elmalich and 
Rabinovitch [46] derived a geometrically nonlinear extended high-order sandwich theory to 
study the twist behavior of soft-core sandwich plates considering all stiffness components of 
the core, its Poisson’s effect and the direct contribution of the in-plane shear stresses in the 
core to the twist rigidity. Their theory was implemented in FEM concluding that the in-plane 
normal and in-plane shear stiffnesses of the core do not have an important contribution to the 
twist rigidity. More recently, a FSDT solution of the PTS was presented in [65], considering 
shear effects and obtaining closed-form solutions for rotations and deflection of thick 
specially orthotropic plates. This solution, however, considers a constant shear correction 
factor � = 2/3 and twisting moment ��� = �/4, which brings some limitations in its 
application range, resulting convenient only to sandwich plates with ratios of ����/���� <100 and to cross-ply laminates with moderate ���/���  ratios, less than 5. Although ��� has 
been recognized as the main driving-load to yield anticlastic bending [12, 64], there is no 
assessment of the uniformity of the ��� = �/4 condition for compliant materials and/or 
thick plates. In addition, scarce studies and closed-form solutions (only one) have been 
developed on such specimen despite the importance of the anticlastic bending as a 
fundamental case of pure bending [65]. Thus, this work examines the ��� distributions of 
the PTS by FEM and develops an approximate closed-form solution based on FSDT and the 
Ritz method for the deflection and rotations of anticlastic bending of laminated composite 
plates, considering both ��� and the shear correction factors as functions of the material 
system. This solution is expected to assist on the determination of elastic (transverse shear) 
properties of laminated composites by PTS, and it could probably serve as a stepping stone 
for fracture mechanics solutions of mode III loading [18]. 

  

3.2 First-order shear deformation theory 
3.2.1 Kinematics 
FSDT extends the kinematics of CLPT by considering the effect of transverse shear 
deformation on the plate deflections [3], which becomes important for thick plates and 
compliant materials [4]. As other plate theories, FSDT assumes perfect bonding between the 
constituent materials, continuous and linear elastic materials, no extension along the 
thickness, small displacements, small rotations and deformations [3]. To determine the strain 
field by FSDT, three displacement (�, � and �) and two rotation functions (∅� and ∅�) need 
to be specified [3]. Here �, � and � represent displacements along the �, � and � directions, 
respectively, i.e.,   

 



 

56 
 

� = ��(�, �) + � ∅�(�, �) (3.1a) � = ��(�, �) + � ∅�(�, �) (3.1b) � = ��(�, �) (3.1c) 
where subscript 0 is referred to the mid-plane (at � = 0) of the plate, see Figure 1a. The 
functions ∅� and ∅� denote mid-plane rotations along the � and � axes, representing the 
difference between transverse shear strains and slopes of the deflection � along such axes 
[3, 4], and are of major relevance in this model, ∅� = ��� − ����  ;         ∅� = ��� − ����  

(3.2a-b) 
 

where ��� and ��� are the transverse shear strains at planes �� and ��. Accordingly, the 
curvatures are defined in FSDT as, �� = �∅��� ;                          �� =  �∅��� ;                   ��� = �∅��� + �∅���  

(3.3a-c) 
 

being �� and �� the bending curvatures along � and � axes, whereas ��� is the twisting 
curvature.  

  

 (a)  (b) 

Figure �. �. Schematic of the PTS. (a) Representation of rotations ∅�, slopes ��/�� and 
transverse shear strains ���. (b) Isometric view. 
 



 

57 
 

3.2.2 Governing differential equations 
By neglecting all in-plane forces in FSDT (i.e. considering only moment resultants and 
transverse forces along � axis), the equilibrium equations of a specially orthotropic plate are 
given by [3, 5, 40, 47], ��� ��∅���� + ��� ��∅����� + ��� ���∅���� + ��∅������ − ������ ����� + ∅�� = 0 

 
(3.4a) 

��� ��∅���� + ��� ��∅����� + ��� ���∅���� + ��∅������ − ������ ����� + ∅�� = 0 

 
(3.4b) 

������� + �∅��� � ������ + ������� + �∅��� �  ������ + � = 0 (3.4c) 
 

Here � represents the load per unit of area (pressure) acting along � direction over the 
plate. ��� (�, � = 1, 2, 6) are the bending stiffnesses and ��� (�, � = 4, 5) are the transverse 
shear stiffnesses of the plate [40]. ��� and ��� denote the shear correction factors for the 
planes �z and �� (respectively), which compensate the difference between the real ��� and ��� distributions and the constant distributions assumed by FSDT. Herein, ��� and ��� are 
calculated for each material system according to the methodology developed by Chow [34], 
which is summarized in Appendix B. This means that conventional constant values such as 1, 5/6, 2/3 and ��/12 are not assumed upfront for ��� and ��� [47]. In theory of plates, the 
pressure � is expressed in terms of moment resultants as [3, 63], 

 � = − �������� + 2 ��������� + ������� � (3.5) 
 

where �� and �� correspond to the bending moments per unit length along � and � axes. 
According to FSDT, the moment resultants for a specially orthotropic plate are given by [3], �� = ��� ��∅��� � +  ��� ��∅��� � ;            �� = ��� ��∅��� � +  ��� ��∅��� � (3.6a-b) ��� = ��� ��∅��� + �∅��� � (3.6c) 
 

By substituting Eq. (3.6) into (3.5) and then Eq. (3.5) into (3.4c), the equilibrium Eq. (3.4c) 
becomes, 
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������� + �∅��� � ������ + ������� + �∅��� �  ������= ��� ��∅���� + ��� ��∅���� + (��� + 2���) � ��∅������ + ��∅������� 
(3.7) 

 

Equations (3.4a − b) and (3.7) are the governing differential equations of the anticlastic 
bending problem, which are third-order partial differential equations on the variables ∅� and ∅� and second-order on �. 

 

3.3 Plate twist solution 
3.3.1 Boundary conditions 
Anticlastic bending of a rectangular plate is induced here by using the PTS, see Figure 1b. 
The rectangular plate has side-lengths �� and ��, and thickness ℎ. To obtain a solution for 
the PTS the boundary conditions discussed in this section are enforced. According to Figure 1b, � is zero at the pin supports, i.e.,  � �± ��2 , ∓ ��2 � = 0 

(3.8) 
 

Since the anticlastic deformed shape is symmetric with respect to the x and y axes, it is 
expected that the slopes ��/��, ��/�� and rotations ∅� and ∅� vanish at the center of the 
plate,  ���� (0,0) = 0;                ���� (0,0) = 0 

(3.9a-b) ∅�(0,0) = 0;                 ∅�(0,0) = 0 (3.10a-b) 
 

Timoshenko and Woinowsky-Krieger [12] point out that � vanishes along the center lines 
of a four-point loaded thin PTS. Since this work addresses a PTS with two pin supports and 
two concentrated forces (Figure 1b), it is then assumed that � remains constant along the 
axes of symmetry of the anticlastic shape, i.e., �(�, 0) = �(0, �) = ��  (3.11a) 
 

This is a condition of symmetry that will be evaluated and validated with FEM for flexible 
and stiff plates, and will be further discussed in the results section. Given this condition, the 
rate of change of Eq. (3.11a) is zero along the � and � directions, i.e., 
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���� (�, 0) = 0;                ���� (0, �) = 0 
(3.11b) 

 

Equations (3.8)-(3.11) constitute the essential boundary conditions of the PTS.  

 

3.3.2 Closed-form polynomial solution 
In order to satisfy the FSDT governing equations, Eqs. (3.4a − b) and (3.7), and fulfill the 
essential boundary conditions of the anticlastic bending problem, Eqs. (3.8)-(3.11), 
algebraic polynomials for the deflection �, and rotations ∅� and ∅� are proposed. Using 
algebraic polynomials keeps the mathematical problem analytically tractable and 
consequently the solution has a closed-form, which greatly facilitates its implementation by 
other authors. Differentiating Eq. (3.2a) with respect to � and Eq. (3.2b) with respect to �, 
the transverse shear strains become, ������ = ������� + �∅���  ;          ������ = ������� + �∅���  

(3.12a-b) 
 

Since � is assumed to be a continuous and well-behaved function, the sequence of its second 
derivative does not matter (���/���� = ���/����) which yields, ������� = ��� (��� − ∅�) = ��� ���� − ∅�� 

(3.13) 
 

Mathematically, the above equation implies three possible cases, but only one is physically 
plausible. The first case is the trivial one, ��� = ∅�     ;      ��� = ∅� (3.14a-b) 
 

Eqs. (3.14a − b) are discarded because they mean that � is constant along whole mid-plane  (��/�� =  ��/�� = 0, see Eq. (3.2)), which would not yield the anticlastic shape. The 
second case is,  ������ = − �∅���      ;      ������ = − �∅���  

(3.14c-d) 
 

Substituting Eqs. (3.14c − d) into (3.12a) or (3.12b) yields −���/���� =  �∅�/�� +�∅�/��, which according to Eq. (3.3c) is the definition of ��� by FSDT. Therefore, Eqs. (3.14c − d) imply that ��� = −���/����, which is half of the twisting curvature defined 
by CLPT [40]. This would mean that transverse shear strains yield exactly half of the 



 

60 
 

anticlastic curvature all the time, which is numerically impossible in actual tests. Hence, this 
second condition is also discarded. The third case is, ������ = ������      ;       �∅��� = �∅���  

(3.14e-f) 
 

which represents a general valid case where shear strains and rotations are continuous and 
vary along the � and � axes. Integrating Eq. (3.14f) with respect to � and solving for ∅� ∅� = � �∅��� �� 

(3.15a) 
 

Integrating Eq. (3.14e) with respect to � and solving for ���  ��� = � ������ �� 
(3.15b) 

 

According to Eqs. (3.15), only polynomials for ∅� and ��� need to be specified. In order to 
produce a closed-form solution, fifth- and third-order algebraic polynomials are proposed 
herein for ∅� and ���, viz.,  ∅� = ��� + ���� + ���� + ����� + ����� + ���� + ����� + ������ +����� + ����� + ������ + ������� + ������� + ������ + �����  
 

(3.16a) ��� = ��� + ���� + ���� + ����� + ����� + ���� (3.16b) 
 

The deflection � can be determined by integrating the slope ��/�� of Eq. (3.2a) with 
respect to �, i.e.,  � = ∫ ����� − ∫ ∅��� = ���� + ������ + ����� + ������ + ������� + ����� +������ + ������� + ������� + ������ + ������� + �������� + �������� + �������� +������ − ���� − ������ − ����� − ������ − ������� − ����� + ��  (3.16c) 
 

Substituting Eq. (3.16a) into (3.15a) yields, ∅� = ��� + �� ���� + 2���� + �� ���� + ����� + 3����� + �� ���� +�� ����� + �� ������ + 4������ + �� ����� + �� ������ + ������� +2������� + 5������  

(3.17a) 
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Substituting Eq. (3.16b) into (3.15b) yields, ��� = ��� + 12 ���� + 2���� + 13 ���� + ����� + 3����� 
(3.17b) 

 

Substituting Eqs. (3.16b), (3.16a) and (3.17a) into (3.4a) yields, ������(���� + ����� + ����� + ���� + ���� + ���)= ���(12������ + 6������ + 2����� + 6���� + 2���� + 2���)+ ���(2����� + 6������ + 12������ + 20����� + 2���� + 6����+ 12����� + 6��� + 2��� + 2��)+ ���(4����� + 12������ + 24������ + 40����� + 4���� + 12����+ 24����� + 12��� + 4��� + 4��) (3.18a) 
 

Substituting Eqs. (3.17b), (3.16a) and (3.17a) into (3.4b) yields, ������ �3����� + 13 ���� + ����� + 12 ���� + 2���� + ���� = ���(2����� + 12������ + 60������ + 3���� + 24����� + 6���)+ ���(4����� + 6������ + 6������ + 4����� + 3���� + 4���� + 3����+ 2��� + 2��� + ��)+ ���(8����� + 12������ + 12������ + 8����� + 6���� + 8����+ 6���� + 4��� + 4��� + 2��) (3.18b) 
 

From Eqs. (3.18), the following system of equations are formed, �� = �� = �� = �� = �� = �� = �� = �� = �� = ��� = ��� = ��� = 0 (3.19a) 3�������� + �������� − 12������ − 12(��� + 2���)��� − 60������ = 0 (3.19b) �������� = 12������ + 6(��� + 2���)��� (3.19c) �������� = 2������ + 20(��� + 2���)��� (3.19d) �������� = 2����� + 6(��� + 2���)�� (3.19e) �������� = 6������ + 12(��� + 2���)��� (3.19f) �������� = 20������ + 2(��� + 2���)��� (3.19g) �������� = 6����� + 2(��� + 2���)�� (3.19h) 
 

Equations (3.19b) − (3.19h) represent a system of 7 equations with 8 unknown constants (��, ��, ���, ���, ���, ��, ��, ��). Moreover, the constant �� does not appear in Eqs. (3.19), 
since it vanishes when conducting the derivatives of ∅� and ∅� in the right-hand side of Eqs. (3.4a) and (3.4b). To solve this problem, the Ritz method [35, 40] (theorem of minimum 
potential energy) is employed to create two additional equations to determine �� (arbitrarly 
chosen) and ��. According to FSDT, the potential energy (�) of the plate is given by [3, 40], 
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� = ∫ ∫ ����� ��∅��� �� + ��� �∅��� �∅��� + ���� ��∅��� �� + ������ �∅��� + ∅� ���� +��/����/���/����/��� ����� ��� + ������ �∅��� + ∅� ���� + �� �������� + ��� ��� ��∅��� �� + �∅��� �∅��� + �� ��∅��� ���  � +�� � ���� , ��� � + �� � �− ��� , − ��� � − �� � ���� , − ��� � − �� � �− ��� , ��� �  
 (3.20) 

 

To determine the constants �� and ��, � is minimized separately with respect to those 
unknowns, ����� = 0 

 

(3.21a)  ����� = 0 
(3.21b) 

 

After performing Eqs. (3.21), Eqs. (3.19b)-(3.19h) and (3.21) are solved altogether to 
determine the unknowns constants, yielding ��� = ��� = ��� = �� = �� = 0 
 (3.22a) �� = − 6���������� + ��������� 

 
(3.22b) 

�� = � 18��� + ����� − �����4� � � 

 
(3.22c) 

�� = 3����    
 

(3.22d) 
�� = − ����  (3.22f) 

 

where, �� = ������(��� + 2���) − ���������; (3.23a) �� = ��������� − ������(��� + 2���) (3.23b) � = (������ − ���� − 4������ − 4���� )���������� + ���������� (3.23c) 
 

Finally, a closed-form solution for the anticlastic bending of plates is obtained by substituting 
Eqs. (3.22) and (3.23) into Eqs. (3.16), and (3.17), yielding, 
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� = (�� − ��)�� − 13 ����� − ����� + �� (3.24a) ∅� = ��� + ����� + ���� (3.24b) ∅� = ��� + 13 ���� + 3����� (3.24c) ��� = ��� (3.24d) ��� = 2���(�� + ���� + 3����) (3.24e) 
 

the constant �� is determined by using the symmetry condition given by Eq. (3.11a), 
yielding, �� = �����4 � ��� − �� − 112 ����� − 14 ������ (3.25) 

 

It should be noticed that the solution given by Eqs. (3.24) fulfills the boundary conditions 
given by Eqs. (3.8)-(3.11) and the equilibrium equations given by Eqs. (3.4a − b) and (3.7). The proposed solution, Eqs. (3.24) is general since it considers the influence of 
bending curvatures �� and �� and transverse shear forces �� and ��. This allows to take into 
account the effect of ���, ���, ���, ��� and ��� stiffnesses in the anticlastic deflection. For 
the case of composite plates with isotropic layers (��� = ���, ��� = ��� and  ��� = ���), 
algebraic manipulations of Eqs. (3.22) leads to simplification of ��, ��, �� and �� as, �� = �8 � 1��� + 1���� (3.26a) �� = − 3�2���� + ��� ���� (3.26b) �� = − �2���� + ��� ���� (3.26c) �� = − 6����� + ��� ������� (3.26d) 
 

Notice also that if the transverse shear forces and bending moments are not considered (i.e. �� = �� = �� = 0), the present solution for � is reduced to the solution obtained by Allen 
[23], Jones [2], the ASTM standard D3044 − 95, Tsai [44], Gay et al. [66], Hearmon and 
Adams [11], Avilés et al. [17] and Lekhnitskii [28], using CLPT. The compliance (�) is 
introduced here to compare with previous results by several authors. � is defined as the 
maximum deflection � ( �(±��/2, ±��/2)) divided by the total applied load � [24], i.e.,  � = �� (3.27) 
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3.4 Finite element analysis 
For a basis of comparison against the FSDT model, FEM is conducted herein using the 
commercial software ANSYS11 [31]. To be able to capture the transverse shear strains and 
compute accurate twisting moments, brick element (SOLID185) with linear interpolation are 
employed in the FEM. This element is defined by eight corner nodes having three degrees of 
freedom at each node (translations along the �, � and � axes). In order to analyze the 
anticlastic bending of plates, two (baseline) specially orthotropic plates with different 
stiffnesses are employed herein. The first panel is referred to as “LM” (for laminate 
composite) which represents a stiff laminate composite with [(0/90)� ]� lamination and 
properties of an unidirectional glass/epoxy prepreg, typically employed to build structures 
like shafts, car bumpers, rockets, among others [8, 57]. The second panel is named “SW” and 
corresponds to a sandwich panel with stiff face sheets and a compliant core, typically used 
in aircrafts, wind turbines, buildings (as wall and roof panels) and ships (decks and hulls) 
[8, 57]. SW represents a sandwich panel with aluminum face sheets and PVC foam core 
which is usually identified as AL/H45. LM and SW are selected because they represent a 
stiff and a moderately flexible plate, respectively. LM aims to represent a flexural rigid thin 
plate which carries loads by internal bending and twisting moments, having negligible mid-
plane deformations and membrane forces. SW aims to represent a moderately flexible plate 
which carries external loads by the combined action of internal moments and transverse shear 
forces. Table 3.1 lists the size and elastic properties of the baseline plates used in main 
analyses. For the parametric analysis, the thickness ℎ varied from 4 to 100 mm  in order to 
obtain different aspect ratios. Figure 3.2 shows a schematic of the FEM and the boundary 
conditions used, where the origin of the coordinate system is placed at the center of the plate. 
In order to avoid excessive deflections at corners and discontinuous shear strain distributions 
along the edges, a small overhang of 5 mm per side was allowed in the FEM. This means 
that the point forces are applied along a diagonal line with is 7 mm away from the loaded 
plate corners, see Figure 3.2. Thus, two downward nodal forces of 500 � (� = 1 kN) were 
applied in the �-direction at nodes located at �±��/2, ± ��/2, ℎ/2�. The nodes placed at �±��/2, ∓��/2, −ℎ/2� were fixed (� = � = 0) whereas nodes at ���/2, − ��/2, �� were 
constrained along the �-direction (� = 0) to simulate pin support conditions. Additionally, 
nodes at the central surface of the plate (0,0, �) were fixed along � and � axes (� = � = 0) 
to avoid free-body motion. An analysis of convergence was conducted to investigate the 
effect of meshing size on �. For this purpose, elements of nominal size ranging from 5 × 5 × 6.40 mm� to  1.25 × 1.25 × 0.565 mm� were analyzed with a criterion of 0.15 % 
as maximum variation on �. The results of this stringent convergent analysis yielded typical 
models consisting of 119,070 elements with nominal element size of 2.5 × 2.5 × 1.13 mm�. ��� is computed by FEM by discretizing its common integral expression in plate theory [40] 
as, 
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��� = 12 ������ − �������(��� − ����� )�
���  (3.28) 

 

where � represents the �-th node and � denotes the number of nodes along the model thickness 
at (�, �) position (� = 9 for most FEM models). In order to obtain a representative value of  ��� for a specific plate, the average (���)��� value inside the entire mid-plane is computed 
as, (���)��� = 1����    � � ��� �� ����/�

���/�
��/�

���/�  (3.29) 
 

 

Figure �. �. Schematic of the FEM of the PTS. 
 
Table 3.1. Dimensions and properties of the baseline orthotropic panels. 

Panel Stacking 
sequence 

Dimensions (mm) Elastic properties Stiffnesses 

�� [(0/90)�]� 

 ℎ = 4.5 �� = �� = 76  ��’ = ��’ = 78 
�� = 47.7 GPa   �� = 12.3 GPa �� = 12.3 GPa ��� = 4.83 GPa ��� = 4.83 GPa ��� = 4.48 GPa ��� = 0.278 ��� = 0.278 ��� = 0.403 

��� = ��� = 20.9 MN/m ��� = 249 N m ��� = 215 N m ��� = 26.4 N m ��� =  36. 9 N m 

�� AL/H45 

ℎ� = 2.51 ℎ� = 13.0 �� = �� = 295 �� ’ = ��’ = 305 
��  = 70 GPa ��  =  0.30 ��  =  39.6 MPa ��� =  0.32 

��� =  ���  = 135 MN/m ��� = ��� = 23.5 kN m ��� = 7.03 kN m ��� = 8.20 kN m 
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3.5 Results and discussion 
In order to first build up the confidence in the FSDT solution and FEM model, both outcomes 
are first compared against compliance measurements for isotropic, laminated composites and 
sandwich panels, as listed in Table 3.2. It is observed that FSDT predicts similar compliances 
than those experiments previously reported (usually less than 10 % difference). Good 
agreement between FSDT and experiments is observed for isotropic stiff metals, glass-
vinylester/PVC foam based sandwich panels and aluminum/PVC foam based sandwich 
panels. A slight overprediction for � by FSDT is noticed for the Al/H45 (~ 32 %) and G −VE/PW (~ 35 %) panels, which may be due to the high sensitivity of FSDT to the input 
parameters (accurate elastic properties, dimensions and overhang measurements), the lack 
of large numbers of test specimens in some cases, and the natural scattering of experimental 
data, which is around 10 − 20 %  for the plate twist test [16, 17, 42]. Particularly, the 
indentation of soft cores and the assumption that plywoods are isotropic might affect the 
results for the Al/H45 and G − VE/PW panels, respectively. In order to determine the limits 
of applicability of the FSDT solution to a particular material system and geometry, an 
extensive parametric analysis will be conducted in section 5.3. Compliance predictions by 
FEM also agrees with measurements (less than 10 % of difference) with the exception of the G − VE/PW panel where a 37 % of difference is obtained. The overall good agreement with 
experiments brings certainty and confidence for the subsequent parametric analysis 
conducted. 

Table 3.2. Comparison between previously reported compliance measurements and 
predictions by FEM and FSDT of this work. 

Reference Panel 
 � (��/�)  Ratio (%) 

 EXP FSDT 
Eq.(�. ��) FEM  FSDT/EXP FEM/EXP 

[17] 

H80/Thin  4.26 4.60 4.26  7.98 0.00 H100/Thick1  2.85 2.93 2.58  2.81 9.47 H200/Thin  2.51 2.55 2.59  1.59 3.19 H200/Thick  1.82 1.87 1.80  2.75 1.10 
[42] 

Al/H45  4.45 6.02 4.44  35.3 0.22 Al/H100  2.85 3.22 2.79  13.0 2.11 Al/H200  1.82 1.90 1.82  4.40 0.00 
[16] G − VE/PW  1.43 1.89 1.96  32.2 37.1 G − VE/H45  2.82 2.78 2.91  1.42 3.19 
[11]* 

Aluminum  3.37 3.45 3.38  2.37 0.40 Brass  2.60 2.60 2.49  0.13 3.98 Mild Steel  5.11 5.12 4.91  0.14 3.87 
*: FEM and FSDT values were converted to µm/N and divided by 2 here because the 
compliance reported in [11] was determined with the deflection � from the plate center to 
one loading point, i.e., half the displacement between pin support and loading point. 
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3.5.1 Examination of the twisting moment 
Standard theory of plates indicates that ��� is the main external loading which yields 
anticlastic bending [12, 28]. However, the condition ���/� = 0.25 (which theoretically 
leads to pure twisting [12, 64]) has not been analyzed for compliant and/or thick plates. For 
this purpose, Figures 3 and 4 displays the normalized twisting moment ���/� distributions 
predicted within the mid-plane (� = 0) for LM and SW baseline panels (see Table 3.1). At 
the top-right corner of Figures 3a, 3b, 4a and 4b there is an insert of the top view of the mid-
plane, where the region marked in dark red color represents locations where  ���/� = 0.25. 
Figures 3c and 4c makes a direct comparison between ���/� computations by FEM and 
FSDT along the � = 0 center line. Figure 3.3a (FEM predictions) shows that ���/� attains 
values around 0.25 ±  0.01 within the mid-plane with a maximum of 0.26 at the center of 
the plate; an exception is found at the edges � = ±0.5 �� and � = ±0.5�� where a 0.07 
value is reached. These spurious ���/� values at the corners are because ��� is singular at 
those locations [67-69]. The top-right insert of Figure 3.3a confirms that FEM attains ���/� = 0.25 at most mid-plane. This behavior matches classical theoretical predictions by 
Lord Kelvin for thin homogeneous plate [64]. In Figure 3.3b it is observed that FSDT 
predicts a ���/� symmetric parabolic behavior with respect to the � and � axes, increasing 
from 0.21 at mid-length of the edges (0, ±0.5��) and (±0.5�� , 0) up to a maximum of 0.30 
at the center of the plate (0,0); the insert of Figure 3.3b shows that FSDT attains ���/� =0.25 only inside a symmetric rectangular strip zone defined by outer corners (±0.30, ±0.30) 
and inner corners (±0.20, ±0.20). Figure 3.3c illustrates the ���/�  parabolic behavior of 
FSDT and the plateau trend of FEM along � = 0 for the LM panel, reaching their 
corresponding maximum and minimum values at the center and edges of the plate. Despite 
the ���/� behavior predicted by FEM and FSDT are not equal, the attained values are 
similar, specially at the center of the plate where a small difference of 0.04 is found. This 
indicates that FSDT is able to rightfully capture the essentials of the ��� stress field yielded 
by the four �/2 vertical forces at corners. The small differences between FEM and FSDT on ��� calculations may be due to their inherent approximated nature, FEM is a numerical 
approximation and considers an overhang, whereas FSDT does not; furthermore, FEM is 
sensitive to the loaded areas by the �/2 concentrated forces. 
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 (a) 

 (b) 
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 (c) 
Figure �. �. Distribution of normalized twisting moment ���/� calculated by FSDT and 
FEM at the mid-plane (� = 0) of the LM baseline panel. (a) FEM. (b) FSDT. (c) along the 
center line � = 0. 
 

Figure 3.4a shows that the SW panel (which is more compliant than LM, compare ��� in 
Table 3.1) has a parabolic ���/� distribution at mid-plane, raising from 0 at the edges until 
a maximum of 0.40 at the center of the plate (0,0); the dark red zone of the insert of Figure 
3.4a shows that FEM reached ���/� = 0.25 only inside a small ring of radius 0.30 ≤�(�/��)� + ��/���� ≤ 0.34. By comparing Figures 3a and 4a (FEM), it is observed that 

not only ��� depends on the material system, but also the shape of its distribution within the 
mid-plane, i.e., ��� becomes more uniform (flat) as the stiffnesses of the plate increases (see ��� stiffnesses in Table 3.1). This observation suggests that ��� is not fully constant  
(�/4) within whole mid-plane, as assumed by CLPT and previous works [11, 17], specially 
for compliant plates. Such inhomogeneity on the ��� distribution indicates that a pure 
twisting state is not fully reached in this specimen, due to the influence of the shear 
deformation of compliant materials [5, 17, 47]. FSDT also predicts a parabolic distribution 
of ���/� (Figure 3.4b), although it attains minimum and maximum values of 0.28 and 0.34 
at the corners and center, respectively; from the insert of Figure 3.4b, it is observed that 
FSDT only attains ���/� = 0.25 inside a small ring region bounded by 0.38 ≤
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�(�/��)� + ��/���� ≤ 0.42. Figure 3.4c shows that the ��� parabolic responses by FEM 

and FSDT along center line � = 0 are slightly dissimilar in shape and minimum values at the 
edges (0 for FEM and 0.28 for FSDT). However, both approaches have similar peak values 
at the center of the plate (difference of 0.06) and their average ���/� are comparable, as 
will be further discussed in connection to Figure 3.5. 

 (a) 

 (b) 
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 (c) 
Figure �. �. Distribution of normalized twisting moment ���/� calculated by FSDT and 
FEM at the mid-plane (� = 0) of the SW baseline panel. (a) FEM. (b) FSDT. (c) along the 
center line � = 0. 
 

Given the variation and importance of the ��� distribution shown in Figure 3.4 for compliant 
plates (such as SW), the average ((���)���/�, see Eq. (3.29)) and maximum (�������� /� )) normalized twisting moment are plotted against different ��/�� ratios of 
sandwich panels (based on SW) in Fig 5. Here (���)��� with its standard deviation 
(computed from all Mxy values at mid-plane) and (���)��� are parameters which aim to 
encompass the homogeneity and dispersion of ��� within the same plate, with respect to an 
ideally constant value. In other words, if Mxy would be constant (�/4), average and 
maximum values would be identical and scattering bars would be inexistent. Figure 3.5a is 
depicted for 1 ≤ ��/�� ≤ 200 (stiff cores) and Figure 3.5b for 200 < ��/�� ≤ 1768 (compliant cores). In these figures it is observed that (���)���/� predicted by FEM attains 0.18 ± 0.02 for the isotropic case (��/�� = 1) and raises non-linearly until to 0.24 ± 0.05 
at ��/�� = 20; for ��/�� > 20 (���)���/� increases slightly with respect to ��, keeping 
mean values around 0.24 and 0.27. Because the (���)���/� mean values varied from 0.18 
to 0.27, the assumption of ��� = �/4 is not fully valid for compliant materials, and is 
approximated only for 1 ≤ ��/�� ≤ 20 according to Figures 5a and 5b (using a criterion of 16 % as maximum difference of ��� with respect to ��������). On the other hand, the 
standard deviation of (���)���/� by FEM follows a similar trend than its mean values, i.e., 
for ��/�� = 1 the standard deviation reached a minimum of ± 0.02 but varies slightly 

0.00

0.10

0.20

0.30

0.40

-0.5 -0.25 0 0.25 0.5

FEM
FSDT

����

�/��



 

72 
 

between ± 0.05 and ± 0.09 for 20 ≤ ��/�� ≤ 1768. This scatter indicates the large 
inhomogeneity of the ��� stress distribution within mid-plane, confirming that ��� is not 
constant for compliant materials. It is observed that �������� /� predicted by FEM follows 
a similar nonlinear trend than (���)���/�, although much higher values are obtained (a 
minimum of 0.20 at ��/�� = 1 and maximum of 0.42 at ��/�� = 700). The significant 
difference between �������� and (���)��� indicates that the highest ��� obtained at the 
center of the plate is much higher than the nominal value inside the mid-plane. In Figures 5a 
and 5b it is observed that �������� and (���)��� calculated by FSDT predicts constant 
values of 0.34 and 0.25 ± 0.06, respectively. It is also observed that FSDT and FEM predict 
the same �������� in a large range of compliant cores (20 ≤ ��/�� ≤ 1768) but for 1 ≤��/�� < 20 the average capture by FSDT differs from FEM between 4 % to 38 %. This 
difference is due to the parabolic ��� predicted by FSDT, compared to the flat shape 
predicted by FEM for small ratios of ��/�� (see, Figures 3). However, the scattering bars 
overlap showing that there is no statistical difference. It also shows that for the range in which 
FSDT and FEM predicts the same ��������, the maximum constant value of ��� = 0.34 
predicted by FSTD at the center of the plate is in good agreement with the FEM predictions 
at the same location, with maximum differences of 16 %. These observations let to conclude 
that the ��� expression found using FSDT is a good approximation to predict the ��� 
behavior in the entire plate for 20 ≤ ��/�� ≤ 1768. 
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 (b) 
 
Figure �. �. Maximum and average ���/� (Eq. (3.29)) versus ��/�� ratios for different 
sandwich panels using the panel SW as baseline. (a) 1 ≤ ��/�� ≤ 200. (b) 200 ≤ ��/�� ≤1768. 
 

3.5.2 Prediction of displacements and transverse shear strains 
Three-dimensional plots of the normalized transverse deflection field (�/�) at mid-plane (� = 0) of the SW baseline panel (Table 3.1) are plotted in Figures 6a (FEM) and 6b (FSDT). A comparison between both approaches for the center line � = 0 is shown in Figure 3.6c. Both, Figures 6a and 6b, show that � forms an anticlastic deformed shape, i.e., two 
parabolic shapes with opposite signs are observed along the perpendicular diagonals of the 
plate. This anticlastic shape vanishes at the pin support locations (�/�� ± 0.5, �/�� = ∓0.5) 
and attains a maximum value of 4.5 μm/N (FEM) and 6.0 μm/N (FSDT) at the location of 
the applied loads (±0.5, ±0.5). This difference between the maximum deflections predicted 
by FSDT and FEM are due to high influence of the overhang and point-loaded areas 
considered only by the FEM model for this sandwich panel with a highly flexible core (better 
agreement was obtained for stiffer cores, e.g. see Table 3.2). Figure 3.6c shows that the 
normalized deflection �/� predicted by FEM reached a constant value of 2.2 μm/N along 
the center line � = 0 for SW, which validates the assumption given by Eq. (3.11a) and 
agrees with the observation by Lord Kelvin and Tait [64] and Timoshenko and Woinowsky-
Krieger [12] for the anticlastic bending of thin isotropic plates. As expected, FSDT predicts 
a constant value  �/� along � = 0, reaching 3.0 μm/N, which approximates to the FEM 
predictions. 
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 (c) 
 

Figure �. �. Normalized displacement fields �(�, �)/� for the baseline SW at mid-plane (� = 0). (a) FEM. (b) FSDT. (c) along center line � = 0. 
 

Because transverse shear strains have a great influence on the deflection of compliant and 
thick plates, Figure 3.7 displays the normalized transverse shear distribution (���/�) along 
the edge � = ��/2 at the mid-plane for baseline panels LM (Figure 3.7a) and SW (Figure 3.7b) using FEM and FSDT (all ��� are considered positive). In Figure 3.7a is observed that 
FEM predicts a practically constant ���/� = 8.91 µrad/N behavior along the edge � =��/2, with exception of zones near the corners 0.45 ≤ |�/��| ≤ 0.5 where ��� tends to 
vanish due to the free-edge border condition [4, 47, 63]. In order to obtain a representative 
statistically ���/� value, the area under the curve ���/� vs �/�� is calculated and represented 
by the symbol Ω, which indicates the mean ���/� value along the �/�� axis. FEM averaged Ω��� = 8.65 µrad/N which is close to that obtained along the plateau trend. Similarly, 
FSDT predicts a constant ���/� distribution along �/��, attaining Ω���� = 1.14 µrad/N. 
Despite this value is much lower than that obtained by FEM, it is expected that the ��� 
contribution to the transverse deflections of stiff laminated composites is negligible, as 
several authors have demonstrated [17, 45, 47]. This is because the anticlastic bending is 
dominated by the effect of bending stiffnesses ��� for those stiff plates, instead of transverse 
shear stiffness ��� and ��� [17, 65]. Figure 3.7b shows that for the panel SW, according to 
FEM, ���/� raises linearly with a large gradient from 1 µrad/N at the corner �/�� = 0.5 to 
a peak value of 19.9 μrad/N at �/�� = 0.35. Then ���/� decreases parabolically towards 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

-0.50 -0.25 0.00 0.25 0.50

FEM
FSDT

�/�
(µm/N) �� = �� = 295 mmℎ� = 13 mmℎ� = 2.51 mm�� = 15 MPa�� = 26.9 GPa

�/��



 

76 
 

the middle of the edge until a local minimum of 14.1 μrad/N at �/�� = 0. It is noted that 
the shape of the ��� distribution is symmetric with respect to the vertical axis of Figure 3.7b. 
On the other hand, FSDT (Eq. (3.16b)) predicts a constant ���/� = 17.4 μrad/N along the � axis, yielding Ω���� = 17.4 μrad/N, which is very similar to that computed by FEM (15.5 μrad/N). The fact that FSDT is not exactly representing the detailed nonlinear 
behavior of ��� estimated by FEM is due to the chosen algebraic polynomial, ��� = ���, see 
Eq. (3.24d). Herein ��� is inversely proportional to the sum of products of shear corrections 
factors and transverse shear stiffnesses, which is strongly related to the constitutive equations 
of transverse shear resultants by FSDT [47]. This fact allows the FSDT solution to nominally 
capture the through-thickness distributions of ��� and ��� in the plate by their shear correction 
factors. Thus, the FSDT has a similar average ��� than that predicted by FEM (Ω���), which 
means that the proposed solution is able to represent the distribution of ��� for sandwich 
materials with compliant cores in a smeared out manner. 

 (a) 
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 (b) 
Figure �. �. Comparison of normalized mid-plane transverse shear strain  (���/�) for the 
baseline panels listed in Table 3.1 at the edge � = ��/2. (a) LM. (b) SW. 
 

3.5.3 Parametric analysis 
The effects of the panel slenderness (��/ℎ) on the compliance of square orthotropic plates 
are analyzed in Figures 3.8a and 3.8b, which are based on LM and SW, respectively. In these 
figures, ℎ was increased keeping the side-lengths constants (�� = 76 mm for LM and �� =295 mm for SW). In order to increase the thickness of the laminate (Figure 3.8a), the 
number of plies increased according to [(0/90)�]� where � = 1 … 12 (� = 1 implies 4 plies, 
and � = 12 implies 48 plies). This figure illustrates that for a moderately thick panel (��/ℎ = 8.4) with 48 plies, FEM predicts a compliance of 1.87 µm/N, and such compliance 
raises parabolically as the ��/ℎ ratio grows, achieving 2035  µm/N for ��/ℎ = 101 (thin 
plate with 4 plies). FSDT also predicts a parabolic raising of the compliance as the ��/ℎ 
ratio grows, obtaining good matching with FEM along the whole range 8.4 ≤ ��/ℎ ≤ 101 (small differences around 5 % of FSDT with respect to FEM were obtained). Figure 3.8b 
shows that the compliance calculated by FEM increases in a nearly linear fashion with 
increasing panel aspect ratio ��/ℎ. It is observed that FSDT slightly overpredicts the 
compliance with respect to FEM for 4 ≤ ��/ℎ ≤ 61, obtaining a difference of 20 ± 5 % in 
the range 26.5 ≤ ��/ℎ ≤ 61. These differences are attributed to the consideration of the 
concentrated forces in a small nodal area in the FEM model. The agreement between both 
models points out that FSDT captures the nominal transverse shear strains distributions with 
sufficient accuracy by using specific shear correction factors for each sandwich structure with 
different slenderness ratio. 
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 (a) 

 (b) 

Figure �. �. Effect of normalized length ��/ℎ on the compliance of square panels based on 
baselines plates. (a) LM. (b) SW with ℎ� = 2mm. 
 

0

500

1000

1500

2000

0 10 20 30 40 50 60 70 80 90 100 110

FEM

FSDT

LM90/0 � ��� =  �� = 76 mm   � = 1, … , 12         ��� = ��� = 4.83 GPa  ��� =  4.48 GPa   ��� = ��� = 0.278                ��� = 0.403� (μm/N)

��/ℎ

0

10

20

30

0 20 40 60

Lx / h

FEM FSDTSW�� = �� =  295 mmℎ� =  2 mm�� =  70 GPa�� =  15 MPaC
(μm/N)



 

79 
 

Since the core carries most shear stresses in sandwich structures, the shear moduli ratio 
between face sheet and core (��/��) on the compliance of square sandwich panels (based 
on SW) are plotted in Figure 3.9. It is observed that the compliance predicted by FEM and 
FSDT increases with respect to the ��/�� ratio. As seen from the insert, the compliance 
attains a power-law behavior for the interval 1 ≤ ��/�� ≤ 50, which corresponds to stiff 
panels. However, a linear trend is observed for panels with compliant cores in the range 50 < ��/�� ≤ 1800. For ��/�� ≤ 1000 the compliance predicted by both models is similar, 
reaching a maximum difference of 12 % for ��/�� = 1000. However, for ��/�� > 1000, 
FSDT overpredicts the compliance with respect to FEM with a maximum difference of 21 % 
for ��/�� = 1800, which corresponds to the SW panel (a sandwich panel with a very 
flexible core, �� = 15 MPa). The results of the parametric analysis shown in Figures 3.8 and 3.9 show that the present solution is able to accurately predict (less than 20 % of difference) 
the anticlastic bending behavior of specially orthotropic plates with different dimensions (4 ≤ ��/ℎ ≤ 61) and elastic properties (1 ≤ ��/�� ≤ 1000). 

 
Figure �. �. Effect of the in-plane shear modulus ratio on the compliance of the square 
sandwich panels. 
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3.6 Conclusions 
A closed-form solution to the plate twist specimen (PTS, yielding anticlastic bending) of 
specially orthotropic plates including laminated composites and sandwich structures is 
developed using first-order shear deformation theory (FSDT) and the theorem of minimum 
potential energy. The proposed approximate solution for the transverse shear strain and 
rotations of the cross-section of the plate are fifth- and third-order algebraic polynomials (for ��� and ∅�, respectively) which fulfil the governing equations and essential boundary 
conditions of the PTS, and their algebraic form greatly facilitates further use of the solution. 
For comparison, a finite element model (FEM) is performed by using three-dimensional 
brick elements with linear interpolation. Both FSDT solution and FEM were first validated 
by comparing against previously reported measurements of compliance (ratio of maximum 
deflection to applied force �) for a large variety of isotropic and orthotropic plates, finding 
reasonable agreement.  The deflection field showed that the FSDT solution accurately 
represents the anticlastic deformed shape of orthotropic plates under twisting. Good 
agreement (less than 20 % of difference) was also observed between compliance predictions 
by FEM and FSDT when the aspect ratio of square laminated composite plates is varied 
between 8.4 ≤ ��/ℎ ≤ 101, and sandwich panels with aspect ratio of 4 ≤ ��/ℎ ≤ 61 or 
shear moduli ratio of 1 ≤ ��/�� ≤ 1000. One of the most important findings is that the 
distribution of the twisting moment ��� within the mid-plane is not constant but has a 
parabolic behavior for sandwich structures with compliant cores, being maximum at the 
center and zero (minimum) at the edges. This parabolic trend becomes more uniform (flatter) 
as the stiffness increases, approaching the classical value of �/4 for thin and stiff plates. 
FEM showed that ��� ≈ �/4 mostly within the mid-plane of unidirectional glass/epoxy [(0/90)� ]�, whereas the average ��� varies from 0.18� to 0.27� for sandwich panels with 
face-to-core elastic modulus ratios of 1 ≤ ��/�� ≤ 1768. This significantly differs from the 
classical assumption of ��� = �/4 considered by CLPT principles for thin homogeneous 
plates [12, 64]. Good matching on the maximum and average ��� between FEM and FSDT 
is obtained for a large variety of sandwich structures, indicating that the FSDT solution is 
able to represent a nominal ��� stress state on the anticlastic bending of such composite 
materials. Since the FSDT solution proposed is approximated (two constants are determined 
by the theorem of minimum potential energy), it predicts a constant distribution of transverse 
shear strains (��� and ���) along lines parallel to the � and � axis. Despite of this, the constant ��� predicted by FSDT agrees reasonably well with the average value predicted by FEM for 
sandwich panel in the wide range of 350 ≤ ��/�� ≤ 1745. The solution proposed here can 
predict the transverse deflection, rotations of the cross-section, twisting moments and 
averaged transverse shear strains of both stiff thin laminated composites and sandwich 
structures with compliant cores. Furthermore, from the practical point of view, their algebraic 
closed-form is easy to implement/code and may be useful to determine shear elastic constants 
by measuring the compliance from experimental testing (e.g., ���, ��� and ��� can be 
measured from ���, ��� and ���). Their variable shear correction factors for a specific 
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material system allows to capture the nominal transverse shear strain field for a large 
collection of plates with different slenderness ratios and different face-to-core elastic 
modulus ratios (for sandwich structures).  
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Conclusions 
 

Orthotropic laminate composites under twisting loads were analyzed theoretically, 
numerically using the PT test. Two polynomial closed-form solutions are developed to 
predict the deflection and compliance of rectangular specially orthotropic plates under 
twisting loads; FEM simulations are performed to analyze rigid composite plates and 
sandwich panels; and experimental measurements previously reported in the literature were 
employed to verify the FEM model. The two closed-form solutions show good agreement 
with FEM and reported results. Analysis of the plate size in the first closed-form solution 
revealed that the FSDT approach properly predicts the compliance of square and rectangular 
laminated plates in the following ranges (1 ≤ width/length ≤ 10), thick (4.0 ≤length/thickness ≤ 8.5) and thin plates (8.5 ≤ length/thickness ≤ 19.1). Moderate 
changes in the transverse shear to in-plane shear moduli ratio (���/���) do not significantly 
affect the accuracy of the FSDT compliance for 1 ≤ ���/��� ≤ 5. On the other hand, for 
sandwich panels with large differences between in-plane shear modulus of the face sheet and 
core (����/����  ≥  200), FSDT underpredicts the compliance (~ 40 % for ����/���� =200). The first solution is adequate for stiff and compliant specially orthotropic sandwich 
and laminated composite materials of moderate compliance with dimensions 1 ≤width/length ≤ 10 and 4 ≤ length/thickness ≤ 19. Analysis of plate size in the second 
closed-form solution revealed that the distribution of the twisting moment ��� by FEM 
within mid-plane indicates that ��� has a parabolic behavior for compliant cores although 
this ��� tends to be constant as the core stiffness enhances, which coincides with 
Timoshenkos’ observation that ��� = �/4 for thin isotropic plates. The maximum ��� 
value, ��������, was obtained at the center of the plate, which increases in a non-linear 
fashion with respect to ��/�� until a peak value, which remains almost constant to larger ��/�� ratios. For the variety of orthotropic plates analyzed, �������� oscillates between 0.2� to 0.5�. Parametrical analysis reveals that this solution is applicable in the following 
ranges (1 ≤ length/thicknes ≤ 61) and shear moduli ratio between plies (range 1 ≤ ��/�� ≤ 1000) to sandwich panels and (8 ≤ ��/ℎ ≤ 100) to composite laminates. 
Accord to the comparison between FSDT and CLPT, the transversal shear loads, which are 
attributed to the shear strains take relevant importance in sandwich panels when the ratio ��/�� > 10. It is concluded that both solutions predict accurately the deflection and rotations 
of compliant and stiff specially orthotropic plates loaded under anticlastic bending on the 
specified ranges. By the other hand, the shear correction factor ���, which depends of the 
materials properties, dimensions and ply orientation, must be carefully selected or 
determined as is indicated in the appendix A and B, respectively, because this strongly affects 
the shear strains which become too important in plates with moderate or large thickness and 
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sandwich panels with compliant cores. It is recommended that when the dimensions and 
properties of the plates are within the application ranges indicated by the parametrical 
analysis of the first solution, the required calculations, for simplicity, should be done using 
this solution because the calculation of ��� is avoided, selecting this as a constant (��� =2/3), otherwise, the second solution must be employed.  
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Appendix A: Effect of the shear 
correction factor 
 

Since the shear correction factor ��� has a great influence on FSDT solutions, four values of ��� typically employed in the literature (��� = ��� = 1, 5/6, 2/3 and ��/12) are 
specifically analyzed in this section. Figure A-1 displays the normalized mid-plane deflection �/� at the edge � = ��/2 of the AL/H45 panel by using FEM, CLPT and FSDT (Eq. (2.15c)) approaches. Although CLPT and FEM trends were already discussed in Figure 
2.5c, they are plotted again herein for comparative purposes. It is observed that the shape of 
the deflection curve predicted by FSDT is independent of the value of ��� employed, but the 
magnitude of the deflection changes. The panel deflection increases as ��� decreases, with ��� = 1 yielding the lowest deflection, and ��� = 2/3 yielding the highest deflection. The 
results with ��� = 1, 5/6 and ��/12 underestimates �/� with respect to FEM, whereas ��� = 2/3 yields the best agreement. This indicates that Timoshenko’s beam theory with ��� = 2/3 is suitable for bending/torsion problems, since the anticlastic bending of the PTS 
yields bending along the � and � axes. 

 

Figure � − �. Normalized mid-plane deflection (�/�) predicted by FEM, CLPT and FSDT 
(employing four values of ���) for the square AL/H45 sandwich panel at the edge � = ��/2. 
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Appendix B: Calculation of the shear 
correction factors 
 

The shear correction factors ��� and ��� (to correct the ��� and ��� distributions of FSDT) 
are determined herein using the methodology suggested by Chow. By conducting one-
dimensional bending analyses of laminated plates along � and � directions, Chow found that 
the through-thickness distributions of ��� and ��� may be represented by, ���(�) = �� ��(�)���                                      ���(�) = �� ��(�)���  (B.1a-b) 
 

where z is the coordinate along the plate thickness.  ��(�) and ��(�) are continuous functions 
given by 

��(�) = − 12 � ����(�)(�� − ���)�
���                  ��(�) = − 12 � ����(�)(�� − ���)�

���  (B.2a-b) 
 

where � is the �-th ply of the laminated composite. ����(�) and ����(�) represent the reduced 
transformed stiffnesses of the �-th ply along the material 1 (longitudinal) and 2 (transverse) 
axis, respectively. Analyzing the strain energy with Eq. (B. 1), Chow found that, ��� = (���)�������(�)                                              ��� = (���)�������(�) (B.3a-b) 
 

where ���(�) and ���(�) are functions through the plate thickness given by, 

���(�) = � � [���(�)]����(�)(�) ��������
�

���            ���(�) = � � [���(�)]����(�)(�) ��������
�

���  (B.4a-b) 
 

where ���(�)(�) and ���(�)(�) are the transverse shear modulus at material planes 13 and 23 of 
the �-th ply, and � is the total amount of plies. It should be noted that ���(�)(�) changes at 
each ply, i.e., the second ply is rotated 90 degrees respect to the first ply, the third ply is 
rotated 90 degrees respect to the second ply and so on. As an example, to determine the factor ��� for a laminated composite with 3 plies (� = 3), the three functions ��(�) are calculated 
as, 
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[��(�)]� = − 12 ������ (�� − ���)� (B.5a) [��(�)]� = − 12 [����� (��� − ���) + ����� (�� − ���)] (B.5b) [��(�)]� = − 12 [����� (��� − ���) + ����� (��� − ���) + ����� (�� − ���)] (B.5c) 
 ���(�) is determined by substituting Eqs. (B.5) into (B.4a), i.e., 

 ���(�) = � [���(�)]����(�)(�) ������ + � [���(�)]����(�)(�) ������ + � [���(�)]����(�)(�) ������  (B.6) 
 

where ���(�)(�) = ���(�); ���(�)(�) = ���(�); and ���(�)(�) = ���(�) . Finally, ��� is determined by 
evaluating Eq. (B. 6) and such a value is included into Eq. (B. 3). 
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