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Abstract

The extraction of electrical information from bio-siognal recordings is been a field where
the Action Potential Detection and Sorting process take place. The analysis when this
information is detected is crucial for in vivo and in vitro recordings, as well as the time
that it takes to detect such electrical information and their analysis in off-line process.
In addition, this off-line analysis could take along time and many memory resources.
Therefore, we proposed a simple method to achieve Detection and Classification of Action
Potentials by using a match filter technique combined with the detection of Correlation
Pattern by an adaptive threshold in a hardware architecture.

The architecture was realized in a Field-Programable Gate Array (FPGA) by VHDL
language, in order to achieve the goal of real-time performing and be a good candidate
in both real-time and off-line process. The architecture consist of a chain module that
can be replicated for Micro electrode arrays (MEAs) recordings with some adjusments.
The architecture is able to save the sample number of the Action potential detected and
sorting this sample in six different cluster depending on the Correlation Pattern detected.
This Correlation Pattern is the result of the correlation with the mean Action Potential
template and Action Potential template detected at that moment.

The VHDL module have an Universal asynchronous receiver-transmitter UART
communication protocol to start the process, stop it and read only a sample at the time.
An additional feature is added in the off-line mode, where each time an Action Potential
is detected, the module stop the reading process in the SD-card and the architecture, and
the Action Potential shape, thresholds and Correlation shape can be seen on the OLED
display.

The chain module was tested with a Macaque monkey biosignal recorded in vivo at
a sampling rate of 40 kHZ and resolution of 16-bits per sample. In the same way the
hardware was tested at the sampling rate of 40 kHz (the same sampling rate of the
original signal). A second biosignal, a Human pancreatic biosignal, was also tested with
a sampling rate of 10 KHz, In addition, an off-line software simulation of the processes
was tested in Python 2.7, in order to validate and start the architecture design.
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Resumen

La extracción de información eléctrica de bio-señales ha sido un campo donde la detección
de potenciales de acción y procesos de clasificación ha tenido lugar en largos periodos de
muestreo de señales. El análisis y detección de esta información es crucial en experimentos
in vivo y in vitro, al igual que el tiempo que toma detectar esta información eléctrica y
su análisis en procesos fuera de ĺınea. Además, estos procesos fuera de ĺınea pueden tomar
mucho tiempo y muchos recursos de memoŕıa. Es por eso que nosotros presentamos un
método simple para lograr la detección y clasificación de Potenciales de Acción usando una
técnica de coincidencia de formas en conjunto con la detección de Patrones de Correlación
por medio de un umbral adaptativo en una arquitectura de hardware.

La arquitectura fue realizada en un Field-Programable Gate Array (FPGA) en VHDL,
esto con el fin de lograr un desempeño en tiempo real y ser una buena candidata para
ambos procesos en tiempo real y fuera de linea. La arquitectura es capaz de guardar el
número de muestra donde el Potencial de Acción fue detectado y clasificar la detección
dentro de seis diferentes grupos dependiendo del Patrón de Correlación detectado. Este
Patrón de Correlación es el resultado de la correlación entre la forma del Potential de
Acción promedio con la forma del Potencial de Acción detectado en ese momento.

El módulo de VHDL tiene una comunicación Universal asynchronous
receiver-transmitter (UART) para empezar el proceso, pararlo y leer sólo una muestra a
la vez. Una caracteristica adicional es agregada en el modo fuera de ĺınea, donde cada
vez que un Potencial de Acción es detectado, el módulo para el proceso de lectura en la
tarjeta SD y en la arquitectura es detenido, y la forma del Potencial de Acción puede ser
observada sobre el OLED display.

El módulo de canal fue probado con una bio-señal de Mono Macaco grabada en in vivo
a una frecuencia de muestreo de 40 KHz y con una resolución por muestra de 16-bits. De
la misma forma la arquitectura en hardware fue probada a una frecuencia de muestreo
de 40 kHZ (la misma tasa de muestro que la seal original). Una segunda bio-señal fue
probada, una bio-señal de Pancreas humano, a una frecuencia de muestro de 10 KHz.
Además, una simulación fuera de ĺınea del proceso fue probada sobre Python 2.7, para
validar y comenzar con el diseõ de la arquitectura en hardware.
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– It’s only those who do nothing

that make no mistakes, I suposse

–.

– Joseph Conrad –

1
Introduction

The electro-physiology is the study of the electrical properties of biological cells and
tissues that measure and analyse the changes of voltages or electric currents such as
the Action Potentials (APs) in neuroscience, which are spontaneous electrical activities
collected through an electrode or a network of electrodes. These electrical activities can
come from neural population as well as the interactions between neurons. Multi-cell
recording is a commonly used technique to extract this electrical information from
cell-cultures and tissue slices in order to find treatments for human diseases and
disorders. Other electrical information during biosignal recordings with lower frequencies
than APs are known as Local Filed Potentials (LFP) and Slow Potentials (SPs), which
are groups of hundreds of excitable cells exhibiting continual oscillations during the
recording process of biosignals.

Nowadays the bio-electronics field is addressing projects where is important to
understand the behaviour of living beings through their electronic information as known
as action potentials (APs) and produced by neurons, muscle cells and some endocrine
cells as pancreatic cells. The principal application for APs detection is to collect the
important electrical information coming from the biological signals and to know how to
stimulate properly the biological tissue or cell-culture by an electrical stimulus evoking
field potentials in a specific region, for instance, studying the spontaneous activity in
a neuronal population, using drugs in cell-cultures or brain slices that can generate
spontaneous potentials, which can be recorded to know the drug effects. Furthermore, the
toxic effects of the drug need to be tested in vitro before their application in vivo animal
recordings, due to ethical procedures. Additionally exist the Deep Stimulation Brain
(DSP), which is one the most common surgical treatments for Parkinson’s disease for the
patient with motor complications, reducing the symptoms and medication requirements.
Besides, in the last years, it has been presented several projects, where the user controls
objects or robots by human thought or handicapped people is able to control their
wheelchair, as well as the prosthesis for legs, arms or the cochlear implants that stimulate
the auditory nerve. All these applications come from the analyses of biosignal recordings,
which ones are classified as Extracellular and Intracellular recordings depending on their
nature.

The Multi-cell recording is normally performed using multiple electrodes these
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multi-electrodes are commonly known as Multielectrode arrays (MEAs), standard MEAs
have numerous electrodes commonly made of titanium nitride and these arranged in an 8
x 8 or 6 x 10 configuration on a glass substrate. Implantable MEAs are used actually in
vivo recordings and non-implantable MEAs in vitro recordings. In vitro comes from the
Latin “within the glass,” while in vivo comes from “within the living”. How their name
says in vitro experiments are developed with cell-cultures or tissue slices, while in vivo
experiments with the whole living organism and the electrodes are inserted in the living
tissue.

The Action Potentials Detection (APD) involves the study of many types of brain
functions, as we know most of the neurons in the brain communicate by firing electric
signals, these signals are APs, which are brief voltage pulses appearing in bursting
patterns. The APs could belong to one or more neurons or cells and detect their patterns
could be challenging, given that there is no shape pattern to follow and to compare with
new detections during biosignal recordings, therefore to carry out a sorting process to
know which APs belong to each neuron or another cell involve a challenging assignment.
Moreover APD could be challenging when certain features in the recording process are
presented, as the high amount of background noise, on top of that neurons in a local region
tend to have APs with similar shape and size which complicate more the sort process,
furthermore APs coming from the same neuron could have the same characteristic shape,
but their height could be affected if there are other neurons in the local region with APs
of considerable size and similar firing rates, this could happen when two or more neurons
or cells are firing simultaneously, one such example is when the peak of the present
Action Potential (AP) and the dip of the next AP coming from other neuron occur at
the same time, then the APD could be missed, and we would have several overlapping APs.

The thesis is divided in five chapters. First, we briefly review some biological concepts
and the electro-physiology history, in order to understand the biological context of this
thesis. In chapter 2 we discuss the threshold detection researches and some classification
methods of APs. The third chapter is dedicated to the background of the adaptive
threshold and the classified method for APs, as well as the methodology used. In the
fourth chapter, we present the hardware architecture designed. In this thesis Finally, in
the fifth chapter we present the simulation results and tests on the hardware architecture
designed, as well as the detection and classification results of APs, using different threshold
levels, as well as the conclusions and future works.
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CHAPTER 1. INTRODUCTION

1.1 Justification

One of the main problems associated with Action Potential Detection is the background
noise, which is caused by biological noise coming from the biological environment,
moreover the electrical components by their nature also add certain noise to the biosignal
during the recording process by Micro-Electrode Arrays (MEAs). These could hinder
the Action Potential detection, so an appropriate treatment is needed. Therefore, we are
looking for an algorithm and its implementation on a FPGA to properly perform the
detection of these Action Potentials. The use of a FPGA device will allow us to increase
the speed in the detection of the desired Action Potentials, saving time for its subsequent
analysis.

1.2 General objective

Field Programmable Gates Arrays (FPGA) design and hardware implementation of an
architecture for filtering and detection of Action Potentials in macaque and pancreatic
biosignals recorded by Multielectrode arrays (MEAs).

1.3 Specific objectives

❼ Numerical simulation and validation of an algorithm for action potentials detection.

❼ Estimation of optimal parameters to enhance the algorithm with action potentials
from macaque and pancreatic biosignals.

❼ Design and implementation of a hardware protocol to read the biosignals from an
SD card.

❼ Design of hardware components needed to implement the architecture for filtering
and action potential detection over VHDL language.

❼ Estimate and store the time of each detected action potential from the biosignals
for further processing. Saving the detection time of each of the action potential
detected into the biosignal.

❼ Design of a hardware protocol for biosignal visualization through an OLED display

1.4 State of the art

The are many common algorithms and methods that are used to achieve detection
and sorting of Action Potentials. Basically, all these methods have the same goal, to
accentuate the Action Potentials or get a better relation Signal-to-noise radio (SNR), to
detect the Action Potential by a threshold that can be computed of many ways. After,
the feature extraction of the Action Potential shapes, and finally some way how to cluster
this detection depending on their origin that could be the same cell that generate the
Action Potential or other cell close to the electrode that recorded the biosignal.

Here, we present some of the recent architectures, methods and algorithms tested in
real-time and in off-line process:
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1.4. STATE OF THE ART

Hardware implementation for detection and sorting models has been presented in
Gibson et al. (2013). Here, a FPGA architecture was designed to achieve detection and
sorting of Action Potentials in both real-time and off-line. It was achieved in a FPGA
Xilinx Virtex-5. This system is able to be configurable with several methods, such
as detection by absolute value or nonlinear energy operator(NEO). For the alignment
of shapes can be selected maximum value, minimum value, absolute value and NEO
maximum. Finally, clustering by the Osort method. These methods can be selected by
the use of a Matlab and Python scripts.

Commonly, algorithms for Action Potential sorting are composed of three parts, The
Action Potential detection, extraction of some features for Action Potential shapes and
clustering from its features. In Takekawa et al. (2014) is proposed a new method using
probabilistic tools by detecting and clustering, the different Action Potential in biosignals,
where by using the Bayes theorem compute the probability of a sample belongs to an
Action potential. This is performed by taking into account the distribution nature of
Action Potentials in amplitudes, widths and frequency. This method is useful for analysis
of extracellular recordings with linear probes but no hardware implementation took place.

Other systems are made over CMOS technology as Barsakcioglu et al. (2014), They
developed an Analog Front-end system for neuronal Action Potential sorting. They
use common tools for Action Potential Detection and sorting methods, as well as the
common methods: Template Matching (TM), Principle Component Analysis (PCA),
First and Second Derivative Features (FSDE),with the use of a Graphical user Interface
(GUI) implemented in Matlab.

The CMOS technology has been applied also for detecting Action Potentials, with the
use of wavelet coefficients.Yang et al. (2015) made a prototype in a FPGA for 16 channels
for Action Potential detection, by applying the use of Stationary Wavelet Transform
(SWT), this prototype was afterward mapping in a 130 nm CMOS technology using the
lifting wavelet transform, which is a faster implementation in hardware than the common
SWT.

Pirog et al. (2015) propose a versatile module in VHDL, which is part of a hardware
architecture dedicated to biosignal processing, where, the use of wavelet filters, IIR
filters, Action Potential Detection and Slow Potentials takes place. the modules is able
to automatically detect certain electrodes where there is not important information
excluding this electrodes for the recording process, taking into account their frequency,
amplitude of the events and synchronous activity. This module was implemented on a
Xilinx Spartan-6 FPGA.

Some other Action Potential classifiers were tested as: Super-Paramagnetic
Classification (SPC), Osort , K-means, Moving Centroid K-Means, Moving Centroid
K-Means, Hierarchal Adaptive Means (HAM), Fuzzy C-Means (FCM), Mahalanobis
classification, Support vector classification (SVC), Self-organizing maps (SOM) and
Cosine Similarity classification. Here, Saeed et al. (2017) present a good comparative of
existent classifier architectures for implementation in real-time of Neural Action Potential
sorting. They concluded that the best classifier is the SOM classifier, when it is taking
into account accuracy and complexity. This classifier is based on the use of an Artificial
Neuronal Network (ANN). Although we know that the implementation in hardware of
classifiers based on an (ANN) consume a lot of memory resources because of the creation
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of Lookup tables.

Other methods have been developed in the lasts years, such as the Time-frequency
based convolution spike detection algorithm (TIFCO) and the Stationary wavelet based
TEO(SWTTEO). The first one is based on the time-frequency of Action Potentials in
the range of 500 Hz and 3500 Hz. The second one is based on a low-pass filter using the
Discrete Wavelet Transform (DWT) and applying the Teager energy operator (TEO) to
each filter sub-bands Lieb et al. (2017). The implementation was made over Matlab.

1.5 Biological Context

In this section, some interesting and important concepts about biology are addressed, as
well as some historical events that took place, to achieve which is nowadays known as the
Electro-physiology.

1.5.1 First Electro-physiology Experiments

In 1791 Luigi Galvani, a professor from the University of Bologna, discovered the nerve
conduction and muscle contraction. Carrying out experiments with frogs (De Viribus
Electricitatis in Motu Musculari Commentarius),Galvani (1791)). His results surprised
the science community. One of the Galvani’s experiments consisted in link a long metallic
wire to a frog nerve, locating the wire in a high point of his house. Then, Galvani
was waiting only for a storm that was coming to him. After, some flashes of lightning,
Galvani observed that in the frog legs some contractions occurred (Figure 1.1).

Subsequently, Galvani performed the experiments on a clear and sunny day, but
nothing happened. Then, Galvani, after his defeat, played with the wire connected to
the frog nerves, pressed and pushed the wire with an iron railing, and the contraction
returned. Finally, Galvani repeated the experiment in a closed room, locating an iron
plate this time, and one more time the frog leg contractions appeared. So, Galvani came
to the hypothesis that the cause of it was not the atmosphere electricity, otherwise the
existence of an intrinsic electricity coming from the animal, which he named “animal
electricity” Piccolino (1998),Piccolino (2008); Bresadola (1998).

Alessandro Volta, one of the first scientists that repeat the Galvani’s Results from the
University of Pavia, was doubting about Galvani’s hypothesis. Volta believed that the
origin of the frog leg contractions, were caused by the electricity that was conducted by
the metals, using a bimetallic arc and connecting it to two points of the frog leg nerves,
getting the frog leg contractions for the difference of the metals, like the response to an
external electricity, Volta later used this concept to generate his electric battery. How can
we think about it ?. A big controversy was opened between Galvani and Volta,(Piccolino,
2008), (Figure 1.2).

Another contribution was performed for the Galvani’s nephew. Giovanni Aldani a
physicist from the University of Bologna, who since 1782 worked as a research assistant
for Galvani. Aldani, in addition, conducted a serial of experiments with birds, lambs,
calves and oxen Figure 1.3. One of the most mentioned was the application of electric
current to an ox brain, having good results, and stimulating several parts of the brain.
Afterward, Aldini was thinking that the brain stimulation could be a good practice for
therapeutic procedures. Aldini, In 1802, in Bologna, stimulated three human bodies,
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Figure 1.1: Galvani’s experiment in a stormy day. A long wire is connected to the frog
nerve muscle, the other circuit is a Leyden Jar, which was a capacitive devices during the
18th centuary. Ilustration from: Galvani (1791)

which were from three criminals that had been executed an hour before. The stimulation
of the three bodies was achieved, having good muscular contractions during the seasons.
Morover, Aldini used one of the Volta’s devices, the bimetallic pile, in order to convince
the scientist community that the stimulation was a good procedure as a therapeutic tool
Parent (2004).

1.5.2 The First Electro-physiology Steps

Carlo Matteucci (1811-1868), also from the University of Bologna, using the Galvani’s
technique the galvanism, measured the “animal electricity” from the muscles of frogs
and other animal preparations. The Matteucci’s results gave the possibility to measure
from pure muscle preparations, putting on one of the extremes of the galvanometer the
intact part of the muscle and on the other one, the cut side. Afterwards, Matteucci
cut several frog muscles, and he linked them in manner where he collocated the pieces
as a pile, where the intact part of the muscle was connected with the next cut side of
the other preparation. He detected in the galvanometer a current increase when more
preparations of frog muscle was added to the pile, recording the current between the
cut and intact parts of the muscle is due to the potential difference between the interior
and the exterior of the muscle fibers. Finally, with this result Matteucci finally ended
with the controversy between Galvani and Volta, giving one of the first steps for the
electrophysiology,(See Piccolino and Wade (2012)) for Illustration experiment).
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Figure 1.2: Galvani and Volta, and their hyphothesis. Ilustration from: backyardbrains

Du Bois-Reymond (1818-1896), was the first to discover the action potential, using a
sophisticated galvanometer that he built. He detected a flow of charge that was presented
in the muscular and nervous tissue,assumming this observation, as the “resting current”,
Finkelstein (2006). The Bois-Reymond’s experiments consisted in stimulate the muscles
and nerves, causing that the resting current almost disappeared and even it could be
negative, confirming the Matteucci’s observations Navarro (2013). Nowadays this current
is known as the action current. Along with thier achievements, Du Bois-Reymond is
considered the father of the electro-physiology Pearce (2001).

Later in 1952, Hodgkin and Huxley proposed a model, where they could predict the
shape of action potentials, their studies were on a squid giant axon. Moreover, the model
was able to know the parts that evoked the action potentials Catterall et al. (2012).
Action potentials arise from the synergistic action of sodium channels and potassium
channels, each of which opens and closes in a voltage-dependent fashion. A key feature
of their model is that the channels open independently of each other; the probability
that a channel is open depends only on the membrane voltage history” from: Colwell
and Brenner (2009). The model is part of a set of non-linear differential equations,
whose propose is to explain the features in excitable cells. The Hodgkin’s and Huxley’s
results presented the concepts of Action potentials, refractory period and the threshold,
explaining how by electrical excitability, the action potentials are generated Baravalle
et al. (2017).

The advances were growing through the time and the electrophysiology applications at
the same level. The Deep Brain Stimulation (DSP) for Parkinson’s Disease and Dystonia,
lowing the symptoms and medication requirements, using a pacemaker, sending electrical
stimulation within the brain. Some treatments for obesity, obsessive-compulsive disorder
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Figure 1.3: These were some stunning pictures of Aldini’s experiments. Oxen heads
(upper Ilustration), Human bodies (lower Ilustration). Ilustrations from: Aldini (1804)

and depression Gardner (2013). The biosignal recording for medical diagnostics, as the
brain, using the electrocardiography, by the detection of epilepsy or determinate the dead
of a patient in a deep coma. The electrocardiogram, by cardiac problems or pulmonary
diseases Rummens. (2015).
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1.5.3 The Nervous System

The nervous system generally control and send signals through our body, by coordinating
and integrating the signals of our sense and organs. It is sending and receiving signals
through the whole system. Always when we hear about the nervous system, we associate
him with the brain, nerves and their cells, maybe the most know cells, the neurons. The
mean division of this system is the central nerve system (CNS) and the peripheral nerve
system (PNS) Brown (2001). The Fist one CNS ,whose components are the encephalon
(brain, cerebellum and the brain stem) and the spinal cord. In the other hand, the second
one (PNS) is composed by the nerves that connect the (CNS) with organs of our body
and other places, whose parts are divided in the peripheral nerve system autonomous
(PNSA) by involuntary moments as in organs. Finally, the peripheral somatic nervous
system (PSNS), which is associated with the voluntary movements, by skeletal muscles
Herculano-Houzel (2012).

1.5.3.1 The Neuron

Figure 1.4: Anatomy of a neuron . Ilustration from: Wikimedia Commons

The neurons are excitable cells that transmit and receive information. The neurons
are components of the nervous system, their main function is to receive, process and
send information, by electric and chemical signals through connection known as synapses.
Neurons are consisted of several parts:

❼ Soma . An spherical central part of the neuron. Where are located the genetic
material and organelles, the most part of the neuron’s body. It contains the nucleus
where most protein synthesis occurs. The soma process the information that it
receives, and if a nervous signal is generated, it send the information to others cells
or organs by the axon.

❼ Dendrites . By the dendrites the information is collected from other cells. they
are the inputs to the soma , where after the electric signals and chemical signals are
processed.
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❼ Axon . The axon is covered for myelin, which help the propagation of the nervous
impulses sensed by the soma. Axons could have extensive branches that are
connected to other cells thorough the body.

1.5.3.2 The Synapse

The synapses are one of the important connections in the nervous system, by the synapses
is transmitted the nervous impulse between neurons or muscle cells connected by the
axon’s branches. It can be stablish more than 50,000 connections to other neurons, Kolb
and Whishaw (2014).

The electric information coming from neurons is transferred to one cell to the other,
by the chemical process of the synapses. They can amplify o reduce a signal that is sent
from one neuron to the other.

In the order hand, the electrical synapses, when one neuron is connected with the
other, and the communication is through a gap junction, where the pre-junction and
post-junction cell membranes are connected, The ion channels of both neurons allow
ions to pass to one neuron to the other. This type of synapses are found in mammalian
brains, and they are faster than chemical synapses. By the way the chemical synapses
are commonly connected with other cells, as muscles and glands.

Although, there are several types of synapses, as dendrodendritic, axodendritic,
axoextracellular, axosomatic, axosynaptic, axoaxonic, and axosecretory. They are
classified in excitatory and inhibitory synapses, each synapse is located in different parts
of the body. Excitatory commonly located in shafts or the spines of dendrites, inhibitory
synapses are typically located on a cell body. So, the neuron is divided in two zones an
excitatory dentritic tree and an inhibitory cell body Kolb and Whishaw (2014).

1.5.4 Electrical Activity in the Nervous System

The neuron have intracellular and extracellular fluids, whose ions are positively charged
, as Na+ (sodium) and K+ (potassium) and to other side the Cl- (chloride) negatively
charged. Also it could contain protein molecules charged negatively A-. Positive ions are
called cations, and negatively charged anions . The main factors that create electrical
charges in anions and cations are : difussion, concentration gradient, and charge (Voltage
gradient).

❼ Diffusion. Molecules are always in constant movement looking for the equilibrium
in a solution. They always go to the parts where there is less concentration. So
the movement of molecules go for places where there is more concentration to less
concentration, this effect is called diffusion. When we have the same number of
molecules or almost equivalent, in each place.

❼ Concentration gradient . How ions have a certain charge, in order to achieve the
charge equilibrium, they repeal each others. So, the concentration gradient tell us,
the tendency of ions movement.

❼ Voltage gradient . It is the difference of charge in the solution for a type of anions
and cations. As we know the voltage is the difference of potential in two places that
we can measure, just as voltage gradient tell us the difference of potential in the
parts of the solution, where the measure takes places.
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Commonly, this factors generate the electrical activity in the cell’s membrane that
convey information to the nervous system. The movement of ions electrically charged in
constant movement or in repose,to determinate the electric charge that can be sent to one
neuron to the next Kolb and Whishaw (2014).

1.5.4.1 Resting Potential

The resting potential is generated in an axon’s membrane, when we are measuring it by
an electrode. The measure is conducted when one extreme of the electrode is collocated
in the inner part, and the second one, in the outer part of axon’s membrane. The charge
measured is commonly - 70 millivolt, when the axon’s membrane is not stimulated during
the recording. The membrane’s resting Potential can vary from different animals between
-40 to -90 milivolts Kolb and Whishaw (2014).

The common particles or ions in charge of this resting potential are Na+, K+, Cl-

charged negatively and protein molecules A-. These are the cations and anions. These
charged particles are distributed unequally across the cells membrane, Ka+ cations and
A- anions in the intracellular fluid part, and Na+ and Cl- in the extracellular part of the
cell’s membrane Kolb and Whishaw (2014); see Figure 1.8.
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Figure 1.5: Ions distribution in the extracelullar and intracellular in the axon’s membrane.
Ilustration from Kolb and Whishaw (2014)

The parts that maintain the resting potential are the pumps, gates, and ion channels.
Frequently, into the intracellular part of the cell’s membrane, the K+ channels are open,
cause of potassium concentration into the intracellular is higher than in the extracellular
part of the membrane, this concentration is controlled by the potassium concentration
gradient, against the large ions of A- into the intracellular part. But, there are not
sufficient K+ ions into the intracellular part to beat the large protein molecules A-.
Therefore, the intracellular part of the membrane maintain a negative charge by the
majority of large ions of A-.

By the way, in the extracellular part also exist K+ ions. but, in a fewer proportion,
how we mentioned above, this proportion is controlled by the voltage gradient and the
potassium concentration gradient. Now the resting ions, Na+ and Cl-, also contribute
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to stablish the resting potential, the difference is that the Na+ channels are commonly
closed, stopping the Na+ ions to cross to the intracellular part of the cell’s membrane.
But, when the resting potential is altered, the Na+ pump is activated. This pump is
a protein molecule in the cell membrane, the pump activation interchange two K+ for
three Na+. The Cl- cations, in a fewer proportion also contribute to stablish the resting
potential of the cell’s membrane. but, their concentration is lower than the Na+; see
Figure 1.6.
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1.5.4.2 Graded Potentials

How was mention above, the cell’s membrane store a resting potential. this energy could
change depending on the ions concentration in the intracellular and extracellular part of
the membrane. When this change happens, the graded potentials are generated. This
change is stimulated across the axon’s membrane of the cell with a electrode. When
a positive charge is stimulated through the electrode the negative charge decreases
from -70 milivolts to a lower potential of -65 milivolts , while if a negative charge is
applied, the negative charge increase to -73 milivolts Kolb and Whishaw (2014). The fist
event is called hyperpolarization . Conversely, the second one is called depolarization .

Hyperpolarization is generated when K+ anions pass to the extracellular part or
Cl- anions pass to the intracellular part. By other hand Depolarization is generated
when Na+ anions pass to intracellular part Kolb and Whishaw (2014).

Commonly, these events occur in the soma, which is the cell body, as well as in the
dendrites of neuron. This areas have ions channels that can modify the concentration in
the cell’s membrane: potassium, chloride, and sodium ion channels.

1.5.4.3 Action Potential

An Action potential (AP) is a brief voltage pulse that can lasts about 1 millisecond. Action
Potentials occur when the axon membrane is electrically stimulated and depolarized
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to about -50 milivolts Kolb and Whishaw (2014). This stimulation cause that the
concentration of ions changes in the membrane, producing a positive charge in the
intracellular side to respect the extracellular one, after the concentration of ions changes
to return the resting potential.

When an Action Potential happens the next phases occur:

1. Resting potential . During the resting potential, one of the two Na+ gates is open,
but not a single Na+ ions are crossing the membrane to the other side, as well as
the K+ gate.

2. Depolarization. By the stimulation, the -50 milivolts threshold is reached and
the Na+ open first than the K+ gate, by their voltage sensibility, producing a
Depolarization, and no axon stimulation is able to generate a new Action Potential,
and any axon stimulation is able to generate a new Action Potential, because of the
membrane stay as absolutely refractory.

3. Repolarization. The first Na+gate was opened but almost at the same time the
second gate is closed. Now the Repolarization start, and the K+ gate is opened.
The membrane stay absolutely refractory yet; new action potential is not possible.

4. Hyperpolarization. The K+ gate is keep opened, and the second Na+ is opened
too, and the first one is closed, the membrane is now relatively refractory, and a
new action potential could happens if the stimulus is higher than the last one, a new
action potential is possible when the resting potential is reached one more time.
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Figure 1.7: Action Potential Phases. Ilustration from Kolb and Whishaw (2014)
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1.5.5 Electro-physiology Recordings

1.5.5.1 Intracellular Recordings

The intracellular recordings measure the potential difference between the internal and
external part of the cell, where the action potentials are present in the change of ions
concentration Rummens. (2015).

The cell-attached patch is performed using a micropipette and sealing it with the cell
membrane, by apply positive pressure before inserting the micropipette into the bath,
once the electrode tip is close to the neuron, the positive pressure is removed and a
suction (negative pressure) is applied to the recording electrode. This procedure is a
common first step in many intracellular recordings, only in sharp-electrode recordings is
not implementedDong and Graziane (2016).

Generally four techniques are used in intracellular recordings:

❼ Whole-cell . There two methods. The first perforated patch, which uses substances
that form channel pores in the cellular membrane. The second one is using a negative
pressure applied for a recording electrode after achieving a cell attached patch. this
negative pressure fissure the lipid membrane allowing the recording for the electrode.

❼ Outside-out . When the recording electrode is moved away in a whole-cell, only
a few millimetres for the neuron, this event form a thin fiber that after is broken.
Then, a micro-cell is formed, resealing at the tip of the recording electrode.

❼ Inside-out . From a cell-attached patch the recording electrode, which is filled with
an external solution, is moving away leaving a vesicle. The most common way to
remove the vesicle is exposing it to the bath-air interface, by lifting the recording
electrode out of the bath solution.

❼ Sharp electrode . Get their name from the recording pipette that is fabricated for
cell impalement.

For more information about the advantages and disadvantages of each technique and
their application, please see Dong and Graziane (2016) pp. 9-14.

1.5.5.2 Extracellular Recordings

Extracellular recordings in neuronal tissue are generated for the flow ions through the
cell membrane. This type of recordings, on the contrary to intracellular recordings, are
developed by the observation of the cells activity, without the insertion or perforating
of the cell membrane, in most of the cases. Extracellular recordings look for almost
not to perturb the cell’s activity. Here, the electrodes are put close to the cell but
this distance affect the measure of electrical activity, due to intracellular recordings,
we have the reference of the intracellular against the extracellular part measuring the
potential difference. By other hand, in extracellular recordings the intracellular reference
is not possible, so the record measure of the electrode is the ions flow throughout the
membrane, this flow perturb the electric field, recording the electrode a little signal
about the microvolts, this action potentials that is recorded, is commonly softened and
distorted Rummens. (2015).

The most common Extracellular recordings are:
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❼ Electro-encephalogram (EEG). The brain activity is recorded by electrodes put
on the scalp. This electrodes detect the potentials gradients through the time and
the tiny potentials over the scalp, using a reference electrode.

❼ Electrocortigram (ECoG). This procedure is an invasive recording procedure
where the electrode is put on the subdural layer on the cortical surface. To detect
Field potentials commonly generated for cortical pyramidal cells.

❼ Local Field Potential (LFP). Local Field Potentials are record with a
microelectrode put it in brain, the electrical activity comes from a population of
neurons .

❼ Whole cell . This type of recording uses a blind patch clamp approach for in vivo
whole cell recordings. One important point to mention, is that with this method the
neurons of interest cannot be seen. On the contrary, using the resistance pipette,
can indicate if the pipette is close or touching a cell. Using a square voltage step
when the micropipette is entered into the brain with a positive pressure, and when
the square wave current is reduced the positive pressure is changed for suction
(negative pressure), similar to intracellular recordings. This type of technique is
useful in regions of high cell density.

Figure 1.8: Some extracellular recordings methods, Electro-encephalogram (EEG),
Electrocortigram (ECoG), Local Field Potential (LFP) . Ilustration from Obien et al.
(2015)

The recording in anaesthetized animals is a invasive in vivo recording, which the animal
is immobilized, and where a single neuron activity could be recorded up to 3 hours and in
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some cases up to 12 hours Wolfgang (2007). The process is by drilling a hole in the skull,
by passing the micropipette up to the cell, recording field potentials, as well as whole cell
measurements. Some of the aspects that take place is the appropriate pain relief and the
duration of immobility. In addition, vital signals and artificial respiratory process, as well
as blood pressure and body temperature, have to be monitored Dong and Graziane (2016).

By other hand, freely moving animals recordings, have a similar process to perform but
in this case the micropipette has to be attached, and after the anaesthesia has passed, the
animal is able to move freely to the stimulus Lee et al. (2006); Dong and Graziane (2016).
The stimulation is made with virtual reality when the mouse is running in a spherical
treadmill with the head fixed, while the electrical activity is recorded; Dong and Graziane
(2016), Harvey et al. (2010).

1.5.5.3 MEAs

Micro electrodes arrays (MEAs), which are commonly made of titanium nitride (TiN),
platinum (Pt), stainless steel aluminum (Al), gold (Au) and alloys like iridim oxide (IrOx)
Obien et al. (2015), are arranged in 8 x 8 or 6 x 10 configuration on a glass substrate
Dong and Graziane (2016).

Depending on the goal of the biological experiment, for instance: in vivo, in
vitro, culture or acute preparation, or the type of recording, such as Extracellular
Action Potentials, Local Field Potentials, or Intracellular Potentials, cell resolution or
other, the microelectrodes have to be selected. In addition, a low electrode impedance is
also important. Commonly, a 5:1 or higher signal-to-noise ratio (SNR) Obien et al. (2015).

There is a large amount of MEAs that are classified for different features, as type
of transducers used: multi-transistor array, microelectrode array, multielectrode array,
micro-nail array, capacitive-coupled array, 3D MEA. For the type of substrate: active
array, passive array, silicon array, CMOS array. The shape of the device: needle-type
probe, polytrode, neuro dish. The channel count: multichannel array. The electrode
density: the electrode density: HDMEA. The application: implantable array, in vivo
MEA, in vitro MEA Obien et al. (2015).

One of the approach for recordings with MEAs is their use in experiments, where
is needed extract information in real-time.Such as closed-loop experiments and brain
machine interfaces (BMIs), where stimulation therapies are taking part of this features,
and fast analysis is required Obien et al. (2015). Also, this type of recordings give,
after the analysis of experimenters, the relationship between oscillations, as Local Filed
Potentials, Extracellular Action Potentials and Intracellular Action Potentials with
different brain states. MEAs are commonly used on cell-cultures and tissue slices,
this MEAs can record action potentials, evoked field potentials or spontaneous field
potentials in a certain population of cells or between neurons. Dong and Graziane
(2016). The advantage of using this type of electrodes are that we can measure the
activity simultaneously in certain neuronal location, and also is easier to change for
recording to stimulation within the neuronal preparation or cell-culture, helping the
study for brain slices. Moreover, this type or recordings are used for knowing the
effects of pharmacological treatments, and to record how this drugs on cell-cultures and
brain slices can generate spontaneus potentials by drug effects. Dong and Graziane (2016).

In the next chapter, we present our literature review, where some of the common
and new methods are mentioned to detect and classified Action Potentials. Some of
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this methods have been tested in software and other part has been tested in dedicated
hardware architectures.
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2
Background

2.1 Action Potential Detection

This chapter is dedicated, to the background of Action Potential and sorting. We present
the main methods found in the literature and how these methods are addressed in different
works.

2.1.1 Introduction

As was aforementioned, the Action Potential activity from biosignals comes from the
flow of ions in the cell’s membrane where the following phases take place: depolarization,
repolarization, hyperpolarization and resting potential. Although this information is not
the only one that we can record during the process, also we can find noise, Local Field
Potentials (LFP) Lebreton et al. (2015): Belitski et al. (2008): Buzsáki (2009), Obien
et al. (2015), and Slow Waves Potentials (SWP), in endocrine cells Pirog et al. (2015).
Frequenly, LFP are in the low-frequency band of (1-100 Hz) Perelman and Ginosar
(2007). They are the sum of currents source, reflecting the synaptic activity of tens or
thousands or nearby neurons. Moreover, Slow Waves Potentials in endocrine cells have
a band frequency below than 1 Hz Rummens. (2015). The neural firing rate activity,
where Action Potentials are seen, commonly is in the band of 100-10 000 Hz Perelman
and Ginosar (2007), see (Figure 2.1).

The use of Micro-electrodes is important to extract the information in local regions,
where commonly the activity of many neurons can be recorded. These Action Potentials
commonly have similar shape and size. Therefore the detection and classification is a
challenging task to achieve. Some other problems appear when we try to sort Action
Potentials, due to overlapping, when close cells are recorded with the same electrode,
and both neurons are firing almost at the same time Lewicki (1998).

In addition, during the recording process there are other sources of noise. These
sources generally come from electrodes, other cells and amplifiers, which have to be
filtered properly for being able to detect the Action Potential activity presented in our
recordings (see Figure 2.2)
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Figure 2.1: Electro-physiology signals with their amplitud and frequency.
Electro-encephalogram (EEG), Slow Waves, Local Field potentials (LFP),
Electro-cardiogram (ECoG), Electro-myogram (EMG). Ilustration’s inspiration :
Rummens. (2015)

Pedreira et al. (2012) discuss the typical number of neurons that can be observed
in extracellular recordings. Some studies have presented dozen or hundreds of neurons
recorded. Others only said that typically the neurons that can be detected per channel is
around one of two neurons, with a high amplitude. Other hypotheses says that is cause
of the tissue damage, when the electrode is inserted in the recording area. Another says
that is cause of neurons that stay almost all the time in silent without presenting firing
rates. One interesting fact is addressed here, where by the Coulomb’s law the amplitude
of Action Potentials decays v ≈ 1

r2
, depending on the distance among the neurons and the

electrode. Where Action Potentials among 60 and 110 µV come from a distance around
50 µm, where are able to be detected properly yet, and other more small in a amplitude
range of 10 µV taking in account a density of 300,000 neurons/mm3, commonly in rat
hippo-campus recordings. Therefore the Action Potential sorting is complicated taking
in account the amplitude as a feature extraction, due to the range of Action Potential
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Figure 2.2: Generic parts of noise in biological signals during stimulation and recording .
Ilustration’s inspiration : Obien et al. (2015)

amplitudes. Action Potentials recorded from a distance between more than 50 µm and
around 140 µm from the electrode, their amplitude is not commonly detected and their
small amplitude contribute the background noise of the biosignal, Figure 2.3.

As noted above, the purpose of this thesis is to create a module for detecting the
Action Potentials present in biosignal recordings. We present now different techniques
and projects that have been presented. Here, we will start with a brief study of Action
Potential Detection, and how these projects have developed their accomplishments by
some methods.

Commonly, Action Potentials detection is composed by the pre-processed signal,
where noise, LFP and SWP, are attenuated and Action Potentials are obvious to perform
their detection. After, a threshold is used to know the location of Action Potentials in
the biosignal, this threshold is commonly set above the background noise. This threshold
could be fixed or adaptive. The advantage of adaptive threshold is their constantly
compute depending on the background noise presented in the biosignal. On the contrary,
the fixed threshold is always the same during the whole detection, and experience is
needed to determinate its level. The use of adaptive threshold in MEAs recordings is
better, due to each of the hundreds of electrodes have their own noise level, and fixing
thresholds levels in each electrode is not a good way to accomplish this task. In order to
have a better experiment when biosignals are recorded, the use of adaptive thresholds
will give better results, and it will be less tedious than manually change each threshold,
Rummens. (2015).

2.1.2 Fixed Threshold

The use of Nonlinear Energy Operator (NEO) for extracting the AP in biosignals has
been used for accentuates the high-frecuency content in it. So its function is similar to
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that of a high-pass output filter, Mukhopadhyay and Ray (1998). The threshold is taken
as a scaled version of the mean of the signal and is fixed during the experiment. One of
its disadvantages is that the threshold is sensitive to the firing rate. Some projects have
addressed this principle as Yang and Mason (2017) even implemented in hardware.

The use of thresholds has been replicated in some off-line software methods to detect
APs , but adding some other features, such as compute the average value of Max-Min
in the signal, and in this way compute a factor value to be above the background noise
Chan et al. (2008).

Other methods have been proposed to have a better detection when two-phases
are presented in APs. Maccione et al. (2009) perform the detection by adding some
parameters: detection the maximum and minimum point of APs. After the process
confirm if the AP was detected into a time window, to determinate if is or not a false
positive of negative. This process is applied over raw signals where no filter step is
added, and in the most of the cases, this type of methods are tested in software and not
in hardware.

In addition mathematical methods are also a tool to compute threshold for AP
detection. By the model the differential equations, one of this models was proposed by
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Platkiewicz and Brette (2010). Describing how the APs could be changed by channel
properties based on Hodgkin and Huxley (1990) equations, but their implementation in
hardware could be difficult when certain operations are presented.

The Teager Energy Operator (TEO) is similar to the Energy Detector (ED), both
have a similar result taking into account the probability of detection and false detections,
and their implementation is easy but no adaptive form of this detector for extracellular
recordings or neuronal recordings is available. Therefore Semmaoui et al. (2012) created
a new method called the Smoothed TEO (STEO), this method do not need information
for the Action Potential shape to be implemented and is most efficient than the other
two methods above mentioned.

Other works have compared different techniques OF Feature Extraction (FE) and
Dimensionality Reduction (DR), with several methods, for developing Action Potential
Detection, and sorting methods to extract the features of Action Potentials in real-time,
and classified action potentials coming from other neurons or detecting false positives
and false negatives events during the recording or the off-line process. Here Gibson et al.
(2010) assess the advantages and drawbacks of each method assuming this method has
good candidates to hardware implementation, but some of the techniques for Threshold
detection mentioned there are sensitive to the presence of spikes. These algorithms were
tested in MATLAB.

Other procedure has been implemented for Action Potential sorting, Yuan et al.
(2012). Here, the sorter is based on multiple correlation of wavelet coefficients, using
a threshold for detection and template matching for classification. The basis of the
detection are based on the multiple correlation of wavelet coefficients, This process is
called the M-sorter. No Hardware implementation took place.

Other systems are made over CMOS technology as Barsakcioglu et al. (2014), They
developed a Analog Front-end system for neuronal Action Potential sorting. They use
common tools for Action Potential Detection and sorting methods, they use the common
methods: Template Matching (TM), Principle Component Analysis (PCA), First and
Second Derivative Features (FSDE), by the use of a Graphical user Interface (GUI)
implemented in Matlab.

The Matched Filter (MF), is used when we have detected the template of an Action
Potentialan. Then, we can use it for classification process. Hwang et al. (2014) proposed
the use of an Online Sorter (OSort) algorithm Rutishauser et al. (2006), which is an
effective unsupervised algorithm for Action Potential Classification, it does not need
offline training for Feature Extraction (FE) and clustering. Their algorithm combine
normalized correlator with the Osort algorithm, having lower computation time and
clustering the Action Potentials present in the biosignal.

Yang et al. (2012). Take into account the exponential form of the noise and the power
of Action Potentials, to compute a threshold and an Action Potential pattern. This
methods could be implemented together with common methods as NEO.

Ng et al. (2013) use the Smoothed Teager Energy Histogram (STEH) to properly
select a threshold, with consideration of signal prewhitening, histogram bin width, and
histogram equalization. The signals are accentuated by the STEO, after the STEH select
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a threshold automatically.

The CMOS technology has been applied also for detecting Action Potentials, with
the use of wavelet coefficients. Yang et al. (2015) made a prototype in a FPGA for
16 channels for Action Potential detection, by applying the use of Stationary Wavelet
Transform (SWT). This prototype was after mapping in a 130 nm CMOS technology
using the lifting wavelet transform, which is a fast implementation in hardware than the
common SWT.

Azami et al. (2015) made uses of a lot techniques, such as the compute of the filters
by the use of Genetic Algorithms and the New Particle Swarm Optimization (NPSO).
After a phase using the Ensemble Empirical Mode Decomposition (EEMD) is applied
as a pre-processing noise reduction step. Here, the use of these techniques consume a
lot of resources due to the creation of each Intrinsic Mode Functions (IMFs) to be able
to implement this algorithm in hardware. In addition, the use of a Hilbert transform is
proposed. So the implementation of this system will consume a lot memory resources.
Thereby, this system is not a good candidate for a hardware implementation.

Other methods have been developed in the last years, such as the Time-frequency
based convolution Action Potential algorithm (TIFCO) and the Stationary wavelet based
TEO(SWTTEO). The first one is based on the time-frequency of Action Potentials in
the range of 500 Hz and 3500 Hz and AP are able to be detected. The second one is
based on a low-pass filter using the Discrete Wavelet Transform (DWT) and applying the
Teager Energy operator to each filter sub-bands Lieb et al. (2017). The implementation
was made over Matlab. No hardware architecture took place. In addition, Mayer et al.
(2018) implemented this method demonstrating good performance even with a low SNR.

2.1.3 Adaptive Threshold

Chan et al. (2008) consider adaptive thresholds through the Max-Min spread (MMS),
reporting similar results than the conventional methods, as Harrison (2003) and Donoho
(1995). Although the threshold used in this work are not good candidates for a Hardware
implementation by certain operations needed.

One of the adaptive thresholds was proposed by Harrison (2003). This threshold is
able to be adapted above the background noise level presented in the biosignal. To get
good performance, a high-pass filter is needed to attenuated the LFP in the biosignal.
This AP detector provide a logical true when an Action Potential is above the threshold
given a binary signal (1,0), during the time the action potential exceed the adaptive
threshold. This method has the advantage of not be sensitive to the AP firing rates.
These features are addressed in the next chapter.

Horiuchi et al. (2004). The use of adaptative threshold has been implemented in
CMOS models as Horiuchi et al. (2004), where the Harrison (2003) loop has been
implemented in VLSI processors. Here, the amplitude of Action Potentials are measured
as an alternative to develop, Action Potential Sorting by a peak and trough detector.

Action Potentials (APs) usually have two phases, negative and positive, So using this
principle the use of two threshold is better to detect an action potential (AP), in a lower
period than their duration (1-4 miliseconds). This is a good tool, on the contrary, when

42



CHAPTER 2. BACKGROUND

one threshold is used for AP detection. This reduce the detection of false positives and
negatives. This principle was addressed by Borghi et al. (2007), and consequently by
Hiseni et al. (2009) but adding the analysis of Matched filter.

The use of adaptive threshold has been simulated in software for Action Potential
Detection. In addition, some projects as Biffi et al. (2010) use Principal Components
Analysis (PCA) and a Hierarchical Classifier (HC), they have been simulated their
algorithms to achieve a real-time analysis of Action Potential Detection and Classification.
Nonetheless, their design for Hardware implementation has not been tested, and many
problems occurs when the software version is translated to hardware architecture.

Quotb et al. (2011). The use of wavelets is also a good tool for Action Potential
Detection but its implementation in hardware could be costly, depending on the detail
level of the filter banks designed for the architecture. Here, the use of Discrete Wavelet
Transform (DWT), and Stationary Wavelet Transform (SWT) were tested with a
pre-processing filter to accentuate Action Potential and decrease the background noise,
followed by a threshold adaptive circuit computed in real-time.

Commonly algorithms for Action Potential sorting are composed of three parts, The
Action Potential detection, extraction of some features for Action Potential shapes and
clustering. Takekawa et al. (2014) proposed a new method using probabilistic tools to
detect and cluster the different Action Potential in biosignals, and the Bayes theorem
compute the probability of a sample to belong to an Action potential, by taking into
account the distribution nature of Action Potential amplitudes, widths and frequency.
This method is useful for analyses of extracellular recordings with linear probes but no
hardware implementation took place.

Wu et al. (2016). Here an Application-Specific Integrated Circuit (ASIC) is able to
deal with 16-channels for Action Potential Detection in real-time execution. The system
is based on the the Exponential Component-poly-nomial component (EC-PC) algorithm,
by applying a probability threshold. This system is able to deal with Action Potential
detection, Local Field Potentials (LFP), and Action Potential probability maps. Also
the use of Hilbert transform is addressed.

Yang and Mason (2017). The Nonlinear Energy Operator (NEO) is an algorithm
which is sensitive to the firing rate of Action Potentials. Here, Yang and Mason (2017),
propose a new way to compute this threshold in real-time making it less sensitive to the
firing rates of Action Potentials. This methods use as reference the standard deviation
and the root-mean-square (RMS) frequency of the background noise in the biosignal.
This system was implemented in Very Large Scale Integration (VLSI) for be able to
demonstrate real-time processing.

Dwivedi and Gogoi (2018). Here the use of a adaptive threshold is performed, the
main idea is similar to the others only during the detection of Action Potential, the
system create a window around 2 ms, where the data of the Action Potential detected is
not taken into account. In that way the threshold is not involve with the Action Potential
data and the threshold is compute only with the rest of the background noise. The
Action Potentials are accentuate and the SNR is better by using a Energy-of-derivative
method, which is more simple and suitable for an implementation than the common
nonlinear energy operator (NEO). The system was implemented in a compact analog
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2.1. ACTION POTENTIAL DETECTION

CMOS integrated circuit.

Some other Action Potential classifiers have been tested as: Super-Paramagnetic
Classification (SPC), Osort , K-means, Moving Centroid K-Means, Moving Centroid
K-Means, Hierarchal Adaptive Means (HAM), Fuzzy C-Means (FCM), Mahalanobis
classification, Support vector classification (SVC), Self-organizing maps (SOM) Cosine
Similarity classification. Here, Saeed et al. (2017) present a good comparative of existent
classifier architectures for implementation in on-line Neural Action Potential sorting.
They concluded than the best classifier is the SOM classifier when is taking in account
accuracy and complexity. This classifier is based on the use of an Artificial Neuronal
Network (ANN) . Although we know the implementation in hardware of a classifier based
on an (ANN) consume a lot of memory resource by the creation of Lookup tables.

This work is focused on proportionate and easy method to be implemented in
hardware, and change important parameters for computing an appropriate threshold to
detect Action Potentials in biosignals recordings. Common methods as NEO are used
to compute Action Potentials in hardware but this technique reduce its accuracy when
multiple frequency components and noise are presented, and several false detections could
take place Azami et al. (2015), Wu et al. (2016). Other methods as the use of wavelet
detectors require excessive hardware resources Ng et al. (2013), Wu et al. (2016).So we
tested the adaptive threshold of Harrison (2003), which not need many resources and
their implementation in hardware is straightforward. In addition this adaptive threshold
is not sensible to Action Potentials when goods parameters are selected.

Our strategy is to use this adaptive threshold with the generation of a Mean Action
Potential shape to be correlated with the Action Potentials detected, in that way, we use
the technique of match filtering using the correlation to generated the autocorrelation
signal between those shapes. Afterwards, when Action Potentials and Mean Action
Potential shape match, a correlation pattern is generated. Therefore, we detected this
pattern to classified each Action Potential detection among six possible groups, depending
on its correlation pattern detected. Furthermore, we not found works, in our literature
review, where correlation patterns are detected by adaptive thresholds. We describe the
methodology followed in the next chapter and the hardware architecture designed.
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– On meurt toujours trop tôt - ou trop tard. Et

cependant la vie est là, terminée. tu n’es rien d’autre

que ta vie –.

– Jean-Paul Sartre –
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Figure 3.1: General system diagram and its main parts.

In this work, we use two biosignals to test the system a Macaque monkey signal
recording in vivo, with a 40 KHz sample frequency and a Human pancreatic signal at
10 KHz sample frequency. After, in the pre-processing section we used a IIR Band-pass
filter to accentuate Action Potentials, remove Local Field Potentials and Slow Waves into
the recording. The section of Action Potential Detection is implemented by a adaptive
threshold, which computes a threshold above the background noise of the biosignal in
a real-time computing and saves the maximum value of the Action Potential detected
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3.2. BIOSIGNAL PROCESSING

when a Action Potential is above the threshold.

The detection made for the positive an negative detectors are saved in four detection
types. The Two-phases detection are those Action Potentials that triggered both
detectors, here they are the Action Potentials from the macaque monkey biosignal and
the Human pancreatic biosignal which have a depolarization and hyperpolarization
phases. The False Positive are those events where the signal stays above the threshold
more time than a regular period of a Action Potential length. In a similar way, the False
Negatives are those events where the signal stays more time under the threshold than a
regular period of a Action Potential length. The one-phase detections are those Action
Potentials that only triggered the positive detector but are in the time length of an
Action Potential, these are the Action Potentials from the Human pancreatic biosignal
that are detected and saved.

The next part is the Mean Action Potential, where each time a Macaque monkey or
a Human pancreatic Action Potential is detected a new Mean Action potential template
or shape is computed by a IIR low-pass filter for each of the shape samples. After, the
correlation part compute the correlation value between the Mean Action Potential and
each new sample that is read and processed by the band-pass filter.

The Correlation Pattern part detects and classifies, by the correlation pattern
detected generated between the Mean Action Potential and the Action Potential shape
detected at that moment. Finally, in the Correlation Pattern Detection, the correlation
shape is detected and classified with the maximum sample number of the Action
Potential that was stored in the Action Potential Detection part, this depending on its
correlation pattern detected and saved among six possible patterns as shown in Figure 3.1.

3.2 Biosignal processing

Digital filters commonly are implemented in two ways, by convolution as in Finite
Impulse Response (FIR), and by recursion Infinite Impulse Response (IIR). FIR have a
better performance than IIR filters but its response is slower.

So, we decided to use IIR filters by its long impulse response without having to
compute a long convolution, and they have a faster respond than FIR filters. The common
difference equation for a IIR filter is presented in Strauss (2000) as follows:

y[n] = a0 x[n]+a1 x[n−1]+a2 x[n−2]+ ...+b1 y[n−1]+b2 y[n−2]+b3 x[n−3]+ ... (3.1)

Where y[n] is the output and x[n] is the input signal. The an and bn are the recursion
coefficients. This equation can also be interpreted as follows:

y[n] =
L
∑

i=0

ai x[n− i]−
M
∑

i=1

bi y[n− i] (3.2)
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Where, the filter order is M ≥ L. In our cause, to properly filter the Macaque monkey
biosignal, we used a first order low-pass IIR filter with the next coefficients represented
in the next equation:

y[n] = 0.75 y[n− 1] + 0.125 x[n] + 0.125 x[n− 1] (3.3)

This equation is easy to be implemented in hardware, if we see this equation in the
next way:

y[n] =
3 y[n− 1]

4
+

x[n]

8
+

x[n− 1]

8
(3.4)

y[n] = y[n− 1]−
y[n− 1]

4
+

x[n]

8
+

x[n− 1]

8
(3.5)

Here, the
y[n− 1]

4
value is shifted to the left two times and after is subtracted with

y[n − 1]. In that way we have the equivalent value of
3y[n− 1]

4
in the Equation 3.4. In

the same way,
x[n]

8
and

x[n− 1]

8
are shifted to the left three times and after these values

are added up. Finally, both results are added up to obtain the IIR filter output.

An easy way to estimate the time constant ( RC = τ) for a recursive single pole
filter is similar to a RC filter, where τ is the time that takes to decay to 36.8% its
final value, so τ , in Equation 3.6, is the number of samples that takes to reach to this value.

x = e1/τ (3.6)

In our case, x= 0.75 from the Equation 3.3, so we have a constant time of τ = 3.47
samples. In the same way, the relation of the cut-off frequency (Fc), is commonly found
with a magnitude of -3dB. This relationship is present such as in Strauss (2000) as follows:

x = e−2πFc (3.7)

One more time x= 0.75, giving a Fc = 0.045 and having a sample frequency of
(Fs = 40 KHz ) the cut-off frequency will be around 1.8 KHz, such as in the magnitude
response and its Step response in (Figure 3.2).

Commonly, books talks about generally of low-pass filters, due to from a low-pass filter
we can create any type of filter by adding parallel stages, in the time domain. This
techniques is know as spectral inversion, for instance for creating a high-pass filter we
have to put in one stage a low-pass filter and in the other one an all-pass filter that is
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3.2. BIOSIGNAL PROCESSING

(a) Magnitude response (b) Step response

Figure 3.2: IIR low-pass filter with Fs = 40 KHz and Fc = 1.8 KHz. Equation 3.3

commonly our signal. In that way, we create a spectral inversion, changing a low-pass
filter to a high-pass filter these stages are illustrated in (Figure 3.3). In that way all the
components of low frequency will be subtracted, and only the high frequency components
remain in the signal. Therefore, we will have a high-pass filter.

Figure 3.3: Low-pass filter spectral inversion to generate a High-pass filter. Ilustration
from : Strauss (2000)

In the same way, we present the magnitude response and step response of the high-pass
filter applied the spectral inversion as follows in (Figure 3.4).
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(a) Magnitude response (b) Step response

Figure 3.4: IIR high-pass filter with Fs = 40 KHz and Fc = 1.8 KHz Figure 3.3
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(a) Raw data, Macaque monkey signal recorded in vivo
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(b) Band-pass filter output. Here, some Action Potentials of Macaque monkey are presented

Figure 3.5: Macaque monkey biosignal, and Band-pass output with Action Potentials
accentuated. 49



3.2. BIOSIGNAL PROCESSING

Now, we applied the high-pass filter to the raw data, and by adding it up a low pass
filter in the high-pass filter output we get a band-pass filter, the low-pass filter applied
was the same that in the Equation 3.3. In this case our biosignal is a Macaque monkey
signal recording in vivo, with a 40 KHz sample frequency. The raw data and the output
of the band-pass filter are shown in (Figure 3.5). Here, we can observe where the Action
Potentials are accentuated in their amplitude. Therefore, it will be easier to detect the
Action Potentials by a threshold over the background noise and any dc off-set has been
removed. How is shown in (Figure 3.5 (b)).

In the same way, for the Human pancreatic biosignal, we take the same filter equation
presented in (Equation 3.3. the cut-off frequency will be around 450 Hz by using a
Fs = 10 KHz, such as in the magnitude response and its Step response in (Figure 3.6.
This is computed by using the same (Equation 3.7) aforementioned.

(a) Magnitude response (b) Step response

Figure 3.6: IIR low-pass filter with Fs = 10 KHz and Fc = 450 Hz. Equation 3.3

(a) Magnitude response (b) Step response

Figure 3.7: IIR high-pass filter with Fs = 10 KHz and Fc = 450 Hz. Figure 3.3

In the same way, we present the magnitude response and step response of the high-pass
filter applied the spectral inversion as follows in (Figure 3.7). The Human pancreatic
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raw data and band-pass filter output are shown in (Figure 3.8).
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(a) Raw data, Pancreatic biosignal from human
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(b) Band-pass filter output. Here, some Action Potentials of Pancreatic biosignal from human are shown

Figure 3.8: Pancreatic biosignal from human, and Band-pass filter output with Action
Potentials accentuated.

In addition, the implementation in hardware is easier, due to all the filters that we
have presented are first order, and only by using some multiplications and additions, we
can built the architecture of each filter. In this case we do not need the use of multipliers,
due to by following the Equation 3.3 only by shifting the values we can obtain the
desired filter. Therefore, we can design each filter as a entity in VHDL language by
properly describing each filter here mentioned. Thereby, the use of resources of memory
as operations that can be costly in hardware implementation of filters will be reduced.
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3.3. ACTION POTENTIAL DETECTION

3.3 Action Potential Detection

The Action Potential Detection, as we mentioned above, in the background section, can
be addressed in many ways, but in our case, the most important is to take a method
that is easy to be implemented in hardware, which is our final goal. Therefore, the use
of a threholds adaptative is needed, when each time a new sample of the biosignal is
read, the adaptive threholds is computed, before the next sample is read. Thereby, the
thredholds will be adaptive and computed in real-time. Futhermore, the method that
we used was the adaptive threshold mentioned in Harrison (2003). Here, the Action
Potential Detection is automatic in noisy waveforms, where the threshold is adapted and
stays above the background noise level. Thereby, each time an Action Potential is above
the threshold, a logical true signal is emitted, and vice-versa, with a false signal, when
Action Potential is not presented. The main idea is to put a threshold low enough to
detect Action Potentials and high enough to not detect peaks from the background noise.
The general diagram system is shown in (Figure 3.9).
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Figure 3.9: Standard Deviation approximation circuit diagram and Action Potential
Detection. Illustration inspiration from Harrison (2003).

Action Potential detection using this technique is based on the measure of the
Gaussian noise of a biosignal, due to during the acquisition of biosignals, biological
noise tend to have a Gaussian distribution. Therefore, when we use a high-pass filter
the mean value of the biosignal has a mean of zero. Thereby, any dc offset has been
removed and the noise is equivalent to its Root Mean Square (RMS) value, which is the
standard deviation σ of our biosignal Harrison (2003). This hypothesis rely on one of
the features of a Gaussian distribution, where taking into account a random variable,
with a probability density function of a Gaussian distribution with mean µ and standard
deviation σ. The probability of the random variable in one event to be above the µ + σ

is 15.9 percent (15.9 %). In addition, this hypothesis is applied when we have a signal of
N samples, which have a Gaussian distribution, so the 15.9 % of these samples will be
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above µ + σ. Consequently, the noise is equivalent to the standard deviation σ, due to
the null mean µ has mentioned before, Rummens et al. (2015).
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Figure 3.10: Threshold parameters. Configuration A good detection of Action Potentials,
configuration B bad detection of Action Potentials. The signal shown is a part of the
Monkey macaque biosignal where three Action Potentials appear.

As it is appreciated in (Figure 3.9), the compute of the threshold is similar to a
Proportional Controller, where the final goal is to compute an approximation to the

53



3.3. ACTION POTENTIAL DETECTION

Standard deviation (σ), with the hypothesis that only the 15.9 % of the samples will
be above this (σ) approximation computed by the system. Thereby, the biosignal is
compared with the Standard deviation (σ) approximation computed by the system.
After, a low-pass filter compute the mean proportion of samples that have been above
the Standard Deviation (σ). Consequently, this mean proportion is compared with the
reference of 15.9 % that follows the hypothesis that the 15.9 % of the samples will be
above the Standard deviation (σ) before mentioned. Finally, The loop is completed
by the constant K, that correct the Standard deviation (σ) approximation value to
be compared with the biosignal and the loop is closed. In order to detect the Action
Potentials the Standard Deviation (σ) approximation is amplified by a constant N, the
bigger the N value the lower the probability of the noise to be above this value. Therefore,
Action Potentials are detected and the probability of the noise to pass the N σ value is
lower. As Harrison (2003) mentioned, to put a threshold of 5σ have a probability around
3x10−7 of the Action Potential Detector to be triggered by the Gaussian Noise.

In addition, Action Potentials are very brief voltage pulses that not contribute to
the compute of the standard deviation (σ). This last sentences is true when good
parameters are found by computing the adaptive threshold for each signal by changing
the time constant of the low-pass filter and the K constant value and N value. This is
shown in (Figure 3.10), where in configuration A good parameters were put for the time
constant of the low-pass filter, the K constant value, and N value. In configuration B the
compute of the adaptive thresholds is more sensible to the presence of Action Potentials.
Commonly a factor of 5 is used in N, but this could be higher or lower depending on the
background noise in the biosignal, Harrison (2003).

3.3.1 Detection of Action Potentials from Macaque monkey
and Pancreatic human biosignals

The general Action Potentials shapes to detect are shown in (Figure 3.11). These
two Action Potentials shapes are originated commonly from one cell of more cells
depending on the recording conditions. We can appreciate that the Action Potential
from Macaque monkey has two phases big enough to be detected for two thresholds,
a positive and a negative threshold. While, the Human Pancreatic Action Potential
only have one a phase big enough to be detected, due to its negative phase is not
big enough to be detected properly, and it could lead to a bad detection. Therefore
in this biosignal we decided to detect both Action Potentials with two-phases and
Action Potentials with one positive phase, due to this information may be important
but the compute of the Mean Action Potential shapes is made with two-phases detections.
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(a) Action Potential from Macaque Monkey biosignal. This shape is the mean result of 101 detections
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(b) Action Potential from Human pancreatic biosignal. This shape is the mean result of 28 detections

Figure 3.11: Action Potentials of both biosignals Macaque monkey and Human pancreatic.

The detection of Macaque monkey Action Potentials was made for two thresholds, in
that way the true detection of Action Potentials will have a lower uncertainty against false
negatives and false positives detections. Subsequently, we will always detect a negative
phase and a positive phase. This is shown in (Figure 3.12), where both phases are detected
for the adaptive threshold, and both detectors generate a true pulse, with the width of
the peak time when is above the adaptive threshold or under, such as the case in the
negative phase detected.

In order to detect properly the Action Potentials, from the Human pancreatic
biosignal, the use of one threshold could be better to detect its Action Potentials, due to
in the negative phase, called hyperpolarization phase, the noise could affect the detection
, such as in (Figure 3.13). Here, the hyperpolarization phase is not low enough and the
(- Detector) could produces two pulses, due to the background noise in the biosignal.
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Figure 3.12: Macaque monkey Action Potential detected for both detector positive and
detector negative.
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Figure 3.13: Human pancreatic Action Potential detected for both detector positive and
detector negative.
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3.4 Mean Action Potential Compute

The Mean Action Potential is computed in the same way as a low pass filter, using the
Equation 3.3. Where each sample shape of each Action Potential sample detected pass
through a low-pass filter. In order to have an average value of each sample and generates
a Mean Action Potential shape during the detection process. This can be seen in the
step response of a low-pass filter as in (Figure 3.4b), where the low-pass filter output
reach to the step value after certain samples. The use of a low-pass filter is approximated
to the well know average value for certain amount of data as shown in Equation 3.8. In
our case, we have to average each sample of the Action Potential detected, in order to
save the whole Action Potential shape.

M [n] =
D
∑

i=1

Si[n]

D
(3.8)

In Equation 3.8, M [n] is the average value of one of the n samples of the whole Mean
Action Potential shape. For instance, the Macaque Action Potential takes 32 samples to
properly observe the whole Mean Action Potential shape. In that way, n goes as follows:
(0, 1, 2, ...31), in order to obtain the 32 samples that form the whole Mean Action
Potential shape. D is the number of Action Potentials detected, and i is the index to
change to one shape to the other.

Using a low-pass filter, we not need to develop the division by the whole amount of data
and neither to store all the Action Potentials shapes detected. In that way, in hardware
implementation, we do not use this costly operation, and only saving the last output of
the low-pass filter, last and present detections we can generate the Mean Action Potential
shape by saving each sample. (Figure 3.14) represents the compute of the Mean Action
Potential shape by passing the low-pass filter and its result of each of the sample that
form the mean shape.

Figure 3.14: General diagram for computing the Mean Action Potential shape by using
a low-pass filter equation. The last output shape Li[n− 1], present shape Si[n], and last
shape detected Si[n− 1] are stored to compute the new mean shape.

Here in (Figure 3.14), L is the output of the filter, i is the index of the 32 possible
samples of the Action Potential shape, S represents the Action potentials detected. In
order to compute the Mean Action Potential shape, the last shape computed for the
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filter is needed and stored, as well as the present detection and last detection shape.

The use of a low-pass filter is better than the average, due to memory resources. The
comparative of both shapes by using a low-pass filter and by using the common average
equation is shown in Figure 3.15, where the approximation using the low-pass filter gives
a good result.
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Figure 3.15: Compute and comparative of average and low-pass filter approximation for
computing the Mean Action Potential shape using 101 detections.

3.5 Correlation

The correlation is commonly seen as a measure to compare two signals. If our signals
are similar a positive correlation result is expected. In that way, we use correlation to
compare the actual Action Potential detected, with the Mean Action Potential shape that
is computed by using a low-pass filter. Then, the correlation is enable to determinate the
measure between the two Action Potentials shapes, each time and Action Potential is
detected. Thereby, having a measure where we can know if the Action Potential detected
is similar in shape to the Mean Action Potential shape by observing the correlation shape
generated. The common equation of correlation is presented in Equation 3.9.

Corrx,y =
N−1
∑

n=0

x[n] y[n] (3.9)

Here, y[n] has a specific length N and is the known shape, while x[n] is shifting signal
which elements change with each iteration, in each iteration a new samples is taken and
a new correlation value is computed. Therefore, if we correlate all the samples of both
Action Potential shape detected which will be the x[n] signal and Mean Action Potential
which will be the y[n] signal commonly called target signal, a positive value will be
presented when both signals x[n] and y[n] match Strauss (2000).
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If there is noise in the signal, also the correlation signal will present a certain noise
level. In addition, the correlation result will have twice the size of Action Potentials peak,
due to both phases of the Action Potential will generate a positive value when Action
Potential shapes match which other. That is, the peak generated by the correlation will
be high over the the noise level. The use of this technique two detect a certain shape is
also called as matched filtering and when a signal is correlated with itself the output
signal is called autocorrelation Strauss (2000).

3.5.1 Correlation Patterns
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Figure 3.16: First, Action Potentials detected are illustrated. Second, the correlation
shapes are computed and detected using the + Threshold and - Threshold. Finally, the +
Detector and - Detector trigger each time a positive or negative phase is above or under
the thresholds.

The result of the correlation between the Action Potential detected and Mean Action

59



3.6. SIMULATION

potential shape is shown in (Figure 3.16). The correlation shape is the result expected,
with a positive value when both shapes match. Nevertheless, two negatives values are
generated, this is the result of both phases a negative and positive been correlated, the
negative value tell us that while one phase increase the other one decrease. This is the
result of both phases been correlated the positive one and the negative one, two times
when the signals is shifted.

We observe in both biosignals Macaque monkey and Human pancreatic that six
possible patterns could be easily detected, by using the same technique of two adaptive
thresholds as in (Figure 3.12), but now we applied this to detect Correlation Patterns
and theirs phases, such as the positive that tell us that an Action Potential is similar
to the Mean Action Potential computed, and the negative ones, that tell us when both
phases exist in the Action Potential detected. The six patterns observed are illustrated
in the next diagram in(Figure 3.11).

The correlation signal generated has a certain noise level. So, one more time we
compute these two thresholds to detect the correlation peaks above and under the noise
level, in order to detect each of the six Correlation Patterns.

3.6 Simulation

The system was simulated in Python 2.7, a free software, where many packages for
signals processing have been created. Two scripts was generated in python, one for
each signal, and their respective Action Potentials as their Correlation Patterns where
detected. We looked forward the maximum voltage value in the Action Potential shape,
in that way we save the sample number of this maximum value. Finally, the correlation
pattern is detected and this pattern determinate where to save this detection within the
six patterns, as shown in (Figure 3.17).

In these scripts, two mean Finite State Machines was designed, one for the detection
of Action Potentials shapes, and the second one to detect the Correlation Patterns and
classified the Action Potentials among the six possible patterns. The general diagram
of the first Finite State Machine (FSM), for Action Potential Detection, is shown in
(Figure 3.18), where the control of the states of the FSM is controlled for the inputs P
which is 1 when the positive detector is triggered, and state in 0 when no detection takes
place. In the same way N with negative detections. Finally, C is a signal for a counter
who is triggered to 1 when no trigger event took place in both detectors. For example,
for the Action Potential of Macaque monkey signal we used 32 samples to properly save
its shape, so in order to know that not trigger event took place, the counter have to
trigger before the positive or negative detectors. On the contrary, an Action Potential
has been detected and saved.

The second FSM, for detecting the Correlation Patterns, follows the same principle of
Action Potentials shapes as aforementioned. The General FSM diagram for Correlation
Patterns is shown in (Figure 3.17). Where, in the same way, the shapes are detected for
two detectors a positive and a negative one. The second FSM is enable when a Action
Potential is detected in the first FSM. Afterwards, the second FSM detect the correlation
pattern generated. This generation can be see in the correlation signal in (Figure 3.16).
The detection of these Correlation Patterns is made in a similar manner, when the
detectors trigger with the sequence shown in the general diagram in (Figure 3.16).
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Correlation Patterns

Pattern 0

Pattern 1 Pattern 2

Pattern 3 Pattern 5

Pattern 4

Figure 3.17: Correlation patterns to be classified and detected.

Consequently, the FSM wait a certain time, commonly the half width of a Action
Potential shape. Finally, the Correlation Pattern is detected and the Action Potential is
classified.

In the next (Figure 3.20), we show some detections made in Python for Macaque
monkey Action Potentials ( 3.20a), where 4 Correlation Patterns were detected. the
pattern 4 ( 3.20b), have the majority of detections with similar shape. Pattern 3 ( 3.20d)
classified small Action Potentials. In pattern 5 ( 3.20e), an Action Potential shape for
pattern 4 was saved, this could happen at the beginning of the classification or with the
first detection, due to the Mean Action Potential shape computed does not have enough
detections. Finally in patter 2 ( 3.20c), some detections that triggered both thresholds
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Figure 3.18: General FSM diagram for Action Potential detection.

are shown. Detections in patterns 2,3,5 possibly are Action Potentials for cells that were
far enough for the recording electrode, due to their low amplitude.
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E = Enable detection, P = Positive detection, N = Negative detection, C = Full count

Inputs:

X,X,1,X

X,X,X,1

X,1,X,X
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Correlation 

Pattern 

Detection
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Figure 3.19: General FSM diagram Correlation Pattern detection.
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(a) Action Potentials detected. 118 detections
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(b) 99 detections classified in Pattern 4
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(c) 3 detections classified in Pattern 2

0 100 200 300 400 500 600 700

Time(us) 

0.03

0.02

0.01

0.00

0.01

0.02

Vo
lta

ge
 (V

)

(d) 13 detections classified in Pattern 3
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(e) 3 detections classified in Pattern 5

Figure 3.20: In (a) Action Potential detections are shown. In (b) are shown the Action
Potentials classified in Correlation Pattern 4. In (c) the ones classified in Correlation
Pattern 2. In (d) the ones classified in Correlation Pattern 3. Finally in (e) the ones
classified in Correlation Pattern 5. The rest of Correlation Patterns not presented Action
Potentials.
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– Change your thoughts and you change your world –

– Norman Vincent Peale –

4
Hardware Implementation

4.1 Description

The general hardware architecture diagram is shown in (Figure B.1). Here, an Universal
asynchronous receiver-transmitter (UART) manages the start, stop and pause of the
system in the next way: when a is pushed in the keyword, the read process of the
biosignal in the SD card is initialized and the detection and classification process are
running. If b is pushed in the keyword, the system stops the read process. Finally, if
c is pushed, one sample will be read at the time and processed for all the processes in
the hardware architecture, and after the system will stop. Then, after if a is pushed,the
system will be running one more time or also by pushing c, for reading only one sample
more at the time of the biosignal from the SD card module. This process are controlled
for a FSM that synchronise the FSM that exist in the whole architecture.

The SD card module gives us a sample of the biosignal, with a certain frequency, for
example for emulate a real-time process, we can create a counter that gives a true pulse
each 40 KHz which is the frequency sample rate for the Macaque monkey biosignal.
Finally, this module will give us a sign through a certain signal that will tell us that the
sample biosignal is ready in output of the module.

The filter section contains the IIR filters mentioned in section 3.2 for accentuating the
Action Potentials of both biosignals. Consequently, the Action Potentials are detected
and classified in the detection and classification parts where the Maximum value from
each Action Potential shape is stored in the FIFO memories and as well as Correlation
Pattern detected. The Counter section contains the number of Action Potentials
detected, as well as the number of detections classified in each of six Correlation patterns
as is shown in (Figure 3.17). In addition, also de False Positives and False Negatives are
stored and counted.

The Pmod OLED part is able to display the detection thresholds for Action Pontential
or the thresholds for Correlation Patterns detection. In addition, both signals are
displayed, the filtered biosignal and the Correlation signal where Action Potentials and
Correlation Patterns can be observed in this Pmod OLEDrgb display. The use of this
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module permit only four signals that can be displayed at the same moment. Finally, the
7-segment display is used to show the detections saved in each FIFO memory output as
well as their Correlation Patterns and its last value saved in FIFO memories, as well as
the output of each counter to know exactly how many detections has been detected and
classified. In addition, we also added counters to know the number of false negatives and
false positives during the detection process.

4.2 FPGA (Field-Programmable Gate Array)

FPGA is a reconfigurable integrated circuit. Commonly this circuits have the advantages
of parallel processing, this feature is one of the reasons why FPGA are attractive in the
academic and industry level. Their flexibility to be reconfigured is a big advantage, where
only changing some parts in the descriptive hardware language, the architecture designed
can be modified without problems and without the need of buying a new integrated circuit.

Figure 4.1: FPGA Nexys 4. Ilustration from Digilent.

FPGA contains Configurable Logic Blocks (CLBs), as well as Input/Outputs blocks
(IOB) which can be connected to any of the CLB by a hierarchy of reconfigurable
interconnections. CLB can be configured to perform simple or complex logic functions, as
well as memory resources in the FPGA by describing Random Access Memory (RAM),
Read Only Memory (ROM) and flip-flops. In this work we use a Nexys 4 FPGA to
implement our architecture for biosignal processing by using the ISE Design Suite. This

66



CHAPTER 4. HARDWARE IMPLEMENTATION

FPGA is shown in (Figure 4.1).

4.3 VHDL (VHSIC hardware description language;

VHSIC: very-high-speed integrated circuit)

VHDL is a hardware description language (HDL), where the behaviour or structure of
electronic circuits is described and compiled. Commonly, VHDL is used in Complex
Programmable Logic Device (CPLD), FPGA and Application-Specific Integrated Circuit
(ASIC) fabrication. Although, it exist several computer programming languages, such
as C, Fortan, Java, Python, they are not able to describe digital hardware, due to their
limitations. In addition, these programmable language are designed in sequential form.

On the contrary, hardware description language for describing digital hardware needs
to be build in small parts, wiring and connecting the inputs and outputs of each digital
circuit to their respective ports, the signals are connected to each little part have a certain
block of instructions running concurrently, each block of instructions has its respective
delay and timing to be completed. Therefore, the use of traditional sequential languages
can not emulates this features, and the use of HDL is need for properly describing digital
hardware Pong P.chu (2006).

4.4 VHDL structure

VHDL scripts commonly starts with the declaration of the IEEE library. Afterwards,
some important packages are included as std logic 1164 which enable the use of
types as std logic and std logic vector , and some boolean operations. Finally, in the
headers the package called numeric std which defines a set of numeric types as signed
and unsigned for representing magnitude numbers or signed numbers (2’s complement).

After, the entity is declared which is the name of the circuit designed and inputs and
output ports among other types. Consequently, in the architecture part is defined the
content of the circuit and processes that describe the behaviour of the circuit and signals
which manage the data values around the architecture.

For creating structures of a module is useful two connect sub-modules to easily
built a complex architecture, this sub-modules are commonly called components. This
components are connected by a sentence called port map which connect each port of
the sub-modules with internal signals in the architecture to create a top-module, in that
way the code to type is reduce and any module pre-designed could be connected and
reused.

4.5 Basic memory components

Commonly the basic components of memory for design any architecture are registers ,
RAM and FIFO memories. In (Figure 4.2), we show the basic register module that we
reused in each part of the hardware architecture.

LDR is the signal that control the load of data with a length of K the word size.
D is the value to be loaded. CLK is the clock signal, RST put the output Q of the
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Register_Detection
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/

Load Value

System 

inputs

Output

Value to load

RST

k

CLK

Word size

Figure 4.2: Register module.

register to 0 when receives a logic 1 in the next clock cycle. Finally, Q is the output
value that hold the register until a new value is loaded.

The use of RAM memories is needed in this hardware architecture, due to we need
to save four Action Potential shapes, one for the present detection, another for the
past detection and another for the last shape computed for the IIR low-pass filter and
one more for the result. The module for only reuse the RAM memory module in the
hardware architecture is presented in (Figure 4.3).
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D_Out
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WR_Address
adress_size

/

word_size
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CLKSystem 

inputs

Data read

Adress to Read

Adress to Write

Data to Write

RD_Address
adress_size

/

D_In
word_size

/

word_size

address_size
RAM size

Figure 4.3: Two ports RAM memory module.

This RAM memory modules contain two ports one for the data to be saved D In
with its respective address port WR Address . The output port of the RAM memory
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is D OUT which will show the data saved in the address value RD Adress one clock
cycle after, due to this is a good practice when RAM memories are described Rushton
(2011). The word size input is a integer value that determinate the width of the data.
Finally, address size determinate the size of the address bus of the RAM memory
locations, commonly a value of a power of two (2n) is recommended, due to is easier to
be infer by the synthesis process.

The use of First-In First-Out (FIFO) memories is important when some process work
with different clock frequency. Therefore, the detections of Action Potential can be
stored in these memories for reading their values with a different clock frequency by other
processes and no data will be lost. The FIFO module used in the hardware architecture
is shown in (Figure 4.4).

STD_FIFO

DataOut
WriteEn

DataIn
DATA_WIDTH

/

DATA_WIDTH

/
Enable Write

CLK

RST

System 

inputs

FIFO Output

Read Enable ReadIn

Data to Write

DATA_WIDTH

FIFO_DEPTH

FIFO size Empty FIFO is empty

Full FIFO is FULL

Figure 4.4: FIFO memory module

As well as the RAM memory, FIFO memories contain two ports DataIn where the
data to write is put, and DataOut where the first value that was enter will be the first
value to go out, when Readin have a true value of 1. Internally, the FIFO memory
brings two counters one commonly called tail and another called head which respectively
bring the number of data read and written in the FIFO memory. These counters activate
the flags Full and Empty when the memory is full or empty. Finally, DATA WIDTH
is the word size of the data and FIFO DEPTH determinate the number of FIFO
memory locations.
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4.6 Toplevel module

We designed two main projects one for the Macaque monkey biosignal and another one
for the Human pancreatic biosignal. We called this two modules Monkey module and
Pancreatic module . The only differences is that in the pancreatic module we detect
positive Action Potentials and two-phases Action Potentials that have a positive and a
negative phases, as well as the False positives and False negatives. Therefore, we used
one more FIFO memory. Both modules are designed in the same way as it is mentioned
in this section that describes the components and sub-modules in the Toplevel module.
The Toplevel module for the Macaque monkey biosignal designed is shown in (Figure 4.5)
and for the the Human Pancreatic biosignal in (Figure B.2). These modules were built
with eight sub-modules and one global FSM that controls and coordinate the Action
Potential detection and classification. The sub-modules utilized are:

❼ UART recv

❼ UART send

❼ PmodOLEDrgb sigplot

❼ periodic timer

❼ Sdcard readstream

❼ IIR FILTER

❼ Top level Threshold

❼ Detection and Classification .

The generic inputs of this module are explained as follows:

❼ Input Frequency . It is the frequency at which we provide new samples in the
the Sdcard readstream module. This input goes to the periodic timer module
which produces a pulse that indicates to the Sdcard readstream module when
has to give a new sample. This input value has to be in hertz.

❼ N Threshold . It is the adjustment value for the positive and negative thresholds.
The higher the value the higher the positive threshold and the lower the negative
threshold. The range of this adjustment is in a integer range of 0 to 15. The changes
of the thresholds can be seen in the Pmod OLEDrgb display when Switch 3 input
is 0. These thresholds are used to detect the Action Potentials.

❼ K Adjustment . It is the adjustment of the standard deviation computed to be
compared with the band-pass filter output. The range of this inputs goes for 0 to
16383. Although, we recommend the use of values such as 10,100,1000,1000. The
default value is 1000 whose performance was better with both signals that we use
to compute their standard deviation value.

❼ N Threshold C . It is the adjustment value for the positive and negative
correlation thresholds, the higher the value the higher the positive threshold and the
lower the negative threshold. The range of this adjustment is in a integer range of
0 to 15. The changes of the thresholds can be seen in the Pmod OLEDrgb display
when Switch 3 input is 1. These thresholds are used to detect the Correlation
Patterns.
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Figure 4.5: Toplevel module (Monkey module).

❼ K Adjustment C . It is the adjustment of the standard deviation computed to
be compared with the Correlation signal output. The range of this inputs goes for
0 to 16383. Although, we recommend the use of values such as 10,100,1000,1000.
The default value is 100 whose performance was better to properly compute their
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standard deviation value.

❼ FIFO DEPTH .It is the deep of the FIFO memories or memory locations available
in each FIFO memory.

❼ FIFO WORD SIZE . It is the size length of the detection samples saved in the
FIFO memories. Their default value is 32-bit.

❼ RAMS DEPTH . It is the deep of the RAM memories or memory locations
available in each RAM memory. This memories are used to compute the Mean
Action Potential shape. This value is the exponent number of a power of two. That
means (2RAMS DEPTH).

❼ RAMS WORD SIZE . It is the size length of the samples saved in the RAM
memories. Their default value is 16-bit which is the same length of the samples
coming from the SD card.

❼ START TEST IN .Here, this value has the range between integer range 0 to
4095. The number input is the sample number at which the detection process and
classification process are enabled.

❼ FINISH TEST IN . This input determinate when the detection and classification
processes end. When this happens the module will stop all the process.

The Global FSM that controls all the process is presented in (Figure B.3). The main
states are explained as follows:

❼ Waiting . This states waits for the timer strobe signal which comes from the
periodic timer module and the Authorized signal which comes from the FSM
that controls the UART communication and passes to the next transition the
next sd data state when both signals are set to high.

❼ next sd data . This state indicates by the read sample output to the
Sdcard readstream module when a new sample needs to be read. Consequently,
the FSM passes to next transition the waiting SD state where until the data ready
input stays on high. Then, the new sample is ready to be read from the data out
port output of the Sdcard readstream module.

❼ passing Low . This state enable the IIR filter module by the read sample
output for computing a new filtered value when the data is ready in the data out
port output from the Sdcard readstream module. Consequently the FSM passes
to the next waiting Low state where the filter module is waited until the
ready IIR input is set to high. Then the high-pass filter value is ready too.

❼ passing Low . This state enables the second IIR filter module which compute
the value for the Band-pass filter when the read sample Band output is set to
high. Therefore, the FSM passes to the next transition the waiting Band state
where the module is waited until the ready Band IIR input is set to high by the
Band-pass filter module indicating that the filtered value is ready to be read.

❼ Detection . The state enables the compute of a new Threshold value when
read detection output is set to high. This new Threshold value computed
is used to be compared with the Band-pass filtered value for detecting
Action Potentials. In addition, when the read detection output is triggered
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also the Correlation compute is enabled, and after the FSM passes to the
waiting Corre Compute until the ready Corre Compute input is set to
high, it indicates that the Correlation value is ready to be read for the
Top Level Threshold Correlation module and passing to the next transition
the start Corre threshold state where new Correlation threshold value is
computed in the Detection and Classification module when the FSM passes by
the waiting Corre Detection state, hereby waiting for the Correlation threshold
compute which is ready when the ready Corre Threshold input is set high.

❼ Plots .This states has to possible transition depending on the Disable input value
which comes from the switch inputs in the FPGA board. The first transition is when
the Disable input is low, due to when this input is low the FSM machine does not
wait for the Pmod OLEDrgb module to properly plot the signals, so the system
is running emulating a real-time acquisition processing each sample read thought
the frequency which is proportionate by the periodic timer module. The second
transition is when the waiting OLED state is reached, that is when the Disable
input is set high. Consequently, the FSM waits until all the samples has been input
into the Pmod OLEDrgb module, therefore it waits for the Shift done input,
when this is set high indicates that the samples in display have been properly shifted
.

4.6.1 UART modules

The purpose of these two sub-modules is to communicate the FPGA by a UART
controller to star, stop and pause the intern process in the Topmodel module. The
UART receiver module is shown in (Figure 4.6). Here, the data is sent by the keyboard
in the common communication protocol RS-232. The data transfer rate is 115200 kbps.
When the UART receiver module validate the data in the UART line, the dat en
output is set to high for one clock cycle and the chart data is ready in thedat module
output.

UART_recv
dat_en

System 

inputs

Data enable

reset

clk

RX  receiver rx dat
8
/ Data output

Figure 4.6: UART receiver module. author’s module: Yannick Bornat

After, the UART sender module, shown in (Figure 4.7), receives the pulse generated
from the UART receiver module by the dat en module input, and the chart data in the
dat module input is sent to be display in the terminal. In our case we use the ASCII
values 01100001 (a) to start the process, 01100010 (b) to stop and 01100011 (c)
for reading only one sample at the time.
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Figure 4.7: UART sender module. author’s module: Yannick Bornat

The FSM that controls both modules is shown in (Figure B.5) and its main states are
explained as follows:

❼ stopped . When the FSM stays in this state, the Authorized output is set
low, then the whole system is stopped, such as the detection and classification
process which are enabled by the FSM explained in (section 4.6). The possible
transitions are the running or single states. The running state is reached
if the data en from UART input is set to high and the character sent in the
data from UART input signal is the a character. Similarly, the single state is
reached if the data en from UART input is set to high and the character sent
in the data from UART input signal is the c character.

❼ running . As aforementioned this state is reached when the data from UART
input signal is the a character. The transition to the stopped state is reached
in four possible ways. The first one when he data from UART input signal
is the b character. The second one is when the Disible input value is 01 or
10 and the Detected input signal is high triggered, indicating that a Detections
has been detected by the system, such as an Action Potential, False Positive or
False Negative. Finally, the fourth one when the read Finished input is set to
high when the sample counter reach to the sample number entered by the generic
FINISH TEST IN input in theToplevel module. In addition, the single also
is reached when the data from UART input signal is the c character and the
data en from UART input signal is set high indicating that a new character
value has been typed in the keyword. Besides, when the FSM stays in this state, the
Authorized output is set high by indicating that the samples have to be processed
for the different modules aforementioned in (section 4.6).

❼ single . As aforementioned this state is reached when the data from UART
input signal is the c character. Also, such as the passed states both the stopped
the running states are reached. The stopped states is reached after a sample
is read from the SD card module which is indicated by the timer strobe input
signal which comes from the periodic timer module, in that way, only one sample
is read at the time. In addition also it is reached when the b character is sent
by the data from UART and when the data en from UART input signal
is set high. Finally the as it been described the running state is reached if
the data en from UART input is set to high and the character sent in the
data from UART input signal is the a character. Besides, when the FSM stays
in this state, the Authorized output is set high by indicating that the samples
have to be processed for the different modules aforementioned in (section 4.6).
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4.6.2 Periodic timer module

This module proportionate a pulse frequency of the value entered in the
TIMER FREQU HZ module input in Hz. This pulse is taken into account to
proportionate the saved samples in the SD card by the Sdcard readstream module.
The module is shown in (Figure 4.8).

periodic_timer

timer_tickCLK_FREQU_HZBoard Frecuency

System 

inputs

Timer Pulse

Samples Frecuency

reset

clk

TIMER_FREQU_HZ

Pause timer pause

Figure 4.8: Periodic timer module. author’s module: Yannick Bornat

The generic input TIMER FREQU HZ determinate the pulse frequency in the
timer tick output, while the genericCLK FREQU HZ input is the clock frequency of
the FPGA. The pause input pause the generation of the pulse in the timer tick output.

4.6.3 SD card module

The SD card modules utilized in this hardware architecture were SDcard raw access v2
and SDcard readstream modules, the documentation of these modules could be found
in Teaching resources - Y. Bornat- SDcard. These modules makes possible to transfer data
between the local buffers in the FPGA and the SD card. Reading data for the buffers is
similar to RAM access, the data can be 8, 16, 32 and 64 bits wide. In our case, we used a
16-bit data word size. The module SDcard readstream module is shown in (Figure 4.9).

The use of this modules is very straightforward, only the Main SDcard interface
signals have to be connected properly in the file with extension .ucf . For reading new
samples from the output data out , the data read input have to be set high for a clock
cycle and return to low. After, data empty n is set low and when the data is ready
to be read in data out the data empty n signal will be set high one more time and
then the process can be repeated. The system clock frequency for the module is 100 MHz.

The code in Python than generates the .bin file is shown in (Appendix A). In this
code the minimum positive value is found in the raw-data, after this value is subtracted
to the whole signal. One more time, after subtracted this value, in the signal is found the
minimum positive, and in this time we divided the whole signal for this second minimum

75



4.6. TOPLEVEL MODULE
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Figure 4.9: SDcard readstream for reading biosignal samples from SD card in slot in
Nexys 4 FPGA. Ilustration from Teaching resources - Y. Bornat

positive value. In that way, we will have data values close to integer values, this helps
the precision of the signal, due to the data values of the raw-data will be save as two’s
complement with 16-bits wide.

When the .bin file has been created the next step is to write the binary file in the SD
card. The easiest way is by using a software, in our case we use the win32DiskImager, in
windows 7, where by only some clicks the .bin raw-data file will be written and ready to
be read for the SD card module. However the use of command prompts in Windows or
Linux also can be used.

4.6.4 Pmod OLED module

The use of a display in a FPGA is helpful, in our case, we use a 96 x 64 pixel RGB
OLED Display with 16-bit color resolution, Diligent link, This display can plot signals,
pictures and more, through a standard SPI interface. The Pmod OLEDrgb used is shown
in (Figure 4.10).
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Figure 4.10: Pmod OLEDrgb features a 96 x 64 pixel RGB OLED display that is capable
of 16-bit color resolution.. Ilustration from Diligent

For ploting the signals in the Pmod OLEDrgb, we used a module which its
documentation can be found in Teaching resources - Y. Bornat- Pmod OLEDrgb, this
module is able to plot four signals up in the OLED screen, the four signals that we
showed in the OLED display were the band-pass filter output to observe the Action
Potentials, the Correlation signal to observe the Correlation Patterns and the positive
and negative thresholds. The PmodOLEDrgb sigplot module which controls the
signal plotting and shifting is presented in (Figure 4.11).
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Figure 4.11: SDcard readstream for reading biosignal samples from SD card in slot in
Nexys 4 FPGA. Ilustration from Teaching resources - Y. Bornat

Here, the Pmod Interface signals are properly connected in any of the Pmod
headers that contains the Nexys 4 FPGA by the file with extension .ucf . To plot
a signal we have to enter the sample value in the sample module input, and at the
same time indicate the signal number to know where the signal belongs by the input
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Table 4.1: The sample num color value for each of the four possible signals to plot in
Pmod OLEDrgb display

Sample num Color
00 Cyan
01 Green
10 Purple
11 Yellow

sample num . These numbers are represented in the next Table 4.1, as well as their
respective colors. Afterwards, the sample en module input is set high each time
a sample is input for each of the four signals. Finally, the plots have to be shifted
to display a new sample, that is by setting disp shift high and the cycle can be repeated.

To properly plot the signals using this module, the creation of FSM is needed such as
in the (Figure B.4). The input Plot indicates when the plotting process can be started,
in the next state the sending sample1 output signal data en to display is set high
and after waiting for the OLED ready signal that indicates the sample has been saved
to be plotted. Consequently, this states are repeated with each of the four samples until
the data is plotted and shifted to be on the Pmod OLEDrgb display, this happens in the
shift sample and waiting for shift states, after the module send a signal through
the OLED ready input when the four signals have been shown in the Pmod OLEDrgb
display. Finally, the Shift finished state send a pulse by the Shift done output.

Figure 4.12: Pmod OLEDrgb display. Filtered signal (Action Potential) green,
Correlation Pattern yellow, Threshold positive cyan, Threshold negative purple.
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The (Figure 4.12) shows the signals plotted in the Pmod OLEDrgb display. The
Band-pass filter output is the green plot where we can observe an Macaque monkey Action
Potential. The yellow one is the Correlation signal computed where we can appreciate
the Correlation Pattern generated to classify this Action Potential detected. The cyan
one is the Positive Threshold computed, this could be the detection positive threshold or
the correlation positive threshold depending on the Switch 3 input. In the same way,
the detection negative threshold is plotted in the purple plot, where depending on the
Switch 3 input, the detection negative threshold or the correlation negative threshold
are plotted.

4.6.5 IIR filter module

This module is based on the Equation 3.5 where the raw data saved in the SD card is
low-pass filtered this IIR filter has a internal 16.3 fix point precision where 16-bit are
for the integer part and 3-bit are for the decimal part, and the output of the filter only
gives the 16-bit integer part. The module is shown in (Figure 4.13). Here, the Sample
input receives the data coming from the output data out of the SDcard readstream
module. Then, the new sample input is set two high when a new sample is ready to be
filtered. Consequently, the IIR ready output is set to low until the compute has finished
and the computed value is put on the IIR output which has a size of 16-bit.

IIR_FILTER

IIR_ready

IIR_output

16

/

new_sample

Sample
16
/

New data to be 

filtered

CLK

RST

System 

inputs

Compute is ready

IIR filter outputSD card 

raw data

Figure 4.13: IIR filter module

The FSM that controls the compute of the low-pass filter output is shown in
(Figure B.6) and the components that controls this FSM are illustrated in (Figure B.7).
The main states are explained as follows:

❼ waiting . the state passes to next transition the saving past state until the
new sample input is set high, indicating that a new sample is ready to be
processed.

❼ saving past . This state loads the last filtered output and last sample input
in both Register Yn 1 and Register Xn 1 registers and past to the next
saving new sample state.
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❼ saving new sample . Here, the new sample is loaded in the Register Xn and
in the next clock cycle the the FSM past to the next transition the saving Result
state.

❼ saving Result . In this state the filtered data computed is loaded in
Register Result and the new value is ready and put on the IIR output . Finally,
the FSM reaches one more time to the waiting state triggering the IIR ready
output indicating that the module is ready to compute a new value.

4.6.6 Top level Threshold module

This module is based on the diagram in Figure 3.9 where the σ approximation is
computed, the fixed point for the standard deviation value is 17.14, where only 16-bit
of the integer part are taken in adjustment K part to be compared with the 16-bit
IIR band-pass filter input. By the way, for the Threshold value it has a fixed point of
22.14, and the same way 16-bit are taken for the integer part in adjustment N. The
main parts of this diagram are implemented in this module, a comparator between the
σ approximation and the output of the band-pass filter. A low-pass filter is needed
to compute the mean value of the samples that have been above the threshold. An
subtracter to make the operation with the theory 15.9 % . After, two multipliers
are needed, one for the K factor, and the other one for the N factor. The compute
of the negative threshold is only the compute of the second complement of the (Nσ) value.
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Figure 4.14: Threshold Module.

This module can be configurable with both the N factor and K factor in the
N Threshold and K Adjustment generic inputs respectively, by computing a
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better threshold but if not adjustment is needed the threshold is computed with the
default values. As the passed modules, the new sample module input is set high
for one clock cycle and at the same moment the band-pass filter output is put in
the Band pass value module input. Then, the compute of a new threshold value
is computed and when the value is ready the Detection ready outputis set high.
The new threshold value is put on Threshold P output for the positive threshold,
and on Threshold N output for the negative threshold value. Finally, if in that
cycle the Band pass value is higher than Threshold P value, then Detection P
output will be put it high. On the contrary, if the Band pass value is lower than
Threshold N value, then Detection N will be put it high. These output are ready
when the Detection ready output module is set high and is held it on and the
threshold value is put on both the Threshold P and Threshold N module outputs
with size of 16-bit, the same size of the band-pass filter output which need to be compared.

The FSM that controls the compute of the adaptive threshold value is show in
(Figure B.11) and the components that controls this FSM are shown in (Figure B.10).
The main states of this FSM are explained as follows:

❼ waiting . This state waits for the new sample input in the module for starting to
compute a new threshold value each time a new sample was read from the SD card
module. The next transition is the enable filter state.

❼ enable filter . This state enables the process in the Top IIR Threshold by the
En filter signal for computing the mean value of the samples that have been above
the (σ) approximation value. When the value is ready the IIR ready module output
is set high and the FSM passes to the next transition the waiting filter state.

❼ waiting filter . This state waits until the IIR ready module output is set high,
indicating that the module has finished to compute the new value, and the FSM
passes to the next transition the saving factor state.

❼ saving factor. This module load the value after the Factor k multiplier which comes
from the 0.159 subtraction by the LD Reg Factor 1 signal. Consequently, the
FSM passes to the saving Result state.

❼ saving Result . In this saving Result state the adaptive threshold value is
loaded in Register Threshold register by the LD Threshold signal. Then,
the Threshold values compute are set on the Threshold P and Threshold N
module outputs, as well as the module outputs of the comparators are put on
Detection P and Detection N module outputs. Finally, the FSM returns to the
waiting state triggering theDetection ready output, indicating that the module
has finished the compute.

The next sub-module is shown in (Figure B.8). This sub-module is similar to one
mentioned in subsection 4.6.5 and is part of the components needed for achieving
the principle module aforementioned. The purpose is to proportionate a mean value
of the number of samples above the σ computed, the output of this IIR low-pass
filter is 16-bit with a 2.14 fix point representation at the output. The En filter
module input is set high when a new value for the main module is presented. On
the contrary, to the past IIR module aforementioned in (subsection 4.6.5), this
module only have a Sample module input of 2-bit size, due to this input is the
output of the first comparator in (Figure B.10, so its output is only a binary output
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(1-0) and its sign. The FSM that deal with the compute of IIR low-pass filter is
shown in (Figure B.9).

4.6.7 Detection and Classification module

This module is the most extensive one designed in the hardware architecture, due to
many FSM are needed for saving the maximum and minimum values, for saving the
Action Potential shapes detected in the RAM memories, to compute the Mean Action
Potential shape, in order to compute the correlation signal, for detecting the Action
Potentials, to detect the Correlation Patterns and save and classifier the Action Potential
detections. The principal module is shown in the (Figure 4.15).

The main parts that contains this module are as follows:

❼ Saving maximum and minimum

❼ Action Potential Detection

❼ Action Potential Save Order

❼ Action Potential Saved in RAM

❼ Mean Action Potential Shape Compute

❼ Correlation Compute

❼ Correlation Thresholds

❼ Correlation Pattern Detection

❼ 7-segment display

In the Saving maximum and minimum part, we show how the maximum and
minimum values are found. The detection of Action Potentials, as well as the detection
of False Positives and False Negatives is shown in Action Potential Detection . The
Action Potential Save Order part is dedicated to create a signal that order to the
Action Potential Saved in RAM saves the samples saved in the register window
backup samples. The Mean Action Potential Shape Compute describes the
compute of the Mean Action Potential, it started when the Action Potential shape
detected has been saved in present spike RAM. The Correlation Compute parts
show how the correlation signals is computed with the register window samples and
the Mean Action Potential shape saved in the Mean spike RAM. The Correlation
Thresholds part is based on the module aforementioned in (Figure 4.14) and carry
out the same task over the correlation signal for computing the adaptive threshold
above the background noise level. The Correlation Pattern Detection detects the
correlation patterns aforementioned in (Figure 3.17). Finally, the system results, such as
the detection numbers and FIFO outputs, are displayed by the 7-segment display part.

The module inputs , shown in (Figure 4.15), are connected in the architecture of the
Topmodule mentioned in section 4.6, where P Detection and N Detection outputs
comes from the Top level Threshold module which are the positive and negatives
thresholds values for detecting Action Potentials. The Band pass input is the present
value in the output of the band-pass filter. The visualization options Switch 0 and
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Figure 4.15: Pricipal module for saving and sorting Action Potentials

Switch 2 are input system to choose the 7-segment display number depending on the
binary number enter by the switches on the FPGA and for display the Correlation signal
and the Positive correlation threshold on the leds output. Correlation Threshold and
Adjustment are integer values to determinate the K adjustment and N threshold level
in the Correlation Threshold part. The RAM adjustment are dedicated to determinate
the RAM word size and the deep locations RAM. Enable Detection and Finish Test
literately determinate at which number sample the detection process stars and finish.
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The output section are the correlation output which is the correlation value
computed for the Mean Action Potential shape and the register window samples.
The LEDS output displays depending on the Switch 2 input value, either the
correlation value computed or the adaptive threshold for the correlation signal. The
Detected output is set high during when an Action Potential is been detected. The
whole data read output is set high when the sample input in FINISH TEST IN has
been read adn reached for the SD card module. After, the ready Corre Compute
and ready Corre Threshold outputs are set high when the Correlation signal
value and the Correlation adaptive threshold have been computed. In addition, the
Correlation Thresholds negative and positive are put on Pmod OLEDrgb display by the
Corre Positive Threshold and Corre Negative Threshold outputs . Finally, the 7-segment
display outputs display the FIFO, Action Potentials detected counter, classified detections
counters by pattern and the present sample read by the SD card module.

4.6.7.1 Saving maximum and minimum sub-modules

These modules are dedicated to save the maximum and minim values when a
Action Potential is detected and are shown in (Figure 4.16) and (Figure 4.17).
The Top level Saving Maximum module is triggered when a new detection is
presented in the Positive Detection module input, this input comes from the
Top level Threshold module shown in (Figure 4.14).
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Figure 4.16: Correlation thresholds module.

The main purpose of this module (Figure 4.16) is to save the maximum positive
value found and the samples number of that value when the detector stays high during
an Action Potential detection. These values come from the band-pass filter output by
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the band pass value module input, and the principal counter which gives the count
of samples read from the SD card by the Counter Value module input. Finally,
each time the detector has triggered and a new maximum value is found, their sample
values are set on the Max value and Max Time module outputs. Consequently, the
Save Max order module output emits a high pulse during a clock cycle, for resetting a
counter that will save the Action Potential shape in the Detection and Classification
module in a RAM memory, exactly when the maximum saved value sample is at the
middle location of the RAM, to further processing.

The FSM that controls the saving maximum process is shown in (Figure C.1 and the
components that controls are shown in (Figure C.2). The main FSM states are explained
as follows:

❼ clean0 . Here, the Register Max register is cleaned to save the first
sample that has been detected above the threshold value computed by the
Top level Threshold module. The signal which cleans the value saved is the
Clean value signal. Consequently. the FSM passes to the next transition the
waiting state.

❼ waiting . This states is where the FSM stays until a new Positive detection is
triggered by the Positive Detection module input. Then the FSM passes to next
clean1 state where the register is clean by the Clean value signal for saving the
new value in Register Max register. Afterwards, the FSM passes to the next
transition the Searching state.

❼ Searching .This states detects when the Action Potential has been above or under
the present threshold value. So, if the present value in band pass value module
input is higher than the value saved in Register Max . the Maximum Point
comparator sets high the Save Max input, ,

❼ Saving . This states indicates when a new maximum value has been detected by
the Maximum Point comparator, if that happens the Saving Max output
signal, which is the same signal that goes to the Save Max order module output,
is set high saving the new maximum value in the Register Max register. When
the Positive Detection module input returns to 0 that means that the Maximum
value, as well as its sample number were saved in both the Register Max and
Register time registers. In that way, the Action Potential has been detected and
stored for further processing. Finally, when the detector returns to low, the FSM
goes to the Waiting state until a new detection takes place.

The Top Level Saving Minimum module for saving the minimum value during
a Action Potential detection is shown in (Figure 4.17). This module follows the same
procedure as the Top Level Saving Maximum module. The only difference is that
this module save the minimum value during a negative detection of an Action Potential
detection. In addition, the Save Max order module output has been removed, due to
we save the Action Potential shape in the memory RAM exactly when the maximum
value is at he middle of the RAM locations. The FSM that controls the saving process
of minimum values is shown in (Figure C.4), as well as the components that controls are
show in (Figure C.3).
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Figure 4.17: Correlation thresholds module.

4.6.7.2 Action Potential Detection

The FSM that performs Action Potential Detection of Macaque monkey Action Potentials,
as well as the detection of False negative and False positives is shown in (Figure C.5) and
the components that controls are shown in (Figure C.6). The transition between some
states depends on the current state and the current inputs, while in others only depends
on the current state. The main idea of this FSM is to save the samples number of the
maximum and minimum values detected in both Top Level Saving Maximum and
Top Level Saving Minimum modules , that is by saving the Action Potential, False
positive and False negatives into their respective FIFO memory.

The description of the main state in the FSM are as follows:

❼ Waiting . it is waiting the enable input to be set high and Disable Detection
input for staying low. As long as, the FSM stays in this state, the Counter
Samples counter is resetting, this counter help us to know if a Action Potential,
False positive or negative, has been detected. The enable input is set high enabling
the Detection of Action Potentials, False positives and False negatives. After,
depending on the current inputs the P Detection and theN Detection inputs
which are positive and negative detectors from Top level Threshold module, the
transition could be either the Counting Negative or the Counting Positive
states.

❼ Counting Negative . This state is reached when the N detector input has been
triggered. The Detected output during this stated is set high, that is indicating
that a new detection took place in the system. The next transition depends on which
signal is triggered before, the P Detection or Count Finish Samples inputs.
If P Detection input is triggered before the Counter Samples counter reaches
to the size of RAM memory locations when Count Finish Samples input is set
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high, then the next transition will pass to the En countstate. On the contrary, if
Count Finish Samples output is set to high before, the next transition will be
Write FIFO Neg state and the internal count will start in 0.

❼ En count . When this state is reached, an Action Potential with two phases has
been detected. The FSM that manage the detection of Correlation Patterns is
enabled by the Enable FSM Correlation Pattern output and the FSM that
determinate exactly in which sample is saved the Action Potential shape into the
RAM memory is enabled by the Enable FSM Count half output . Finally, the
next N2P spike state is reached in the next clock cycle.

N2P spike . During this state the Count Enable Samples output enables the
count of samples of the Action Potential shape and the Enable FSM Spike
output is set high to enable the FSM that saves the Action Potential shape in
the RAM memory. Consequently, the detection is saved in the FIFO memory
when the Write FIFO state is reached which happens when theP Detection
input is set to low and the Counter Samples counter has reached the full count
which is indicated by setting high the Count Finish Samples input. Finally,
Counter Samples is cleaned by the Clean Count state and the FSM returns to
the Waiting state.

❼ Counting Positive . This state is reached when the P Detection input has been
trigged before theN Detector input and theDetected output is set to high during
this state. Consequently, the Count Finish Samples signal will be triggered and
the detection will be saved in the next transition the Write FIFO Pos state, this
is into the FIFO memory locations whose store values are only positive detection
without negative phase detected by the the negative detector. Finally, the counter
is cleaned in the next Clean Count state.

The FSM that performs Action Potential Detection of Human Pancreatic Action
Potentials, as well as the detection of False negative and False positives is shown
in (Figure C.7) and the components that controls are shown in (Figure C.8). The
transition between some states depends on the current state and the current inputs,
while in others only depends on the current state. The main idea of this FSM is
to save the samples number of the maximum and minimum values detected in both
Top Level Saving Maximum and Top Level Saving Minimum modules , that by
saving the Action Potential, False positive and False negatives into their respective FIFO
memory. This FSM is similar to the one mentioned above.

The description of the main state in the FSM are as follows:

❼ Waiting . It is waiting the input enable to be set to high and Disable Detection
input stays low. As long as the FSM stays in this state, the Counter Samples
counter is resetting, this counter help us to know if a Action Potential, False positive
or negative, has been detected. The enable input when is set high enables the
Detection of Action Potentials, False positives and False negatives. After, depending
on the current inputs P Detection and N Detection which are positive and
negative detectors from Top level Threshold module, the transition could be
either the Counting False Negative and En Count states.

❼ Counting False Negative . This state is reached when the N detector has been
triggered. The Detected output during this stated is set high, that is indicating
that a new detection took place in the system. The next transition depends on the
N Detection input, when this input is set low, indicates that the biosignal sample
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returned between the two thresholds where any detector is triggered. Then, the next
transition is the Write FIFO Neg state where the minimum value detected is
saved in the FIFO time Neg memory by the FIFO write Neg signal. Finally,
the Clean Count state is reached and the FSM one more time starts in the
Waiting state.

❼ En count . When this state is reached, an Action Potential with positive phase
has been detected, due to the negative Action Potential phase can be confused
when the noise triggers the N Detection detector. During this state the
Enable FSM Count Half output enables the FSM that determinates exactly
in which sample is saved the Action Potential shape into the RAM memory. Finally
the FSM passes to the next transition the Counting Positive state.

❼ Counting Positive . During this state the Counter Samples counter is enabled
to count the samples in the Action Potential shape. The next transition depend on
if this counter reaches its final count and if a detector is triggered. The En Corre
states is reaches when Counter Samples counter indicates that it reached its
full count by the Count Finish Samples input. The Write False Positive
state is reached when the P Detection detector input is still high when the
Counter Samples counter reached the full count detecting a false positive, after
the Clean Count state is reached. The P2N Spike state is reached when the
Action Potential detected triggered both detectors before the Counter Samples
counter reaches the full count, consequently, the Write FIFO P2N state is
reached for saving the detection in the FIFO time P2N memory and the
Counter Samples counter is cleaned in the Clean Count state and the FSM
one more time starts in the Waiting state.

❼ En Corre . When this state is reached the FSM that manages the detection
of Correlation Patterns is enabled by the Enable FSM Correlation Pattern
output and the FSM that determinates exactly in which sample is saved
the Action Potential shape into the RAM memory is enabled by the
Enable FSM Count half output . Finally, the next Write FIFO Pos state is
reached in the next clock cycle where the detection is saved in FIFO time Pos
memory. Finally Counter Samples is cleaned in the Clean Count state and
the FSM one more time starts in the Waiting state.

4.6.7.3 Action Potential Save Order

This FSM, in (Figure C.9) and the components that controls in (Figure C.10), execute
the process to indicate to the system when has to be saved the Action Potential shape
detected into the RAM memory, that is by the register window samples where
the Action Potential shape fits. So, when the maximum value has been saved by the
Top level Saving Maximum module whose value saved is put on the.Max Time
output, and after is saved into the FIFO memory. This FSM is enabled by the FSM
described in (subsubsection 4.6.7.2) when both detectors positive and negative have been
triggered.

The description of the main states in the FSM are as follows:

❼ Waiting . It is waiting for the enable and Enable FSM Count Half inputs
that indicates that a Action Potential has been detected, as long as a counter is
reset by the Clear Count Half output. Consequently, when the enable inputs
are set high the FSM past to the next transition thewaiting save state.
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❼ Waiting save . In this state the FSM waits for the Save Max order input,
which comes from the Top level Saving Maximum module which indicates that
a new maximum value was found. Then, the FSM passes to the next transition the
Count up state.

❼ Count up. In this state the counter is enable by the Enable Count Half output
to start to count the samples after a Action Potential has been detected. After, the
next is last count state is reached.

❼ Is last count . This state verifies if the counter has reached to the full count by the
Count Finish Half input for passing to the Save Spike state .On the contrary,
if the full count has not been reached the FSM passes to the waiting New Sample
state.

❼ Waiting New Sample . This state wait from the Save Max order input
from the Top level Saving Maximum module, if a new maximum value has
been found the next Clear Count state will be reached where the count will
be cleaned in the counter. On the contrary, if a new sample is read from
the SDcard readstream module, the count is increased and after verifying in
is last count state if the full count has been reached. In that way, the FSM
will send the save order signal by the Save Spike Now output exactly when the
maximum detected value is in the half of the register window samples. When this
signal is sent, the Action Potential shape will start to be saved in the RAM memory
for further processing. The Action Potential shape saving process is explained in
the next (subsubsection 4.6.7.4).

4.6.7.4 Action Potential Saved in RAM

This FSM, in (Figure C.11) and its components that controls in (Figure C.12), save
the Action Potential detected when the maximum value from the Action Potential
shape is aligned in the middle of the the register window samples . That is when
the FSM described in (subsubsection 4.6.7.3) set to high during a clock cycle the
Save Spike Now input.

The description of the main state of this FSM are as follows:

❼ Waiting . This state waits for the enable Enable FSM Spike input from the
FSM described in (subsubsection 4.6.7.2) that indicated than an Action Potential
has been detected and passes to next transition the waiting Save Half 32 state.

❼ waiting Save Half 32 . This state is dedicated to wait the moment when the
maximum value is detected, from the Action Potential shape, it is exactly in
the half of the memory locations size of our RAM memory. That is when the
Save Spike Now input is set to high during a clock cycle and the FSM passes
to the next transition the Saving New Spike state. In that way, all the Action
Potential detected will match exactly in this location and the Mean Action Potential
shape could be computed properly in further processes.

❼ Saving New Spike . When this state is reached, the Action Potential shape in
the register window samples is transfer to the RAM memory locations and is
saved. In addition, the Save Spike sample and En Count Detected outputs
are set high. When Save Spike sample signal is high the sample is saved in the
RAM location that indicates the count in the counter was reached. As long as, the
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En Count Detected is high the counter is enable and increasing. In that way,
we save in each clock cycle a sample into the RAM memory locations until the full
count is reached, this is indicated when the Count Finish spike Detected input
is set high and the FSM passes to next transition the switching state which saves
the last sample from the Action Potential shape.

❼ Spike Saved . Finally, when the FSM reaches to this state, the
Clear Count Detected and Start to Compute Mean outputs are set
high. When Clear Count Detected signal is high the count of the counter
is cleaned, as long as Start to Compute Mean output is high enabling the
compute of the Mean Action Potential in its respective FSM. This compute is
explained in the next (subsubsection 4.6.7.5).

4.6.7.5 Mean Action Potential Shape Compute

This FSM, in (Figure C.13) and its components that controls are shown in (Figure C.14).
The FSM computes the Mean Action Potential shape each time a new Action Potential
shape has been saved in the RAM memory.

The description of the main FSM states are as follows:

❼ Waiting . This state waits for the enable Start to Compute Mean input from
the FSM described in (subsubsection 4.6.7.4)indicating that a new Action Potential
shape has been saved in the RAM memory. When Start to Compute Mean is
high the FSM passes to the next transition theCompute Mean state. In addition,
during Waiting state, the counter that gives the write/read address locations in
the RAM memories is reset.

❼ Saving RAM . When this state is reached, the En Count Adress and
Save Mean outputs are set high. The first one enables the count in Counter
RAM Adress counter which gives the write/read address location in the
RAM memories. The second one saves the value into the memory location
in the RAM Mean Spike memory that has saved the Mean Action Potential
shape result until the full count is reached, that is indicating when the
Count Finish temp Rams Adress input is high. Then FSM passes to the next
Mean Spike Done state when the whole Mean Action Potential shape has been
saved. If this input stays low the next transition passes to the Waiting count
state until Counter RAM Adress counter reaches to the full count.

❼ Mean Spike Done . This state is reached when the new Mean Action Potential
shapes has been saved in each of the locations in RAM Mean Spike and
RAM Feed Back Spike memory. During this state the Clear Count Adress
signal is set to high to clean the count in Counter RAM Adress counter that
gives the write/read address in the RAM memories and passes to the next transition
the Saving Last Spike state.

Saving Last Spike . During this state, the last Action Potential used to compute
the new Mean Action Potential passes toRAM Last Spike memory that saves the
last Action Potential shape detected. That is by preparing the FSM for the next
compute when a new detection is saved and detected. Finally, when the Action
Potential shapes has passed to one RAM to the other, the FSM reaches to the
Waiting state one more time.
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4.6.7.6 Correlation Compute

This FSM, shown in (Figure C.15) and its controlled components are show in
(Figure C.16). This FSM is dedicated to compute the correlation value between the
Mean Action Potential saved in RAM Mean Spike described in (subsubsection 4.6.7.5)
and the samples saved in the register window which length is the same to the number
of memory locations needed to save the Mean Action Potential shape. The compute for
the correlation signal starts each time a new value is read from the Sdcard readstream
module. Finally, when the compute is ready the ready Corre Compute output is
set high. The correlation compute is similar to the architecture needed in a Iterative
multiplier.

The description of the main FSM states are as follows:

❼ Waiting . This state waits for the enableNew sample input which is controlled by
the FSM explained in (section 4.6). After, one clock cycle it is waited to compute
the multiplication result between the first value saved in the register window
samples and the first value saved in RAM Mean Spike which contains the Mean
Action Potential shape computed. In addition, as long as the FSM remains in this
state the output ready Corre Compute is set high indicating that the correlation
value has been computed, as well as the Clear Accumulator output which clean
the Accumulator register , and theClear Count Mux RAM signal which
set to 0 the internal count of the counter which control the read address in
RAM Mean Spike memory and the sample selected for the Multiplexer which
is connected to the Register window samples. memory

❼ Save Multl . This state saves the Multiplication result aforementioned between the
samples coming from theRAM Mean Spike memory and theRegister window
samples by setting high the Save Mult output and saving the result in the
Register Multiplication register . Then the FSM passes to the next transition
theSave Accum state.

❼ Save Accum . In order to accumulate and saved each time a new value is multiplied
and added up with the past ones, such as in a for loop , theRegister Accumulator
register saves each result needed. This state is in charge of this operation and saved
this value in the accumulator to be added with the next input values by setting high
the Save Accumulator output. Afterwards, the count up state is reached.

❼ count up. This state enables the increase count of the counter that gives the
address for the next value to be input in the iterative multiplier by setting high
the En Count Iterative M output. In this same state,it is seen if the full count
has been reached for the count and if this is the case the next transition will be
the waiting last state. On the contrary, the next transition will pass to the
waiting count state where new values will been multiplier and accumulated until
the full count is reached.

❼ Save Result . If the full count was reached the result is ready to be saved
in Register Correlation register which will holds the value to by plotted in
the Pmod OLEDrgb display and for computing the correlation thresholds for
the correlation signal and detecting the correlation patterns aforementioned in
(Figure 3.17). Finally, the last Done state is reached sending a high signal by
the Correlation Done output and the Waiting state is reached one more time
to compute a new Correlation value when this is needed.
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4.6.7.7 Correlation Thresholds sub-module

This modules shown in (Figure 4.18) and it is practically similar and identical to one
aforementioned in (subsection 4.6.6), only the adjustment K and adjustment N are
adjusted to give a 32-bit sample for being compared with the Correlation input value.
This module follows the same logic. The new sample module input is set high when
a new Correlation value has been computed, the respective thresholds are computed to
carry out the Correlation Pattern detection and Classification. The compute of thresholds
and detection such as positive and negative are ready when theDetection ready module
output is set to high. In addition, the FSM that controls the compute of thresholds
is the same that was mentioned in (subsection 4.6.6) and components that controls
this new module are shown in (Figure C.17) , only the Band pass value input was
replaced by the Correlation value input as is shown in the module in the (Figure B.11).
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Figure 4.18: Correlation thresholds module.

4.6.7.8 Correlation Pattern Detection

This FSM, shown in (Figure C.18) and the components that controls are shown in
(Figure C.19), This FSM is dedicated to detect the correlation patterns generated between
the Action Potential Detected which is for a moment in the register window and the
Mean Action Potential computed. In addition this FSM manages the write/read process
to save de pattern detected in the FIFO pattern memory , as well as the counters for
each of the six patterns detected. The main idea of this FSM is illustrated in (Figure 3.19).
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Where the each time a Action Potential was detected a Correlation Pattern is detected
depending on the phases that triggered each of the two detectors and their sequence,
and after the Correlation Pattern is classified and saved in the FIFO pattern memory.
When this FSM is detecting Correlation Patterns the FSM in (subsubsection 4.6.7.2) is
disable by the Disable output when is set low. In that way, as long as the detections are
read in both FIFO pattern and FIFO time N2P memories in the Monkey module,
and FIFO pattern and FIFO time P2N in the Pancreatic module, we will be reading
the sample number where was detected the Action Potential and the Correlation Pattern
detected at the same moment, due to always we will have the same number of elements
in both FIFO memories.

The description of the main FSM states are as follows:

❼ Waiting . This state waits for the enable and
Enable FSM Correlation Pattern inputs which are enable for the FSM
described in (subsubsection 4.6.7.2) when a Action Potential has been detected.
After, the FSM passes to the next transition the En waiting Detection state.

❼ En waiting Detection . This state waits for the trigger events from the detectors
which are the Thre Neg and Thre Pos FSM inputs, either a positive detection or
a negative detection, and in addition if the full count is reached in the Correlation
Shape counter counter, after an Action Potential detection, theWindow passed
signal is set high and the pattern value 000 will be saved in FIFO pattern when
the Read Fifo No Class and Not Classificated states are reached . Therefore,
depending on these events the next transitions could be either the Pattern 1 state
when a negative detection occurs or Pattern 2 state when a positive detection
occurs and the Read Fifo No Class state when not detection occurs in any of
the two detectors.

❼ Pattern 1 . When this state is reached a negative detections has happened and the
Correlation Shape counter is reseating by the Clear Count Samples output
and the FSM passes to the next transition, the Counting Pattern 1 state where
the count is enable by the En Count Correlation Pattern output, and finally,
if the count reaches to the half value count which is indicated by the half Count
FSM input a Correlation Pattern 1 has been classified and the FSM passes to the
next the Read Fifo Pattern 1 and the Saving Pattern 1 states which saves
the pattern value 001 saved in the FIFO pattern memory. On the contrary, if
a positive detection happens before the counter reaches to the half count by the
half Count input, the FSM passes to the next transition, the Pattern 3 state.
In addition, the Pattern 1 Counter is enable by the Count Pattern 1 FSM
output when the Read Fifo Pattern 1 state is reached.

❼ Pattern 2 . This state is reached when a positive detection has happened, and
one more time the FSM passes to the next transition theCounting Pattern 2
state where the counting process is enable in the Correlation Shape counter .
If the counter count triggers the half Count input before a negative detection
happens the FSM passes to the next transition the Read Fifo Pattern 2 state
by producing the pattern value 010 and saving it such as a Correlation Pattern
2 detected in the FIFO pattern memory when the Saving Pattern 2 state is
reached. In addition, the Pattern 2 Counter is enable by the Count Pattern 2
FSM output when the Read Fifo Pattern 2 state is reached.

❼ Pattern 3 . This state is reached when a negative detection has happened with
a positive detection. After, the Counting Pattern 3 state enables the counting
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process inCorrelation Shape counter and if a negative detection happens before
the half Count input is high, the FSM passes to the Pattern 4 state. On the
contrary, a Correlation Pattern 3 is detected, and the detection is classified as the
pattern value 011 and saved in FIFO pattern memory by the next transitions
the Read Fifo Pattern 3 and Saving Pattern 3 states. In addition, the
Pattern 3 Counter is enabled by the Count Pattern 3 FSM output when
the Read Fifo Pattern 3 is reached.

❼ Pattern 4 . This state is reached when three detections events have happened in the
next order, negative positive, negative. Consequently, the detection is saved in the
FIFO pattern memory as a Correlation Pattern 4 with the the 100 pattern value
by the next Read Fifo Pattern 4 and Saving Pattern 4 states. In addition,
the Pattern 4 Counter is enabled by the Count Pattern 4 FSM output when
the Read Fifo Pattern 4 state is reached.

❼ Pattern 5 . This state is reached when a positive detections follows a negative
detection. Consequently the detection is saved in the FIFO pattern memory
as a Correlation Patterns 5 with the the 101 pattern value by the next
Read Fifo Pattern 5 and Saving Pattern 5 states. In addition, the Pattern
5 Counter is enabled by the Count Pattern 5 FSM output when the
Read Fifo Pattern 5 is reached.

4.6.7.9 7-Segment display and switch inputs

Switch_0

Switch_1

Disable

Switch_3

Switch_2

Figure 4.19: Switch Inputs

The use of the 7-segment display is only for display of FIFO outputs, Detection
Counters, Pattern counters, SD outputs, Actual sample read and other outputs needed
for creating the architecture. Where, depending on this value, 7-segment displays will
show the output in its corresponding Hexadecimal representation. The possible outputs
for the module that detects Action Potentials with the Switch 0 input is presented in
(Table 4.2). While, in the same way for the SPancreatic module the possible outputs
by the Switch 0 input are shown in (Table 4.3).

The use of the Switch 1 input is for the zoom in the Pmod OLEDrgb display for
properly seeing the Correlation Patterns and Correlation Thresholds. The adjustment of
the signals are presented in the table (Table 4.4), where depending on the input value,
the signals displayed in the Pmod OLEDrgb display can be seen smaller or higher.
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The use of the Switch 2 input, is for displaying the Correlation signal value as well as
the Positive Correlation Threshold on the led output. That is by changing the Switch 2
input value as is shown in the (Table 4.5).

The use of the Switch 3 input is for determinate which threshold will be plotted
in the Pmod OLEDrgb display. That is depending on the Switch 3 input value as is
shown in the (Table 4.6).

The use of the Disable input is for determinate how is going to running the module
and is shown in (Table 4.7). Three possible ways can be selected depending on the
value in this Disable input. The First one is when the Disable input is 00 . Then, the
module will be running at the input frequency given in the respective generic input of
the Toplevel module as was aforementioned in (section 4.6). The second one is when the
input value is 01 .Here, the module will be running at the frequency at which the Pmod
OLEDrgb module works, that means that the Pmod OLEDrgb module will display the
four signals input properly, and the module will be stopped all the processes each time
the module has detected something (Action Potential, False positive, False negative).
The third one is when the input value is 10 . Here, the module will be running at the
input frequency given in the respective generic input of the Toplevel module, and only
when a detection is presented the module will stop the processes to properly see the
Action Potential detected, False positive or False negative. In that way, we cover this
three operation ways and depending on the goals the user can use whichever of theses
options by only changing the Disable input value.

Table 4.2: Switch 0 input and its possible outputs displayed on the 7-Segment display in
Hexadecimal for Monkey module

Switch 0
input

Signal name Description

00000 temp Detection
Action Potentials detected count
(which triggered both detectors)

00001 temp Correlation Pattern 1
Action Potentials classified in

Correlation Pattern 1

00010 temp Correlation Pattern 2
Action Potentials classified in

Correlation Pattern 2

00011 temp Correlation Pattern 3
Action Potentials classified in

Correlation Pattern 3

00100 temp Correlation Pattern 4
Action Potentials classified in

Correlation Pattern 4

00101 temp Correlation Pattern 5
Action Potentials classified in

Correlation Pattern 5

00110 temp No Pattern
Action Potentials classified in

Correlation Pattern 6
00111 temp Positive False Positives count
01000 temp Negative False Negatives count
01001 counterValue Sample number read from SD

01010 FIFO OUPUT
The last sample detected

as Action Potentials with two phases
01011 FIFO OUPUT Neg The last sample detected as False Negative
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Table 4.2: Switch 0 input and its possible outputs displayed on the 7-Segment display in
Hexadecimal for Monkey module

Switch 0
input

Signal name Description

01100 FIFO OUPUT Pos
The last sample detected as False Positive

which triggered the positive detector
01101 FIFO Output Pattern Last Correlation Pattern detected (0,1,2,3,4,5,6)

01110

Empty Pattern , Full Pattern
Empty Neg, Full Neg
Empty Pos, Full Pos
Empty P2N, Full P2N

Empty False Pos, Full False Pos

FIFO flags from each FIFO memory

01111 SD DEBUG SD error code

10000 SD ERROR
It is asserted during one clock cycle

if an error occurs
10001 Max time The last maximum sample number detected
10010 Min Time The last minimum sample number detected
10011 voltage value The last maximum value detected
10100 voltage value Min The last minimum value detected
10101 Value Last sample The last sample value from register window

Table 4.3: Switch 0 input and its possible outputs displayed on the 7-Segment display in
Hexadecimal for Pancreatic module

Switch 0
input

Signal name Description

00000 temp Detection
Action Potentials detected count

(which triggered the positive detector)

00001 temp Correlation Pattern 1
Action Potentials classified in

Correlation Pattern 1

00010 temp Correlation Pattern 2
Action Potentials classified in

Correlation Pattern 2

00011 temp Correlation Pattern 3
Action Potentials classified in

Correlation Pattern 3

00100 temp Correlation Pattern 4
Action Potentials classified in

Correlation Pattern 4

00101 temp Correlation Pattern 5
Action Potentials classified in

Correlation Pattern 5

00110 temp No Pattern
Action Potentials classified in

Correlation Pattern 6

00111 temp Positive
Action Potentials detected

with two phases (positive and negative one)
01000 temp Negative False Negatives count
01001 temp False Positive False Positives count
01010 counterValue Sample number read from SD

01011 FIFO OUPUT
The last sample detected

as Action Potentials with two phases
01100 FIFO OUPUT Neg The last sample detected as False Negative
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Table 4.3: Switch 0 input and its possible outputs displayed on the 7-Segment display in
Hexadecimal for Pancreatic module

Switch 0
input

Signal name Description

01101 FIFO OUPUT Pos
The last sample detected as Action Potentials

which triggered the positive detector
01110 FIFO OUPUT False Pos The last sample detected as False Positive
01111 FIFO Output Pattern Last Correlation Pattern detected (0,1,2,3,4,5,6)

10000

Empty Pattern , Full Pattern
Empty Neg, Full Neg
Empty Pos, Full Pos
Empty P2N, Full P2N

Empty False Pos, Full False Pos

FIFO flags from each FIFO memory

10001 SD DEBUG SD error code

10010 SD ERROR
It is asserted during one clock cycle

if an error occurs
10011 Max time The last maximum sample number detected
10100 Min Time The last minimum sample number detected
10101 voltage value The last maximum value detected
10110 voltage value Min The last minimum value detected
10111 Value Last sample The last sample value from register window

Table 4.4: Switch 1 input, where depending on the input value, the Correlation and
Correlation Thresholds signals are displayed with a certain zoom in the Pmod OLEDrgb
display

Switch 1
input

Signal name:
Corre 40

Corr Positive threshold
Corr Negative threshold

000000 (5 downto 0)
000001 (6 downto 1)
000010 (7 downto 2)
000011 (8 downto 3)
000100 (9 downto 4)
000101 (10 downto 5)
000110 (11 downto 6)
000111 (12 downto 7)
001000 (13 downto 8)
001001 (14 downto 9)
001010 (15 downto 10)
001011 (16 downto 11)
001100 (17 downto 12)
001101 (18 downto 13)
001110 (19 downto 14)
001111 (20 downto 15)
010000 (21 downto 16)
010001 (22 downto 17)
010010 (23 downto 18)
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010011 (24 downto 19)
010100 (25 downto 20)
010101 (26 downto 21)
010110 (27 downto 22)
010111 (28 downto 23)
011000 (29 downto 24)
011001 (30 downto 25)
011010 (31 downto 26)
011011 (32 downto 27)
011100 (33 downto 28)
011101 (34 downto 29)
011110 (35 downto 30)
011111 (36 downto 31)
100000 (37 downto 32)
100001 (38 downto 33)
100010 (39 downto 34)
others (39 downto 34)

Table 4.5: Switch 2 input, where depending on the input value, the Correlation and the
Positive Correlation Thresholds signals are displayed on the led output

Switch 2
input

Signal name Description

00 Correlation Value(15 downto 0) Correlation signal
01 Correlation Value(31 downto 16) Correalation signal
10 Correlation Value(39 downto 32) Correalation signal
11 Corre threshold(15 downto 0) Positive Correlation Threshold

others Corre threshold(31 downto 16) Positive Correlation Threshold

Table 4.6: Switch 3 input values for selecting the threshold to display in the Pmod
OLEDrgb display.

Switch 3
input

Signal name: Description

0
Corr Pos 6 bit
Corr Neg 6 bit

Correlation Thresholds are plot in Pmod OLEDrgb

1
Threshold Pos
Threshold Neg

Detection Thresholds are plot in Pmod OLEDrgb

Table 4.7: Disable input for module operation.

Disable
input

Description

00
The module is running at the input frequency

(the module does not wait for the Pmod OLEDrgb display
and the module does not stop in each detection)
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Table 4.7: Disable input for module operation.

Disable
input

Description

01
The module waits for the Pmod OLEDrgb display

for properly plotting signals
(the module stops in each detection )

10
The module is running at the input frequency

(the module does not wait for the Pmod OLEDrgb module
and the module stops in each detection)

others
The module is running at the input frequency

(the module does not wait for the Pmod OLEDrgb display
and the module does not stop in each detection)

4.6.7.10 Matlab scripts

The use of this Matlab scripts is for creating the Multiplexer needed for the RAM
memory which saves the Action Potential detected in the memory RAM locations and
for the Iterative Multiplier which is in charges of compute the correlation result, each
time a new is read from the SD card. For instance, for the Macaque monkey signal we
need 32 samples to properly save its Action Potential shapes. By the way, for the Human
pancreatic signal we needed 128 samples to properly save its Action Potential shapes.
This is different depending on the sample frequency of each signal and also the period of
their Action Potentials.

The Matlab scripts are called Mux To Multiplicator.m and Mux To Ram.m
both scripts generate the VHDL code for the multiplexers that needs to be replaced
at the end of the code of the Detection and Classification module. The first
one is the multiplexer that connects the register window backup registers with the
multiplier needed to compute the Correlation signal values. The second script connects
the register window backup registers with RAM Present Spike data input. This
two scripts are shown in (section D.1)and (section D.2).
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– The size of your success is measured by the strength of

your desire; the size of your dream; and how you handle

disappointment along the way –

– Robert Kiyosaky –

5
Results and Conclusions

5.1 Simulation Macaque monkey results

The Signal-to-noise ratio (SNR) is defined such as in Yang and Mason (2017) and Ludwig
et al. (2006) as follows:

SNR =
peak to peak mean Action Potentials Amplitud

2σ of noise
(5.1)

Here the mean Action Potentials amplitude is computed by all the peak to peak
amplitude at each detection. The σ of noise is computed by the biological signal taking
into account that the Action Potentials are not frequent, due to they only appear in brief
periods. Therefore, by following the (Equation 5.1) the SNR for the filtered Macaque
monkey biosignal is 14.42 and by applying the (Equation 5.2) the SNR is equal to 11.6
dB. The amplitude of Action Potentials detected in the Monkey macaque biosignal can
be appreciated in (Figure 5.1) where is represented the Mean Action Potential shape as
well as the maximum a minimum values in each of the 32 samples that makes the Action
Potential shape. Here, we can see the noise level and amplitude of Action Potentials
detected.

SNR = 10 log10

(

peak to peak mean Action Potentials Amplitud

2σ of noise

)

(5.2)
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Figure 5.1: Mean Action Potential shape from Macaque monkey biosignal computed after
235 seconds and 960 detections using a threshold value of 15

The simulation was made on Python 2.7, It is important to mention that during these
simulation the signal was not normalized. Therefore the parameters used here and the
ones used in the Hardware architecture can be different. The parameters for the Macaque
monkey biosignal are presented in (Table 5.1).

Table 5.1: Simulation parameters for Macaque monkey biosignal

Parameter Variable Values Description

N
5, 6, 7,

9, 11, 13, 15
Detection threshold level value

K 0.01
Internal K value

into detection threshold compute
C N 10 Correlation threshold level value

C K 0.001
Internal K value into

correlation threshold compute

Coficient XN 0.999
Internal coefficient of low-pass filter

from threshold value compute

Coficient Yn 1 0.001
Internal coefficient of low-pass filter

from threshold value compute

C Coficient XN 0.999
Internal coefficient of low-pass filter from

correlation threshold value compute

C Coficient Yn 1 0.001
Internal coefficient of low-pass filter from

correlation threshold value compute

SamplesNUM 32
Samples number

for detecting the Action Potential

The results of each simulation using a different Threshold value is shown in (Table 5.2).
Here, the Action Potentials that triggered both detector are shown in the two-phases
columns, as well as the False positives and False negatives detected in their respective
columns. For False Negatives or Falses positives are those detections that did not have a
second phases detection between the Action Potential period.
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Table 5.2: Two-phases Action Potential, False negatives, False positives detected using
different threshold detection levels

Simulation Macaque monkey biosignal detections
Threshold value Two-phases False negaives False Positives

5 4696 19949 12232
7 2053 7707 2716
9 1291 4271 552
11 1064 2342 134
13 993 1155 40
15 960 542 15

The (Table 5.3) shown where each two-phases Action Potential were classified or sorted
out. This is depending on the Correlation Pattern detected after its detection. The
possible patterns are six, as it is shown in the table. Finally, the Action Potentials
detected as their classification can be seen in (Appendix E), where the illustration are
sorted by the threshold value used during the simulation.

Table 5.3: Two-phases Action Potentials sort them out by Correlation Pattern detected

Simulation Macaque monkey biosignal using 10
Threshold

value
Pattern 0 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Total
detections

5 1604 21 1401 673 790 147 4696
7 30 2 437 604 912 56 2053
9 0 0 56 18 958 18 1289
11 0 0 7 87 960 10 1064
13 0 0 1 30 954 8 993
15 0 0 0 8 942 10 960

5.2 Simulation Human pancreatic results

The SNR presented for the filtered Human pancreatic biosignal by using the (Equation 5.1)
is 3.89 and by applying the (Equation 5.2) the SNR is equal to 5.89 dB . The amplitude
of Action Potentials detected in the Human pancreatic biosignal can be appreciated in
(Figure 5.2) where is represented the Mean Action Potential shape as well as the maximum
a minimum values in each of the 128 samples that makes the Action Potential shape. Here,
we can see the noise level and amplitude of Action Potentials detected.
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Figure 5.2: Mean Action Potential shape from Human pancreatic signal computed after
13 seconds and 53 detections using a threshold value of 15

The parameters for the Human pancreatic biosignal are presented in (Table 5.4). as
aforementioned the parameters used here and the ones used in the Hardware architecture
can be different. In addition, the file of this biosignal had been normalized before. So,
the amplitude values not correspond to the original voltage value.

Table 5.4: Simulation parameters for Human pancreatic biosignal

Parameter Variable Values Description
N 9 , 11 , 13, 15 Detection threshold level value

K 1.0
Internal K value

into detection threshold compute
C N 10 Correlation threshold level value

C K 100.0
Internal K value into

correlation threshold compute

Coficient XN 0.999
Internal coefficient of low-pass filter

from threshold value compute

Coficient Yn 1 0.001
Internal coefficient of low-pass filter

from threshold value compute

C Coficient XN 0.999
Internal coefficient of low-pass filter from

correlation threshold value compute

C Coficient Yn 1 0.001
Internal coefficient of low-pass filter from

correlation threshold value compute

SamplesNUM 128
Samples number

for detecting the Action Potential

The results of each simulation using a different Threshold value is shown in (Table 5.5).
Here, the Action Potentials that triggered both detector are shown in the two-phases
columns, as well as the False positives and False negatives detected in their respective
columns and in addition we added an extra detection for those detections that only had a
positive trigger event between an Action Potential period. For False Negatives are those
detections that did not have a second phases detection between the Action Potential
period. For False positives are those that stayed above the threshold for more than an
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Action Potential period.

Table 5.5: Two-phases Action Potential,Positive Action Potential, False negatives, False
positives detected using different threshold detection levels

Threshold value Two-phases Positives False positives False negatives
9 261 45 0 58
11 114 111 0 109
13 63 62 0 61
15 53 17 0 19

The (Table 5.6) shown where each two-phases Action Potential were classified or
sorted out. This is depending on the Correlation Pattern detected after its detection.
The possible patterns are six, as it is shown in the table. Finally, the Action Potentials
detected as their classification can be seen in (Appendix F), where the illustration are
sorted by the threshold value used during the simulation.

Table 5.6: Two-phases Action Potentials sort them out by Correlation Pattern detected

Simulation Human pancreatic biosignal using 10
Threshold

value
Pattern 0 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Total
detections

9 213 1 29 7 3 8 261
11 63 2 8 6 24 11 114
13 8 0 2 5 46 2 63
15 1 0 1 3 44 4 53

5.3 FPGA Macaque monkey results

The hardware architecture for the Monkey module dedicated to Macaque monkey
biosignal was designed using the ISE WebPACK of XILINX on a NEXYS 4 Artix-7
FPGA. The module uses 2,083 slice registers (1% utilization of available slice registers),
2,915 LUTs (4% utilization of available slice LUTs), and can operate at a maximum
frequency of 104.965 MHz. The next (Figure 5.3) shows when a Action Potential is
detected in the FPGA showing the band-pass filter signal, the Correlation signal and the
threshold for detecting Action Potentials or the Correlation Patterns generated.
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Figure 5.3: Monkey module detecting a two-phases Action Potential (green), Correlation
Pattern (yellow) and positive and negative threshold values. 7-segment displays showing
the actual number of two-phases Action Potentials detected

In this module the Generic inputs for properly running the detection and classification
process are shown in (Table 5.7). The K Adjustment and K Adjustment C input
values were tested in the FPGA architecture showing a good performance when computing
the detection threshold and correlation threshold being less sensitive to the presence of
Macaque monkey Action Potentials and Correlation Patterns. This thresholds were put
above the background noise on the biosignal and on the Correlation signal computed
internally. This was proved by using the Pmod OLEDrgb display as it is shown in the
(Figure 5.3).

Table 5.7: Generic parameters used in Monkey module

Generic input Input value
Input Frequency 40000
N Threshold [0,..,15]
K Adjustment 1000
N Threshold C 10
K Adjustment C 100
FIFO DEPTH 4

FIFO WORD SIZE 32
RAMS DEPTH 5

RAMS WORD SIZE 16
START TEST IN 2500
FINISH TEST IN 9411000
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The detections result by using this Monkey module are shown in (Table 5.8). The
results of each Threshold value is shown in this table. Here, the Action Potentials
that triggered both detector are shown in the two-phases columns, as well as the False
positives and False negatives detected in their respective columns. For False Negatives or
Falses positives are those detections that did not have a second phases detection between
the Action Potential period. These values were extracted from the FPGA by using the
7-segment displays as was aforementioned in (subsubsection 4.6.7.9).

Table 5.8: FPGA results. Two-phases Action Potentials, False positives, False Negatives
for Macaque monkey biosignal

Threshold value Two-phases False positives False negatives
5 2055 5470 15071
7 1228 931 5902
9 1037 225 2817
11 979 68 1402
13 952 19 689
15 921 10 395

The (Table 5.9) shows where each two-phases Action Potential were classified or sorted
out. This is depending on the Correlation Pattern detected after its detection. The
possible patterns are six, as it is shown in the table. All the Correlation patterns were
detected using a Correlation threshold value of 10.

Table 5.9: FPGA results. Two-phases Action Potentials classified by Correlation Pattern
for Macaque monkey biosignal

FPGA Macaque monkey biosignal using 10
Threshold

value
Pattern 0 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Total
detections

5 680 3 331 178 766 97 2055
7 99 2 94 121 868 44 2053
9 30 0 24 53 912 18 1037
11 9 0 8 26 923 13 979
13 7 0 0 18 916 11 952
15 5 0 0 12 896 8 921

5.4 FPGA Human pancreatic results

The hardware architecture for the Pancreatic module dedicated to the Human pancreatic
biosignal was designed using the ISE WebPACK of XILINX on a NEXYS 4 Artix-7
FPGA. The module uses 3,645 slice registers (4% utilization of available slice registers),
3,985 LUTs (7% utilization of available slice LUTs), and can operate at a maximum
frequency of 100.654 MHz. The next (Figure 5.4) shows when a Action Potential is
detected in the FPGA showing the band-pass filter signal, the Correlation signal and the
threshold for detecting Action Potentials or the Correlation Patterns generated.
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(a) Pmod OLEDrgb display showing a Human
pancreatic Action Potential detected by its
thresholds

(b) Pmod OLEDrgb display showing a
Correlation Pattern generated after detected a
Human pancreatic Action Potential detected

Figure 5.4: Pancreatic module detecting a two-phases Action Potential (green),
Correlation Pattern (yellow) and positive and negative threshold values

In this module the Generic inputs for properly running the detection and classification
process are shown in (Table 5.10). The K Adjustment and K Adjustment C
input values were tested in the FPGA architecture showing a good performance when
computing the detection threshold and correlation threshold being less sensitive to the
presence of Human pancreatic Action Potentials and Correlation Patterns. By the way
this values are the same that in the Monkey module. These thresholds were put above
the background noise on the biosignal and on the Correlation signal computed internally.
This was proved by using the Pmod OLEDrgb display as it is shown in the (Figure 5.4).

Table 5.10: Generic parameters used in Pancreatic module

Generic input Input value
Input Frequency 10000
N Threshold [0,..,15]
K Adjustment 1000
N Threshold C 10
K Adjustment C 100
FIFO DEPTH 4

FIFO WORD SIZE 32
RAMS DEPTH 7

RAMS WORD SIZE 16
START TEST IN 750
FINISH TEST IN 130000

The detections result by using this Pancreatic module are shown in (Table 5.11).
The results of each Threshold value is shown in this table. Here, the Action Potentials
that triggered both detector are shown in the two-phases columns, as well as the False
positives and False negatives detected in their respective columns and in addition we
added an extra detection for those detections that only had a positive trigger event
between an Action Potential period. For False Negatives are those detections that did
not have a second phases detection between the Action Potential period. For False
positives are those that stayed above the threshold for more than an Action Potential

108



CHAPTER 5. RESULTS AND CONCLUSIONS

period. These values were extracted from the FPGA by using the 7-segment displays as
was aforementioned in (subsubsection 4.6.7.9).

Table 5.11: FPGA results. Two-phases Action Potentials, False positives, False Negatives
for Human pancreatic biosignal

FPGA Human pancreatic detections using 10
Threshold

value
Two-phases Positive False positive False negative

2 415 128 2 518
3 92 192 1 202
4 48 30 0 17
5 24 35 0 2
6 5 51 0 0

The (Table 5.12) shows where each two-phases Action Potential were classified or sorted
out. This is depending on the Correlation Pattern detected after its detection. The
possible patterns are six, as it is shown in the table. All the Correlation patterns were
detected using a Correlation threshold value of 10.

Table 5.12: FPGA results. Two-phases Action Potentials classified by Correlation Pattern
for Human pancreatic biosignal

FPGA Human pancreatic biosignal using 10 two-phases
Threshold

value
Pattern 0 Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5

Total
detections

2 394 1 13 0 2 5 415
3 47 1 22 9 4 9 92
4 0 0 5 6 33 4 48
5 0 0 1 4 19 0 24
6 0 0 1 0 3 1 5

5.5 Conclusions and future works

In this work we create two modules one dedicated to detection of Action Potentials in
Macaque monkey signals and other one dedicated to Action Potentials from Human
pancreatic biosignals. Both modules save the sample number where each two-phases
Action Potential was detected, which is the maximum value found in the Action Potential
shape. This was performed by the adaptive threshold presented in Harrison (2003) where
follows the hypothesis that the background noise will overtake its standard deviation
value with 15% of the samples. This adaptive threshold presented good performance
when good coefficients are selected, whose values were presented in (Table 5.1) and
(Table 5.4) for software, and (Table 5.7) and (Table 5.10) for hardware. The use of
FIFO memories in the modules was thinking about the connection to other devices that
probably works at a lower clock frequency, with the use of FIFO memories we guaranty
that the detection data is not loosed.

The advantages of the use of Correlation Patterns is that we do not need knowledge
of the Action potential shape in biosignals, as other methods needs. The Mean Action
Potential shape is computed autonomously depending on the present detections through
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the time, The only data needed is to proportioned the samples length need for saving the
Action potential shape depending on the sample frequency in the biosignal and adapting
the module by the Matlab scripts and generic inputs. Communly, the duration of a
Action Potential is around 1 ms and 10 ms depending on the nature of the biosignal, in
our case the Action potentials from Macaque monkey biosignal have a period around 0.8
ms and those for the Human pancreatic biosignal have a period around 12 ms.

One of the disadvantages at the beginning is that we do not have enough detections
to compute a good Mean Action potential shape, and this can cause problems sorting
Action Potentials of high amplitude, due to probably the Mean Action Potential shape
is not yet so similar to the Action Potential shape detected. But we think is a good
cost to pay for the classification of the next detections when the Mean Action Potential
shape has been computed with more Action Potentials shaped detected. The compute by
using a low-pass filter also is a good tool, due to we do not need to save a lot of Action
Potential shapes and we do need to wait until we get a good amount of Action Potential
shapes.

In addition, we would like to mentioned some important future works. The first one is
the use of one more adaptive threshold which will be put in a higher N value, and it will
manage the compute of the Mean Action Potential shape. That means that we will have
a threshold for the detection part and other one for the classification part. This second
threshold will help the classification process creating a Mean Action Potential shape only
with the Action Potentials with a High amplitude, which will be less perturbed by Action
Potentials with low amplitude, making it better for generate the Correlation patterns
explained in the (Figure 3.17). In that way, the Action Potentials with lower amplitude
will be separated more efficiently, as it was shown for instance in the ( E.6a), where
almost all the Action potentials with high amplitude where sorted in the Correlation
Pattern 4, and only a few in the Correlation Pattern 5. Also this behaviour was presented
in the Human pancreatic results in ( F.4a. In conclusion the use of a low N value
threshold will detected both Action Potentials with high amplitude and low amplitude,
as it was shown in ( E.1a) where Action Potentials with low amplitude were sorted in
several correlation patterns and by adding a second high N value threshold for only the
classification part, we will help the classification process sorting the Action Potentials
with high amplitude to the Action Potentials with low amplitude more efficiently.

The second important test of this module is when we will be able to implement the
behaviour of the VHDL module during a real-time acquisition. Although, we did not
have the resources to do it, we presented a good tool to off-line processing emulating
a real-time acquisition by the sd card module that gives the raw data samples of the
biosignal at its sample frequency recorded, with the advantage that the user can see the
Action Potential detected through the Pmod OLEDrgb display, as well as the threshold
behaviour to know if the detection process will carry out a good result.
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A
Python script

1 f i l ename = ”G20151110A−01. txt ” ## Raw−data f i l e l o c a t i o n
2 s i g n a l 1 = [ ]
3 s i g n a l 2 = [ ]
4 pr in t ’ r ead ing s i g n a l . . . ’
5 with open ( f i l ename ) as f :
6 f o r numstring in f :
7 s i g n a l 1 . append ( eva l ( numstring ) )
8 #i f l en ( s i g n a l ) >10000:
9 # break

10 pr in t ’ s i g n a l loaded ’
11 ## Finding minimum value
12 auxmin=999999999
13 f o r i in range (0 , l en ( s i g n a l 1 ) ) :
14

15 i f s i g n a l 1 [ i ] < auxmin and s i g n a l 1 [ i ] > 0 :
16 auxmin = s i gn a l 1 [ i ]
17

18 pr in t ( ”Min found” , auxmin )
19 ## Signa l − minimum value founded
20 s i g n a l 1 [ : ] = [ x − auxmin f o r x in s i g n a l 1 ]
21

22 ## Finding minimum value2
23 auxmin2=999999999
24 f o r i in range (0 , l en ( s i g n a l 1 ) ) :
25

26 i f s i g n a l 1 [ i ] < auxmin2 and s i g n a l 1 [ i ] > 0 :
27 auxmin2 = s i gna l 1 [ i ]
28 ## Signa l / minimum value founded
29 s i g n a l 1 [ : ] = [ x / auxmin2 f o r x in s i g n a l 1 ]
30

31 pr in t ( ”Min found2” , auxmin2 )
32

33 ## 2 ’ s Complement f o r 16−b i t format
34 f o r x in range (0 , l en ( s i g n a l 1 ) ) :
35 i f s i g n a l 1 [ x ]<0:
36 s i g n a l 2 . append ( s i g n a l 1 [ x ]+65536)
37 e l s e :
38 s i g n a l 2 . append ( s i g n a l 1 [ x ] )
39 ## Creat ing Bin f i l e
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40 doc = open ( ”My Monkey 16 . bin ” , ”wb” )
41

42

43 f o r x in range (0 , l en ( s i g n a l 2 ) ) :
44

45 doc . wr i t e ( ( chr ( i n t ( s i g n a l 2 [ x ] / 256) ) ) )
46 doc . wr i t e ( ( chr ( i n t ( s i g n a l 2 [ x ] % 256) ) ) )
47

48 doc . c l o s e ( )
49

50 pr in t ( ”Done” )
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Figure B.1: General Hardware architecture module diagram. For return click here
(section 4.1) 114
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Figure B.2: Toplevel module (Pancreatic module).
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Outputs:

  next_data 

read_sample

read_sample_Band

read_detection 

Plot  

Inputs:

Authorized 

 timer_strobe 

data_ready 

ready_IIR
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Figure B.3: Global FSM that controls all the process in the architecture. return click
here subsection 4.6.1
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Outputs:

OLED_disp_shift , data_en_to_display , Shift_done

Inputs:

Plot , OLED_ready
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Figure B.4: FSM for plotting the signals over the Pmod OLEDrgb display. return click
here subsection 4.6.4
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Outputs:

Authorized

Inputs:

data_en_from_UART , data_from_UART , Detected , Disable , read_Finished, timer_strobe
 

stopped
0

running
1

single
1

1aX,XX,XX1cX,XX,XX

1bXXX1
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XX1,01,XX

XXX,XX,1X

1aX,XX,XX
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1bX,XX,XX

1bX,XX,XX

XX1,10,XX

Figure B.5: UART FSM for receiving, sending and controlling the system process, such
as star, stop and pause by the characters a,b,c.For return click here subsection 4.6.1
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Outputs:

L_Yn_1 , L_Xn_1 ,  L_Xn , LD_Result, IIR_ready

Inputs:

new_sample

1
X 

Waiting

00001

saving_past

11000

saving_Result

00010

saving_new_sample

00100

X
X

Figure B.6: FSM to compute the IIR low-pass filter output. For return click here
subsection 4.6.5
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Figure B.7: IIR low-pass filter architecture components. To return click here
subsection 4.6.5 120
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Figure B.8: IIR low-pass filter threshold.

Outputs:

L_Yn_1 , L_Xn_1 ,  L_Xn , L_Result,  IIR_ready

1
X 

Inputs:

new_sample

Waiting

00001

saving_past

11000

saving_Result

00010

saving_new_sample

00100

X
X

Figure B.9: IIR low-pass filter threshold. To return click here subsection 4.6.6

121



CL
K

RS
T

To
p_

Le
ve

l_T
hr

es
ho

ld

   

IIR
_r

ea
dy

En
_F

ilt
er

2

CL
K

RS
T

To
p_

IIR
_

Th
re

sh
ol

d

+ -Co
m

pa
ra

to
r 

A

ba
nd

_p
as

s_
va

lu
e

/

co
mA

_to
_fi

lte
r

/

/
filt

er
_to

_s
ub

s

16

0.1
59

su
bs

_to
_K

16 /

*

Fa
ct

or
 K

Re
gi

st
er

_F
ac

to
r_

1
/

K_
to_

ad
jk_

re
g

31

AD
J K

 C
LK

 R
ST

LD
_R

eg
_F

ac
tor

_1

K_
to_

ad
jk

/31

ad
jk_

to_
co

mA
/16

Re
gi

st
er

_T
hr

es
ho

ld

*

Fa
ct

or
 N

 K
_to

_N
AD

J N
/

N_
to_

ad
jN

36

Ad
jN

_to
_R

eg
ist

er
/16

L_
Th

re
sh

old

Re
gis

ter
_to

_c
om

B
/

+-
16

hi
gh

_p
as

s_
va

lu
e

/

16

16

2n
d 

Co
m

pl
em

en
t

ne
g_

thr
es

ho
ld

/16

hi
gh

_p
as

s_
va

lu
e

Su
bs

tra
ct

or
 0.

15
9

+ -Co
m

pa
ra

to
r 

C

Co
m

pa
ra

to
r

B
De

te
ct

or
_P

De
te

ct
or

_N

Th
re

sh
ol

d_
P

Th
re

sh
ol

d_
N

FSM_Threshold

ne
w_

sa
mp

le

IIR
_r

ea
dy

En
_F

ilt
er

L_
Th

re
sh

ol
d

De
te

ct
io

n_
re

ad
y

RS
T

CL
K

 R
ST

CL
K

LD
_R

eg
_F

ac
to

r_
1

De
te

ct
io

n_
P

De
te

ct
io

n_
N

Th
re

sh
ol

d_
N

Th
re

sh
ol

d_
P

De
te

ct
io

n_
re

ad
y

/16 /16

ne
w_

sa
mp

le

ba
nd

_p
as

s_
va

lue

N_
Th

re
sh

old

K_
Ad

jus
tm

en
t

/16

N_
Th

re
sh

old

K_
Ad

jus
tm

en
t

Figure B.10: Top level Threshold module filter architecture components. To return click
here subsection 4.6.6
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APPENDIX B. HARDWARE ARCHITECTURE

Outputs:

En_Filter , LD_Reg_Factor_1 ,  L_Threshold, Detection_ready

Inputs:

new_sample , IIR_ready
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Figure B.11: FSM for computing the Threshold value. To return click here
subsection 4.6.6
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Outputs:
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Figure C.1: FSM for saving maximum values . To return click here subsubsection 4.6.7.1
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Figure C.2: FSM for saving minimum values. To return click here subsubsection 4.6.7.1
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Figure C.3: FSM for saving maximum values. To return click here subsubsection 4.6.7.1
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Figure C.4: FSM for saving minimum values. To return click here subsubsection 4.6.7.1
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APPENDIX C. FSM DETECTION SAVE AND CLASSIFICATION MODULE

Outputs:
Count_Enable_Samples 

clear_counter 
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Figure C.5: FSM Action Potential Detection from Macaque Action Potentials
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Figure C.6: FSM Action Potential Detection and controlled components for Macaque
Action Potentials
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APPENDIX C. FSM DETECTION SAVE AND CLASSIFICATION MODULE

Outputs:
Count_Enable_Samples 

clear_counter 

 FIFO_write  

 FIFO_write_Neg 
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Figure C.7: FSM Action Potential Detection for Pancreatic Action Potential
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Figure C.8: FSM Action Potential Detection and controlled components for Pancreatic
Action Potential
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APPENDIX C. FSM DETECTION SAVE AND CLASSIFICATION MODULE

Outputs:
Clear_Count_Half , Save_Spike_Now , Enable_Count_Half

Inputs:
Enable_FSM_Count_Half , enable , Save_Max_order , Count_Finish_Half , New_Sample

waiting
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Figure C.9: FSM save Action Potential order
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Figure C.10: FSM Counter Half Window and controlled components
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APPENDIX C. FSM DETECTION SAVE AND CLASSIFICATION MODULE

Outputs:
Save_Spike_sample , En_Count_Detected , Clear_Count_Detected , Start_to_Compute_Mean

Inputs:
Enable_FSM_Spike , Save_Spike_Now  , Count_Finish_spike_Detected

waiting
0000

waiting_Save_Half_32

0000

Saving_New_Spike

1100

Spike_Saved

0011

switching

0000

1XX
XXX

X1X
XXX

XX1

Figure C.11: FSM for saving Action Potential shape into RAM memory.
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Figure C.12: FSM Saving Spike and Controlled components
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APPENDIX C. FSM DETECTION SAVE AND CLASSIFICATION MODULE

Outputs:
En_Count_Adress , Clear_Count_Adress , Save_Mean , Save_Last_Spike

Inputs:
Start_to_Compute_Mean , Count_Finish_temp_Rams_Adress 

Waiting
0100

Compute_Mean

0000

Saving_RAM

1010

waiting_count_Last

0000

Saving_Last_Spike

1001
Mean_Spike_Done

0100

Waiting_count

0000

X0

XX

XX

X1

X0

1X

XX X1

XX

Figure C.13: FSM for computing the Mean Action Potential shape.
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Figure C.14: FSM Mean Spike and Controlled components
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APPENDIX C. FSM DETECTION SAVE AND CLASSIFICATION MODULE

Outputs:
Save_Accumulator 

 Save_Result_Corr 

 En_Count_Iterative_M 

 Clear_Count_Mux_RAM

 Clear_Accumulator 

 Save_Mult 

Correlation_Done

 ready_Corre_Compute

Inputs:
New_sample 

Count_Finish_Mux_RAM 

waiting
00011001

waiting_Sample

00000000

Save_MultI

00000100

waiting_last

00000000
Save_Accum

10000000

waiting_count

00000000

count_up

00100000

Save_Result

01000000

Done

00000010

1X

XX

XX

X0

XX

XX

XX

XXXX

X1

Figure C.15: FSM for computing Correlation signal.
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Figure C.16: FSM Iterative M for computing Correlation value.
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Figure C.17: FSM and components for computing Correlation Thresholds.
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Figure C.18: FSM for detecting Correlation Patterns.
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Figure C.19: FSM and components for Action Potential Classification by Correlation
Pattern detected and number of detections in each pattern.
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D
Matlab scripts and VHDL generated

D.1 Mux To Multiplicator

1 RAMSDEPTH = 5 ; %% A power o f two
2 RAM Locations = 2ˆRAMSDEPTH; %% example 2ˆ5 = 32 memory l o c a t i o n s
3 f i d = fopen ( ’ Mux To Mult ip l icator . vhd ’ , ’w ’ ) ;
4

5 f p r i n t f ( f i d , ’ p roc e s s ( S1 , r eg i s t e r w indow ) \n ’ ) ;
6 f p r i n t f ( f i d , ’ begin \n ’ ) ;
7 f p r i n t f ( f i d , ’ case S1 i s \n ’ ) ;
8 f o r i=RAM Locations :−1:1
9 f p r i n t f ( f i d , ’ when ”%s” => . . .

10 . . . Mux To Mult ip l icator <= reg i s t e r w indow(%d) ; . . .
11 . . . \ n ’ , dec2bin ( ( RAM Locations )−i ,RAMSDEPTH) , i −1) ;
12 end
13 f p r i n t f ( f i d , ’ when othe r s => . . .
14 . . . Mux To Mult ip l icator <= reg i s t e r w indow(%d) ; . . .
15 \n ’ , RAM Locations−1) ;
16 f p r i n t f ( f i d , ’ end case ;\n ’ ) ;
17 f p r i n t f ( f i d , ’ end proce s s ;\n ’ ) ;
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D.1. MUX TO MULTIPLICATOR

1 proce s s (S1 , r eg i s t e r w indow )
2 begin
3 case S1 i s
4 when ”00000” => Mux To Mult ip l icator <= reg i s t e r w indow (31) ;
5 when ”00001” => Mux To Mult ip l icator <= reg i s t e r w indow (30) ;
6 when ”00010” => Mux To Mult ip l icator <= reg i s t e r w indow (29) ;
7 when ”00011” => Mux To Mult ip l icator <= reg i s t e r w indow (28) ;
8 when ”00100” => Mux To Mult ip l icator <= reg i s t e r w indow (27) ;
9 when ”00101” => Mux To Mult ip l icator <= reg i s t e r w indow (26) ;

10 when ”00110” => Mux To Mult ip l icator <= reg i s t e r w indow (25) ;
11 when ”00111” => Mux To Mult ip l icator <= reg i s t e r w indow (24) ;
12 when ”01000” => Mux To Mult ip l icator <= reg i s t e r w indow (23) ;
13 when ”01001” => Mux To Mult ip l icator <= reg i s t e r w indow (22) ;
14 when ”01010” => Mux To Mult ip l icator <= reg i s t e r w indow (21) ;
15 when ”01011” => Mux To Mult ip l icator <= reg i s t e r w indow (20) ;
16 when ”01100” => Mux To Mult ip l icator <= reg i s t e r w indow (19) ;
17 when ”01101” => Mux To Mult ip l icator <= reg i s t e r w indow (18) ;
18 when ”01110” => Mux To Mult ip l icator <= reg i s t e r w indow (17) ;
19 when ”01111” => Mux To Mult ip l icator <= reg i s t e r w indow (16) ;
20 when ”10000” => Mux To Mult ip l icator <= reg i s t e r w indow (15) ;
21 when ”10001” => Mux To Mult ip l icator <= reg i s t e r w indow (14) ;
22 when ”10010” => Mux To Mult ip l icator <= reg i s t e r w indow (13) ;
23 when ”10011” => Mux To Mult ip l icator <= reg i s t e r w indow (12) ;
24 when ”10100” => Mux To Mult ip l icator <= reg i s t e r w indow (11) ;
25 when ”10101” => Mux To Mult ip l icator <= reg i s t e r w indow (10) ;
26 when ”10110” => Mux To Mult ip l icator <= reg i s t e r w indow (9) ;
27 when ”10111” => Mux To Mult ip l icator <= reg i s t e r w indow (8) ;
28 when ”11000” => Mux To Mult ip l icator <= reg i s t e r w indow (7) ;
29 when ”11001” => Mux To Mult ip l icator <= reg i s t e r w indow (6) ;
30 when ”11010” => Mux To Mult ip l icator <= reg i s t e r w indow (5) ;
31 when ”11011” => Mux To Mult ip l icator <= reg i s t e r w indow (4) ;
32 when ”11100” => Mux To Mult ip l icator <= reg i s t e r w indow (3) ;
33 when ”11101” => Mux To Mult ip l icator <= reg i s t e r w indow (2) ;
34 when ”11110” => Mux To Mult ip l icator <= reg i s t e r w indow (1) ;
35 when ”11111” => Mux To Mult ip l icator <= reg i s t e r w indow (0) ;
36 when othe r s => Mux To Mult ip l icator <= reg i s t e r w indow (31) ;
37 end case ;
38 end proce s s ;
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APPENDIX D. MATLAB SCRIPTS AND VHDL GENERATED

D.2 Mux To RAM

1 RAMSDEPTH = 5 ; %% A power o f two
2 RAM Locations = 2ˆRAMSDEPTH; %% example 2ˆ5 = 32 memory l o c a t i o n s
3 f i d = fopen ( ’Mux To Ram . vhd ’ , ’w ’ ) ;
4

5 f p r i n t f ( f i d , ’ p roc e s s ( S0 , r eg i s t e r w indow ) \n ’ ) ;
6 f p r i n t f ( f i d , ’ begin \n ’ ) ;
7 f p r i n t f ( f i d , ’ case S0 i s \n ’ ) ;
8 f o r i=RAM Locations :−1:1
9 f p r i n t f ( f i d , ’ when ”%s” => Mux To Ram <= reg i s t e r w indow(%d) ; . . .

10 . . . \ n ’ , dec2bin ( ( RAM Locations )−i ,RAMSDEPTH) , i −1) ;
11 end
12 f p r i n t f ( f i d , ’ when othe r s => Mux To Ram <= reg i s t e r w indow(%d) ; . . .
13 . . . \ n ’ , RAM Locations−1) ;
14 f p r i n t f ( f i d , ’ end case ;\n ’ ) ;
15 f p r i n t f ( f i d , ’ end proce s s ;\n ’ ) ;

1 proce s s (S0 , r eg i s t e r w indow )
2 begin
3 case S0 i s
4 when ”00000” => Mux To Ram <= reg i s t e r w indow (31) ;
5 when ”00001” => Mux To Ram <= reg i s t e r w indow (30) ;
6 when ”00010” => Mux To Ram <= reg i s t e r w indow (29) ;
7 when ”00011” => Mux To Ram <= reg i s t e r w indow (28) ;
8 when ”00100” => Mux To Ram <= reg i s t e r w indow (27) ;
9 when ”00101” => Mux To Ram <= reg i s t e r w indow (26) ;

10 when ”00110” => Mux To Ram <= reg i s t e r w indow (25) ;
11 when ”00111” => Mux To Ram <= reg i s t e r w indow (24) ;
12 when ”01000” => Mux To Ram <= reg i s t e r w indow (23) ;
13 when ”01001” => Mux To Ram <= reg i s t e r w indow (22) ;
14 when ”01010” => Mux To Ram <= reg i s t e r w indow (21) ;
15 when ”01011” => Mux To Ram <= reg i s t e r w indow (20) ;
16 when ”01100” => Mux To Ram <= reg i s t e r w indow (19) ;
17 when ”01101” => Mux To Ram <= reg i s t e r w indow (18) ;
18 when ”01110” => Mux To Ram <= reg i s t e r w indow (17) ;
19 when ”01111” => Mux To Ram <= reg i s t e r w indow (16) ;
20 when ”10000” => Mux To Ram <= reg i s t e r w indow (15) ;
21 when ”10001” => Mux To Ram <= reg i s t e r w indow (14) ;
22 when ”10010” => Mux To Ram <= reg i s t e r w indow (13) ;
23 when ”10011” => Mux To Ram <= reg i s t e r w indow (12) ;
24 when ”10100” => Mux To Ram <= reg i s t e r w indow (11) ;
25 when ”10101” => Mux To Ram <= reg i s t e r w indow (10) ;
26 when ”10110” => Mux To Ram <= reg i s t e r w indow (9) ;
27 when ”10111” => Mux To Ram <= reg i s t e r w indow (8) ;
28 when ”11000” => Mux To Ram <= reg i s t e r w indow (7) ;
29 when ”11001” => Mux To Ram <= reg i s t e r w indow (6) ;
30 when ”11010” => Mux To Ram <= reg i s t e r w indow (5) ;
31 when ”11011” => Mux To Ram <= reg i s t e r w indow (4) ;
32 when ”11100” => Mux To Ram <= reg i s t e r w indow (3) ;
33 when ”11101” => Mux To Ram <= reg i s t e r w indow (2) ;
34 when ”11110” => Mux To Ram <= reg i s t e r w indow (1) ;
35 when ”11111” => Mux To Ram <= reg i s t e r w indow (0) ;
36 when othe r s => Mux To Ram <= reg i s t e r w indow (31) ;
37 end case ;
38 end proce s s ;
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E.1. THRESHOLD VALUE 5

E.1 Threshold value 5
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(a) Action Potentials detected. 4696 detections
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(b) 21 detections classified in Pattern 1
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(c) 1401 detections classified in Pattern 2
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(d) 673 detections classified in Pattern 3

0 100 200 300 400 500 600 700

Time(us) 

0.06

0.04

0.02

0.00

0.02

0.04

Vo
lta

ge
 (V

)

(e) 790 detections classified in Pattern 4
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(f) 147 detections classified in Pattern 5
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(g) 1604 detections classified in Pattern 0

Figure E.1: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 5, Correlation Threshold = 10
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E.2 Threshold value 7
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(a) Action Potentials detected. 2053 detections
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(b) 2 detections classified in Pattern 1
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(c) 437 detections classified in Pattern 2
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(d) 604 detections classified in Pattern 3
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(e) 912 detections classified in Pattern 4
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(f) 56 detections classified in Pattern 5
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(g) 30 detections classified in Pattern 5

Figure E.2: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 7, Correlation Threshold = 10
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E.3 Threshold value 9
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(a) Action Potentials detected. 1289 detections
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(b) 56 detections classified in Pattern 2
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(c) 18 detections classified in Pattern 3
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(d) 958 detections classified in Pattern 4
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(e) 18 detections classified in Pattern5

Figure E.3: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 9, Correlation Threshold = 10
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E.4 Threshold value 11
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(a) Action Potentials detected. 1064 detections

0 100 200 300 400 500 600 700

Time(us) 
0.015

0.010

0.005

0.000

0.005

0.010

0.015

Vo
lta

ge
 (V

)

(b) 7 detections classified in Pattern 2
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(c) 87 detections classified in Pattern 3
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(d) 960 detections classified in Pattern 4
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(e) 10 detections classified in Pattern 5

Figure E.4: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 11, Correlation Threshold = 10
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E.5 Threshold value 13
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(a) Action Potentials detected. 993 detections
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(b) 1 detections classified in Pattern 2
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(c) 30 detections classified in Pattern 3
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(d) 954 detections classified in Pattern 4
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(e) 8 detections classified in Pattern 5

Figure E.5: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 13, Correlation Threshold = 10
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E.6 Threshold value 15
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(a) Action Potentials detected. 960 detections
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(b) 8 detections classified in Pattern 3
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(c) 942 detections classified in Pattern 4
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(d) 10 detections classified in Pattern 5

Figure E.6: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 15, Correlation Threshold = 10
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F.1. THRESHOLD VALUE 9

F.1 Threshold value 9
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(a) Action Potentials detected. 261 detections
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(b) 1 detections classified in Pattern 1
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(c) 29 detections classified in Pattern 2
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(d) 7 detections classified in Pattern 3
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(e) 29 detections classified in Pattern 4
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(f) 8 detections classified in Pattern 5
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(g) 213 detections classified in Pattern 0

Figure F.1: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 9, Correlation Threshold = 10
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F.2 Threshold value 11
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(a) Action Potentials detected. 114 detections
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(b) 2 detections classified in Pattern 1

0 500 1000 1500 2000 2500 3000

Time(us) 

4

2

0

2

4

6

8

10

Vo
lta

ge
 (V

)

(c) 8 detections classified in Pattern 2
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(d) 6 detections classified in Pattern 3
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(e) 24 detections classified in Pattern 4
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(f) 11 detections classified in Pattern 5
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(g) 63 detections classified in Pattern 0

Figure F.2: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 11, Correlation Threshold = 10
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F.3 Threshold value 13
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(a) Action Potentials detected. 63 detections
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(b) 8 detections classified in Pattern 0
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(c) 2 detections classified in Pattern 2
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(d) 5 detections classified in Pattern 3
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(e) 46 detections classified in Pattern 4
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(f) 2 detections classified in Pattern 5

Figure F.3: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 13, Correlation Threshold = 10
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F.4 Threshold value 15
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(a) Action Potentials detected. 53 detections
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(b) 1 detections classified in Pattern 0
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(c) 1 detections classified in Pattern 2
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(d) 3 detections classified in Pattern 3
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(e) 44 detections classified in Pattern 4
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(f) 4 detections classified in Pattern 5

Figure F.4: Action Potentials detected and classified by Correlation Pattern. Threshold
value = 15, Correlation Threshold = 10
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