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to work with him developing this project, and for being, in addition to my advisor, my
friend. I also want to thank Dr. Agust́ın Vidal Lesso for the support that he gave me as
my co-advisor.

I want to thank the professors of the Dynamics and Robotics department, who taught
me in my Master’s coursework. I want to give special thanks to Dr. José Ma. Rico
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Abstract

Measurement of the knee motion and the computing of its geometrical parameters is
a complex task that requires the use of specialized facilities and equipment to perform
data acquisition, as well as clinicians with training in physiology to place the markers
correctly on anatomical landmarks. Additionally, the existing kinematic knee models
have important limitations in their ability to reproduce complex movements different than
pure flexion-extension, since their mobility have been limited to 1-DoF. The architecture of
these models has evolved over the years from the planar mechanisms to the recent spatial
parallel platforms, improving their capability to reproduce spatial movements of the knee,
but only during passive motion. Moreover, these models take the ligaments as isometric
links, therefore, not allowing to simulate their actual behavior.

In order to overcome the drawbacks, a photogrammetric measurement system is pro-
posed, which uses only one camera and two planar patterns to extract 3D kinematic data.
An accuracy study of the measurement system was developed to ensure the reliability of
it. With this mesurement system, a new experimental procedure to acquire the work-
space of three motion tasks (passive flexion-extension, passive internal-external rotation
and semi-active flexion-extension) and compute the geometrical parameters of the knee is
proposed.

Then, a new kinematic knee model as a parallel platform with 4-DoF and a RRPP+4-
SPS architecture with high anatomic significance is proposed, which is capable of reaching
a subject-specific flexion work-space obtained experimentally as well as being able to sim-
ulate the ligament length variations of: ACL PCL MCL and LCL by the distance between
the spherical pairs in the SPS kinematic chains. Likewise, the inverse kinematic analysis
by means of the Denavit-Hartenberg notation and the mobility analysis are presented for
the proposed kinematic knee model. Finally, an optimization process is developed to set
the ligament length variation curves of the model as the prescribed ones taken from the
literature.

Two examples of the kinematic knee model before and after the optimization process
have been validated by the computer software Solidworks R©.

Key words: kinematic knee model, measurement system, motion task, opti-
mization process, ligament length variation.
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Resumen

La medición de los movimientos de la rodilla y el cálculo de sus parámetros geométricos
es una tarea compleja que requiere de instalaciones y equipo especializado para realizar la
adquisición de datos, aśı como de cĺınicos con entrenamiento en fisioloǵıa para posicicionar
correctamente los marcadores en posiciones estratégicas del cuerpo. Adiciconalmente, los
modelos cinemáticos de rodilla que existen actualmente tienen limitaciones importantes en
su habilidad para emular movimientos complejos además de solo flexión-extensión, ya que
su movilidad está restringida a 1-GdL. La arquitectura de los modelos ha evolucionado
a través de los años, desde los mecanismos planos hasta los de plataformas paralellas
propuestos recientemente, mejorando su capacidad de reproducir movimientos espaciales
de la rodilla, aunque solo durante movimiento pasivo. Además, estos modelos asumen
los ligamentos como elementos isométricos, lo que no permite simular su comportamiento
real.

Con el fin de superar estos inconvenientes, se propone un sistema de medición basado
en fotogrametŕıa, el cual usa una sola cámara y dos patrones planos para extraer datos
cinemáticos en 3D. Se realizó un estudio de precisión para asegurar la confiabilidad del
sistema. Con este sistema de medición se propone además un nuevo procedimiento exper-
imental para medir el espacio de trabajo de la rodilla durante tres tareas de movimiento
(flexión-extensión pasiva, rotación interna-externa pasiva y flexión semi-activa) y calcular
sus sus parámetros geométricos.

Entonces, se propone un nuevo modelo cinemático de rodilla, como una plataforma
parallela con 4-GdL y arquitectura RRPP+4-SPS con significancia anatómica, capaz de
emular un espacio de trabajo de flexión espećıfico de un paciente obtenido experimen-
talmente, aśı como de simular variaciones de longitud de los ligamentos: ACL, PCL,
MCL y LCL, a través de las distancias ente los pares esféricos de las cadenas cinemáticas
SPS. De igual manera, se presenta el análisis cinemático inverso mediante notación de
Denavit-Hartenberg y el análisis de movilidad. Finalmente, se desarrolla un proceso de
optimización para obtener curvas de variones de longitud de los ligamentos similares a
unas pre-escritas tomadas de la literatura.

Dos ejemplos del modelo cinemático de rodilla antes y después del proceso de opti-
mización han sido validados mediante el software SolidWorks R©.

Palabras clave: modelo cinemático de rodilla, sistema de medición, tarea de
movimiento, proceso de optimización, variaciones en la longitud de los liga-
mentos.
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Chapter 1

Introduction

The knee is one of the largest and most complex joints in the body. It is essential in the
human life because it allows a number of important functions [8], such as:

• supports the body in upright position without muscles having to work,

• helps in lowering and raising body e.g. sitting, climbing and squatting,

• allows rotation/twisting of the leg to place and position foot accurately,

• makes walking more efficient,

• acts with the ankle joint as a strong forward propeller of the body - particularly
important when running,

• provides stability and proprioception of the leg,

• acts as a shock absorber.

In addition, the knee faces the mechanical challenge of reconciling two contradictory
requirements: 1) to have great stability in full extension when the knee is severely stressed
and 2) to display great mobility in flexion, as needed for running and for the optimal
orientation of the foot relative to the irregularities of the ground. The knee solves these
problems by using highly ingenious mechanical devices such as: ligaments, menisci, carti-
lage, tendons, muscles and articular surfaces. However, this complex system renders the
knee liable to injuries, such as; chondromalacia patella, knee osteoarthritis, meniscal tear,
cruciate ligament strain or tear, medial collateral ligament strain or tear, patellar sublux-
ation, patellar tendonitis, etc. [9]. In severe cases, surgery may be necessary. Whether it
was just a knee injury or a surgery, some type of physical therapy is always necessary to
get the strength back and put the patient on the road to recovery.

Therefore, a deep and precise knowledge of the kinematic good behavior of the knee
joint becomes essential to ensure full recovery, prevent injuries and stop problems coming
back. In addition, a kinematic knee model is very important since it allows the design
and evaluation of the physical therapy processes such as rehabilitation tasks before being
implemented in real patients, in order to improve and expedite the recovery.
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The present work has two principal topics, Determination of geometrical param-
eters of the knee and Synthesis of a kinematic knee model.

These topics are intimately related since a new kinematic knee model must be evaluated
with some reference to the real knee motion. In this particular case the final kinematic
knee model is tested by its capability to reproduce the knee work-space experimentaly
obtained.

The present work is focused in the passive and semi-active motions of the knee joint,
that is, the motion of the joint under virtually unloaded conditions i.e. totally assisted
motion and self-motion without external loads.

1.1 Review: Knee motion measurements

Historically, researchers have been interested in measuring the knee movements. The first
attemps were focused only in flexion-extension motion in the sagittal plane [10, 11], since
it is the main movement of the knee. Then, in the past two decades, the research has
focused on measuring the 3-Dimensional body segment position and orientation (alto-
gether hereinafter also referred to as ’pose’) of the femur bone and the tibia and fibula
skeletal structure, and their relative displacements during the execution of different mo-
tor tasks, some studies also include the movement of the patella relative to the femur.
The most common methods for tracking the body segments are: the use of wearable sen-
sors as accelerometers or gyroscopes [12, 13], 3D laser reconstruction [14] and the use of
photogrammetric systems [15], by far the most widespread technique used. When a pho-
togrammetric technique is used as a measurement system it is necessary a set of reflective
markers to reconstruct the 3D coordinate frame systems relative to a global system.

The measurements can be performed in vitro (cadaver specimens) or in vivo (patients
and volunteers). Since the real target of the motion analysis are the bones or skeletal
structures, the in vitro data is more reliable because the markers can be attached directly
to the bones as is shown in the Figure 1.1, which is no possible for in vivo experiments.

Figure 1.1: Experimental setup for the measurement of 3D knee movements in a cadaveric specimen.
Figure extracted from [7].
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Historically, in vivo experiments have been destinated to gait analysis, see Figure 1.2.
In addition, it has to deal with stuck the reflective markers on the skin in correspondence
with target anatomical landmarks, axes or planes, according to specific protocols and
conventions [16, 17], and mainly with the interposition of soft tissue between the markers
and the internal bones, which can be as large as a few centimeters [18].

Figure 1.2: Image matching similar phase poses during a gait analysis. Figure extracted from [19].

Soft tissue motion results in deformation of the relevant cluster markers, as well as
in its rigid displacement with respect to the underlying bones, these deformations and
displacements are associated to muscle contraction and relaxation, to gravitational and
inertial effects and also to skin sliding. Soft tissue artifact (STA) is particularly critical
during active movement of the human body (external loads acting on the articulations of
the body), as it happens in the gait. STA does affect final gait measurements more than
the instrumental error derived from the photogrammetric systems [20] and more than the
likely erroneous identification of the anatomical landmarks by the operator [21], making
of STA the main error source in the motion analysis of the human body.

1.1.1 Reducing the STA

Many are the studies in the literature reporting attempts to reduce STA specially during
gait analysis. These attempts range from the basic recommendations to optimization
techniques via segmental or global approaches, using joint models. The latter is here
referred to as multibody kinematic optimization (MKO). From another perspective, many
studies have defined biomechanical models able to reproduce joint kinematics that have
been applied to MKO approaches [22].

Here is a summary of the principal techniques to reduce STA through the last years.
The basic recommendations are good practices carried out by most researchers when they
perform a human motion analysis using photogrammetric techniques to reduce the STA,
for instance, the use of elastic bands to rigidity the skin and place the markers on it [23–25]
or place the markers far from the human joints where STA is greater [23]. Akbarshani et
al. [26] made an experimental study with ten reflective markers placed on different positions
of the thigh and shank, see Figure 1.3, in which they compared the STA magnitude of
each marker during some motion tasks. In general, markers positioned in the first third of
the thigh and the mid anterior aspect of the shank showed the less STA [26]. Moreover,
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markers located on plates that were strapped to the body segments showed less undesirable
movements than the skin mounted markers. [23,26].

Figure 1.3: Schematic diagram showing the location of ten skin markers; TH1-TH6: thigh markers;
SH1-SH3: shank markers; and PAT: patellar marker. Figure extracted from [26].

Other attempts based on invasive methods such as the use of intracortical and per-
cutaneous pins, see Figure 1.4, have been shown important improvements in reducing
the STA [27], unfortunately these devices can restrict the movements of the subject, and
should also be avoided for ethical reasons.

Figure 1.4: (a) Photograph of the percutaneous skeletal tracker (PST), (b) Diagram of the pin insertion
through the skin and (c) Photograph of a subject standing with the PST device attached to his distal
shank. Figure extracted from [27].
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Most recently, mathematical optimization techniques via segmental or global approaches
have appeared as mentioned above. The segmental approach works considering a single
segment separately addressing marker cluster deformation and its displacement indepen-
dently from other body segments. Least-squares algorithms [28], singular value decompo-
sition (SVD) [29] and the so-called solidification [30] procedures were proposed to reduce
STA on analytical bases and are some examples of the segmental optimization approach.
Leardini et al. in [22] concluded that skin marker optimization, based on isolate segments,
which can only minimize non-rigid motion components, is superfluos, and that procedures
designed to account for cluster rigid translation and orientation are required to correctly
represent body segments motion. The real foremost alternative is the MKO approach,
which entails searching solutions for the best possible segment pose estimation by con-
sidering an entire multibody model, namely a kinematic chain made of rigid segments
connected by articulating joints. In other words, the overall configuration of the limb
model must be searched to minimize the distances between the model-determined and the
measured marker trajectories.

The MKO approach, seemed to have great potential, as the overall kinematic estimation
can take advantage of the joint constraints. On the other hand, from the beginning it was
clear that the quality of the final results would have been strictly correlated with the
general quality of the joint models. The first proposal of this type dates back to 1999 [31],
although it addressed the three-dimensional problem of lower limb motion analysis only
in analytical terms.

Recently new investigations were carried out from both the joint constraint and the
algorithm efficiency point of view, and in the past few years, the effect of different models
and constraints at the lower limb joints level have been assessed thoroughly [32–34] as
well as the sensitivity to relevant parameters [35–37]. The most comprenhensive study
developed by Duprey et al. [33] tested the performances of a number of different sets of
models of the lower limb joints, and assessed their influence in the overall kinematics. The
introduction of joint models, either by kinematic or anatomical constraints, showed the
potential for considerable STA compensation.

1.2 Reporting kinematic data of the knee motion

Human motion analysis using photogrammetric systems and rigid body modeling requires
the definition of coordinate systems associated with each bony segment incorporated in
the model for the reliability of the kinematic data and its posterior analysis. Since 1990,
the Standardization and Terminology Comittee of the International Society of Biomechan-
ics has been working towards a recommendation for standardization in the reporting of
kinematic data. It is not intented to restrict individual investigators in the manner in wich
they collect or process their data. Rather, it could be viewed as an “output” filter applied
to a variety of data formats to provide uniformity in the final product.

The first attempts of the ISB (International Society of Biomechanics) recommendations
for standardization in the reporting of kinematic data were published by Wu and Cavanagh
in 1995 [16], in which they report basic statements such as; (a) the need of a consistent
global reference frame based on a right-handed orthogonal triad with one of its axis towards
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and parallel with the field of gravity, (b) a coherent frame to describe segment pose with
respect to the global frame which implies a series of right-handed orthogonal triads fixed at
the segmental centers of mass, (c) specification of displacement of a segment with respect
to the global reference frame, (d) specification of orientation of a segment with respect to
the global reference frame, (e) a frame (or system) to express the relative orientation of
the body segments with respect to each other and allows rotation about axes which can be
anatomically meaningful on the effort to establish a reference frame with non-orthogonal
axes. These statements are based on the joint coordinate system, first proposed by Grood
and Suntay [38] for the knee joint in 1983 that has the advantage of reporting joint motions
in clinically relevant terms. Time latter, Wu et al [17] published a series of papers with
the purpose of present joint coordinate system recommendations and definitions that had
been tested-used and subsequently revised.

Most recently, Cappozo et al. [15] presented a review of the human movement analysis
and the reporting of the kinematic data according to the updated general recommentadions
from the ISB such as:

Motor task frame: in human motion analysis orthogonal coordinate systems should
have the X-axis pointing forward in most locomotor task coinciding with the direction of
progression, Y -axis in the direction of the field of gravity, and Z-axis pointing to the right.

Marker cluster technical frame: this is the frame used to describe the movement
of a segment and is reconstructed using the instantaneous position of at least three non-
aligned superficial markers associated with the bony segment as is shown in Figure 1.5.
These points must coincide with anatomical landmarks so that they be identifiable in
repeatable fashion.

Figure 1.5: Three markers for each bony segment and their corresponding technical frames. Figure
extracted from [15].
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Joint kinematics: Joint kinematics is the description of the relative movement be-
tween two contiguous bony segment, the proximal (p) an the distal (d). Let us define Rj

as the joint orientation matrix and tj as the joint position vector, carry complete informa-
tion about orientation and position (pose) of the distal segment relative to the proximal
segment, see Figure 1.6. Rj, by its own nature, describes the joint orientation, taking as
reference the orientation when the two local frames involved are aligned (Rj = I; where I
is the identity matrix). A possible alternative for the identification of appropriate proximal
and distal anatomic frames is making reference to the so-called joint axes.

Figure 1.6: Proximal and distal anatomical frames used to describe joint kinematics. The points defined
in the proximal (Kp) and in the distal frames (Kd) used to describe the joint translational degrees of
freedom are also indicated. Figure extracted from [15].

With respect to the interpretability and consistency with the language of functional
anatomy, it is desirable that the six independent scalar quantities inherent in Rj and tj be
three angles (three rotational degrees of freedom) and three lengths (three translational
degrees of freedom) defined relative to the given axes. Mechanics provides several methods
that allow the extraction of the latter quantities from the joint orientation matrix and
position vector.

Translational degrees of freedom: the relative position between two adjacent bones
is described by making reference to the vector (t∗j) joining a point defined in each of the
proximal (Kp) and the distal local frames (Kd), see Figure 1.6. This is an issue that has
not been sufficiently debated. The reason for this may be that the variations in magnitude
of this vector during movement are normally too small.
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Rotational degrees of freedom: assuming that, to start with, the two anatomical
frames axes aligned, the distal anatomical frame can reach any orientation relative to the
proximal frame by undergoing three successive rotations, each time about one of the three
axes involved. The three angles thus obtained are used to describe the joint instantaneous
orientation. If the anatomical frames are chosen so that the x axes are antero-posterior,
the y axes are longitudinal, and the z axes are medio-lateral relative to the bony segments
involved (Figure 1.6), then their corresponding angles may be effectively interpreted as
the extent to which the joint is abducted or adducted, internally or externally rotated,
and flexed or extended, respectively, relative to the reference aligned orientation.

A third approach may be proposed for the description of joint’s rotational degrees of
freedom. It is based on the projection of axes of an anatomical frame onto the planes of
the other anatomical frame. In the instance of the knee joint, the following rotation angles
can be defined:

• Flexion-extension angle: the angle formed by the y axis of the tibia and the projection
of the y axis of the femur onto the xy plane of the tibia.

• Abduction-adduction: the angle formed by the y axis of the tibia and the projection
of the y axis of the femur onto the yz plane of the tibia.

• Internal-external rotation angle: the angle formed by the x axis of the tibia and the
projection of the x axis of the femur onto the xz plane of the tibia.

The reproducibility of the anatomical frames is a systematic process but it is highly
dependant on the ability of the clinician to identify bony prominences by palpation, mak-
ing the measuring process of the body segmental movements difficult for non-experts
researchers without physiotherapy training.

1.2.1 Geometrical parameters of the knee joint

The knee center and rotation axes (joint parameters) are central to all branches of motion
analysis and are fundamental elements of clinical motion analysis. In gait analysis, the
standard protocol used to determine the knee joint parameters is prone to errors arising
from palpation, anthropometric regression equations, and misplaced alignment devices.
Several alternatives to these standard methods have been described in [39, 40]. Others
determined these joint parameters making in vitro experiments e.g. Markolf et al [41], who
determined the location of Flexion-Extension Axis (FEA) relative to the Transepicondular
axis (TEA) located within the posterior femoral condyles defined by the most prominent
point on the lateral epicondyle and directed to a location on the medial epicondyle, see
Figure 1.7.

In 2005, Schwartz and Rozumalski proposed a new method for estimating joint param-
eters from motion data [42], which can be summarized as follows: (i) the motion of two
adjacent segments spanning a single joint are tracked, (ii) the axis of rotation between
every pair of observed segment configurations is computed, (iii) the most likely all axes
intersection (effective joint center) and most likely axes orientation (effective joint axis)
is found. This method was designed to produce precise and objective joint parameters
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Figure 1.7: The mean location of the FEA with respect to the TEA on (a) the medial femoral condyle
and (b) the lateral femoral condyle.

across trials and observers, and to be independent to marker placement. The present
work is mainly based on this method for the joint parameters determination and the knee
work-space (WS).

1.3 Review: kinematic knee models

Kinematic models are among powerful tools for the functional analysis of such a compli-
cated biological structures, and represent helpful tools for the solution of important issues
such as:

• definition of surgical and diagnostic procedures for joint conditions caused by injuries
or diseases;

• design prosthesis devices [43,44];

• assessment of the role of the joint biological structures in the joint characteristics in
normal and pathological conditions [45].

Planar and spatial kinematic models of joints have been presented in the literature.
Planar models proved to be of great usefulness. However, for many joints they cannot
take into account some complicated and subtle phenomena involved in the joint motion
since most of them have intrinsically three-dimensional motion.

Parenti-Castelli and Sancisi [46] clasified the models presented in the literature into
two different approaches. The first one, models the biological structures of the joint
connections such as ligaments, muscles, and articular surfaces by means of linear and
non-linear elastic and dumping elements. The main bones are allowed to have up to six
degrees of freedom (DoF) in their relative motion which finally depends on the external
forces applied to the joint and on the elastic and dumping characteristics of the joint
connecting structures. These models are computationally demanding but are also suitable
to simulate the dynamic behaviour of the joint.
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On the other hand, the second approach, models the joint as a linkage or an equiva-
lent mechanism whose geometry is based, as much as possible, on the joint anatomical
structures. These mechanisms are suitable to analyze the passive motion of the joint, that
is, the motion of the joint under virtually unloaded conditions.

Parenti-Castelli et al. [47], also presented, a sequential approach for the kinematic,
kinetostatic and dynamic modeling of diarthrodial joints. The approach relies upon some
basic hypotheses and is based on three main steps from which, in order, three joint models
of increasing complexity can be obtained. More precisely, the first step models the joint
passive motion, the second step takes into account the kinetostatic behaviour of the joint
under external loads, and the third step considers the dynamic influence of the active
elements such as the muscles.

The present review focuses on the second approach for the kinematic models of the
knee joint which along with the ankle are the mainly modeled joints.

One of the principal uses of the kinematic knee models is for MKO in gait analysis,
which entails searching solutions for the best possible segment pose estimation by con-
sidering an entire lower limb multibody model, namely a kinematics chain made of rigid
segments connected by articulating joints.

Anatomical significance is an important part of a kinematic model to ensure a close
correlation with the real knee. In general, it is expected that most of the pathological
conditions, are difficult to be replicated in joint models, particularly in case of simple
non-anatomical joint constraints, [22].

It is expected that the more the joint model is anatomically realistic, the more accurate
the final bone pose estimation will be. However, this higher accuracy would require more
careful identification of the joint model parameters and therefore higher computational
time.

The use of simple constraints imposed by lower pairs in the MKO was validated in
Stagni et al. [18]. The study compared joint angles obtained at the knee during walking
trials using two types of constraints spherical, revolute (S and R) and no constraints. The
error of the pair R was the highest and authors suggested that no benefits are obtained
for STA reduction if simplistic joint models are used.

1.3.1 The historical development of the kinematic knee models

The first attempts for modeling the human knee joint were planar models as 2-Dimensional
four-bar mechanisms, as the O’Connor model [1] in which the two cruciate ligaments are
the two links that guide the bone links (tibia and femur), shown in Figure 1.8. Some other
examples of planar knee models are given in [48–51]. All modeling the knee motion in the
sagittal plane.

Parallel mechanisms which are basically a generalization in the 3D space of previous
planar mechanisms became of great interest since they allow: (i) high anatomical signif-
icance, (ii) model personalization on the specific patient, (iii) the capability to include
ligament stiffness [52] for further kinetostatic and dynamic analysis and (iv) a better com-
pensation of STA demonstrated in the study developed by Duprey et al. [33]. These
authors also concluded that only parallel mechanisms can reproduce the known rollback
at the knee and rolling at the ankle.
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Figure 1.8: Knee model based on a planar four-bar mechanism proposed by O’Connor [1].

Most of the spatial parallel mechanisms (SPM) that model the knee joint are one-DoF
mechanisms. This consideration is based on several studies [2, 44] which prove that the
motion of the tibio-femoral joint during passive flexion is one DoF motion. The models
feature a one-to-one representation of the joint anatomical constraints. These constraints
are the articular surfaces and the assumption of isometric fibres of three ligaments, namely
the cruciates, ACL and PCL, and the medial collateral ligament, MCL.

One of the first SPM (with one DoF) for the study of the knee passive motion was
presented by Wilson and O’Connor [2] as a 3-US and two spheres on planes, parallel
mechanism shown in Figure 1.9. This model combined a relative simplicity with the
ability to take the tibia-femur spatial motion into account.

A few year later, Di Gregorio and Parenti-Castelli [3, 53, 54] proposed several SPM’s
as improvements of the Wilson and O’Connor SPM [2]. An example of these [3] is shown
in Fgure 1.10. This proposal models both the femur and tibia as two ellipsoids on spheres
and the isometric fibres of the ligaments as 3-US links into a complete SPM.

More recently, SPM were also proposed to model the whole knee joint, including the
patella [4, 5]. These models are still a generalization of the first proposal by Wilson and
O’Connor [2] with simplifications at the bone contacts and again assuming isometry in the
ligaments. The proposal by Sancisi and Parenti-Castelli [4] shown in Figure 1.11, models
the knee as a 5-SS+SSRSPS parallel mechanism for the tibio-femoral and the patello-
femoral joints respectively. This mechanism allows good subject-specific optimization by
changing the positions of the attachments of the five SS links within the parallel platforms,
but loss anatomical significance specially in the modelling of the articular surfaces and bone
contacts.

After that, Sancisi and Parenti-Castelli proposed a new model as a S, 2-SS+SSRSPS
spherical parallel platform for the tibio-femoral and the patello-femoral joints respectively
[5]. This model is less accurate than their previously presented model but provides a more
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Figure 1.9: Knee model parallel mechanism proposed by Wilson and O’Connor [2].

Figure 1.10: Knee model parallel mechanism proposed by Di Gregorio and Parenti-Castelli [3].

suitable tool for the design of knee prostheses. This new model is shown in Figure 1.12.
The geometric and kinematic observations that support these mechanisms are all simi-

lar. Experimental studies show that a bundle of fibres of the anterior cruciate (ACL), one
of the posterior cruciate (PCL) an another one of the medial collateral (MCL) ligaments
remain almost isometric during passive flexion. As a consequence, three isometric fibres
and the two pairs of condyles are the anatomical structures which guide and affect the
passive motion of the tibio-femoral joint [55].
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Figure 1.11: Knee model parallel mechanism proposed by Sancisi and Parenti-Castelli [4].

Figure 1.12: Knee model spherical parallel mechanism proposed by Sancisi and Parenti-Castelli [5].
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Further insights in the modelling of knee mechanisms include deformable ligaments,
∆L. As a result, the SPM can be clasified into three categories [22]: (∆L0) [56], pre-
scribed (∆Lθ) [57] and minimized (∆Lmin) [58] ligament length variations. These SPM
with deformable ligaments have taken importancy since the one-DoF models have large
discrepancies to model the knee movement, in particular, for internal-external rotation
and full flexion-extension.

Table 1.1. is presented as a summary of the principal proposed kinematic SPM. The
table describes; the author, architecture of the tibio-femoral (TF) and patello-femoral (PF)
joints, year, DoF, anatomical structures included and whether or not the model takes into
account the deformability of the ligaments.

Table 1.1: Review: Spatial parallel mechanisms to modelling the knee joint. Non-Linear (NL).

Author
Architecture TF

/ PF
Year DoF

Anatomical
structures

Deformable
ligaments

Wilson and
O’Connor [2]

3-US, 2-Sphere on
Plane / -

1997 1
Condyles, ACL,
PCL and MCL

No

Parenti-Castelli
and Di

Gregorio [53].

3-US, 2-Sphere on
Sphere / -

2000 1
Condyles, ACL,
PCL and MCL

No

Di Gregorio and
Parenti-Castelli [3].

3-US, 2-Ellipsoid
on sphere / -

2003 1
Condyles, ACL,
PCL and MCL

No

Parenti-Castelli et
al. [54]

3-SS, 2-Surface on
Surface / -

2004 1
Condyles, ACL,
PCL and MCL

No

Ottoboni et al. [56]
3-SS, 2-Sphere on

Surface / -
2010 1

Condyles, ACL,
PCL and MCL

No

Sancisi and
Parenti-

Castelli [59]
5-SS / - 2007 1

Condyles, ACL,
PCL and MCL

No

Sancisi and
Parenti-

Castelli [60]
S, 2-SS / - 2010 1

Condyles, ACL
and PCL

No

Sancisi and
Parenti-Castelli [4]

5-SS / SSRSPS 2011 1
Condyles, ACL,
PCL, MCL and

Patella
No

Sancisi and
Parenti-Castelli [5]

S, 2-SS / SSRSPS 2011 1
Condyles, ACL,
PCL and Patella

No

Bergamini et
al. [57]

4-Springs / 2011 -
ACL, PCL, MCL

and LCL
Yes

Gasparutto et
al. [58]

2-Sphere on Plane,
4-NL-Springs /

2012 -
Condyles, ACL,
PCL, MCL and

LCL
Yes

Sintini et al. [61]
2-Sphere on

Sphere,
4-NL-Springs/

2018 -
Condyles, ACL,
PCL, MCL and

LCL
Yes

Of course many other knee models can be found in the literature, in particular finite
element and deformable multibody models [52, 62–65]. However, these find noteworthy
applications in musculo-skeletal modeling with much more expensive computational re-
sources to model only the knee kinematic motion analysis, and fall outside the scopes of
the present review.
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CHAPTER 1. INTRODUCTION

1.3.2 Conclusions

All kinematic mechanisms reported in the literature coerce one DoF and isometric fibres of
the ACL, PCL and MCL ligaments, causing the mechanism to only work correctly during
total passive motion. This is an important disadvantage spetially for MKO during gait
analysis, since the gait is a completely active motion task of the knee, and the lower limb
in general.

Another important disadvantage of the reported kinematic knee models induced by the
one DoF constraint, is the complex task of subject-specific optimization of the mechanism.
As we can see in the historical development of the kinematic knee models, the authors made
great simplifications in the bone contacts in order to make it possible the subject-specific
task. This simplifications yield to an important loss in anatomical significance.

Moreover, none of the complete kinematic mechanism take into account the LCL liga-
ment as part of the model.

When deformable ligaments were introduced into the model, the analysis was no longer
pure kinematic instead it was computational, making the analysis too expensive for only
motion analysis, e. g. MKO during gait analisys.

A kinematic knee model with more than one DoF could deals with these problems re-
maining high anatomical significance, allowing modeling the deformability of the ligaments
by means of only kinematic constraints and facilitating the subject specific optimization.

1.4 Objectives of the research work

The present thesis project has two general objectives corresponding to the topics addressed:
a) Determination of the geometrical parameters of the knee and b) nSynthesis
of a kinematic knee model.

1.4.1 General objectives

Develop a new easy to implement methodology using kinematic and mathematic tools,
insensitive to marker placement based in photogrammetric techniques to obtain the knee
work-space and to identify its joint parameters. In general search for the spatial motion
of the healthy knee joint during passive and semi-active motion tasks.

Moreover, the synthesis of a new completely kinematic knee model with high anatom-
ical significance and more than one DoF capable of reproducing the knee experimental
work-space with great precision and at same time, model the movements of the internal
structures of the knee such as the ligament length variations.

1.4.2 Especific objectives

• The use of an easy and cheap photogrammetric technique as a measuring instrument.

• Determine the knee work-space for each motion task.

• Obtain best fit spatial geometries to compute some geometrical parameters of the
knee joint during a motion task.
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CHAPTER 1. INTRODUCTION

• Harness to the kinematic concept of the screw line to search the variation of the
main axis of the knee joint.

• Propose a new kinematic knee model as a spatial parallel mechanism with anatomical
significance.

• Prove that the proposed mechanism is capable to reproduce the experimental WS.

• Include the four principal ligaments of the knee in the complete kinematic knee
model.

• Perform a subject-specific optimization process to adjust the ligament length varia-
tions of the knee model to a prescribed ones.
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Chapter 2

Knee joint fundamentals: anatomy
and physiology

In this chapter, the anatomy and the physiology fundamentals of the knee joint is de-
scribed, by means of the knee movements and the main passive elements of the knee,
these are: bones, ligaments, menisci and the patellar tendon. The chapter begins with the
knee anatomy introducing important terms for subsequent references in the knee physi-
ology section. After this, the fundamentals of the knee physiology are presented mainly
based the role of the passive elements during the knee motion.

Understanding the fundamentals of the knee anatomy and physiology is important to
know the expected results and for the choice of the motion tasks that will be performed
to obtain relevant results. Moreover, the role of the passive elements of the knee should
be the basis for the synthesis of the kinematic knee model with anatomical significance.

2.1 Knee anatomy

This section deals with the passive elements anatomy of the knee, knowledge necessary to
understand the physiology.

In the Figure 2.1, the passive elements of the knee are shown at a scheme taken from
the Atlas of Human Anatomy ilustrated by Netter [66].

2.2 The axes of the knee joint

The first axis XX ′, Figure 2.2, is around which occur movements of flexion-extension in
a sagittal plane. This axis passes horizontally through the femoral condyles.

The second rotation axis Y Y ′, Figure 2.2, is clearly defined with the knee flexed. The
structure of the knee makes axial internal-external rotation impossible when the knee is
fully extended: the axis of the thigh then coincides with the mechanical axis of the shank
and axial rotation takes place not at the knee but at the hip joint.

In Figure 2.2 an axis ZZ ′ is shown running anteroposteriorly at right angle to the other
two axes. This axis does not really represent a degree of freedom but, because of a measure
of play in the joint due to relaxation of the collateral ligaments, it allows the accurrence
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CHAPTER 2. KNEE JOINT FUNDAMENTALS: ANATOMY AND PHYSIOLOGY

Figure 2.1: Anatomy of the knee joint (passive elements); (a) right knee during flexion: anterior view and
(b) right knee during extension: posterior view. Fig. extracted from [66]

.

of small abduction-adduction movements of about 1-2 cm observed at the ankle; when the
knee is fully extended, these movements disappear completely. If they still persist, they
must be viewed as abnormal, i.e. an indication of collateral ligament injury.

Figure 2.2: Main axes of the knee joint during semi-flexed position. Fig. extracted from [67].
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2.3 Principal knee movements

The principal knee rotations (flexion-extension and internal-external) and their ranges of
movement are described in this section.

2.3.1 Flexion-extension rotation

Flexion-extension is, by far, the main movement of the knee. Its range is measured from
the reference position defined by the following criterion: the collinearly of the long axis of
the thigh with that of the shank.

Extension is defined as the movement of the posterior surface of the shank away from
the posterior surface of the thigh.

Flexion is the movement of the posterior surface of shank towards the posterior surface
of the thigh. The range of the knee flexion varies according to the position of the hip.

Active flexion reaches 140◦ if the hip is already flexed, Figure 2.3(a), and only 120◦

if the hip is extended, Figure 2.3(b). This difference in amplitude is due to the fact that
the hamstrings lose some of their efficiency with hip extension. Passive flexion of the
knee has a range of 160◦, Figure 2.3(c), and allows the heel to touch the buttock.

Figure 2.3: Active and passive flexion of the knee; (a) hip flexed, (b) hip extended and (c) passive flexion
of the knee. Fig. modified from [67].

2.3.2 Internal-external rotation

The rotation movement of the knee around its long axis can only be performed with the
knee flexed, since with the knee in extension and the interlocking of the joint, the tibia
becomes one with the femur.

To measure Active internal-external rotation, the knee must first be flexed at right
angle while the subject is sitting on a table with legs banging down over the edge, Figure
2.4(a). In the reference position the toes face slightly laterally.
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Medial rotation, Figure 2.4(b), brings the toes to face medially and contributes
significantly to adduction of the foot.

Lateral rotation, Figure 2.4(c), brings the toes to face laterally and also contributes
to the abduction of the foot.

Figure 2.4: Active internal-external rotation of the knee; (a) reference position, (b) medial rotation and
(c) lateral rotation. Fig. modified from [67].

Acoording to Fick [68] the range of lateral rotation is 40◦ and that of medial rotation
30◦, and the range varies with the degree of knee flexion, since, according with the same
author, it is 32◦ for lateral rotation when the knee is flexed at 30◦ and 40◦ when the knee
is flexed at 90◦. All of these angles are measured in the foot.

Passive internal-external rotation is measured with the subject lying prone with
the knee flexed at 90◦. The examiner grasps the foot with both hands and rotates it until
the toes face laterally, Figure 2.5(a), and medially, Figure 2.5(b). As expected, this passive
rotation has a greater range than active rotation.

Finally, there is also a type of axial rotation called “automatic” because it is inevitably
and involuntarily linked to movements of flexion-extension. When the knee is extended the
foot is laterally rotated. Conversely, when the knee is flexed the foot is medially rotated.

2.4 Femoral condyles and tibial articular surfaces

The articular surface of the distal end of the femur is shaped like a pulley. The two
femoral condyles, convex in both planes, form the two cheeks of the pulley, Figure 2.6(a),
with the two cheeks of the femoral pulley-shaped patellar surface or the trochlea. The neck
of the pulley corresponds anteriorly to the central groove of the trochlea and posteriorly to
the intercondylar fossa. The tibial superior articular surfaces, reciprocally modelled
on those of the femur, consist of two curved; concave and convex parallel gutters separated
by the blunt intercondylar eminence, Figure 2.6(b). As a result, the medial femoral condyle
is relatively stable, while the lateral condyle is unstable, so that its stability during motion
is essentially dependent on the intactness of the anterior cruciate ligament.
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Figure 2.5: Passive internal-external rotation of the knee; (a) lateral rotation and (b) medial rotation.
Fig. modified from [67].

Figure 2.6: Articular surfaces of the tibiofemoral joint; (a) femoral condyles and (b) tibial articular
surfaces. Fig. modified from [67].

Thus the tibial articular surfaces correspond to those of the femoral condyles, while the
tibial intercondylar tubercles lodge inside the femoral intercondylar fossa; this aggregate
of articular surfaces functionally constitutes the tibiofemoral joint. Anteriorly, the two
facets of the patellar articular surface correspond to the cheeks of the femoral trochlea,
and the patellar vertical ridge fits into the intercondylar fossa. These surfaces make up
the second functional joint, the femoropatellar joint. These two joints are separated
but are contained within a single anatomical joint, i.e. the knee joint.

2.4.1 Movements during flexion-extension rotation

The rounded shape of the condyles could suggest wrongly that they roll over the tibial
plateau. If the condyle only rolled, Figure 2.7(a), after certain degree of flexion (position
II), it would topple over behind the tibial plateau, which is equivalent to dislocation of
the joint. The possibility of a pure rolling movement of the condyle is thus precluded by
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the fact that the full length of its circumference is twice that of the tibial surface.
If such a pure sliding movement of the condyles on the tibial plateau were to occur,

Figure 2.7(b), a single point on the tibial plateau would correspond to all the points on
the condylar surface, but this occurrence would check flexion prematurely because of the
impact of the condyle on the posterior margin of the tibial plateau (arrow).

In 1836 the Werber brothers [69] proved indisputably that the femoral condyle rolls
and slides simultaneously over the tibial plateau, Figure 2.7(c). This is after all, the only
way that posterior dislocation of the condyle can be avoided while permitting a greater
range of flexion.

Following this, experiments (Strasser [70]) showed that the rolling to sliding ratio varies
during the entire movement of flexion-extension. Starting from full extension the condyle
begins to roll without sliding, and then sliding becomes progressively greater, so that
at the end of flexion the condyle slides without rolling. Finally, the length over
which pure rolling takes place varies with the condyle:

• for the medial condyle rolling occurs only during the first 10−15◦ degrees of flexion,

• for the lateral condyle rolling continues up to 20◦ flexion.

Therefore, the lateral condyle rolls far more than the medial condyle. This important
observation explains the automatic rotation of the knee during flexion-extension.

Figure 2.7: Movement of the femoral condyles on the tibial plateau during flexion; (a) pure rolling, (b)
pure sliding (c) rolling and sliding. Fig. modified from [67].

2.4.2 Movements during internal-external rotation

Internal-external rotation can only take place when the knee is flexed, Figure 2.8(a). With
the knee half-flexed, the posterior part of each femoral condyle is in contact with the middle
of each tibial articular surface. Moreover, during flexion the tibial intercondylar eminence
moves out of the femoral intercondylar fossa, where it is confined during extension. (this
is one of the reasons why axial rotation is checked when the knee is extended).
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During external rotation of the tibia, Figure 2.8(b), the lateral condyle moves forwards
on the lateral tibial surface, while the medial condyle moves backwards on the medial
surface.

During internal rotation of the tibia on the femur, Figure 2.8(c), the converse is true:
the lateral condyle moves backwards and the medial condyle forwards on their correspond-
ing tibial surfaces.

Figure 2.8: Movement of tibia under the femur during axial rotation; (a) neutral position, (b) external
rotation (c) internal rotation. Fig. modified from [67].

In reality, the anteroposterior movements of the condyles on their corresponding tibial
surfaces are not identical:

• the medial condyle moves relatively little inside the biconcave medial tibial artic-
ular surface,

• the lateral condyle, on the other hand, moves nearly twice as much over the convex
lateral tibial surface.

As a result, the real axis of axial rotation runs not between the two interccondylar
tubercles but through the articular surface of the medial tubercle, which is the central
pivot of the joint.

2.5 The menisci

The radii of curvature of the condylar and of the tibial articular surfaces are not equal,
leading to non-congruence of the articular surfaces. The knee is the prototype of non-
congruent joints. Congruence is restored by the interposition of menisci or semilunar
cartilages.
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The menisci appear to have been lifted above the tibial articular surfaces, Figure 2.9(a),
with the medial and lateral menisci lying in the same horizontal plane above the medial
and lateral tibial articular surfaces, respectively.

The menisci have the shape of two rings, so that the lateral meniscus is almost a
complete circle in the shape of an O, whereas the medial meniscus is semilunate in the
shape of a C, Figure 2.9(b).

Figure 2.9: The inter-articular menisci; (a) menisci lying on the tibial articular surfaces and (b) menisci
shapes. Fig. extracted from [71].

2.5.1 Meniscal displacements during flexion-extension

As shown in the Figure 2.10, the contact point between the femoral and tibial articular
surfaces moves posteriorly during flexion and anteriorly during extension. The menisci
follow these movements. Moreover the menisci undoubtedly play an important role as
elastic couplings for the transmission of compressive forces between femur and tibia.

Figure 2.10: Meniscal displacements during flexion-extension; (a) medial view and (b) lateral view. Fig.
modified from [67].
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2.5.2 Meniscal displacements during internal-external rotation

During movements of internal-external rotation, the menisci follow exactly the movements
of the condyles on the tibial plateau, Figure 2.11. In the neutral position of axial rotation,
Figure 2.11(a), the lateral meniscus (LM) and the medial meniscus (MM) are well centered
on their corresponding tibial articular surfaces. During lateral and medial rotations the
menisci can be seen to move in opposite directions to the tibial plateau rotation.

• During external rotation, Figure 2.11(b): the LM is pulled anteriorly, while the MM
is pulled posteriorly.

• During internal rotation, Figure 2.11(c): the MM advances, and the LM recedes.

.

Figure 2.11: Meniscal displacements during internal-external rotation (graphic representation of the right
tibial plateau); (a) neutral position, (b) external rotation and (c) internal rotation. Fig. modified from [67].

During knee movements, the menisci can be damaged when fail to follow the condylar
movements on the tibial plateau.

2.6 The collateral ligaments of the knee

Knee joint stability depends on two sets of powerful ligaments, i.e. the cruciates and the
collateral ligaments. The collateral ligaments reinforce the articular capsule medially and
laterally and secure the transverse stability of the joint during extension.

The medial collateral ligament, Figure 2.12(a), runs from the subcutaneous aspect
of the medial condyle to the upper end of the tibia (MCL). It runs an oblique course
inferiorly and anteriorly.

The lateral collateral ligament, Figure 2.12(b) stretches from the lateral surface
of the lateral condyle to the head of the fibula (LCL). It runs obliquely inferiorly and
posteriorly.

Both diagrams of the Figure 2.12 also show the menisco patellar ligaments (1 and 2)
and the patellar retinacula (3 and 4), which keep the patella pressed against the femoral
trochlea.

The collateral ligaments are stretched during extension and slackened during flexion.
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Figure 2.12: Collateral ligaments in a left knee; (a) medial collateral ligament and (b) lateral collateral
ligament. Fig. modified from [67].

2.6.1 Transverse stability of the knee: collateral ligaments

A dislocation is normally prevented by the medial ligamentous system.
Traumatic injuries involving the medial and lateral aspects of the knee will cause

fractures of the proximal end of the tibia. If the traumatic injury involves the medial
aspect of the knee, it tends to straighten the physiological valgus and produces first an
avulsion fracture of the medial tibial plateau and then, a rupture of the lateral collateral
ligament.

When the traumatic injury involves the lateral aspect of the knee, the lateral femoral
condyle is displaced slightly medially and then sinks into the lateral tibial plateau and
eventually shatters its lateral cortex.

A severe sprain of the knee impairs the stability of the joint. In fact, when one collateral
ligament is torn, the knee cannot resist the transverse stresses to which it is continually
subjected.

When violent transverse stresses are applied during running and walking, the collateral
ligaments are not the only structures able to stabilize the knee; they are assisted by the
muscles. The collateral ligaments are therefore reinforced by thick tendons.

2.6.2 Rotational stability of the extended knee: collateral liga-
ments

With the knee in full extension, axial rotation is impossible, since it is inhibited by the
taut collateral and cruciate ligaments.

The role of the collateral ligaments in securing the rotational stability of the knee can
be explained by their symmetry.

In the null rotation, Figure 2.13(a), the obliquity of the lateral and the medial collateral
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ligaments cause them to coil round the upper extremity of the tibia.
Internal rotation, Figure 2.13(b) prevents this coiling movement, and the obliquity of

these ligaments decreases as they tend to become parallel. Thus, the play permitted by
relaxation of the collateral ligaments is offset by the tension of the cruciates.

Conversely, external rotation, 2.13(c) increases the coiling, which brings the articular
surfaces closer together and limits their movements while the cruciates are slackened.

Figure 2.13: Superior view of the collateral ligaments during internal-external rotation of the extended
knee; (a) neutral position, (b) medial rotation and (c) lateral rotation. Fig. modified from [67].

2.7 The cruciate ligaments of the knee

With the knee joint open ateriorly, Figure 2.14(a), the first to be seen is the anterior
cruciate ligament (ACL), see Figure 2.14(b). It turns obliquely and laterally and is
attached to the medial aspect of the lateral femoral condyle. It consists of three main
bands:

• the anteromedial band: the largest, most superficial and most prone to injury,

• the posteromedial band: which is concealed by the former and remains intact when
the ligament is partially torn,

• the intermediate band.

Its fibres are not all of the same length. Acoording to F. Bonnel [72], their mean
lengths range from 1.85 to 3.25 cm, depending on their location.

The posterior cruciate ligament (PCL), see Figure 2.14(b), lies deep in the inter-
condylar fossa behind the anterior cruciate ligament. The ligament runs obliquely medially
anteriorly and superiorly. It comprises three main bands:

• the posterolateral band, inserted at the most posteriorly into the tibia and the most
laterally into the femur,

• the anteromedial band, inserted at the most anteriorly into the tibia and the most
medially into the femur

• the menisco-femoral ligament, which is attached to the posterior horn of the lateral
menisus.
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Figure 2.14: Cruciates ligaments of the knee; (a) flexed joint open anteriorly (b) extended joint in postero-
lateral view. Fig. modified from [67].

The cruciates are in contact with each other sliding one against the other along their
axial margins during knee movements.

The cruciates also have different inclinations: with the knee extended, Figure 2.15(a),
the anterior ligament (ACL) is more vertical, while the posterior cruciate (PCL) is more
horizontal.

As the knee is flexed, Figure 2.15(b), the posterior cruciate (PCL), which was horizontal
in extension, rears itself up to the vertical position and sweeps a 60◦ angle relative to the
tibia, while the anterior cruciate (ACL) is raised only very slightly.

The length ratio of the cruciates shows individual variations, it is typical of each knee.

Figure 2.15: Cruciate ligaments of the knee in the sagittal plane; (a) knee extended and (b) knee flexed.
Fig. modified from [67].
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2.7.1 The mechanical role of the cruciate ligaments

It is customary to reduce the cruciates to linear cords during an analysis of the knee. This
approximation has the advantage of revealing the general actions of ligaments but fails to
bring out their functional subtleties. To achieve this, three factors need to be taken into
account:

1. The thickness of the ligament: the thickness and volume of a ligament are directly
proportional to its resistance and inversely proportional to its elasticity.

2. The structure of the ligament: the fibres of a ligament are not all of the same length,
with the important consequence that the fibres are not all recruited at the same
time, and the resistance and elasticity of the ligament are variable.

3. The size and direction of its insertions: the fibres are not all parallel to one another
but are often arranged in planes that are twisted on themselves. Also the relative
orientation of the insertions varies during movements, contributing to differential re-
cruitment of the fibres and modifying the overall direction of action of the ligaments.

Globally, the cruciates ensure the anteroposterior stability of the knee and allow hinge-
like movements to occur while keeping the articular surfaces in contact.

Different fibres of the cruciates are tensed or slackened during diferent phases of the
knee movement. Some of the fibres of the cruciates are always under tension because of
their unequal lengths.

Muscles play an active role: the extensors pull the tibia anteriorly under the femur
during extension, and conversely the flexors cause the tibial plateau to slide posteriorly
during flexion. However, when these movements are studied on a cadaver, passive factors,
specially the cruciates, appear to predominate. It is the cruciates that pull back the
femoral condyles and cause them to slide on the tibial plateau in a direction apposite to
their rolling motion.

During flexion, the anterior cruciate is responsible for the forward sliding of the condyle.
During extension, the posterior cruciate is responsible for the backward sliding of the
condyle.

2.7.2 Rotational stability of the extended knee

As mentioned before, the cruciate ligaments help the rotational stability of the knee.
When the knee is in the neutral position for axial rotation, Figure 2.16(a), the ligaments

clearly cross each other in space. In the horizontal plane, however, the two cruciates are
parallel to and in contact with each other.

During internal rotation of the tibia under the femur, Figure 2.16(b), the ligaments are
clearly more acutely crossed in the coronal plane, and their inner borders come to touch
each other. Quickly check any medial rotation.

During external rotation of the tibia under the femur, Figure 2.16(c), the cruciates
tend to become parallel in the coronal plane and their inner borders tend to lose contact.
Thus, tightening of the cruciates plays no part in checking lateral rotation.
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Figure 2.16: Cruciate ligaments during internal-external rotation of the extended knee; (a) neutral posi-
tion, (b) internal rotation and (c) external rotation. Fig. modified from [67].

Therefore, the rotational stability of the extended knee is ensured by the
collateral ligaments during external rotation and by the cruciates during in-
ternal rotation.

2.8 Patellar displacement

The extensor apparatus of the knee slides on the distal end of the femur like a cable
on a pulley. Thus the force of the quadriceps, directed obliquely superiorly and slightly
laterally, is changed into a strictly vertical force.

The normal movement of the patella on the femur during flexion is therefore a vertical
translation along the central groove of the femoral trochlea down to the intercondylar fossa
as is shown in Figure 2.17. Therefore the patella undergoes a circumferential translation.

There are two types of patellar movements relative to the tibia, one type during flexio-
extension and other during internal-external rotation.

During flexion-extension, the patella moves in a sagittal plane, it recedes along the arc
of a circle with its centre at the tibial tuberosity and its radius equal to the length of the
patellar ligament.

During movements of internal-external rotation, Figure 2.18, the patellar displacements
relative to the tibia occur in the coronal plane. In the neutral position of rotation, Figure
2.18(a), the patellar ligament runs a slightly oblique course inferiorly and laterally. During
internal rotation, Figure 2.18(b), the femur is laterally rotated with respect to the tibia
during external rotation, Figure 2.18(c), the opposite movement takes place.
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Figure 2.17: Movement of the patella during flexion. Fig. modified from [67].

Figure 2.18: Movement of the patella during internal-external rotation; (a) neutral position, (b) internal
rotation and (c) external rotation. Fig. modified from [67].
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Chapter 3

Theoretical background

This chapter describes a serie of concepts in mathematics and kinematics necessary for
experimental data processing and the further synthesis and analysis of the kinematic knee
model.

3.1 Mathematical fundamentals

The mathematical approach for the determination of the joint parameters consists in
reconstructing the geometries formed by the movement of the origin of a coordinate system
B relative to A, for which mathematic concepts such as the least squares method and the
description of the 3D geometries are required in order to find the geometry that best fits
the set of points.

The fundamentals begin with the least squares method description and the Gauss-
Newton algorithm to solve the non-linear least squares problem. After that, the description
of each geometry is presented followed by its least squares description of the problem.
Lastly, the problem of the projecting points onto a plane is addressed.

3.1.1 Least squares method

The method of least squares is a standard approach in regression analysis to approximate
the solution of overdetermined systems, i.e. sets of equations in which there are more
equations than unknowns. “Least squares” means that the overall solution minimizes the
sum of the squares of the residuals.

The most important application is in data fitting. The best fit in the least squares sense
minimizes the sum of the squared residuals (a residiual being: the difference between an
observed value, and the fitted value provided by a model), [73]. The function to minimize
can be written as:

E =
n∑
i=1

(f(C1, C2, ..., Cm, x1i, x2i, ..., xki)− fi)2 , (3.1)

where n is the number of data, f is the objective function for fitting the data, C1, C2, ..., Cm
are the best fitting variables to compute, x1i, x2i, ...xk1 are the variables from the data and
fi is the function from the data.
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The goal is to find the values of the variables, C1, C2, ..., Cm, for which the objective
function, f , best fits the data. Then it is necessary to minimize the function E by setting
the following partial derivatives to zero:

∂E

∂Cj
= 0, j = 1, 2, ...,m. (3.2)

Solving the set of equations (3.2) for C1, C2, ..., Cm. The function f that best fits the
data is finally obtained.

Least-squares problem falls into two categories: linear least squares and non-linear
least squares, depending on whether or not the residuals are linear in all unknowns.

Linear least-squares approach

When the residuals (f(C1, C2, ..., Cm, x1i, x2i, ..., xki)− fi) of the function E are linear
in the unknown variables C1, C2, ..., Cm, the problem can be treated by simple algebra,
solving the following system:

Ax = b (3.3)

where:

A =


G1

1(x1, x2, ..., xk) G2
1(x1, x2, ..., xk) . . . Gm

1 (x1, x2, ..., xk)
G1

2(x1, x2, ..., xk) G2
2(x1, x2, ..., xk) . . . Gm

2 (x1, x2, ..., xk)
...

...
. . .

...
G1
n(x1, x2, ..., xk) G2

n(x1, x2, ..., xk) . . . Gm
n (x1, x2, ..., xk)

x =


C1

C2
...
Cm

 b =


f1

f2
...
fn


Since there are more equations than unknowns the problem generally has no solution

because the vector b is not in the column space of A. The problem given in the equation
(3.3) can be rewritten as:

Ax = p, (3.4)

where p is the projection of b onto the column space of A.
Without loss of generality let us address this problem with a 3D equivalent problem

that can be visualized in the Figure 3.1.
The key fact of the problem is that the vector e is perpendicular to the plane, this

means that b −Ax is perpendicular to any vector on the plane, hence we can write the
following two equations:

aT
1 (b−Ax) = 0, aT

2 (b−Ax) = 0,

writing these equations in a matrix form, leads to:[
aT

1

aT
2

]
(b−Ax) = 0,

AT (b−Ax) = 0,

and the new system to solve is:
ATAx = ATb.

And, the vector x that contains the variables C1, C2, ..., Cm can be computed by:

x =
(
ATA

)−1
ATb. (3.5)
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Figure 3.1: Projection p of the vector b onto the plane A.

Non-linear least squares approach

When the residuals (f(C1, C2, ..., Cm, x1i, x2i, ..., xki)− fi) of the function E are non-linear
in the unknown variables C1, C2, ..., Cm, it is necessary to solve the non-linear equations
system (3.2) by some complex procedures such as the Sylvester dialytic elimitation or the
Bezout method, to have solutions in a closed form [74]. For solutions with numerical meth-
ods there is a basic technique called the Gauss-Newton algorithm which is a modification
of the Newton-Raphson method, used for solving the problem of non-linear least squares.
This algorithm is explained in the following section.

3.1.2 Gauss-Newton algorithm

Let’s rewrite the function E from (3.1) in following form:

E =
n∑
i=1

di(u)2, (3.6)

where di(u) = (f(C1, C2, ..., Cm, x1i, x2i, ..., xki)− fi) and the vector u containts the vari-
ables to compute, u = [C1, C2, ..., Cm]T.

The Gauss-Newton algorithm is an iterative procedure, this means that it requires
starting with an initial guess of the solution, u0. The method proceeds by the iterations:

us+1 = us −
[
J(us)

TJ(us)
]−1

J(us)
Td(us), (3.7)

where J(u) is the Jacobian matrix defined by the partial derivatives of the function di(u)
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with respect to each variabe C1, C2, ..., Cm, given by:

J(u) =


∂d1(u)
∂C1

∂d1(u)
∂C2

· · · ∂d1(u)
∂Cm

∂d2(u)
∂C1

∂d2(u)
∂C2

· · · ∂d2(u)
∂Cm

...
...

. . .
...

∂dn(u)
∂C1

∂dn(u)
∂C2

· · · ∂dn(u)
∂Cm

 ,
and the vector d(u) contains the function di(u) evaluated by the data, given by:

d(u) =


d1(u)
d2(u)

...
dn(u)

 .
There are two important things that we have to analyse from the Gauss-Newton algo-

rithm given in the equation (3.7). The first is the close relationship of the matrix J(u)
with the matrix A, in equation (3.5), of the linear problem.

The second occurs when the number of equations is equal to the number of unknowns,
n = m, then, the iteration simplifies to:

us+1 = us − [J(us)]
−1 d(us), (3.8)

which is a direct generalization of the Newton-Raphson method.

3.1.3 Singular value decomposition (SVD)

Singular value decomposition (SVD) is a factorization of a matrix A into the product
of three matrices A = UDVT where the columns of U and V are orthonormal and the
matrix D is diagonal with positive real entries, [73].

The SVD starts with the statement that the action of a matrix A on a unit vector v̂
is equals to a unit vector û times a constant σ, as follows:

Av̂ = σû, (3.9)

extending the problem to a set of unit vectors v̂j, j = 1, 2, ..., n which could be an or-
thonormal basis. The previous equation can be written in matrix form as:

[
A
] [

v̂1 v̂2 . . . v̂n
]

=
[
û1 û2 . . . ûn

]

σ1

σ2 0

0
. . .

σn


AV = UD, (3.10)

as the matrix V is composed by orthonormal vectors, the matrix itself is an orthonormal
matrix and V−1 = VT. Multiplying both sides of the equation (3.10) by VT leads to:

A = UDVT. (3.11)
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The SVD problem can be solved by reducing it, to an eigenvalue problem, as follows:

ATA =
(
UDVT

)T (
UDVT

)
= VDUT UDVT

= VD2VT, (3.12)

thus, multiplying both sides by V leads to:

ATAV = VD2VTV

ATAV = VD2 (3.13)

Equation (3.13) is an eigenvalue problem with its eigenvalues λj = σ2
j . By this way we

can compute the matrices V and D. It is easy to see that the matrix U can be computed
in a similar way by the matrix multiplication AAT instead, and then follow the same
process.

3.1.4 Fitting a plane

Definition

A plane is a flat surface on which a straight line joining any two points on it would
completely lie. Any point P = (x, y, z) represented by vector r onto the plane can be
described by the vectorial equation as:

n · (r − ro) = 0 (3.14)

where n is a vector orthogonal to the plane and ro is a vector of an arbitrary point
Po = (xo, yo, zo) onto the plane, as shown in Figure 3.2.

If the normal vector is written as n = aî + bĵ + ck̂, then, the equation (3.14) leads to
the equation of a plane in the normal form as:

a(x− xo) + b(y − yo) + c(z − zo) = 0 (3.15)

Fitting procedure

There are different types of best fit planes. In the least squares sense, there is one type
in which the x and y values are fixed and the measured error is in z alone. For this plane
the minimized distance is only in the z direction. There is also an orthogonal distance
regression, that minimizes the perpendicular distances to the plane. This is used when
there is measurement error in all three coordinates.

In this work we are focused on the orthogonal distance regression planes, [75]. Starting
with the perpendicular distance from a point to a plane, we wish to find a, b, c and d,
such that we minimize the function:

E(a, b, c, d) =
n∑
i=1

|axi + byi + czi + d|2

(a2 + b2 + c2)
, (3.16)
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Figure 3.2: Plane in the 3D space with two points on it and the orthogonal vector.

setting the partial derivative with respect to d equal to zero:

∂E

∂d
= 2

n∑
i=1

(axi + byi + czi + d)

(a2 + b2 + c2)
= 0,

leads to:
n∑
i=1

(axi + byi + czi + d) = 0

a
n∑
i=1

xi + b
n∑
i=1

yi + c
n∑
i=1

zi + nd = 0,

where n is the number of points. Now solving for d:

d = −

[
a

n

n∑
i=1

xi +
b

n

n∑
i=1

yi +
c

n

n∑
i=1

zi

]
,

or,
d = − (ax0 + by0 + cz0) , (3.17)

where (x0, y0, z0) is the centroid of the data. This means that the best fit plane contains
the centroid. If we substitute it back into the equation (3.16) we can rewrite E as:

E(a, b, c) =
n∑
i=1

|a(xi − x0) + b(yi − y0) + c(zi − z0)|2

(a2 + b2 + c2)
. (3.18)

Switching to a matrix representation leads to:

f(v) =
vTMTMv

vTv
, (3.19)
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where:

v =

ab
c

 , M =


x1 − x0 y1 − y0 z1 − z0

x2 − x0 y2 − y0 z2 − z0
...

...
...

xn − x0 yn − y0 zn − z0

 .
Let’s define A = MTM, f(v) is called a Rayleigh quotient, [75]. It is minimized by

the eigenvector of A that corresponds to its smallest eigenvalue.
We could compute the eigenvectors of A, but this is not necessary. The singular value

decomposition of matrix M is:
M = USVT,

and:

A = MTM

=
(
USVT

)T (
USVT

)
=

(
VSTUT

) (
USVT

)
= V S2VT

As seen in the previous section, this decomposition of A diagonalizes the matrix and
provides an eigenvector decomposition. It means that the eigenvalues of A are the squares
of the singular values of M, and the eigenvectors of A are the singular vectors of M.

To conclude, the orthogonal least squares 3D plane contains the centroid of the data,
and its normal vector is the singular vector of M corresponding to its smallest singular
value.

3.1.5 Projecting points onto a plane

Sometimes, a treatement of the data points in a 2-Dimensional space is necessary, then we
need to poject the 3D points onto the plane that best fits those points. After this, a new
3D coordinate system with two of its axes lying on the plane (the plane coordinate system)
will be required to rewrite the 3D points in terms of the plane system, see Figure 3.3. The
problem is solved by means of a line perpendicular to the plane that passes through the
objective point, see Figure 3.3, the intersection point between the line and the plane is
the projecting point.

A line L is defined by the vectorial equation:

r = ro + tl, (3.20)

if r = [x, y, z], ro = [xo, yo, zo] and l = [a, b, c], equation (3.20) can be written in parametric
form as:

[x, y, z] = [xo + at, yo + bt, zo + ct] , (3.21)

where t is called the parameter. When the line is perpendicular to the plane l = n, and
for the line that passes through the objective point, ro is the vector of the point Pn.
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Figure 3.3: Plane with its coordinate system and a line through it in the direction of the orthogonal
vector.

The intersection point Pp belongs to the plane and the line at the same time, this is:

axp + byp + czp = d, and xp = xn + atp, yp = yn + btp, zp = zn + ctp.

Substituting the parametric equations of the line into the equation of the plane and
solving for tp, we obtain the parameter for the intersection point Pp. This parameter tp
can be used in equation (3.21) to find the point Pp.

The point Pp still belongs to the global system XY Z and it is necessary to transform
it into the plane system xpypzp. The plane coordinate system can be defined by any two
points onto the plane e.g. the centroid r0 and any projection point rp, and the vector n,
as follows:

îp =
rp − r0

|rp − r0|
, k̂p = n̂, ĵp = n̂× îp. (3.22)

The vector of the projected point rp in coordinates of the plane system xpypzp, i.e. rpp
is computed as1:

rpp = RT (rp − r0) , (3.23)

where R =
[
îp ĵp k̂p

]
. Note that since the axes xp and yp lie on the plane, the coordinates

of rpp have the zp equal to zero.

3.1.6 Fitting a circle

Definition

A circle is a 2D geometry defined as the geometric place of a point that moves on a plane
such that the distance to a fixed point is always constant. The fixed point is called the
center of the circle and the constant distance is the radius.

1The equation (3.23) is explained in the section 3.2 Kinematical fundamentals.
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The circle with center in the point C = (h, k) and radius r shown in the Figure 3.4, is
described by the following equation:

(x− h)2 + (y − k)2 = r2. (3.24)

h

k

r
(h,k)

X

Y

Figure 3.4: Circle with center in (h, k) and radius r.

Fitting procedure

The circle that best fits a set of points is computed by minimizing the diferences of the
radii, ri − r, thus di(u) =

√
(xi − h)2 + (yi − k)2 − r, this means that it is necessary to

find the best center (h, k) and radius r for the circle that best fits the set of points.
The non-linear least squares problem can be written as:

E(h, k, r) =
n∑
i=1

di(u)2, (3.25)

where u = [h, k, r]T. This problem is solved by the Gauss-Newton algorithm with the iter-
ations given in the equation (3.7). The Jacobian matrix defined by the partial derivatives
∂di(u/∂uj) is given by:

J(u) =


x1−h
r1

y1−k
r1

−1

x2−h
r2

y2−k
r2

−1
...

...
...

xn−h
rn

yn−k
rn

−1

 , (3.26)

where ri =
√

(xi − h)2 + (yi − k)2, i = 1, 2, ..., n.
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3.1.7 Fitting a sphere

Definition

A sphere is a 3D geometry defined as the geometric place of a point that moves such
that the distance to a fixed point remains contant. The fixed point is called the center
of the sphere and the constant distance is the radius. A sphere can be considered as the
equivalent of the circle in the three-dimensional space.

The sphere with center in the point C = (a, b, c) and radius r shown in the Figure 3.5,
can be described by the following equation:

(x− a)2 + (y − b)2 + (z − c)2 = r2 (3.27)

Figure 3.5: Sphere with center in (a, b, c) and radius r.

Fitting procedure

The procedure for fitting a sphere to a set of points is quite similar to the fitting a
circle. It consist on minimizing the diferences between the radii, ri − r, thus di(u) =√

(xi − a)2 + (yi − b)2 + (zi − c)2 − r, this means that it is necessary to find the center
(a, b, c) and the radius r for the sphere that best fits the set of points.

The non-linear least squares problem can be written as:

E(a, b, c, r) =
n∑
i=1

di(u
2), (3.28)

where u = [a, b, c, r]T. This problem is solved by the Gauss-Newton algorithm with
the iterations given in the equation (3.7). The Jacobian matrix defined by the partial
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derivatives ∂di(u/∂uj) is given by:

J(u) =


x1−a
r1

y1−b
r1

z1−c
r1

−1

x2−a
r2

y2−b
r2

z2−c
r2

−1
...

...
...

...
xn−a
rn

yn−b
rn

zn−c
rn

−1

 , (3.29)

where ri =
√

(xi − a)2 + (yi − b)2 + (zi − c)2, i = 1, 2, ..., n.

3.2 Kinematical fundamentals

In this section, the geometry of spatial displacements defined by coordinate transforma-
tions consisting of spatial rotations and translations is developed. The invariants of these
transformations are considered and an invariant line is found, called the screw axis. Thus,
the geometry of lines becomes important to this study of spatial kinematics.

A convenient set of coordinates for lines, known as Plücker coordinates, are introduced,
then generalized to yield screws. This description is used to find the principal joint pa-
rameters of the knee. Lastly, the fundamentals of the Denavit-Hartenberg procedure are
introduced to make the position analysis of a kinematic chain.

3.2.1 Spatial displacements

A spatial displacement is the composition of a spatial rotation followed by a spatial trans-
lation. This transformation takes the coordinates Mr = [x, y, z]T of a point in the moving
frame TM and computes its coordinates Fr = [X, Y, Z]T in the fixed frame T F as is shown
in the Figure 3.6, by the equation:

Fr =
[
FRM

]
Mr + F tM (3.30)

where FRM is a 3 × 3 rotation matrix of the system TM relative to the system T F , and
F tM is a 3×1 translation vector of the origin of the system TM relative to the system T F .
A spatial displacement preserves the distances between points measured in both TM and
T F .

From (3.30) we can write the vector Mr as:

Mr =
[
FRM

]−1 (Fr − F tM
)
,

but considering that the rotation matrix is an orthonormal matrix, R−1 = RT, then:

Mr =
[
FRM

]T (Fr − F tM
)
. (3.31)

Homogeneous transforms

The transformation that defines a spatial displacement is not a linear operation. This can
be attributed to the inhomogeneous translation. A standard strategy to adjust for this
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Figure 3.6: Spatial displacement of the frame TM relative to frame TF .

inhomogeneity is to add a fourth component to our position vectors that will always equal
1. Therefore we have the 4× 4 homogeneous transform:{

Fr
1

}
=

[
FRM F tM

0 1

]{
Mr
1

}
, (3.32)

which we write as:
Fr =

[
FTM

]
Mr, (3.33)

where 0 is a 1 × 3 zero vector. Notice that the coordinate vectors that have 1 as their
fourth component have not been distinguished by this work. In general, these vectors will
have three components. Readers have to assume the addition of the fourth component,
when it is appropriate for the use of these 4× 4 transforms.

Composition of displacements

The set of matrices that have the structure shown in (3.32) form a matrix group, denoted
by SE(3), with matrix multiplicaction as its operation. The matrix product of T1 and T2

yields:

T3 =

[
R1 t1

0 1

] [
R2 t2

0 1

]
=

[
R1R2 t1 + R1t2

0 1

]
. (3.34)

It is easy to see that the 4 × 4 transform T3 has the same structure as (3.32) with
R3 = R1R2 as its rotation matrix and t3 = t1 + R1t2 as its translation vector.

The composition of displacements
[
FTM ′]

and
[
M ′

TM
]

can be interpreted as follows.

Let
[
FTM ′]

define the position of a frame TM
′

relative to T F . Then the position of TM
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relative to TM
′

is defined by
[
M ′

TM
]
, see Figure 3.7. Thus, the position of the vector Mr

given in the system TM in terms of the system T F , Fr is given by:

Fr =
[
FRM ′M ′

RM
]
Mr + F tM

′
+
[
FRM ′

]
M ′

tM (3.35)

Figure 3.7: Composition of displacements of the frame M relative to frame M ′ and M ′ relative to F .

Similarly, the matrix inverse T−1 defines the inverse displacement as:

T−1 =

[
RT −RT t
0 1

]
. (3.36)

It is easy to check that [T] [T]−1 = I.

Relative displacements

For a set of displacements Ti, i = 1, 2, ..., n, the relative displacement between any two is
given by:

Tij = [Tj] [Ti]
−1 . (3.37)

This relative displacement is measured in the fixed reference frame T F as is shown in
Figure 3.8.

Screw Displacements

We now consider the invariants of spatial displacements. If a vector r has the same coor-
dinates before and after a spatial displacement T, then it satisfies the following equation:

r = [T] r, or [I−T] r = 0 (3.38)

which simplifies to
[I−R] r = t (3.39)

44



CHAPTER 3. THEORETICAL BACKGROUND

Figure 3.8: Coordinate systems, xiyizi and xjyjzj , and their relative displacement.

Sience all the rotation matrices have 1 as an eigenvalue. Therefore, the 3 × 3 matrix
[I−R] is a singular matrix. Thus, a spatial displacement has no fixed points.

While there are no fixed points, there is a line, called the screw axis, that remains
fixed during a spatial displacement. To determine this line, we descompose the translation
component of the displacement T into vectors parallel and perpendicular to the rotation
axis ŝ of R determined by the eigenvector relates with the eigenvalue 1 of R, that is:

t = t∗ + kŝ where k = r · ŝ. (3.40)

From the spherical displacements it is known that a rotational displacement R has a
fixed point, see reference [76], given by:

p =
b× (t∗ − b× t∗)

2b · b
, (3.41)

where b = sin (θ/2) ŝ is the Rodrigues’s vector of the rotation matrix R. Now consider
the line S through this point in the direction of the rotation axis of R, defined by:

S : r = p + λŝ. (3.42)

Points on this line remain fixed during the rotational displacement R. Furthermore,
the translation kŝ slides points along this line by the distance k. This line remains fixed
during the spatial displacement.

Thus, a general spatial displacement consists on a rotation by θ about this line and
the sliding distance k along it.

3.2.2 The vector ŝ and the angle θ of a rotation matrix

From the Figure 3.9, it can be obtained the following equation, see reference [77]:

r′ = cos θr + (1− cos θ)(ŝ · r)ŝ + sin θŝ× r, (3.43)
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where the position vector r′ is computed after a rotational displacement of r by means of
the direction ŝ and the angle of rotation θ.

Figure 3.9: Image r′ of r under a rotation of θ around ŝ.

The equation (3.43) can be written in matrix form as:

r′ = Rr, (3.44)

where [77]:

R =

 Cθ + (1− Cθ) s2
x (1− Cθ) sxsy − Sθsz (1− Cθ) sxsz + Sθsy

(1− Cθ) sxsy − Sθsz Cθ + (1− Cθ) s2
y (1− Cθ) sysz − Sθsx

(1− Cθ) sxsz + Sθsy (1− Cθ) sysz − Sθsx Cθ + (1− Cθ) s2
z

 . (3.45)

Therefore, from this matrix we can compute the vector ŝ along the rotation axis, as:

ŝ =
1

2 sin θ

(R−RT
)

32(
R−RT

)
13(

R−RT
)

21

 , (3.46)

where
(
R−RT

)
ij

is the i, j element of the matrix into the parenthesis.

Since ŝ is a unit vector, it is easy to see that:

sin θ =
1

2

√
(R−RT)2

32 + (R−RT)2
13 + (R−RT)2

21, (3.47)

and from (3.45):

cos θ =
1

2
[Tr (R)− 1] , (3.48)

where Tr (R) is the trace of the matrix R.
Therefore, the rotation angle is given by:

θ = tan−1 sin θ

cos θ
. (3.49)
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3.2.3 Lines and screws

The geometry of the screw axis of a spatial displacement is best studied using Plücker’s
coordinates that define the line directly. Plücker coordinates of a line is a six-dimensional
vector assembled with the direction vector of the line and its moment about the origin of
the reference frame.

Plücker coordinates of a line

Consider the line S through two points rC and rQ in space, given by the parameterized
equation:

S : r = rC + λŝ λ ∈ R, (3.50)

where rC has been selected as reference point on the line, and ŝ is the unit vector along
rQ−rC . To eliminate the free parameter λ in the definition of S, we introduce the Plücker
coordinates of the line, [76]:

S =

{
ŝ

rC × ŝ

}
=

{
ŝ
sO

}
. (3.51)

The vector sO is the moment of the line about the origin of the reference frame, see
Figure 3.10.

Figure 3.10: The direction ŝ and the vector rC of the point C onto the line S.

Notice that these coordinates do not depend on the choice of the reference point rC .
A general pair of vectors W = (w,v)T can be the Plücker coordinates of a line only if

w · v = 0. This is equivalent to saying that there must be a vector rC such that:

rC ×w = v. (3.52)

Solve this equation by computing the vector product of both sides by w to obtain:

rC =
w × v

w ·w
. (3.53)
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This formula defines the coordinates for the reference point directly in terms of the
Plücker coordinates of the line.

Plücker coordinates are homogeneous, which means that λS represents the same line
as S.

Screws

A general pair of vectors (w,v)T for which w · v 6= 0 and |w| 6= 1 is called a screw $. It is
possible to associate with any screw $, a line S, called the axis of the screw. To do this,
decompose the second vector v into parallel and perpendicular components to w, so we
have v = pww+v∗. Since w ·v∗ = 0, we can determine a point rC such that, rC×w = v∗

by the equation (3.53).
The line S = (w, rC ×w)T is the axis of the screw $. Let w = wŝ, then, the compo-

nents of this screw can be written in the form:

$ =

{
wŝ

wrC × ŝ + wpwŝ

}
. (3.54)

The parameter w = ||w|| is called the magnitude of the screw, and:

pw =
w · v
w ·w

, (3.55)

is its pitch.
Lines are often called zero-pitch screws.

3.3 Denavit-Hartenberg notation

The Denavit-Hartenberg notation models chains of bodies connected by joints. Originally
they were applied to single-loop chains but are now almost universally applied to open-
loop serial chains such as robotic manipulators. Unfortunately there are several popular
variations of the notation: the original, the distal variant, and the proximal variant.

It has been some sixty years since Jacques Denavit and Richard S. Hartenberg intro-
duced the ubiquitous and celebrated kinematic notation bearing their names [78].

Unfortunately there are several popular variations of the notation: the original, the dis-
tal variant popularized by the Paul’s textbook [79], and the proximal variant popularized
by Craig’s textbook [80].

In this section the fundamentals of the DH notation are explained and the three cases
are compared for their application to serial robots.

3.3.1 Denavit-Hartenberg parameters

Both the original DH notation and their variants use four parameters (θi, di, αi, ai)
denominated the DH parameters. These parameters define angles and distances between
two consecutive coordinate system’s axes and specify the relative pose between them. This
way, the subscript i is related with one of the two involved systems. In this work, each of
the parameters is referred to as:
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• θi: rotation angle of the kinematic joint,

• di: translation along the direction of the kinematic pair,

• αi: rotation angle of the link,

• ai: link length.

This notation was taken from [81], but it should be clarified that these parameters
were not used by Denavit and Hartenberg in the original notation except for ai.

In the most general case, six parameters are necessary to locate a coordinate system
relative to other. However, there are two additional conditions imposed over the zi and xi
axes of a coordinate system: i) they intersect, and ii) they are perpendicular. That is the
reason, that only four independent parameters are needed to locate a coordinate system
with respect to another.

The DH parameters describe the dimentions of the kinematic chains connected by
joints of 1-DoF (revolute joints, prismatic joints and screw joints). The kinematic joints
of more than 1-DoF could be replaced by combinations of 1-DoF joints.

Finally, the pose of the coordinate system attached to the end effector link, t, of the
kinematic chain relative to the coordinate system of the fixed link, f , defined by fTt is
given by a composition of translations and rotations along and around the axes, xi and zi.
These displacements can be written as homogeneous transforms by:

Xi(ai, αi) and Zi(di, θi), (3.56)

3.3.2 Comparison between DH conventions

Conventions differ in the way to define the DH parameters. Harvey Lipkin [81] presented a
detailed comparison between the three popular variations: the original, the distal variant
and the proximal variant. Figure 3.11 illustrates the way that the three conventions set
coordinate systems to a kinematic chain, and Tables 3.1, 3.2 and 3.3 are a summary of
the ways to define the DH parameters for each convention.

Table 3.1: DH parameters for the original convention.

Original convention

Measuring axis zi xi+1

DH parameters θi, di αi, ai
Axes to measure the parameters xi → xi+1 zi → zi+1

Table 3.2: DH parameters for the distal variant.

Distal variant

Measuring axis zi−1 xi
DH parameters θi, di αi, ai
Axes to measure the parameters xi−1 → xi zi−1 → zi
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Figure 3.11: (a) original Denavit-Hartenberg convention, (b) distal variant of Denavit-Hartenberg notation
and (c) proximal variant of Denavit-Hartenberg notation. Fig. extracted from [81].

Table 3.3: DH parameters for the proximal variant.

Proximal variant

Measuring axis zi xi
DH parameters θi, di αi, ai
Axes to measure the parameters xi−1 → xi zi → zi+1

A successful notation balances clarity against conciseness. Lipkin proposed in [81],
five subjective criteria to evaluate Denavit-Hartenberg notation and its variants for serial
robot analyses. In order of importance the criteria are deemed as:

1. Frame i is rigidly attached to link i.

2. Displacements θi and di are measured about zi.

3. Displacements αi and ai are measured about xi.

4. The first joint displacement is θ1 or d1.

5. The ground is link 0.
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Table 3.4 compares the properties of the three notational conventions, where the prox-
imal variant is the only one that satisfies all the criteria. Therefore the proximal variant
is advanced as the most notationally transparent for the mechanical analysis of serial
manipulators.

Table 3.4: Comparison of properties for the three notational conventions. X denotes satisfied property, ×
denotes unsatisfied property and ⊕ denotes mutually exclusive properties.

No. Criteria Original Distal Proximal

1 Frame i on link i X X X
2 θi, di along zi X × X
3 αi, ai along xi × X X
4 αi, ai along joint 1 ⊕ X X
5 Link 0 is ground ⊕ X X
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Chapter 4

Measurement system

Obtaining the knee work-space is based on a simple statement: “the measurement of
3D coordinate systems and their relative displacements”. To do this, a measurement
system based on photogrammetric techniques is implemented. Through this chapter, the
measurement system is described and the mathematical background of the technique is
explained. Moreover, an accuracy study is developed to prove the reliability of the system.

4.1 Description

The measurement system for the obtention of the knee work-space is a photogrammetric
system based on a single camera and simple planar patterns, see Figure 4.1.

Figure 4.1: Measurement system; (a) Camera and (b) planar patterns.

The camera used in this project is a Genie Nano C2020 by Teledyne [82] (the little one
in the Figure 4.1), and the planar patterns were printed on a laser printer using special
thin paper attached to rectangular pieces of flat glass. Patterns with squares of 5 mm and
10 mm of length were printed.

The technique consists on extracting a 3D coordinate frame from each image pattern
from each image captured by the camera, as is shown in Figure 4.2. The pose informa-
tion of these patterns is relative to the camara coordinate frame however, making use
of the equation (3.37) the relative displacement, Tij, between coordinate frames can be
computed.
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Figure 4.2: Transformation between the coordinate systems of pattern and camera.

The capability to exctract reliable 3D coordinate systems from 2D images of the planar
patterns is thoroughly related with the camera calibration procedure, explained below.

4.2 Camera calibration procedure

Camera calibration is a necessary step in 3D computer vision in order to extract metric in-
formation from 2D images. It consists in computing the geometric and optic characteristics
of the camera known as the extrinsic and intrinsic parameters.

It is possible to classify the techniques of camera calibration into two principal cate-
gories:

• Photogrammetric calibration: calibration is performed by observing a calibra-
tion object whose geometry in 3D space is known with good precision. A calibration
object usually consists of two or three planes orthogonal to each other. These ap-
proaches require an expensive calibration apparatus, and an elaborate setup.

• Self-calibration: techniques in this category do not use any calibration object. Just
by moving a camera in a static scene, the rigidity of the scene provides in general two
constraints [83] on the cameras internal parameters from one camera displacement
by using image information alone. Therefore, correspondences between three images
are sufficient to recover both internal and external parameters. While this approach
is very flexible, there are many parameters to stimate, reliable results are not always
obtained.

The camera calibration procedure in the current research is focused on a desktop vision
system (DVS) since the potential for using DVSs is large. Cameras are becoming cheap
and ubiquitous. A DVS aims at the general public, who are not experts in computer
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vision and will not be willing to invest big amounts of money for expensive equipment.
Therefore, flexibility, robustness and low cost are important.

The technique has the advantage that it only requires the camera to observe a pla-
nar pattern shown at a few (at least two) different poses (position and orientation). The
pattern can be printed on a laser printer and attached to a “reasonable” planar surface.
The motion need not be known. This approach lies between the photogrammetric calibra-
tion and self-calibration, because 2D metric information is used, rather than 3D or purely
implicit one.

The procedure starts with a closed form solution based on the homography or projec-
tion matrix, followed by a non-linear refining based on the maximum likelihood criterion
and the distortion coefficients are also estimated.

The calibration technique described above is implemented in the open access Camera
Calibration Toolbox for Matlab R© by Jean-Yves Bouguet [84] and it is mainly based in
Zhang’s proposal [6] with the minor difference that it uses the intrinsic model presented
by Heikkila and Silven [85] including two extra distortion coefficients corresponding to
tangential distortion.

4.2.1 Camera parameters

Figure 4.3 displays the principal elements in the geometric model of the camera necessary
to stablish the relationship between a 3D point in the global frame, M = [x, y, z]T , and its
corresponding 2D point, m = [u, v]T , in the image frame. Let us keep the same notation
to denote the augmented vector by adding 1 as the last element: m = [u, v, 1]T and
M = [x, y, z, 1]T .

X

Y
Z

x

y

zu

v

principal point
(u ,v )

image plane

00

global frame

camera frame

M

m
projected point

(a, b, g )

(R, t)

intrinsic

extrinsic

focal length skewness

rotation matrix translation vector

Figure 4.3: Camera intrinsic and extrinsic parameters. Fig. based on [6]
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The relationship between a 3D point M and its image projection m is given by:

sm = A
[
R t

]
M , where A =

α γ u0

0 β v0

0 0 1

 , (4.1)

where s is an arbitrary scale factor; R and t, called the extrinsic parameters, are the
rotation and translation of the camera reference frame with respect to a real world refer-
ence; A is called the camera intrinsic matrix which contains the intrinsic parameters: the
coordinates of the principal point, (u0, v0); the focal length in scale factors, α and β;
and the skew coefficient of the two image axes, γ.

Matrix A relates the pixel image coordinate system with the camera metric coordi-
nate system, while the matrix

[
R t

]
relates the global coordinate system to the camera

coordinate system.

4.2.2 Zhang’s algorithm

The Zhang’s algorithm [6] is based on computing the homography or projection matrix
between the model plane, which consists of an arrangement of coplanar points, and its
corresponding camera image for n number of images, as is shown in Figure 4.4, with
information about the dimensions of those planar patterns.

Figure 4.4: Arrangement of coplanar points in three diferent poses.

Without loss of generality, we assume that the model plane is on the Z = 0 of the
global coordinate system. Therefore, a model point M and its image m is related by an
homography matrix H as follows:

sm = HM with H = A [r1 r2 t] . (4.2)

Given an image of the model plane, a homography can be estimated [6]. It can be
denoted by H = [h1 h2 h3]. From (4.2), we have:

[h1 h2 h3] = λA [r1 r2 t] ,

where λ is an arbitrary scalar. The algorithm also takes advantage of the orthonormal
property of the rotation matrix to obtain two fundamental constraints:

hT1 A−TA−1h2 = 0 (4.3)

hT1 A−TA−1h1 = hT2 A−TA−1h2 . (4.4)
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Closed-form solution

Let:

B = A−TA−1 ≡

B11 B12 B13

B12 B22 B23

B13 B23 B33

 . (4.5)

Note that B is symmetric, defined by a 6D vector as follows:

b = [B11, B12, B22, B13, B23, B33]T . (4.6)

Let the i-th column vector of H be hi = [hi1, hi2, hi3]T . As a result, we have:

hTi Bhj = vTijb, (4.7)

with vij = [hi1hj1, hi1hj2 + hi2hj1, hi2hj2, hi3hj1 + hi1hj3, hi3hj2 + hi2hj3, hi3hj3]T . There-
fore, the two fundamental constraints (4.3) and (4.4), from a given homography, can be
rewritten as two homogeneous equations in b:[

vT12

(v11 − v22)T

]
b = 0, (4.8)

which can be solved for b with n images in order to obtain an estimation of the matrix A
as follows:

v0 = (B12B13 −B11B23) /(B11B22 −B2
12)

λ = B33 −
[
B2

13 + v0 (B12B13 −B11B23)
]
/B11

α =
√
λ/B11

β =
√
λB11(B11B22 −B2

12)

γ = −B12α
2βλ

u0 = γv0/α−B13α
3/λ .

Once A is known, the extrinsic parameters for each image is readily computed. From
(4.2), we have:

r1 = λA−1h1, r2 = λA−1h2, r3 = r1 × r2, t = λA−1h3 .

Maximum likelihood estimation

The final solution is obtained through minimizing the algebraic distance between the
projection point, m, and its reprojection point, m̌.

We have n images of a model plane and there are m points on the model plane. The
maximum likelihood estimation can be obtained by minimizing the following function:

n∑
i=1

m∑
j=1

||mij − m̌ (A,Ri, ti,Mj) ||2, (4.9)
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where m̌ (A,Ri, ti,Mj) is the reprojection of point Mj in image i. This non-linear mini-
mization problem is solved with the Levenberg-Marquardt algorithm [86].

After this, five distortion coefficients (radial and tangential) [85], ki, i = 1, 2, ..., 5 are
calculated. These will modify the reprojection point m̌ which will need to be recalcu-
lated taking into account these coefficients. Finally, the complete maximum likelihood
estimation is given by:

n∑
i=1

m∑
j=1

||mij − m̌ (A, k1, k2, k3, k4, k5,Ri, ti,Mj) ||2. (4.10)

4.2.3 Degenerate configurations and the error performance

Since (4.3) and (4.4) are derived from the properties of the rotation matrix, if R2 is not
independent of R1, then image 2 does not provide additional constraints. In particular, if
a plane undergoes a pure translation, then R2 = R1 and image 2 is not helpful for camera
calibration.

Zhang [6] also provides an experimental study of the error performance of the intrinsic
parameters depending on: a) noise level, b) number of planes and c) orientation of the
model plane. Average results are shown in Figure 4.5.

Figure 4.5: Error performance vs: (a) noise level, (b) number of planes and (c) angle with the image
plane. Fig. extracted from [6].

In general, errors increase linearly with noise level, and decrease when more images
are used, best performance seems to achieved with an angle around 45◦, since with small
angles close to being paralell to the camera plane the algorithm fails and with high angles
close to being orthogonal to the camera plane, foreshortening makes the corner detection
less precise.

4.3 Accuracy study (trueness and precision)

In order to implement a measurement system, it is necessary for it to have enough accuracy
for the application. For this reason, it is necessary to perform an accuracy study of the
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photogrammetric system (camera and planar patterns) in order to demonstrate that it is
suitable for the current aplication.

The standard ISO 5725 [87] uses two terms “trueness” and “precision” to describe
the accuracy of a measurement system. Trueness refers to the closeness of agreement
between the arithmetic mean of a large number of test results and the true or accepted
reference value. Precision refers to the closeness of agreement between test results.

The need to consider “accuracy” arises because tests performed on presumably identical
materials and presumably identical circumstances do not, in general, yield to identical
results. Many different factors may contribute to the variability of results of a measurement
system, including:

• operator,

• equipment used,

• equipment calibration,

• environment (temperature, humidity, air pollution, etc.),

• time elapsed between measurements.

The variability between measurements performed by different operators and/or with
different equipment will usually be greater than the variability between measurements
carried out by a single operator using the same equipment.

4.3.1 Trueness

The “trueness” of a measurement system is of interest when it is possible to obtain a true
value for the property being measured. The trueness of the measurement method can be
investigated by comparing the accepted reference value with the resulting data given by
the measurement system. Trueness is usually expressed in terms of bias or systematic
error.

The experimental setup for the accuracy study was composed of the planar pattern
under 3D known movements of 0.2 mm and 0.5 mm at a distance of 65 cm from the
camera with controlled lighting, see Figure 4.6.

The movements were performed by a 3-axis microblock stage MBT16D, as shown in
the Figure 4.7, with 1 µ of resolution. The experiment covered a 3-dimensional space of
0.6 mm and 1.5 mm in each axis for the displacements of 0.2 mm and 0.5 mm respectively.

The bias of the experimental results were calculated as the absolute error by:

E = |xe − xr|, (4.11)

where E is the absolute error, xe is the measurement obtained experimentally and xr is
the reference value. In this study, the experimetal measurement is the one obtained by the
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Figure 4.6: Experimental setup for the accuracy study; (a) first view (basic elements) and (b) second view
(lighting).

Figure 4.7: 3-axis microblock stage MBT16D.

camera’s images and the reference value is the one given by the microblock. In addition,
the standard deviation of the error was also calculated as follows:

s =

√√√√ 1

(n− 1)

n∑
i=1

(
Ei − Ē

)2
, (4.12)

where n is the number of test results, Ei is the absolute error of each result and Ē is the
average error of the experiment.

The minimum and maximum errors are listed in the Table 4.1. Note that the minimum
error occurs when the planar pattern is displaced on a plane paralell to the camera plane,
and the maximum error when the planar pattern is displaced perpendicular to the camera
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plane.

Table 4.1: Minimum and maximum errors at 65 cm.

Direction Displacement
Error
(mm)

s (mm)

Paralell
0.2 mm 0.0053466 0.0018208
0.5 mm 0.0037446 0.0019758

Perpendicular
0.2 mm 0.0236775 0.0216883
0.5 mm 0.0163387 0.0157000

The same experiment was performed at distances from 50 cm to 80 cm every 10 cm
obtaining no significant changes in the error performance. For more details see appendix
A.

4.3.2 Precision (repeatability and reproducibility)

In a perfect world, if the same material is repeatedly tested using the same test method,
whether by the same operator in the same laboratory using the same apparatus or by
different laboratories and operators using different apparatus meeting the specified re-
quirements, all measurements generated will be numerically identical. However, we do
not live in a perfect world. Repeated execution of the same method will not always yield
to numerically identical results. Minor differences will exist between test results due to
variations in factors that are inherent of the test method.

The general term for variability between repeated measurements is precision. Two con-
ditions of precision, termed repeatability and reproducibility, have been found necessary
and, for many practical cases, useful for describing the variability of a measurement sys-
tem. The repeatability and reproducibility are standardized terms adopted by ASTM [88]
and other standardization organizations. These are usually given in terms of standard
deviations.

A nonstatistical interpretation of these values is that these are the maximum differences
between two results obtained under specified conditions that can be attributed to the test
method precision.

Repeatability concerns the variability between independent test results obtained by
a single operator in the shortest practical period of time. Reproducibility deals with
the variability between test results obtained by different operators.

The precision study consisted in the same experiment explained in the previous section
executed by three different operators three times each.

The standard deviations of the repeatability, sr, and reproducibility, sR, were computed
based in the norm ASTM 691 [89], as follows:

sr =

√√√√1

p

p∑
i=1

si2, (4.13)
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and

sR =

√
(sx̄)2 +

1

n
(sr)2(n− 1), (4.14)

where:

p = number of operators,

si = standard deviation of the test performed by each operator,

sx̄ = standard deviation of the three test averages,

n = number of results in each test.

The final standard deviations of the repeatability and reproducibility computed by
(4.13) and (4.14) are listed in the Table 4.2.

Table 4.2: Standard deviations of the repeatability and reproducibility.

Repeatability Reproducibility

0.00867326 0.00833351

4.3.3 Discussion

Reviewing the results of the accuracy study listed in Tables 4.1, A.1 and 4.2, it is possible
to conclude that the proposed measurement system has the accuracy necessary to be used
for the determination of the knee workspace. In addition, three basic recommendations
are listed below in order to improve the experimental results:

• Avoid important displacements in the perpendicular direction to the camera plane.

• Make a robust camera calibration procedure with a high number of images and
orientations of the planar pattern.

• Perform the experiment in the same conditions for a short period of time.
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Experimental procedure

In this chapter, the experimental procedure through materials and methods is described
and presented in great detail with the purpose that other persons will be able to reproduce
the experiment. After that, the knee work-spaces and the joint parameters are determined
for each subject during specific motion tasks in a deep kinematic approach and comparisons
between them and the reported in the literature were made.

5.1 Data acquisition system

The camera used and the description of the measurement system for taking 3D coordi-
nates from an image camera is given in Chapter 4. This chapter focused in the general
description of the data adquisition system for the experimental procedure.

The process consists on taking a series of images of the knee under specific motion
tasks. Two planar patterns have to be attached to the thigh and shank respectively and
the camera needs to see both patterns during the complete motion tasks as is shown in
Figure 5.1.
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Figure 5.1: Image plane and attachement of the planar patterns on the leg.
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The process of taking images has been implemented in Matlab R© with a graphical user
interface GUI described below.

5.1.1 Graphical user interface (GUI)

The graphical user interface developed for the automation of the data acquisition procedure
is shown in Figure 5.2.

Figure 5.2: Elements of the graphical user interface “Image Capture”.

Hereafter the description of the GUI elements is presented:

1. Create Button: create a video object and set the camera configurations needed,
such as; trigger, packet size and exposure time.

2. Radio buttons for One shot and Train of shots: select one of the two options
of the GUI: take one shot or a train of shots (One shot is used for the calibration
procedure and train of shots for the experiment).

3. Preview Button: before starting the recording, the preview can be selected where
it is shown the camera image to make the necessary adjustments as focus or gain.

4. Start Button: starts the video recording.

5. Edit text Image name: in one shot mode it is necessary to write the complete
name of each image.

6. Capture Button: button to capture an image in one shot mode.

7. Edit text Shots per second: the frecuency of capturing images in train of shots
mode is given in shots per second. It is necessary to write the number of shots per
second.
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8. Edit text Time: it is the time lapse of the capturing process in train of shots mode.

9. Edit text Image names: in train of shots mode it is necessary to write the base
name of the images. The addition to this base name will be set by the program with
the corresponding number using an incremental counter.

10. Capture Button: button to start the train in train of shots mode.

11. Axes: an axes element for displaying the captured images.

5.1.2 Camera calibration

The process for camera calibration by the camera calibration toolbox for Matlab R© is
described in detail in Appendix B. The results of the intrinsic parameters after the
calibration procedure are shown in Table 5.1.

Table 5.1: Intrinsic parameters of the camera.

Parameter Results

Focal length [3551.16357 3558.82589] ±[26.69099 31.58028]
Principal point [1162.69165 760.75329] ±[50.75213 39.01203]

Skew 90.0000 + 0000

Distortion
[-0.14252 0.41300 0.00852 0.01239] ±

[0.02843 0.35874 0.00336 0.00357]
Pixel error [0.08896 0.06552]

5.2 Tracking system

The tracking system is composed by the planar patterns but these must be attached to the
thigh and shank by some kind of mechanical system that avoids the relative movement of
the pattern with respect to the body segment. The description of this mechanical system
is presented below.

From section 1.1.1, one of the basic recommendations given in the literature was the
use of elastic bands to rigidity the skin. Moreover, place the markers in the first third of
the thigh and in the mid of the shank.

The planar patterns are placed on rigid elements made in a 3D printer, designed
specifically for the current application. These elements were based on the subject specific
thigh and shank dimentions. The CAD model and the final rigid element are shown in
Figure 5.3.

The rigid elements have openings to hold them by straps and attach them to the thigh
and shank on the surfaces covered by the elastic bands. The final tracking system (elastic
bands, straps with rigid elements and planar patterns) is shown in Figure 5.4.

The straps are placed to about 12 cm from the lateral femoral condyle for the thigh
and about 15 cm from the lateral femoral condyle for the shank, with the patterns parallel
to the lateral face of the left leg.
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Figure 5.3: Rigid elements of the tracking system; (a) CAD model and (b) 3D printed element.

Figure 5.4: Final tracking system on the left leg of a volunteer.

5.3 Experimental setup

The experiment was performed at a distance of about 65 cm to the camera from the
patterns with an image taking frequency of 10 shots per second in a time lapse of 6
seconds for each motion task.

The complete experimental setup is shown in Figure 5.5.

5.3.1 Volunteers

The experiment was performed in three volunters able-bodies young males with no history
of knee musculoskeletal injury on their left legs. The personal data of these volunteers is
presented in the Table 5.2.
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Figure 5.5: Experimental setup of the experiment.

Table 5.2: Personal data of the Volunteers.

Volunteer 1 Volunteer 2 Volunteer 3

Age (years) 25 26 27
height (cm) 176 178 174
weight (kg) 91 81 77

5.3.2 Motion tasks

A total of three motion tasks (MT) were performed in the left leg of each volunteer, two of
them assisted ensuring total passive movement and the other carried out by the volunteer
himself in semi-active fashion. Images of the MT are shown in Figure 5.6. The description
of these MT all from the physiological fundamentals of the chapter, are given below.

Assisted passive MT1, Figure 5.6(a), is based in flexion-extension rotation. The MT
starts with the volunteer sitting with the knee close to a right angle then the examiner
takes the ankle and carries it up until the full extension.

Assisted passive MT2, Figure 5.6(b), is based in internal-external rotation. This MT is
performed with the volunteer standing with the knee flexed at a right angle. The examiner
grasps the foot with both hands and rotates it until the toes face laterally and medially.

Semi-active MT3, Figure 5.6(c), is based in flexion-extension rotation. The volunteer
is standing with the knee in full extension he then flexes the knee maintaining the thigh
at the initial position during all the MT.

5.4 Results

For all the experiments lets call TA to the 3D coordinate system given by the pattern in
the thigh and the system TB to the coordinate system in the shank. Then all the results
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Figure 5.6: Motion tasks; (a) MT1, (b) MT2 (passive), and (c) MT3 (semi-active).

are based on the movements of the system TB with respect to the system TA. Lets name
the work-space to all the poses of TB relative to TA for each MT.

The work-spaces have the representation in the 3D space as the given in the Figure
5.7.

Figure 5.7: Work-space of the system TB relative to TA. Lines of the system TB have the meanings: red
(x axis), green (y axis) and blue (z axis).

With these 3D work-spaces we can make different types of analysis depending on the
motion task, using the mathematic and kinematic tools viewed in Chapter 3.

67



CHAPTER 5. EXPERIMENTAL PROCEDURE

5.4.1 Motion task 1

Since this is a passive motion task based in flexion-extension rotation, it allows us to
examinate the displacements, rotations and the general behavior of the knee in the sagittal
plane.

The process to analyze this MT is shown in Figure 5.8. First, the equivalent sagittal
plane which is the best fit plane to the origins of the systems TB is obtained, see Figure
5.8(b). After this, the origins are projected on this plane and a new coordinate system is
defined with two of its axes lying on this plane, see Figure 5.8(c).

Figure 5.8: Process to analyze the MT1; (a) 3D work-space, (b) plane that best fit the origins of TB and
(c) projected points on the plane and the new coordinate system.

The curves obtained by the projected origins of the three volunteers during the analysis
of the MT1 are plottled in the Figure 5.9, in (a), (b) and (c) respectively. In these plots the
difference between phases during the MT can be observed, separated by different colors.

The blue part of the curve corresponds to the first 20◦ of the flexion from full extension
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Figure 5.9: Curves given by the origins in the sagittal plane during MT1; (a) volunteer 1, (b) volunteer 2
and (c) volunteer 3.

position is the phase where only rolling takes place. The red part of the curve corresponds
to the rolling and sliding phase that occurs during the next 30◦. Aditionally, in the curves
of the volunteers 1 and 2, a little black part can be observed which can be attributed to
the predominance of the sliding over the rolling. For more details about the rolling-sliding
process of the knee joint during the flexion, see Chapter 2 and [67].

To measure only the sliding of the tibia relative to the femur during the blue and red
phases, the circle that best fits all the data must remain constant during the analysis. The
circle that best fits blue and red curves at the same time is shown in Figure 5.10(a). The
circle obtained previously by fitting the blue and the red parts of the curve separately are
shown in Figure 5.10(b). The distance between the centers can be related directly with the
sliding of the knee joint during the first 50◦ of flexion. The computed distances between
the centers of the three volunteers are presented in the Table 5.3.
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Figure 5.10: (a) Circle that best fits the blue and red parts of the curve at the same time and (b) the
same circle with constant radius fitting the blue and red parts of the curve separately.

Table 5.3: Distance between the centers for the three volunteers during MT1.

Volunteer 1 Volunteer 2 Volunteer 3

Distance (mm) 2.7948 2.6681 2.3159

These results agree with the reported in the literature [90] in which the authors reported
displacements between 1 and 4 mm during the first 55◦ of flexion-extension rotation.

5.4.2 Motion task 2

This motion task allows to measure the internal-external rotation which occur in the
transverse plane of the knee. The data of this MT is separated in two rotations: inter-
nal and external rotations both starting from the neutral position with the toes in line
perpendicular to the floor.

The process to analyze this MT is shown in Figure 5.11. First, the Rodrigues’s vector
of each rotation matrix of TB relative to TA is obtained, see Figure 5.11(b). Therefore,
the angle of the Rodrigues’s vector i + 1, with respect to i is computed by means of the
dot product.

The graphics of the angle variation during the external and internal rotations for each
volunteer are shown in Figure 5.12. The maximum angles reached for internal-external
rotations of the three volunteers are presented in the table 5.4.

These results agree with the reported in the literature [91] which reports a range of
passive external-internal rotation with the knee flexed at 90◦ of about 25− 35◦.
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Figure 5.11: Process to analyze the MT2; (a) 3D work-space and (b) the Rodrigues’s vectors of the
rotation matrices of each coordinate system TB relative to TA.

Figure 5.12: Angle variation during the external-internal rotation of the knee; (a) volunteer 1 (b) volunteer
2 and (c) volunteer 3.
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Table 5.4: Maximum angle during internal-external rotation and the complete rotation angle for the three
volunteers.

Volunteer 1 Volunteer 2 Volunteer 3

External (◦) 14.7427 13.2678 17.2955
Internal (◦) 13.2460 11.5991 15.8582

Complete rotation (◦) 27.9887 24.8669 33.1537

5.4.3 Motion task 3

The MT3 is a semi-active flexion rotation that allows the analysis of the automatic internal-
external rotation of the knee during the flexion-extension rotation. Moreover, as the
midpoint between the passive and the active motions, this MT enables a good evaluation
of the knee models to reach the work-space.

The process to analyze this MT is shown in Figure 5.13. First, let’s compute the best
fit sphere to the origins, see Figure 5.13(b), of the coordinate systems TB relative to TA

as shown in Figure 5.13(c).

Figure 5.13: Process to compute best fit sphere during MT3; (a) 3D work-space (b) set of origins of the
coordinate system TB relative to TA and (c) best fit sphere to the data points.
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After this, the error can be observed by comparing the difference between the sphere
radius and the distance from the center of the sphere and the data point, the error per-
formance for the three volunteers is shown in Figure 5.14.

Figure 5.14: absolute error performance between the radius of the best fit sphere and the distance from
the sphere center and the data point, for the three volunteers.

As it can be seen, the mean error is in most cases les than 0.4 mm which is the reason
that the spherical pair is the most commonly used for MKO in gait analysis as is reported
in [32–34]. The parameters of the computed sphere in the MT3 for each volunteer are
presented in the table 5.5.

Table 5.5: Parameters (coordinates of the center and length of the radius) of the best fit spheres to the
data points of each volunteer during MT3.

Volunteer 1 Volunteer 2 Volunteer 3

Center (mm)
x = 111.2118 x = 139.8033 x = 113.7497
y = 35.8569 y = 34.5991 y = 46.0845
z = −28.4148 z = −42.4219 z = 67.6065

Radius (mm) 108.4853 141.0031 77.5915

Now, lets analyze the automatic rotation of the knee by means of the screw lines.
First, the screw line of each displacement of the coordinate system TB relative to TA is
computed, ATB from the position i to i + 1 with the equations (3.46) and (3.41). The
work-space of the MT3 of the volunteer 2 is shown in Figure 5.15(a), and the screw lines
of each relative displacement are shown in Figure 5.15(b).

The screw lines have the advantage that they are independent of the configuration of
the coordinate systems, instead, they depend on the displacements only. Other important
statement is that the screw lines are not the flexion-extension axes but they are the
axes of the entire knee motion, rotations and translations together. Since the principal
movement of the knee is the flexion-extension rotation, these screw lines have axes that
are quite similar to the flexion-extension axis. It is possible to examine these variations
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Figure 5.15: Process to compute the screw lines during the MT3; (a) 3D work-space and (b) screw lines
of the relative displacements of coordinate system TB relative to TA, ATB .

by computing the angle between the screw axes and the flexion-extension axis obtained
by the process described in Figure 5.16. The work-space of the MT3 for the volunteer 2
is shown in the Figure 5.16(a). The flexion-extension axis is the orthogonal vector to the
plane that best fits the set of origins as is shown in the Figures 5.16(b) and (c).

In Figure 5.17 the projection of the screw axes onto the flexion-extension axis by means
of the dot product during the MT3 is shown, for each volunteer. The closer the projection
is to 1 the more parallel are the screw axis and the flexion-extension axis. This graphic
shows the influence of the automatic internal-external rotation during the flexio-extension
rotation in a semi-active MT and could be considered as a parameter of the behavior of a
healthy knee.

As a summary of this chapter, the parameters obtained during the experimental pro-
cedure shown agreement with the reported in the literature. Moreover, the experimental
procedure is independent of the pattern placement and the measurement system is easy
to implement, which suggest that it can be used as an assistant tool for diagnostic of
pathologies.
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Figure 5.16: Process to compute the flexion-extension axis during MT3; (a) 3D work-space, (b) set of
origins of the coordinate system TB relative to TA and (c) line whose axis is orthogonal to the plane that
best fits the set of points, passing through it.

Figure 5.17: Projection of the screw axes onto the flexion-extension axis of the three volunteer during the
MT3.
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Chapter 6

Synthesis of the kinematic knee
model

In this chapter, the synthesis of the kinematic knee model of a left knee proposed through
its anatomical, physiological and kinematical bases is presented, as well as a validation of
the model by reaching a subject specific knee work-space during flexion task, experimen-
tally obtained and presented in the chapter 5. In addition, an adjustment process of the
length variations of the equivalent kinematic ligament chains with some ligament length
variation curves from the literature is presented as proof that the proposed kinematic knee
model is capable to simulate prescribed ligament length variations while it is reaching a
flexion work-space.

Along this chapter we will call kinematic knee model to the obtained mechanism by
the synthesis of the tibio-femoral joint, since the patella is not taken into account in the
present study.

6.1 Kinematic knee model: anatomical and physio-

logical approach

The kinematic knee model must have the highest possible anatomical significance while
maintaining its simple kinematical approach, and modeling the anatomical passive struc-
tures; condyles, cruciate ligaments and colateral ligaments, at the same time.

6.1.1 Tibia and femur condyles

In [3] it was demostrated that the substitution of lower-order surfaces with more complex
ones did not produce particular benefits; on the contrary, the use of b-splines brought
computational and optimization instabilities that resulted in worse results than those of
simple models. The approximation of the femur articular surfaces with spheres proved to
be very efficient for the tibio-femoral passive motion.

After this, the femur condyles are modeled as spheres with equal radii, see Figure
6.1(a), based on the study developed by Sintini et al. [61] in which the authors studied 20
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cadaveric specimens, and differences of less than 1 mm between the radii of the equivalent
medial and lateral spheres were found.

The condyles of the tibia are modeled as a simple plane, see Figure 6.1(b), in order to
facilitate further kinematic analysis and provide a simple way to measure the sliding of
the femur on the tibia.

Figure 6.1: Digital bones and kinematical models of the condyles; (a) femur and (b) tibia.

The spheres’s radii and the separation between the spheres’s centers were based in the
literature [61,66,92], the radius is r = 25 mm and the separation has a length of 60 mm.

Lets define the two coordinate systems attached to the femur and tibia as T f and T t,
respectively as is shown in Figure 6.2. The origin of the femur coordinate system (FCS),
of is located between the spheres on a plane paralell to the tibia-plane at a distance
of the spheres diameter, see Figure 6.2. The orientation of the FCS is based on the
recomendations given by Grood and Suntay [38]. The xf axis is in perpendicular direction
to the coronal plane, yf axis is parallel to the gravity field direction in a standing leg
during full extension and the zf axis is defined perpendicular to both xf and yf axes. The
origin of the tibia coordinate system (TCS), ot is located on the tibia plane just below the
origin of the FCS. The axes of the TCS have the same direction as the FCS axes when
the knee model is in full extension, see Figure 6.2.

The coordinates of the origins ot and of relative to FCS and TFS, as well as the
coordinates of the sphere centers, CM CL, and the contacts sphere-plane, DM DL, when
the kinematic knee model is in full extension, are described in the Table 6.1.

Further experimental evidence proved that the tibio-femoral pose is not influenced
by the patello-femoral joint during the knee motion, and the complete pose of the tibia
relative to the femur can be completely described by the tibio-femoral joint, then: a
tibio-femoral mechanism can be synthesized at first, that excludes the patella; the patello-
femoral mechanism can be defined subsequently [4, 5, 59].
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Figure 6.2: Kinematic model of the tibia and femur condyles in full extension and their corresponding
coordinate systems, T t and T f .

Table 6.1: Coordinates of the origins of and ot, sphere centers, CM and CL, and the sphere-plane
contacts, DM and DL, relative to femur and tibia coordinate systems, T f and T t, during full extension
of the kinematic knee model, (mm).

Point
Coordinate system (mm)

T f T t

of 0.0000 0.0000 0.0000 0.0000 -50.0000 0.0000
ot 0.0000 50.0000 0.0000 0.0000 0.0000 0.0000
CM 0.0000 25.0000 -30.0000 0.0000 -25.0000 -30.0000
CL 0.0000 25.0000 30.0000 0.0000 -25.0000 30.0000
DM 0.0000 50.0000 -30.0000 0.0000 0.0000 -30.0000
DL 0.0000 50.0000 30.0000 0.0000 0.0000 30.0000

6.1.2 Cruciate and collateral ligaments

Studies [67,93,94] demostrated that the insertions of the ligaments specially the cruciates,
can rotate around up to three perpendicular axes contributing to fibre recruitment during
the knee motion. This statement allows to modelate the ligament insertions by spherical
pairs.

The ligaments are viscoelastic anatomical structures with the main characteristic that
their lengths vary tensing and slackening during knee motion. This length variation change
the distance between the ligament insertions shortening it or lengthening it. This be-
haviour can be modelated by a prismatic pair.
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Cruciate and collateral ligaments all have several important fibres or groups of fibres
that have their particular length variation and insertion positions. In this work, all the
ligaments are modeled as a single fibre by only one kinematic chain, to give a first approx-
imation, but at the end of this chapter it will be easy to see that the presented procedure
can be extended to any number of ligament fibres making the analysis as complete as
desired.

After this, the cruciate and collateral ligaments are modeled by SPS (spherical-prismatic-
spherical) kinematic chains as shown in Figure 6.3.

The cruciate ligaments, ACL and PCL as well as the collateral ligaments, MCL and
LCL have important subject-specific variations both in their insertion positions and in their
lengths during full extension. Averages of these anatomical characteristics of the knee were
extracted from literature [7,95–97] to construct the kinematic knee model shown in Figure
6.3.

Figure 6.3: Kinematic model of the tibia and femur condyles with the ACL PCL, MCL and LCL ligaments
modeled as SPS kinematic chains.

The lengths of the ligaments (SPS chains) and the coordinates of their insertion points,
Ai, Bi i = 1, ...4., in terms of the FCS and TCS during full extension, are presented in
tables 6.2 and 6.3 respectively.
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Table 6.2: Ligament lengths (ACL, PCL, MCL, LCL) of the kinematic knee model from Figure 6.3.

ACL PCL MCL LCL

Length (mm) 30 37 90 50

Table 6.3: Coordinates of the insertion points, Ai and Bi i = 1, 2, 3, 4., of the kinematic knee model from
Figure 6.3, (mm).

Ligament
Insertion
point

Coordinate system
T f T t

ACL
A1 -7.4215 31.8355 6.1599 -7.4215 -18.1644 6.1599
B1 12.5000 50.0000 -7.0000 12.5000 0.0000 -7.0000

PCL
A2 5.6028 30.9813 -5.4117 5.6028 -19.0186 -5.4117
B2 -25.0000 50.0000 3.0000 -25.0000 0.0000 3.0000

MCL
A3 0.0000 25.0000 -55.0000 0.0000 -25.0000 -55.0000
B3 10.5656 114.0461 -47.3094 10.5656 64.0461 -47.3094

LCL
A4 0.0000 25.0000 55.0000 0.0000 -25.0000 55.0000
B4 -14.4437 72.8653 55.5341 -14.4437 22.8653 55.5341

6.2 Kinematic knee model: kinematical approach

The model shown in the Figure 6.2 composed by the two spheres on a plane is a 4-DoF
kinematic chain that allows sliding on the plane in the directions xt and zt, rotation around
an axis parallel to zf through the sphere centers, CM and CL, and rotation around the
axis yt perpendicular to the plane.

This 4-DoF model could be represented by an equivalent kinematic chain, RRPP as
the one shown in the Figure 6.4, where distances d1 and d2 are equal to the sphere’s radius.

Figure 6.4: RRPP equivalent kinematic chain of the two spheres on plane model from Figure 6.2.
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The ligament kinematic chains SPS are added to the RRPP main kinematic chain
shown in the Figure 6.4, with the same features described in Tables 6.2 and 6.3. The
complete equivalent mechanism as a RRPP+4-SPS parallel platform is shown in Figure
6.5.

Figure 6.5: Equivalent RRPP+4-SPS parallel platform of the complete kinematic knee model including
the ligaments.

6.2.1 Mobility of the complete parallel platform

The presented procedure to compute the mobility of the complete parallel platform shown
in Figure 6.5, was based on the criterion developed by Rico et al. [98], for an in-depth
treatment of the basic notions necessary to develop the criterion, readers are referred
to [99–101].

Let’s call the fixed platform f to the femur kinematic model and the moving platform
m to the tibia kinematic model as shown in Figure 6.5.

The parallel platform is formed by five serial connecting chains. The first serial chain
is formed by two revolute and two prismatic pairs. The other four chains are formed by
a prismatic pair and two spherical pairs, the kinematic pairs of these four serial chains
generate the complete Lie algebra se(3). Thus:

V
m/f

1 6= A
m/f
1 6= se(3) (6.1)
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and
V
m/f
j = A

m/f
j = se(3) ∀j = 2, 3, 4, 5. (6.2)

where V m/f is the infinitesimal mechanical liaison and Am/f is the closure algebra between
the fixed and the moving platforms.

In addition,
r1∑
i=1

f1i = 4 = dim
(
V
m/f

1

)
. (6.3)

where r1 is the number of pairs in the first kinematic chain.
Moreover, the absolute closure algebra is given by:

Am/fa =
5⋂
j=1

A
m/f
j 6= se(3). (6.4)

Therefore, the parallel platform is a trivial parallel platform of Tanev’s type [98]. The
number of DoF of the complete parallel platform is given by:

F = dim
(
V
m/f

1

)
+

5∑
j=2

[
rj∑
i=1

fj − dim
(
A
m/f
j

)]
= 4 +

5∑
j=2

[7− 6] = 4 + 4. (6.5)

As indicated in [98], the active DoF between the moving and the fixed platforms are
given by the first term of the right hand side of the equation, and they are four. The
same as the first kinematic chain RRPP. Moreover, there are four passive DoF associated
with the four chains SPS since they can rotate around their own axes without affecting
the motion of the moving platform.

As the number of DoF of the parallel platform is four, the final pose of the moving
platform could be determined by the four prismatic pairs acting as the actuators of the
platform. This is a convenient way to modelate the kinematic knee model since the
prismatic pairs are anatomically related with the ligament elongations.

6.3 Position analysis

The position analysis can be clasified into two types: forward and inverse analysis, both
are described below:

• forward analysis: consist on determining the final pose of the end effector knowing
the values of the actuator pairs.

• inverse analysis: consist on detrmining the values of the actuator pairs knowing the
pose of the end effector.

Since the final pose of the moving platform is restricted by the RRPP kinematic chain
work-space, it is possible to perform the position analysis of the complete parallel platform
only by this RRPP kinematic chain.

The position analysis of the RRPP kinematic chain is developed below, based on the
Denavit-Hartenberg parameters described in section 2.2.1.
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6.3.1 Denavit-Hartenberg description

Figure 6.6(a) shows the RRPP kinematic chain with its five bodies numbered, the coordi-
nate systems of the femur and tibia, T f and T t, and the distances between the kinematic
pairs. All the five coordinate systems required for the Denavit-Hartenberg description are
shown in the Figure 6.6(b). The orientation and location of the coordinate systems are
based on the proximal variant convention due to the advantages that it has over the other
conventions described in section 3.3.

Figure 6.6: Kinematic chain RRPP with; (a) numbered bodies and distances between its kinematic
pairs, and (b) Denavit-Hartenberg coordinate systems based on the proximal variant convention and the
actuators of the kinematic chain.

The Denavit-Hartenberg parameters of the RRPP kinematic chain shown in Figure 6.6
are described in Table 6.4.

The homogeneous transform, fTt, between the femur coordinate system T f and the
tibia coordinate system T t is a composition of displacements and rotations along and
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Table 6.4: Denavit-Hartenber parameters of the RRPP kinematic chain shown in Figure 6.6. Distances
are in (mm) and angles are in (rad).

Coordinate
system

a α d θ

T f 0 0 - -
0 r 0 0 π/2
1 0 −π/2 0 −π/2+θ1
2 0 −π/2 r −π/2+θ2
3 0 −π/2 a+ p1 −π/2
4 a 0 b+ p2 π/2
T t - - −b π

around the x and z axes. This complete homogeneous transform is given by:

fTt = Z (0, π/2) X (r, 0) Z (0,−π/2 + θ1) X (0,−π/2) Z (r,−π/2 + θ2) X (0,−π/2)

Z (a+ p1,−π/2) X (0,−π/2) Z (b+ p2, π/2) X (a, 0) Z (−b, π) (6.6)

This homogeneous transform has the form:

fTt =

[
fRt ftt

0 1

]
(6.7)

where

fRt =

cos θ1 cos θ2 − sin θ1 cos θ1 sin θ2

sin θ1 cos θ2 cos θ1 sin θ1 sin θ2

− sin θ2 0 cos θ2

 , (6.8)

and

ftt =

 p2 cos θ1 sin θ2 + p1 cos θ1 cos θ2 − r sin θ1

p2 sin θ1 sin θ2 + p1 sin θ1 cos θ2 + r cos θ1 + r
p2 cos θ2 − p1 sin θ2

 . (6.9)

Equations (6.7), (6.8) and (6.9) define the pose of the T t relative to T f . The final
position depends on the RRPP pair values; θ1 around z1, θ2 around z2, p1 along z3 and p2

along z4.
For the forward position analysis we can put the values of the actuator pairs θ1, θ2,

p1 and p2 into the equations (6.8) and (6.9) to determine the pose of the tibia coordinate
system relative to the femur coordinate system, fTt. For the inverse position analysis, the
elements of the orientation matrix fRt and the position vector ftt are matched with the
corresponding in the goal pose and the equations are solved to compute the values of the
actuator pairs necessary to reach that pose, fTt.

6.3.2 Final pose approximation

As the kinematic chain RRPP has 4-DoF, it cannot reach any spatial position. Sometimes,
it is necessary to compute the most similar spatial position to a given spatial position that
the kinematic chain can reach.
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The most similar spatial position is a relative problem that can be addressed in several
ways. Here, an easy sequential procedure to compute the values of the actuator pairs to
reach a similar spatial position is presented. Since the kinematic chain RRPP has great
anatomical significance, important differences between the goal spatial position and the
similar spatial position are not expected.

The process to compute the values of the actuator pairs to reach a similar spatial
position to a given one, has the following steps:

1. Compute the values of θ1 and θ2 from the rotation matrix fRt, equation (6.8), to set
one of the three axes fxt, fyt or fzt in the direction of its corresponding axis in the
goal orientation matrix.

• To reach the direction of the axis fxt lets solve the elements of the first column
of fRt for θ1 and θ2.

2. With the values of θ1 and θ2, the orientation matrix fRt is completely defined and its
other two axes must be similar to their corresponding ones in the goal orientation.

3. Once the values are computed of θ1 and θ2 they can be substituted into the position
vector ftt, equation (6.9), and two of its three elements are solved for p1 and p2 to
reach the corresponding two components in the goal position vector.

• Compute p1 and p2 with the first and second elements of the ftt that match
with the f ttx and f tty components in the goal position vector.

4. With the values of p1 and p2, the position vector ftt is completely defined and its
remaining component must be similar to the corresponding one in the goal position
vector.

6.4 Example: Inverse position analysis during flexion

task

The inverse position analysis was performed for the MT3 of volunteer 2, see Figure 5.15,
which is the semi-active flexion task starting from the full extension position. This motion
task covers an angle of about 50◦ and it was divided in 21 spatial positions each 2.5◦. In
order to visualize the work-space of this MT in a better way, lets plot only 8 of the 21
spatial positions as shown in Figure 6.7.

First, the plane that best fits the origins of the systems TBi was computed, and then
the circle that best fits the set of projected points on that plane. An arc segment of the
circle that best fits the set of points as well as the axis perpendicular to the plane, n̂,
through the center of the circle, cc, are shown in Figure 6.8.

After that, the kinematic knee model is located with the y axis of the systems T f and
T t aligned with the origin of the first spatial position TB1 . The midpoint between the
sphere centers located on the center of the circle cc and with the z axis of the systems T f

and T t in the direction of the vector perpendicular to the plane n̂, as shown in Figure 6.9.
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Figure 6.7: 11 spatial positions of the MT3 work-space for the volunteer 2.

Figure 6.8: Arc segment of the circle that best fit the set of points of the work-space shown in Figure 6.7,
and the axis perpendicular to the plane, n̂ through the center of the circle, cc.

To perform the inverse position analysis it is necessary to refer both coordinate systems
T f and T t of the kinematic knee model, relative to the fixed frame TA, see Figure 6.9. As
the femur model is fixed during the motion task, then the coordinate system of the femur
T f is also fixed, therefore, the homogeneous transform of the femur system T f , relative to
the fixed system TA, ATf , remains constant during the motion task. This homogeneous
transform is composed by a rotation matrix ARf and a translation vector Atf defined by:

ARf =
[
x̂ ŷ ẑ

]
, (6.10)

where:

ŷ =
tB1 − cc
|tB1 − cc|

, ẑ = n̂, x̂ = ŷ × ẑ,

and
Atf = cc − r ŷ. (6.11)
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Figure 6.9: Location of the kinematic knee model to perform the inverse position analysis of the MT3.

The tibia coordinate system, T t, changes its pose relative to the fixed coordinate sys-
tem, TA, during the motion task. The homogeneous transform of the tibia system T ti for
each position i, relative to the fixed system TA, ATt

i can be defined by:

ATt
i = ATB

i (tTB)−1 (6.12)

Since there is a rigid attachment between the system T ti and the final moving system
TBi , the homogeneous transform tTB is a constant matrix during all the motion task. This
constant homogeneous matrix tTB can be computed by using the first spatial position,
i = 1, shown in Figure 6.9, and is given by:

tTB = (ATt
1)−1ATB

1 (6.13)

where ATt
1 is the homogeneous transform of the tibia coordinate system T t relative

to the fixed system TA in the first spatial position, which has the same rotation matrix
as the homogeneous transform of the femur coordinate system relative to the fixed frame
ATf , then:

ARt
1 = ARf , (6.14)

and the translation vector is given by:

Atf1 = cc + r ŷ. (6.15)

The inverse position analysis was obtained by applying the procedure described in
the section 6.3.2 which consists on determining the values of the actuator pairs of the
kinematic chain RRPP to reach an approximation of the goal pose. The error between
the approximation pose and the goal pose are ploted in the Figures 6.10 and 6.11. These
differences are in terms of the angle between the axes fxt, fyt and fzt and the distance
between points ftt in the approximation pose and the goal pose.
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Figure 6.10: Orientation error: angle between the axes of the approximation pose and their corresponding
in the goal pose.

Figure 6.11: Position error: distance between the origin point of the approximation pose and its corre-
sponding in the goal pose.

6.4.1 Ligament length variations

Once computed the homogeneous matrices ATf and ATt
i of the femur and tibia coordinate

systems relative to the fixed frame TA, it is possible to writte the vector position of the
insertion points Ai and Bi, ai and bi, i = 1, 2, 3, 4. with respect to the fixed frame TA as

88



CHAPTER 6. SYNTHESIS OF THE KINEMATIC KNEE MODEL

follows:
aAi = ATfafi , i = 1, 2, 3, 4. (6.16)

bAij = ATt
j b

t
i, i = 1, 2, 3, 4. j = 1, 2, ..., 21. (6.17)

Therefore, the length of each ligament chain in each spatial position can be computed
by:

Lij =
∣∣aAi − bAij

∣∣ i = 1, 2, 3, 4. j = 1, 2, ..., 21. (6.18)

Computing these lengths of the SPS chains for the 21 spatial positions of the MT, the
ligament length variation of the ACL, PCL, MCL and LCL ligament chains during the
first 50◦ of the semi-active flexion MT are obtained. The curves of the ligament length
variations during the first 50◦ of the flexion of the MT3 are shown in Figure 6.12.

Figure 6.12: Ligament length variation during the first 50◦ of the flexion motion for; (a) ACL, (b) PCL,
(c) MCL and (d) LCL.
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6.4.2 Simulation

The simulation was performed in SolidWorks R©. The prismatic pairs of the SPS kinematic
chains were configurated as linear actuators with the values given by the ligament length
variation curves as shown in the Figure 6.13.

Figure 6.13: Configuration of the prismatic pairs of the SPS kinematic chains as linear actuators for the
SolidWorks R©’s simulation; (a) ACL, (b) PCL, (c) MCL and (d) LCL.

The kinematic knee model reaching four of the eight spatial positions of Figure 6.7 is
shown in Figure 6.14.

6.5 Adjustment process: the ligament length varia-

tions

The kinematic knee model at this point is capable to reach a general work-space with high
accuracy during the first 50◦ of flexion rotation. As described in the previous section,
this is performed by the ligament lenght variations during the MT, which depends on the
position of the insertions (sphererical pairs) Ai and Bi, i = 1, 2, 3, 4 in the femur and tibia
models.

Some studies performed with in vitro specimens, extracted the ligament length varia-
tions of ACL, PCL, MCL and LCL during the knee flexion rotation and are reported in
the literature by means of graphical curves [7], polinomial aproximations [57] or simply
tables of data [102]. The final objective of this thesis is a kinematic knee model capable
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Figure 6.14: Complete kinematic knee model reaching four spatial positions during the simulation.

to reach a general WS of the knee and at the same time to modelate prescribed ligament
length variations during that WS.

The ligaments have some principal fibres that have their own length variations, but in
the proposed knee model the ligaments were simplified as only one fibre. The following
procedure can be extended to any number of fibres by setting a SPS kinematic chain for
each ligament fibre that is required in the analysis.

Let’s define the prescribed ligament length variations as the reported by Belvedere
et al. [7] in which the authors show the results by curves and polynomial functions in
percentage of the ligament lengths vs the flexion angle. The selected fibres that act as the
prescribed ligament length variations reported in [7] are ACL=AM, PCL=AL, MCL=pAB
and LCL=pWB. These prescribed curves for the first 50◦ of the flexion, are shown in the
Figure 6.15, and their corresponding polynomial functions are presented in Table 6.5.

Table 6.5: Prescribed polynomial functions, L∗i (θ) of the ligament length curves shown in the Figure 6.15.
Variable L∗i (θ) is in (mm) and θ is in (◦).

Ligament
Polynomio L∗i (θ)

θ6 θ5 θ4 θ3 θ2 θ1 θ0

ACL 6.271×10−9 -1.018×10−6 6.175×10−5 -1.665×10−3 0.0166 -0.0598 30
PCL -1.694×10−8 2.782×10−6 -1.782×10−4 5.562×10−3 -0.0829 0.5837 37
MCL 1.294×10−6 -1.659×10−4 0.00794 -0.2365 90
LCL -2.123×10−9 4.195×10−7 -2.942×10−5 8.338×10−4 -0.00613 -0.1485 50

The adjustment is possible by changing the positions of the ligament insertions Ai and
Bi, locating them in the positions that minimize the distance betwen the actual length Li
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Figure 6.15: Prescribed ligament length curves modified from [7]; (a) ACL, (b) PCL, (c) MCL and (d)
LCL.

and the prescribed length, L∗i , during the motion. The mathematical formulation of this
adjustment problem is described in the following section.

6.5.1 Mathematical description

The adjustment problem consists on determining the insertion positions for which the
ligament length variation curves be the most similar as possible to the prescribed ligament
length variation curves L∗i (θ), see Table 6.5. This problem is solved by the least squares
method in the non-linear sense, addressed in the sections 3.1.1 and 3.1.2.

The error functions to minimize are given by:

Ei =
n∑
j=1

(
|aAi − bAij| − L∗i

)2
, i = 1, 2, 3, 4. (6.19)

where n is the number of spatial positions and:

aAi = ATfafi bAij = ATt
jb
t
i
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Moreover, the vectors of the insertion points relative to the femur an tibia systems, afi
and bti, are given as:

afi = [xai, yai, zai]
T bti = [xbi, ybi, zbi]

T i = 1, 2, 3, 4. (6.20)

And, the functions to minimize can be written as:

Ei =
n∑
j=1

(dij(u))2 , i = 1, 2, 3, 4. (6.21)

where the vector of variables is u = [xai, yai, zai, xbi, ybi, zbi]
T and dij(u) = |aAi − bAij| −L∗i .

The Jacobian matrix Ji(u) and the vector di(u) are given by:

Ji(u) =


∂di1(u)
∂xai

∂di1(u)
∂yai

∂di1(u)
∂zai

∂di1(u)
∂xbi

∂di1(u)
∂ybi

∂di1(u)
∂zbi

∂di2(u)
∂xai

∂di2(u)
∂yai

∂di2(u)
∂zai

∂di2(u)
∂xbi

∂di2(u)
∂ybi

∂di2(u)
∂zbi

...
...

...
...

...
...

∂din(u)
∂xai

∂din(u)
∂yai

∂din(u)
∂zai

∂din(u)
∂xbi

∂din(u)
∂ybi

∂din(u)
∂zbi

 , i = 1, 2, 3, 4. (6.22)

di(u) =


di1(u)
di2(u)

...
din(u)

 , i = 1, 2, 3, 4. (6.23)

The adjustment problem was solved for the four SPS ligament kinematic chains by the
Gauss-Newton alghorithm given by equation (3.8) and the initial guesses were given by
the ligament insertion positions described in Table 6.3. Additionally, in the Appendix C
it is shown that the proposed adjustment problem leads to a convex function which means
that the computed results are the best possible results.

6.5.2 Results

After the adjustment procedure, the kinematic knee model in full extension position with
its adjusted insertion points is shown in the Figure 6.16, and the final coordinates of the
insertion points relative to the tibia and femur systems are presented in the Table 6.6.

The graphical comparison of the prescribed ligament length variation curves and the
obtained by the inverse position analysis with the insertion points in the adjusted locations,
A∗i and B∗i , are shown in the Figure 6.17.

The error performance between the prescribed and the adjusted ligament length vari-
ations are shown in the Figure 6.18.

6.5.3 Simulation

The simulation was performed in SolidWorks R©. The prismatic pairs of the SPS kinematic
chains were configurated as linear actuators with the values given the ligament length
variation curves after the adjustment procedure as shown in Figure 6.19.

The kinematic knee model with the ligament insertion points in the adjusted locations,
reaching four of the eight spatial positions of the Figure 6.7 is shown in Figure 6.20.
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Figure 6.16: Kinematic knee model with the insertion points in the adjusted locations.

Table 6.6: Adjusted location of the insertion points, A∗i and B∗i i = 1, 2, 3, 4., relative to the femur and
tibia coordinate systems T f and T t, Figure 6.3, (mm).

Ligament
Insertion
point

Coordinate system (mm)
T f T t

ACL
A∗1 5.1193 15.6729 -92.6641
B∗1 -15.8335 -13.0394 -89.5185

PCL
A∗2 -8.7018 42.2388 -42.2467
B∗2 -19.9715 22.4554 -22.9102

MCL
A∗3 -4.6104 33.6192 -89.8926
B∗3 34.0266 60.28026 -116.6599

LCL
A∗4 -9.2292 32.8432 125.7161
B∗4 -8.3645 30.2319 109.7748
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Figure 6.17: Prescribed ligament length variation curves and the obtained by inverse position analysis
with the insertion points in the adjusted locations; (a) ACL, (b) PCL, (c) MCL and (d) LCL.

Figure 6.18: Error performance between the prescribed and the adjusted ligament length variations; (a)
ACL, (b) PCL, (c) MCL and (d) LCL.
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Figure 6.19: Configuration of the prismatic pairs of the SPS kinematic chains as linear actuators in the
SolidWorks R©’s simulation; (a) ACL, (b) PCL, (c) MCL and (d) LCL.

Figure 6.20: Complete kinematic knee model with the ligament insertion in the adjusted locations, reaching
four spatial positions during the simulation.
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Chapter 7

Conclusions and future work

In this chapter, the results obtained throughout this project are discussed and summarized.
Moreover, as the kinematic knee model is a first approximation to more complex ones, this
chapter also presents the bases and author’s recommendations for future work.

7.1 Discussion and conclusions

In general, along with the development of this work, a new kinematic knee model with
anatomical significance is proposed, which is capable to simulate ligament length variations
of: ACL, PCL, MCL and LCL, and reach a 3D work-space experimentally obtained by a
new measurement system based in photogrammetry that uses only one camera to extract
3D information.

First, a review of the measurement systems for joint motions of the human body is
presented, specially for the knee joint, based on photogrammetric techniques and their
main sources of error, such as: the STA which is the principal error source, allowing
us to design an experiment with the least possible external error. Moreover, the basic
recommendations on the reporting of kinematic data and extraction of the geometrical
parameters of the knee joint were also reviewed, such as: the flexion-extension axis or the
rotation center of the knee joint. The computation of geometrical parameters of the knee
joint proved to be of great importance since it allows the location of the kinematic knee
model during the evaluation of its capability to reach an experimental work-space.

After, a review of the kinematic knee models and their evolution over the years is
presented, discovering that there is an opportunity area of including the behavior of the
passive elements, such as the ligament length variations, into the model during a general
motion task, remaining the model in a completely kinematic sense (no computational or
finite element models).

Then, a photogrammetric measurement system is proposed with the principal char-
acteristic that it uses only one camera to extract the 3-Dimensional information, making
it cheaper and easier to implement than the conventional systems that use several cam-
eras. Moreover, this measurement system has the advantage of not depending of markers
placement. The calibration process of the measurement system is based on Zhang’s al-
gorithm and the homography matrix that allows the projection of 2D points of an image
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into the 3D space and create spatial coordinate systems relative to the camera coordinate
system. In addition, an accuracy study was proposed to evaluate the capability of the
measurement system to extract reliable information during the data acquisition process.
Concluding that the measurement system has the necessary reliability to be used in the
proposed application.

Once the measurement system was evaluated, it can be included in the experimental
procedure to obtain the knee work-space. This experimental procedure consists on the
determination of the work-spaces of three different motion tasks (MT1: passive flexion-
extension rotation, MT2: passive internal-external rotation and MT3: semi-active flexion-
extension rotation). The displacement of two coordinate systems attached to the thigh and
shank were collected to then get in the form of a work-space of all the spatial positions of
the tibia coordinate system (system attached to the shank) relative to the femur coordinate
system (system attached to the thigh). Then, the geometrical parameters of the knee
during a motion task were computed based in mathematical and kinematical fundamentals
as the fitting 3D geometries to a set of points and the screw line of a spatial displacement.
Moreover, some processes were proposed to measure important characteristics of the knee
motion such as: the so called automatic rotation of the knee during flexion-extension and
the sliding between the tibia and femur bones. The results agree with the reported in the
literature. These gratifying results suggest that this process can be used in the detection
of knee issues and injuries by comparing the results with those of a healthy knee.

The measurement system is easy to implement and has enough accuracy for the pro-
posed application, however, it has some limitations specially in the space that confines the
motion tasks limiting the analysis to motion tasks that can be done in a small space as
the gait analysis. Nevertheless, these limitations can be significantly reduced with a more
powerful camera.

At the same time, a novel kinematic knee model with anatomical significance at the
condyles of the femur and tibia, and at the ligament insertions and length variation be-
havior, that contains some important features of the kinematic knee models reported in
the literature is proposed, which is also able to simulate ligament length variations in a
completely kinematic sense; as far as the authors are aware there are not kinematic knee
models proposed with this characteristic yet. The kinematic knee model is in a kinemati-
cal sense, a parallel platform RRPP+4-SPS with 4-DoF of Tanev’s type with its mobility
controlled by the RRPP kinematic chain. The parallel platform was evaluated by its ca-
pability to reach a semi-active motion task obtaining good results as extected since the
model was based highly in the real knee anatomy and physiology.

An inverse kinematic analysis of the MT3 was performed to obtain the lengths of the
SPS kinematics during the motion, which are related directly with the ligament length
variations. As a last step, an adjustment process is performed where the ligament insertions
(spherical pairs of the SPS chains) are relocated in order to obtain ligament length variation
curves as similar to the prescribed ones.

These lead to a complete kinematic knee model capable to reach a 3D work-space with
high accuracy and at the same time simulate the ligament length variations of the ACL,
PCL, MCL and LCL, in the way that these would occur during the flexion task. This
kinematic knee model is also able for subject-specific customization in the work-space and
in the prescribed ligament length variations by modifying the kinematic parameters in
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the model, such as: the spheres radii and the position of the insertion points, this is an
important advantage over the computational models which are fully dependent of shapes
and properties.

The complete and adjusted kinematic knee model laid the foundations for more complex
model including more ligament fibres each with its specific length variation or models for
dynamic analysis in a completely kinematic sense.

The kinematic knee model at this time is able to reproduce, with high accuracy, a work-
space of the knee during passive and semi-active motion tasks. To extend the capability
of this model to active motion tasks it is necessary to improve the kinematic constraints
of the model and include other elements such as, the menisci. The model is also able to
simulate prescribed ligament length variations during motion-tasks different than flexion,
unfortunately this data are neither available in the literature nor for in vivo specimens.

7.2 Future work

As future work, it is planned to improve the measurement system by using a more powerful
camera to compute geometric parameters and analyze more complex motion tasks of the
knee and the human body in general.

The complete experimental procedure to extract kinematic data during a motion task
has the additional advantage of not requiring clinicians to identify anatomical landmarks
for markers placement, making the process accessible to be implemented by researchers
without training in physioterapy. Then, it is necessary to perform the experimental pro-
cedure in a reasonably large sample of subjects with healthy knees to record a reliable
database of the correct kinematic behavior of the knee. This database could be used to
identify some issues and injuries by comparing the results with those of a healthy knee.

With respect to the kinematic knee model it is proposed to increase the complexity of
it by including other passive elements such as the menisci or the patella, also more fibres
to each of the modeled ligaments. After that, the next step is to transform the kinematic
knee model into a dynamic knee model by including inertial features to the model and the
addition of active elements such as the muscles.

The closest future work, is the use of the complete adjusted kinematic knee model
to improve the design of important devices such as; active orthoses and rehabilitation
mechanisms. And for the devices that currently exist the kinematic knee model could be
used to develop exercises and rehabilitation trajectories that are more precise and focused
on the specific elements that needed to recover.
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[86] JJ Moré. The levenberg-marquardt algorithm: implementation and theory. In Nu-
merical analysis, pages 105–116. Springer, 1978.

[87] ISO International Organization for Standardization. Accuracy (true-
ness and precision) of measurement methods and results. url:
https://www.iso.org/obp/ui/iso:std:iso:5725:-1:ed-1:v1:en, 12, 1994.

[88] Alex Lau. What are repeatability and reproducibility. url:
https://www.astm.org/SNEWS/MA2009/datapointsma09.html, April 2019.

[89] ASTM American Society for Testing and Materials. A691m-18a, standard specifica-
tion for carbon and alloy steel pipe, electric-fusion-welded for high-pressure service
at high temperatures. url: http://www.astm.org/cgi-bin/resolver.cgi?A691A691M,
12, 1994.

[90] H Iwaki, V Pinskerova, and MAR Freeman. Tibiofemoral movement 1: the shapes
and relative movements of the femur and tibia in the unloaded cadaver knee. The
Journal of bone and joint surgery. British volume, 82(8):1189–1195, 2000.

[91] T Fukubayashi, PA Torzilli, MF Sherman, and RF Warren. An in vitro biomechani-
cal evaluation of anterior-posterior motion of the knee. tibial displacement, rotation,
and torque. The Journal of bone and joint surgery. American volume, 64(2):258–264,
1982.

[92] FM Griffin, K Math, GR Scuderi, JN Insall, and PL Poilvache. Anatomy of the
epicondyles of the distal femur: Mri analysis of normal knees. The Journal of arthro-
plasty, 15(3):354–359, 2000.

[93] T Zantop, M Herbort, MJ. Raschke, FH Fu, and W Petersen. The role of the
anteromedial and posterolateral bundles of the anterior cruciate ligament in anterior
tibial translation and internal rotation. The American Journal of Sports Medicine,
35(2):223–227, 2007. PMID: 17158275.

[94] DL Gollehon, PA Torzilli, and RF Warren. The role of the posterolateral and cruciate
ligaments in the stability of the human knee. a biomechanical study. The Journal of
bone and joint surgery. American volume, 69(2):233–242, February 1987.

106



REFERENCES

[95] RF LaPrade, TV Ly, FA Wentorf, and L Engebretsen. The posterolateral attach-
ments of the knee. The American journal of sports medicine, 31(6):854–860, 2003.

[96] J Bradley, D FitzPatrick, D Daniel, T Shercliff, and J O’Connor. Orientation of
the cruciate ligament in the sagittal plane. a method of predicting its length-change
with flexion. The Journal of bone and joint surgery. British volume, 70(1):94–99,
1988.

[97] NF Friederich, W Müller, and WR O’Brien. Clinical application of biomechanic and
functional anatomical findings of the knee joint. Der Orthopade, 21(1):41–50, 1992.

[98] JM Rico, LD Aguilera, J Gallardo, R Rodriguez, H Orozco, and JM Barrera. A
more general mobility criterion for parallel platforms. Journal of Mechanical Design,
128(1):207–219, 2006.

[99] JM Rico and B Ravani. On mobility analysis of linkage using group theory. Journal
of Mechanical Design, 125:70–80, 2003.

[100] D Aguilera, JM Rico, and J Gallardo. Computer implementation of an improved
kutzbach-grubler mobility criterion. In ASME 2002 International Design Engineer-
ing Technical Conferences and Computers and Information in Engineering Confer-
ence, pages 549–557. American Society of Mechanical Engineers, 2002.

[101] JM Rico, J Gallardo, and B Ravani. Lie algebra and the mobility of kinematic
chains. Journal of Robotic Systems, 20(8):477–499, 2003.

[102] CJ Wang, PS Walker, and B Wolf. The effects of flexion and rotation on the length
patterns of the ligaments of the knee. Journal of biomechanics, 6(6):587–596, 1973.

[103] S Boyd and L Vandenberghe. Convex optimization. Cambridge university press,
2004.

107



Appendix A

Trueness study

The maximum and minimum errors of the trueness study at distances from 50 cm to 80
cm are listed in Table A.1.

Table A.1: Minimum and maximum errors of the trueness study at distances from 50 cm to 80 cm.

Distance Direction Displacement Error (mm) s (mm)

50 cm
Paralell

0.2 mm 0.0046085 0.0034145
0.5 mm 0.0016697 0.0022707

Perpendicular
0.2 mm 0.0182044 0.0122556
0.5 mm 0.0104325 0.0125644

60 cm
Paralell

0.2 mm 0.0049685 0.0020032
0.5 mm 0.0033765 0.0020787

Perpendicular
0.2 mm 0.0227286 0.0194751
0.5 mm 0.0159151 0.0184662

70 cm
Paralell

0.2 mm 0.0053802 0.0030745
0.5 mm 0.0049134 0.0053840

Perpendicular
0.2 mm 0.0386569 0.0174816
0.5 mm 0.0262411 0.0181512

80 cm
Paralell

0.2 mm 0.0077891 0.0061106
0.5 mm 0.0049776 0.0017505

Perpendicular
0.2 mm 0.0474422 0.0269506
0.5 mm 0.0322825 0.0340259
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Appendix B

Camera calibration process

The camera calibration process consist on three main steps.
1. Take the images of the pattern: It is of great importance to have a set of images

of the planar pattern in non-degenerate configurations covering the entire field of visibility
of the camera, as reviewed in the Section 4.3.2. For the actual calibration process has
been used a set of 30 images of the planar pattern at a distance of about 60 cm from the
camera. In the Figure B.1 are shown 9 of those 30 images.

Figure B.1: 9 of the 30 images of the planar pattern used in the camera calibration process.
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2. Compute the intrinsic and extrinsic parameters: This step is actually the
camera calibration process which is composed mainly by the Zhang’s algorithm described
in the Section 4.2.2. This process is performed through the Camera Calibration
Toolbox of Matlab R© whose graphical user interface is shown in Figure B.2.

Figure B.2: Graphical user interface of the Camera Calibration Toolbox of Matlab R©.

First, it is necessary the extraction of grid corners of the patterns and then push on
the calibration button to compute the best homography matrix and therefore the best
intrinsic and extrinsic parameters.

3. Analyse the error: Once the first two steps are completed, the camera calibration
process is also complete, but in order to improve the results, it is possible to analyse the
error performance, make some relevant changes and recalibrate. By pushing the analyse
error button, a graph of the error performance will be displayed, see Figure B.3(a), the most
scattered markers in the graph indicate the images with the biggest error. This graphic
representation of the error allow us to see the images that require a more careful extraction
of the grid corners or even those that must be suppressed of the camera calibration process.

A good camera calibration process must end with a graph of the error performance as
the shown in Figure B.3(b), where the markers are distributed in a small space.

Figure B.3: Graphs of the error performance; (a) big error with scattered markers and (b) small error
with markers distributed in a small space.

Steps 2 and 3 can be repeated any times, to obtain the best results.
For a more detailed camera calibration process by the Camera Calibration Toolbox of

Matlab R©, the readers are referred to [84].
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Appendix C

Proof of the convex optimization
problem

Let’s rewrite the error function of the optimization problem as:

Ei(u) =
n∑
j=1

(
|aAi − bAij| − L∗i

)2
=

n∑
j=1

(dij (u))2 i = 1, 2, 3, 4. (C.1)

where u =
[
afi b

t
i

]T
= [xai, yai, zai, xbi, ybi, zbi] and:

aAi = ATfafi bAij = ATt
jb
t
i (C.2)

The objective is to show that the function Ei(u) is a convex function, based in the
statement that an affine function that has the following form:

f(x) = Ax+ b (C.3)

is always a convex function1.
Writing the vectors aAi and bAij from (C.2) in the three components form, leads to:

aAi = ARfafi + Atf (C.4)

bAij = ARt
j b

t
i + Attj (C.5)

This shows that vectors aAi and bAij are affine functions with respect to the vector of
variables u.

The spatial displacements ATf and ATt
j are constant matrices during the optimization

problem, therefore, the rotation matrices ARf and ARt
j, as well as the translation vectors

Atf and Attj can be written as:

ARf =

α11 α12 α13

α21 α22 α23

α31 α32 α33

 ARt
j =

β11j β12j β13j

β21j β22j β23j

β31j β32j β33j

 ,
1For an in-depth treatment of the basic notions necessary to develop the proof, the readers are referred

to [103]
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and:

Atf =

xfyf
zf

 Attj =

xtjytj
ztj

 ,
where all the elements of the matrices and vectors are real numbers.

Then, equations (C.4) and (C.5) can be rewritten as:

aAi =

α11xai + α12yai + α13zai + xf
α21xai + α22yai + α23zai + yf
α31xai + α32yai + α33zai + zf

 , (C.6)

bAij =

β11jxbi + β12jybi + β13jzbi + xtj
β21jxbi + β22jybi + β23jzbi + ytj
β31jxbi + β32jybi + β33jzbi + ztj

 . (C.7)

Now, let’s analyze the difference aAi − bAij by its first component, as follows:[
aAi − bAij

]
1

= α11xai + α12yai + α13zai + xf − (β11jxbi + β12jybi + β13jzbi + xtj)

= [α11, α12, α13, −β11j, −β12j, −β13j] [xai, yai, zai, xbi, ybi, zbi]
T

=
[(

ARf
)

1
−
(
ARt

j

)
1

]
u + (xf − xtj) , (C.8)

where (R)m is the notation for the m-row of the matrix R.
As a result, the difference aAi − bAij can be written in a matrix form as:

aAi − bAij =


(
ARf

)
1
−
(
ARt

j

)
1(

ARf
)

2
−
(
ARt

j

)
2(

ARf
)

3
−
(
ARt

j

)
3

u +

xf − xtjyf − ytj
zf − ztj

 . (C.9)

Equation (C.9) is in the form given by (C.3) which is the proof that aAi − bAij is an
affine function with respect to the vector of variables u.

The modulus of the previous difference |aAi − bAij|, is also a convex function since the
modulus preserves convexity.

To prove convexity in the function, given by:

f(u) = |aAi − bAij| − L∗i , (C.10)

let’s define the two additional convex functions:

h(r) = Ir − L∗i and g(u) = |aAi − bAij|

It is easy to see that f(u) can be defined through h(r) and g(u), by the function compo-
sition f(u) = h ◦ g = h(g(u)).

A function composition is convex if both functions involved are convex.

Function
(
|aAi − bAij| − L∗i

)2
is convex because it is a scalar power of a convex function,

and scalar power preserves convexity.

Finally, function Ei(u) =
∑n

j=1

(
|aAi − bAij| − L∗i

)2
is convex because it is a sum of

convex functions and the addition preserves convexity.
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