
__________________, Gto., a _____ de ____________________ del 20____.

M. en I. HERIBERTO GUTIÉRREZ MARTIN
JEFE DE LA UNIDAD DE ADMINISTRACIÓN ESCOLAR
P R E S E N T E.-

Por medio de la presente, se otorga autorización para proceder a los trámites de impresión,

empastado de tesis y titulación al alumno(a) __

del Programa de Maestría en ___ y cuyo número

de NUAes: __________ del cual soy director. El título de la tesis es: ________________________________

__

__

Hago constar que he revisado dicho trabajo y he tenido comunicación con los sinodales asignados

para la revisión de la tesis, por lo que no hay impedimento alguno para fijar la fecha de examen de titulación.

A T E N T A M E N T E

_________________________________ _______________________________
NOMBRE Y FIRMA NOMBRE Y FIRMA

DIRECTOR DE TESIS DIRECTOR DE TESIS
SECRETARIO

_______________________________ _______________________________
NOMBREY FIRMA NOMBRE Y FIRMA

PRESIDENTE VOCAL

Septién Hernández José Antonio

Maestría en Ingeniería Eléctrica

800562 Cifrados Asimétricos Ligeros

Post Cuánticos para Redes Inalámbricas de Sensores.

Salamanca 21 Junio 21

Dr. Juan Pablo Ignacio Ramírez Paredes

Dr. Sergio Eduardo Ledesma Orozco Dr. Juan Carlos Gómez Carranza

 Campus Irapuato-Salamanca
 Coordinación de Asuntos Escolares

Formato de Titulación

 Llenar en computadora con ayuda del oficio de modalidad. La modalidad de tesis es única para los posgrados

Nivel: Modalidad: Tesis

Licenciatura

Maestría X

Doctorado Año: 2021

Marcar con una X Poner el número de año p.e. 2015

Información sobre Obtención de Grado Académico:

Nombre Septién Hernández José Antonio

NUA 800562

Programa Maestría en Ingeniería Eléctrica (Instrumentación y Sistemas Digitales)

Para modalidades con Jurado completar la siguiente información:

Lugar, hora y fecha de la presentación

Lugar Salamanca

Firma y sello de autorización de
reservación de lugar.

Hora 16:00 hrs.

Fecha 5 de Julio de 2021

Título del trabajo Cifrados Asimétricos Ligeros Post Cuánticos para Redes Inalámbricas de Sensores

Jurado

 Nombre con grado académico completo:
p.e. Doctor en Informática Industrial
Nombre Apellido Paterno Apellido Materno

Firma de autorización para
realización de examen de grado o
titulación.

Presidente Doctor en Filosofía Sergio Eduardo Ledesma Orozco

Secretario Doctor en Ingeniería Eléctrica Juan Pablo Ignacio
Ramírez Paredes

Vocal (1) Doctor en Ciencias de la Computación Juan Carlos
Gómez Carranza

Vocal 2 (Doctorado)

Vocal 3 (Doctorado)

Asesoría

Director del trabajo Doctor Juan Pablo Ignacio Ramírez Paredes

Codirector Doctor Marco Antonio Contreras Cruz

(No llenar para uso exclusivo de la Coordinación.)

Una vez terminado de llenar imprimir en dos tantos (uno para entregar al iniciar el trámite de autorización del examen de grado o
titulación y otro para firma de recibido).

Valida (nombre y firma):

UNIVERSIDAD DE GUANAJUATO

CAMPUS IRAPUATO - SALAMANCA

DIVISIÓN DE INGENIERÍAS

Cifrados Asimétricos Ligeros Post Cuánticos

para Redes Inalámbricas de Sensores.

TESIS PROFESIONAL

QUE PARA OBTENER EL GRADO DE:

Maestrı́a en Ingenierı́a Eléctrica (Instrumentación y Sistemas Digitales)

PRESENTA:

Ing. Septién Hernández José Antonio

DIRECTORES:

Dr. Ramı́rez Paredes Juan Pablo Ignacio

Dr. Contreras Cruz Marco Antonio

SALAMANCA, GTO. Julio 2021

UNIVERSIDAD DE GUANAJUATO

CAMPUS IRAPUATO - SALAMANCA

ENGINEERING DIVISION

Lightweight Post-Quantum Asymmetric Ciphers

for Wireless Sensor Networks

PROFESSIONAL THESIS

TO OBTAIN THE DEGREE OF:

Master in Electrical Engineering (Instrumentation and Digital Systems)

PRESENTS:

BEng. Septién Hernández José Antonio

SUPERVISORS:

Dr. Ramı́rez Paredes Juan Pablo Ignacio

Dr. Contreras Cruz Marco Antonio

SALAMANCA, GTO. July 2021

Dedicatoria

A mi abuela Juanita. Ya no estás fı́sicamente con nosotros, pero el amor que nos profesaste

siempre nos acompañará donde sea que nos encontremos.

A mi padrino Gerardo. Gracias por todo tu apoyo y cariño que me diste desde niño.

A mi abuelo José Antonio. Por la ayuda que, a tu manera, le diste a mi papá.

D.E.P.

i

Al doctor Vı́ctor Ayala.

The Road Not Taken

Two roads diverged in a yellow wood,

And sorry I could not travel both

And be one traveler, long I stood

And looked down one as far as I could

To where it bent in the undergrowth;

Then took the other, as just as fair,

And having perhaps a better claim,

Because it was grassy and wanted wear;

Though as for that the passing there

Had worn them really about the same,

And both that morning equally lay

In leaves no step had trodden black

Oh, I kept the first for another day!

Yet knowing how way leads on to way,

I doubted if I should ever come back.

I shall be telling this with a sight

Somewhere ages and ages hence:

Two roads diverged in a wood, and I–

I took the one less traveled by,

And that has made all the difference.

Robert Frost.

ii

Agradecimientos

A mis asesores, el doctor Juan Pablo y el doctor Marco, por la guı́a que me han dado.

Por presentarme un tema del cual conocı́a muy poco, y dejarme explorarlo a mis anchas.

Pude seguir mi personalidad curiosa y pasar de apenas conocer el campo, a tener unos

resultados concretos.

A la doctora Magali del Infotec, por recibirme para realizar estancias de investigación.

Se quedó abierta la puerta para futuras colaboraciones entre el laboratorio y el Infotec.

A mis papás, Laura y Toño, por todo el apoyo que me han dado desde siempre. En

especial por el apoyo recibido durante esta pandemia que tan rara ha sido para mÍ; tantos

cambios y tan profundos.

A mis hermanas, Verónica, Ana Laura y Andrea por estar ahı́ siempre que las necesite

y por el apoyo que me dan. Por acompañarme en este proceso llamado vida, y prestarme

ayuda siempre que la necesité. Espero que podamos seguir compartiendo momentos y

experiencias por mucho tiempo más.

A mi abuelo, por los consejos dados, por la guı́a que me das, todas las experiencias

vividas, por la ayuda y el apoyo que me diste cuando lo necesité. Pasaste por momentos

muy difı́ciles, y eso nos mostró tu fortaleza para sobrellevar las cosas. Estuve ahı́ para tı́

en ese momento tan difı́cil. Estaré ahı́ para apoyarte y sostenerte siempre que lo necesites.

A mi primo Gerardo, aunque convivimos menos durante este periodo, siempre estu-

viste ahı́ cuando querı́a platicar o convivir contigo. Espero que el apoyo que te he dado

haya sido suficiente para tı́ durante esos momentos que tan difı́ciles fueron para tI. Siem-

pre vas a tener un amigo y confidente conmigo.

A toda mi familia, tı́os y primos. Con algunos nos mantuvimos unidos durante los

tiempos difı́ciles que pasaron, con otros nos separamos. Cada situación me enseñó otras

formas de ver y vivir, y como manejarlas. Gracias a todos los que nos mostraron apoyo

cuando lo necesitamos.

A mis compañeros y amigos de maestrı́a, Gustavo, Fernando y Juan, por acompañarme

durante la maestrı́a y ayudarme a resolver dudas cuando las tenı́a.

A todos mis amigos y compañeros que conocı́ durante mi tiempo que estuve real-

izando la maestrı́a, cada experiencia que tuve con ustedes, mala o buena, me mostró una

parte de mı́.

A mi psicóloga Marcela, por ayudarme y guiarme en este arduo trabajo de autocono-

cerme, sanar viejas heridas, y en guiarme a través de esas sombras llamadas miedo. Por

ayudarme a conocer esta caracterı́stica de mı́ que no entendı́a, pude darle un nombre, y lo

que es más, entender este rasgo de mı́ que pocos parecen ver, aún menos entender, y que

yo no podı́a explicarme (de nombre Sensory-Processing Sensitivity).

iii

Agradecimientos Institucionales

A la Universidad de Guanajuato, a través de la División de Ingenierı́as del Campus

Irapuato-Salamanca, por proporcionarme instalaciones y material para mi desarrollo in-

tegral como estudiante de maestrı́a.

Al Laboratorio de Visión, Robótica e Inteligencia Artificial por proporcionarme un

espacio de trabajo para el desarrollo de mi tesis.

Al Infotec unidad Aguascalientes por haberme recibido para realizar estancias de in-

vestigación.

Al Consejo Nacional de Ciencia y Tecnologı́a (CONACyT), por el apoyo financiero

provisto durante la realización de la maestrı́a, a través de la beca 936284.

iv

v

Contents

1 Introduction 1

2 Background 3

2.1 The Internet of Things . 3

2.1.1 IoT communication protocols at the application layer 5

2.1.2 Basic IoT devices at the object layer 6

2.1.3 Security for the IoT . 7

2.2 Cryptography . 8

2.3 Public-key cryptography and key exchange mechanism 8

2.3.1 Encryption security . 10

2.4 Post-quantum cryptography . 11

2.4.1 Quantum computers and the Shor’s algorithm 11

2.4.2 Existing post-quantum cryptosystems 12

2.5 Post-quantum cryptosystem standards 13

2.5.1 Currently competing cryptosystems 14

2.6 The transport layer security protocol . 15

2.6.1 TLS handshake protocol . 15

2.6.2 Crypto libraries implementing the TLS protocol 17

3 Methodology 18

3.1 Introducing post-quantum cryptosystems to IoT 18

3.2 Post-quantum cryptosystems suitable for IoT 19

3.2.1 Lattice-based NIST post-quantum cryptosystems 19

3.2.2 Algorithms specification . 19

3.2.3 NIST’s post-quantum cryptosystems suitable to IoT devices . . . 28

3.3 The IoT prototype . 28

3.3.1 The proposed system . 28

3.3.2 The nodes . 29

3.3.3 The gateway . 30

3.3.4 The broker . 31

3.4 Measuring the cryptosystems performance 32

3.4.1 Variables of interest . 32

3.4.2 Profiling the variables . 32

3.4.3 Data exploration and tests execution 34

3.5 Postamble . 35

vi

CONTENTS

4 Results 36

4.1 Measuring the cryptosystems’ performance 36

4.1.1 Memory and CPU Performance 36

4.1.2 Selecting the first three KEMs 39

4.2 Testing the mechanisms on the IoT prototype 39

4.2.1 Performance on the number of packets 40

4.2.2 Performance on packet size . 40

4.2.3 Performance on connection’s duration. 43

4.3 Guidelines on selecting post-quantum KEM 46

5 Conclusions 51

5.1 Future Work . 52

Appendices 53

A Basic Mathematics for Cryptography 54

A.1 Groups . 54

A.2 Integer Rings . 55

A.3 Fields . 55

A.4 Lattices . 55

B List of acronyms 57

vii

Resumen

El Internet de las Cosas es el siguiente paso en la evolución del Internet, en el cual se pre-

tenden conectar una gran variedad de dispositivos a la Internet con el objetivo de recabar

datos del entorno que faciliten la toma de decisiones.

Al igual que todos los sistemas informáticos, el Internet de las Cosas enfrenta ame-

nazas externas que deben ser consideradas desde las primeras etapas de diseño del dis-

positivo, considerando además que los dispositivos usados tienen una cantidad limitada

de recursos.

Un requisito necesario para el Internet de las Cosas, es asegurar que los datos transmi-

tidos por la Internet estén protegidos ante posibles intervenciones externas no autorizadas,

en especial ante intervenciones por Computadoras Cuánticas, hardware que es posible que

llegue en los próximos años.

En este trabajo se considerar el impacto en rendimiento y uso de recursos que pueden

tener los distintos criptosistemas post cuánticos en dispositivos con recursos restringidos,

a la vez que se dan guı́as de selección para usar los criptosistemas en dispositivos con

recursos restringidos.

viii

Abstract

The Internet of Things is the next step in the evolution of the Internet, at which it is pre-

tended to connect a wide variety of devices to the Internet with the objective of gathering

data from the environment, with the objective of assisting in the decision-making process.

As with every information system, the Internet of Things faces external threats which

most be considered from the early stages of device design, considering as well that such

devices are usually resource-constrained in nature.

One such threat is securing the data transmitted trhought the Internet, impeding thrid

parties to discover its contents. One such special threat are the quantum computers, hard-

ware that may soon be widely available in the near future.

In this work, we begin considering the impact on performance and resource consump-

tion that post-quantum cryptosystems might have on devices with low resources, and

provide some guidelines for appropriately selecting a suitable one for such hardware.

ix

Chapter 1

Introduction

The Internet of Things (IoT) is the next step in the evolution of the Internet, in which

all types of devices will be able to connect to it. These devices will not necessarily have

human supervision, so they will have to operate autonomously. The deployment of such

devices will create an ecosystem that should be resilient against several external pertur-

bations and threats. One such external threat is securing the communication between the

different endpoints to protect unauthorized third parties from intervening and access the

transmitted data.

An emerging field in Computer Science and Physics is Quantum Computation. In

1985, David Deutch proposed the first Universal Quantum Computer model by expand-

ing the Church-Turing hypothesis to a physical principle [1]. Later, in 1994, the mathe-

matician Peter Shor proposed an algorithm that uses some of the properties of quantum

computers to solve the discrete-logarithm and integer factorization problems. The algo-

rithm poses a threat to classical cryptosystems that use such problems for guaranteeing

security. As the development of quantum computers made its realization more feasible,

the need to create a new standard for the post-quantum era emerged. So, the US National

Institute of Standards (NIST) began creating such a new standard.

When quantum computers come to existence (if ever), the IoT endpoints, build up

from devices with very limited computation, communications, and energy resources,

known as resource-constrained devices, will also be threatened by this new hardware.

So, it is necessary to start adopting such standards to the IoT endpoints, especially the

public-key cryptosystems. Symmetric-key algorithms are not as threatened by this new

hardware, since doubling the current key sizes would be enough to protect them.

Most of the current efforts on post-quantum cryptography have been in developing

cryptosystems that are resistant against quantum adversaries. There is little attention to

the development or adaptation of post-quantum cryptosystems to resources-constrained

devices.

In this work, we enable post-quantum security for the IoT by studying how the new

NIST standards might impact on resource-constrained devices, especially from the com-

putation and communication standpoint of view. From this study, we can obtain insights

on how the cryptosystems perform on such devices and then give some guidelines for us-

ing and selecting an appropiate one. We study those cryptosystems availabe at the NIST

standardization process. We do this by first determining, according to the literature, which

1

type of post-quantum cryptosystems is most suitable to resource-constrained devices. We

then select a popular crypto library to use with the cryptosystem for key exchange, select

a frequently used IoT protocol that uses such library, and finally develop a prototype IoT

system to test in a real-world scenario.

We breify present here work related to post-quantum cryptosystems for the IoT. There

has been little work regarding post-quantum cryptosystems for IoT devices. On [2], the

authors propose an adaptation of a key management scheme known as Identity-Based En-

cryption (IBE) to post-quantum cryptosystems. Especifically, they adapt a lattice-based

one to the IBE scheme. In [3], the authors propose a compression and error correc-

tion algorithm for ciphertexts generated by lattice-based cryptosystems. The method the

authors proposed reduces the ciphertext size without losing information, improving the

performance of the decryption process. In [4], the author presents a survey of current ef-

forts to create post-quantum cryptosystems, including institutions and universities efforts

and different standardization initiatives currently in existence. The most significant initia-

tives are those by the European Telecommunication Standards Institute (ETSI), the Inter-

net Engineering Task Force (IETF), and the National Institute of Standards (NIST). The

author presents the different types of post-quantum cryptosystems from the NIST’s sec-

ond round, compares them, gives the keys’ sizes, claimed quantum security, and claimed

classical security. Fernández-Caramés also shows the CPU performance of various cryp-

tosystems on a variety of platforms used for IoT devices.

This work is organized as follows. In chapter 2, we begin by introducing some ba-

sic concepts on the IoT and cryptography. We start by introducing the IoT, its essential

components, architectural design, and the two most basic IoT devices. We then pro-

ceed to introduce cryptography and give a basic definition of cryptography, its two basic

types, and then introduce public-key cryptography. We also briefly introduce quantum

computers, post-quantum cryptography, and why we need them. We then introduce the

standardization process, and finally, the Transport Layer Security protocol.

In chapter 3, we begin by introducing the suitable post-quantum cryptosystems for

IoT devices, present the algorithm especification for lattice-based cryptosystems from the

NIST, and give the versions used in the study. We then introduce the proposed IoT protype

used for the tests, its hardware and software components, and how they interact among

each other. Finally, we present the variables to study the performance of the cryptosystem,

how we present the data, and how we perform the tests.

Chapter 4 presents the results of testing the different available ciphers’ performance

on resource-constrained devices, first in an independent manner and then integrated with a

crypto library. We also evaluate the ciphers on a real-world application, in which a server

communicates directly with an IoT device. We then give insights into the ciphers’ usage

on resource-constrained devices. Finally, in chapter 5, we present the conclusions and

give some possible future directions for continuing the work’s development. In appendix

A we present some fundamental mathematical tools for the construction of cryptosystem,

and in appendix B we present a list of acronyms used throughout the text.

2

Chapter 2

Background

This chapter presents the basics for using and understanding both IoT devices and the

post-quantum cryptosystems. We begin by introducing the concept of the Internet of

Things by giving some definition, introducing its comprising elements, its architectural

design, some IoT protocols, and the two basic types of devices for the IoT. We then present

some desirable security attributes for it.

We briefly introduce the field known as cryptography, present its definition, and its

two types. We then present public-key cryptography and key exchange mechanisms with

their primitive components. We present the desirable security attributes for the public-key

cryptosystems.

Immediately after that, we introduce post-quantum cryptography by indicating why

it is needed, how it came to existence, its two main types, and the main representatives

for each type of cryptosystem. We then introduce the process for creating a new standard

for the post-quantum era and the contenders. The chapter ends by introducing the TLS

protocol, which will use the post-quantum cryptosystems to secure its communications.

2.1 The Internet of Things

The Internet of Things, or IoT, is a new paradigm considered to be the next step in the

evolution of the Internet, at which it is intended to connect a great variety of devices.

This new paradigm will create an ecosystem that will facilitate data gathering from the

environment, its modification, and will assits in the decision-making process through data

analysis.

The academia and industry have not yet reach a consensus on the definition of the

IoT. There have been several attempts to define the IoT, focusing mainly on three aspects:

”things-oriented” definition, centered around the objects that will sense and modify the

environment; ”Internet-oriented” based on the networking infrastructure; and finally, a

”semantic-oriented” based on the set of technologies required to represent, store, search,

interconnect, and organize the data generated by the objects.

A definition provided by [5] and which tries to encompass the three above aspects,

is the following: ”A scalable heterogeneous global network of augmented devices with

self-organizing capabilities; an infrastructural network adaptable to existing as well as

3

2.1. THE INTERNET OF THINGS

future enabling technologies; that behaves as a multi-agent system, with agents having

cognizance towards the cyber-bio-physical environment; and interacts as a social network

using smart interfaces to achieve an objective or set of objectives”.

The definition tells us that the IoT is composed of objects deployed to the physical

world, like sensors, actuators, RFID tags, all the way to cloud servers, and, to achieve the

desired goal, which is data-based decision-making, all the components should work in

harmony. It also tells us that the IoT should be an ecosystem as autonomous as possible

and be capable of responding and adapting to change with little or no human intervention.

In order for the IoT ecosystem to work properly and achieve its desired goals, five

stages, as shown in Figure 2.1, need to existe [5], [6], [7]: the first one is known as

Sensing, responsible from gathering the data for the environment and transfering to other

platforms and devices. The second stage is known as Communications, which is the set

of technologies required for connecting the different devices and the transfer of data.

The third stage is Computation, which is the fussion of processing units with software

that provides the IoT with computation capabilities. The next stage is Services, or all

the functionality required for the proper functioning of the ecosystem, like aggregation

srevices, collaborative services, among others. The final stage is Semantics, that provides

context to the data gathered with the objects. These stages define a possible path that data

could travel through, from the environment to the final user, to meet its needs and goals.

Sensing Communications Computing Services Semantics

Figure 2.1: Stages for data gathering, transmission, and interpretation in the context of

the Internet of Things.

It is also necessary an architecture that allows us to deploy the devices in an ordered

fashion [5], [6]. There have been several proposals by the community, with different

number of layers and functions, with the most accepted one consisting of five layers,

as shown in Figure 2.2. The first layer, called Object Layer, consists of all the objects

and its componentes required for the gathering of data. The second layer, called Object

Abstracion Layer, and provides means of interacting with them. The third layer is called

Service Management Layer, which handles all the services functioning on the ecosystem,

and connects the upper layers with the lower ones. The next layer is called Application

Layer, the one accessible to the final user. This layer presents all the information to the

user, and allows it to interact with the ecosystem so it performs the tasks the user requires.

The final layer, called Business Layer, handles all the subsytems and components involved

to assure a proper working of the entire ecosystem.

This architecture represents a refernce one, and depending on the application, it may

or not implement the whole architecture. The objects that comprise the object layer, can

vary in a wide range depending on the purpose of the application. There also exsits several

4

2.1. THE INTERNET OF THINGS

Business Layer

Application Layer

Service Management
Layer

Object Abstraction
Layer

Object Layer

Figure 2.2: Common architectural design for the IoT ecosystem, composed of five layers.

protocols at the different layers of the architecture, especially on the application layer. In

the next section we introduce some commonly used protocols existing at the applcation

layer.

2.1.1 IoT communication protocols at the application layer

Several protocols exist in the Application Layer for delivering the required services to the

end-user. The most popular ones are the following:

• Constrained Application Protocol (CoAP): It it targeted for devices that use the

UDP communication protocol. CoAP is a web transfer protocol based on REST

(Representational State Transfer) and allows a simple way of exchanging data be-

tween it and the HTTP protocol. It is designed for devices with low power, compu-

tation, and communication capabilities.

• Message Queue Telemetry Transport (MQTT): Protocol built on top of the TCP

protocol, MQTT aims at devices with unreliable or weak links. It uses the publish/-

subscribe pattern, with a broker to which all the other devices are connected and

send the messages. The broker’s function is to collect all the clients’ information

and send them the requested information. The devices have three types: the broker,

a publisher, sending data to the broker, and a subscriber, which requests the broker’s

data.

• Extensible Messaging and Presence Protocol (XMPP): Design for multimedia data

and instant messaging, allows the user to communicate with each other by sending

5

2.1. THE INTERNET OF THINGS

messages over the Internet regardless of the operating system they use. It operates

in a decentralized fashion and connects a client to a server using an XML stanza.

• Advanced Message Query Protocol (AMQP): An IoT protocol focused on message-

oriented environments and operated over the TCP protocol. Communications are

handled with two components: exchanges and messages queue. Exchanges route

the messages to the appropriate queues.

• Data Distribution Service (DDS): A publish-subscribe protocol for real-time ma-

chine to machine communications. It does not use a central broker or server; rather,

it uses multicasting, providing excellent Quality of Service and reliability to the

applications.

Protocols like the XMPP have built-in security properties and can be extended to use with

other protocols. Other protocols like MQTT and CoAP rely on external crypto libraries

to provide security.

In the next section we briefly introduce the two basic objects that comprise the IoT

and give a brief description of each.

2.1.2 Basic IoT devices at the object layer

At the Object Layer resides all the devices that compose the ”things” part of the IoT. This

layer transmits the sensor-generated data and sends actuating commands to the objects.

The objects can have a wide range of types, from tiny motes1 with limited resources to

complete microprocessors with operating systems and a wide range of functionalities.

Of the available objects, two crucial technologies enable the IoT to achieve the goal

of accessing the data and information anywhere, anytime: the Radio Frequency IDentifier

(RFID) and sensor networks [7].

The Radio Frequency IDentifier (RFID) technology [8] has the purpose of identifying

objects via a tag. It has three components: an RFID tag, an RFID reader, and a server.

The reader function is to transmit a radio signal to the card for gathering the object infor-

mation, which then sends to the server.

Sensor Networks

The other crucial technology for the IoT is a Sensor Network, specifically a Wireless

Sensor Network (WSN). A WSN is a set of nodes capable of processing and sensing data

while having wireless communication capabilities. A sensor node is a low-powered, low-

cost, resource-constrained device with an integrated computational unit, whose function

is to carry out simple computations and transmits the data [9].

A WSN has three main components as shown in Figure 2.3, a sensor field, in which

the sensor nodes are scattered and from which data is collected; a sink or gateway that

collects the data from the sensor field and processes it in different ways accordingly to

1A mote, short for Remote, is a wireless transceiver that also acts as a remote sensor. They have minimal

capabilities and can be down to the size of a small coin.

6

2.1. THE INTERNET OF THINGS

the desired functionality; and a Task Manager Node or server, which indicates the Sink

which function to perform and presents the data to the user.

Sink
Internet/

Satellite

Task Manager

Node
Sensor

Field
Sensor

node
User

Figure 2.3: Components of a WSN. From the right, a cloud of sensors is deployed on the

field. The collected data is then sent to the Sink, of which several could exist. The Sink

sends the required data through the Internet or Satellite connection to the Task Manager

Node, controlled by a user. The user indicates to the server what function to perform. [9]

Most applications emerge from these two IoT devices, although some applications

make no use of such technologies. A typical and sometimes mandatory requirement for

IoT applications is security, or to protect the devices from external threats at different ar-

chitectural design levels. Next, we define several attributes desirable for IoT applications

and devices.

2.1.3 Security for the IoT

Several security requirements exist to consider a device or an application to be secured.

The essential attributes, known as the CIA-triad, defines in a high-level form the security

requirements a device or application should comply to be considered secure [10], [11].

• Confidentiality: Only the users in possession of the corresponding keys can view

the message’s contents.

• Integrity: Allows the user to notice when the message was modified by a third-party

during transmition, and thus preventing tampering on the message.

• Authenticity: Signing of the message using the public key or with the use of hash

functions.

Other attributes exist to provide a higher level of trust in the application, device, or

system. They bring to the system means for tracing any possible malfunction or unautho-

7

2.2. CRYPTOGRAPHY

rized intervention. The additional attributes are accountability, auditability, trustworthi-

ness, non-repudiation, and privacy. A way of satisfying these requirements, especially for

communication links, is cryptography, which we introduce in the next section.

2.2 Cryptography

Since the beginning of human existence, there has been a need to exchange information

among pairs for different purposes. However, some of the information exchanged is con-

sidered secret, so the need to protect it from unauthorized third-parties emerged, and with

that, cryptography.

Cryptography can be regarded as the science and art of hiding information, so only

those with granted access can know its contents. Several solutions have existed and con-

tinue to exist. Yet, with the advent of computers and telecommunication means, the prob-

lem of hiding information extended to the realm of computers. For solving these prob-

lems, cryptography was adapted to computers via encryption algorithms and schemes.

Encryption is defined as the process of information hiding by using a physical law, in the

case of non-telecommunication means, or a mathematical law, in telecommunication.

There exist two types of encryption processes:

• Symmetric-key encryption: It uses the same key for both encryption and decryption

of the message.

• Asymmetric-key encryption: there is a key for encrypting the message and another

key for decrypting it.

Traditionally, for the case of symmetric-key encryption, the keys used for the encryp-

tion and decryption process are generated with pseudo-random number generators and

then distributed in a secure manner, which can be through physical means, through a

trusted third party, or with the use of previous existing symmetric keys.

However, as the number of computers connected to the network increased, it becomes

less and less feasible to use traditional key exchange mechanisms to have a shared key

among all of them. It thus became necessary to create another mechanism by which to

interchange keys without the necessity for physical transport or a secure channel. It is

now that public-key cryptography emerges as a solution to it.

2.3 Public-key cryptography and key exchange mecha-

nism

Classical-key distribution techniques, such as physical key distribution and the usage of

previous symmetric keys, were becoming insufficient given the continuous growth of con-

nections and existing computers. With that problem in mind, in 1976, the researchers

Whitfield Diffie and Martin Hellman proposed a solution that later became the de-facto

one to the key-distribution problem: the public-key cryptography and the Diffie-Hellman

key exchange mechanism [12].

8

2.3. PUBLIC-KEY CRYPTOGRAPHY AND KEY EXCHANGE MECHANISM

The authors porpose solving the exchange of keys over an insecure channel [12] by

using problems considered to be NP or computationally hard. An NP problem has non-

polynomial-bounded solution, either in time, memory, or both, that solves it. It is said that

a computationally-hard problem is either NP, or the time or memory it takes to be solved

is impractical with current technology.

The idea of using these problems is to find a function for which computing it in the

forward fashion is easy (can be done with current technology), but computing the inverse

falls within the NP or hard problems realm. Such functions are called one-way functions.

Public-key Cryptography (PKC) proposes using a set of two keys: a public key, which

is accessible to all users, and a private key, available only to the user that generated the

keys. A typical PKC consists of four associated algorithms:

• Setup(1λ): Receives as input a security parameter λ, which is then used to generate

all the parameters p necessary to instantiate the problem on which the cryptosystem

is based, and then it uses those parameters to generate the keys.

• KeyGeneration(p): Receives as input the instantiated parameters from the previous

algorithm, and generates the associated public key pk and private key sk. It returns

as output such keys.

• Encryption(m, pk): Receives as input a plain text or message m and the public key

pk, and generates a ciphertext c by encrypting the message using the associated

problem to the cryptosystem.

• Decryption(c, sk): Receives as input a ciphertext c and the private key sk, and

retrieves the plaintext m.

The Setup and the KeyGeneration algorithms are executed when the communication chan-

nel is firstly open; the other two algorithms are used along with all the duration of the

communication.

With the usage of an NP or hard problem and the four algorithms previously men-

tioned, a public-key or asymmetric-key cryptosystem can be built, which then can be

used for exchange of information, exchange of symmetric keys, and for digital signatures.

The other proposed solution, whose only function is exchanging keys, is known as

a Key Exchange Mechanism (KEM). Both users want to communicate, have access to a

public set of parameters, from which a shared secret is generated and used for the ex-

change of keys and information. A typical KEM consists of a tuple of algorithms (Key-

Gen, Encapsulation, Decapsulation), along with a finite keyspace K.

• KeyGeneration: A probabilistic key generation algorithm that output a public key

pk and a private key sk.

• Encapsulation(pk): A probabilistic encapsulation algorithm that takes as input a

public key pk, and output an encapsulation c, sometimes called ciphertext, and a

shared secret ss ∈ K.

• Decapsulation(c, sk): A (usually deterministic) decapsulation algorithm that takes

as input an encapsulation c and a secrete key sk, and output a shared secret ss′.

9

2.3. PUBLIC-KEY CRYPTOGRAPHY AND KEY EXCHANGE MECHANISM

A common technique for constructing a KEM is using a public-key cryptosystem and

then applying it to a cryptographic transformation. This way, the cryptosystems design-

ers’ can create a KEM using a public-key cryptosystem, so it is unnecessary to construct

a new KEM each time a new one is needed.

The first proposed solution is known as the Diffie-Hellman Key Exchange [12], which

uses the discrete-logarithm problem for guaranteeing security. Another solution is known

as the Ravist, Shamir, Addleman (RSA) cryptosystem, which uses the large-integer fac-

torization problem [13].

Having a way to construct public-key cryptosystems and key exchange mechanisms,

it is necessary to have a formal way of indicating whether it provides security or not, and

at what level. In the next section we introduce some basic concepts for indicating the

security of a cryptosystem and key exchange mechanism.

2.3.1 Encryption security

To provide a way of indicating the security level of the cryptosystems and KEMs, and

how resilient they are to different attacks, the community defined several concepts, and

desirable security properties [14].

Firstly, a cryptosystem is broken via an attack, which is performed by an adversary.

An adversary is a randomized polynomial-time algorithm interacting with the cryptosys-

tem in some way. How the adversary interacts with the cryptosystem is known as the

attack model. The attacker also has an attack goal.

The most severe attack model for a cryptosystem is known as total break, in which

the adversary computes the private key. The following properties, known as security

properties, describe the way a cryptosystem protects itself from external attacks.

• One-way encryption (OWE): The adversary cannot compute the message m from a

given ciphertext c.

• Semantic Security: The adversary cannot learn information about a message from

ciphertext c, besides possibly the length of the message.

• Indistinguishability (IND): Given the encryption c of any of the two messages m0

and m1 of the same length, the adversary cannot distinguish from which message c
came.

The following are security features that indicate the security level of the cryptosystem,

and types of attacks that is should withstand.

• Passive Attack/Chosen Plain Text Attack (CPA): The adversary only has access to

the public key.

• Lunchtime attack/Chosen Ciphertext Attack (CCA1): The adversary has access to

the public key and can ask for the decryption of the ciphertext of its choosing during

the first stage of the attack.

10

2.4. POST-QUANTUM CRYPTOGRAPHY

• Adaptive Chosen Ciphertext Attack (CCA2): The adversary has access to the public

key and to an oracle that can decrypt any ciphertext of the attacker’s choosing. The

only constraint to the oracle is that it returns⊥when passed the challenge ciphertext

from the second stage.

The security settings, or theoretical strength, of any cryptosystem is determined by

first establishing the desired security property (e.g. IND), and then determining the type

of attack it should resists (e.g. CPA or CCA2) according to the goals of the cryptosys-

tem. There should be as well a formal poof that the cryptosystem indeed complies with

such settings. The highest security setting for any cryptosystem is the IND-CCA2, as it

resists any real-world attack, without considering those based on physical means. These

attributes apply to all cryptosystems, as changing an adversary from a classical adversary

to a quantum one is (theoretically) easy.

2.4 Post-quantum cryptography

With the arrival of quantum computers and the Shor’s algorithm, a need for public-key

cryptosystems that are quantum-safe emerged.

2.4.1 Quantum computers and the Shor’s algorithm

The main limiting factor of a classical computer is its discrete nature; that is, it is defined

only on a finite number of states. This discrete-nature imposes a barrier to the solutions it

can solve. Some can be expensive in resources (time, memory, speed) or fall outside the

problems it can solve (e.g. accurate physical simulations).

On the other hand, a Quantum Computer is a physical device whose construction and

definition uses physical laws and, as such, has a continuous nature. This new construction

allows expanding the problems that can be efficiently solved, although there are some sill

outside its reach.

In [1], David Deutch introduces the definition of a Universal Quantum Computer

by expanding the Church-Turing hypothesis to a physical principle, named the Church-

Turing principle, allowing this way the Quantum Computer to be physically realizable.

David Deutsch presents a Quantum Computer with several properties that are not

present in classical computers. One of such properties is its capability to perform parallel

processing in a limited fashion. A single processor from the machine can compute several

tasks in parallel, contrary to classical processors, which can only perform one function at

a time. This property allowed the mathematician Peter Shor to introduce in 1994 an

algorithm that ultimately solves the discrete-logarithm and large-integers factorization

problems [15].

It starts by generating a random number n. If n is a factor of N , we stop, as the

algorithm found the answer. If not, we proceed with the following. Using the first

property, and the randomly generated number, we can get the factors as follows: set

gp = mB + 1 ← gp − 1 = mB, from which we have that (gp/2 − 1)(gp/2 + 1) = mB,

then use the Euclidean algorithm to compute the GCD between N and both gp/2 − 1,

gp/2 + 1. So our task is now to find p, for which we make use of the Quantum Computer.

11

2.4. POST-QUANTUM CRYPTOGRAPHY

Its first function is to compute gx for all possible x ∈ Z, keeping track of the computation

by storing both x and gx. For a fixed m, we compute the difference between all the gx

and m ∗N to obtain the residue r. We save both x and r. We then measure r = 1 to make

the other answers cancel each other out, getting thus a series of numbers of the form:

a1, r + a2, r + a3 . . .
Here, we use property number 2; all the numbers are ai = axi+p for some xi. This se-

ries has a period p, or frequency f = 1/p. At this point, we cannot measure the Quantum

Computer’s output directly, as this would give us a random number of the form mentioned

above, and from which we cannot obtain p.

We obtain p by applying a Quantum Fourier Transform, which gives us the desired

frequency and the desired period p. This algorithm can be extended to the discrete loga-

rithm problem by using the following function:f : Zp× Zp− > G, f(a, b) = gax−b and

setting (a, b) = (r, 1).

2.4.2 Existing post-quantum cryptosystems

The introduction of Shor’s algorithm and the eventual development of Quantum Comput-

ers pose a threat to cryptosystems based on the discrete logarithm and the integer factoring

problem. There is a need to develop new cryptosystems for which there is no adaptation

of Shor’s algorithm. Such cryptosystems are known as post-quantum cryptosystems [16].

Current post-quantum cryptosystems are based on two types of mathematical con-

structions: based on codes and information theory, and based on lattices and polynomial

algebra. Each type has two main representatives from which all other proposals are dev-

ide. For the cryptosystems based on information theory, the main representative is known

as The McEliece Cryptosystem [17], which uses the difficulty of recovering a message in

the presence of t errors as the security problem.

For lattice-based cryptosystems, the main representative is known as The NTRU cryp-

tosystem, which we describe in the following section.

The NTRU cryptosystem

In the 1990s, Hoffstein, Pipher, and Silverman introduced a cryptosystem that later proved

resistant to Quantum Computers and was named NTRU [18].

It is based on polynomial algebra and the reduction modulo of two integer numbers p
and q, and its security is based on two problems:

• The ability to mix polynomials independently of the module.

• The difficulty of finding extremely short vectors on a lattice (the shortest vector

problem or SVP).

For the cryptosystem to work, it is necessary to have the following parameters: three

integers (N, p, q), with gdc(p, q) = 1, and q >> p; four sets Lf , Lg, LΦ, Lm of polyno-

mials of degree N − 1, and the ring R = Z[X]/(XN − 1) of integer polynomials module

(XN − 1). The operation ⊛ denotes multiplication in R.

The cryptosystem definition is as follows:

12

2.5. POST-QUANTUM CRYPTOSYSTEM STANDARDS

• Setup: Select randomly two polynomials f, g,∈ Lg, with the constrained that f
must have inverse modulo p and q.

• KeyGeneration: Compute the inverse of f modulo p and q:

Fq ⊛ f ≡ 1 mod q (2.1)

Fp ⊛ f ≡ 1 mod p (2.2)

Compute the following: h = Fq ⊛ g mod q The public key corresponds to the

polynomial h, and the private key is the set of polynomials f, Fp.

• Encryption: Given a message m ∈ Lm, randomly select a polynomial φ ∈ Lφ.

Using h, compute the ciphertext c ≡ p(φ⊛ h) +m mod q

• Decryption: Given a ciphertext, compute first: a ≡ f⊛c mod q. The coefficients of

a are choosen to be in the interval [−q/2, q/2]. Recover the message by computing:

m ≡ Fp ⊛ q mod p.

A correlated problem with SVP is known as the learning with errors (LWE) problem,

first proposed by Regev et al [19]. For this, an unknown polynomial p(n) = O(nc), for

some constant c, a prime number p = p(n) ≤ poly(n), and a list of equaitons with errors

are given:

〈s, a1〉 ≈χ b1 (mod p)

〈s, a2〉 ≈χ b2 (mod p)
...

where < ·, · > denotes the inner product module p, and the ai are chosen independently

and uniformly from Z
n
p . bi ∈ Zp, are defined as bi = 〈s, ai〉 + ei, where each ei ∈ Zp

is chosen independently according to χ. The problem consist in recovering s from these

equations. From this problem or a variant of it, all other cryptosystems based on lattices

are derived.

Next, we will briefly mention a current process for creating a standard post-quantum

cryptosystem. As mentioned, the cryptosystems submitted to the process are of either

type: code-based or lattice-based.

2.5 Post-quantum cryptosystem standards

Two reasons exist for initiating a process to standardized a Post-Quantum cryptosystem

to use in Internet communications:

• The rapid pace at which the community is developing Quantum Computers along

with the existence of Shor’s algorithm posing a threat to classical cryptosystems.

• The time to deploy a new standard is considerably large.

13

2.5. POST-QUANTUM CRYPTOSYSTEM STANDARDS

For those reasons, the United States National Institute of Standards and Technology

(NIST) initiated a process in 2017 [20] to create a new public-key and digital signature

standard for the post-quantum era. This standard may contain one or more cryptosystems,

as well as one or more signature algorithms.

The process started in December 2017 with a selection of 69 proposals out of the

82 submissions. The first round lasted until January 2019, afterwards the number of

contestants was reduced to 26. The second round of selection began on January 30, 2019,

and ended in July 22, 2020.

As mentioned, the NIST standardization process has cryptosystems that are alterna-

tives for existing public-key or key exchange mechanisms and algorithms for digital sig-

natures. In this work, we focus only on those algorithms for public-key encryption and

key exchange.

The NIST provided three categories that the cryptosystems should meet to be consid-

ered for the standardization process. The first category, and the most influential one, is

security. The NIST established that cryptosystems should meet the semantically secure

criterion and have strength level IND-CCA2. In the case of ephemeral use, NIST allows

a weaker security setting: IND-CPA. It also provided another set of categories that the

algorithms should meet. For more information, the reader is refered to [21].

Other criteria to be considered on the submitted cryptosystems are cost and perfor-

mance. Standards are aimed to be used in a wide range of applications, and factors such

as the computational efficiency of the different operations, RAM usage, and packet trans-

mission are also considered.

The third criterion to consider for the selection of the cryptosystems is the algorithm

and implementation characteristics. The implementations may provide access to the cryp-

tosystem via physical attacks such as side-channel attacks and power analysis.

Currently, the standardization process is in its third round, with 15 remaining candi-

dates in consideration.

2.5.1 Currently competing cryptosystems

Of the 26 cryptosystems available in the second round, only 15 candidates passed to the

third round. Of these, seven were selected as finalists, and eight as alternative cryptosys-

tems. Table 2.1 indicates the final candidates for round three, including both the signature

algorithms and the public-key/KEM algorithms, while Table 2.2 indicates the alternatives.

Table 2.1: The currently finalist of the NIST standardization process.

Public-Key Encryption/KEM Digital Signatures

Clasic McEliece CRYSTALS-DILITHIUM

CRYSTALS-KYBER FALCON

NTRU Rainbow

Saber

For the main contenders, there is one cryptosystem based on error-correction codes

(Classic McEliece [22]), and three based on lattices (Crystal-Kyber [23], NTRU [24],

14

2.6. THE TRANSPORT LAYER SECURITY PROTOCOL

Table 2.2: The currently alternative candidates of the NIST standardization process.

Public-Key Encryption/KEM Digital Signatures

BIKE GeMSS

FrodoKEM Picnic

HQC SPHINCS+

NTRU Prime

SIKE

SABER [25]). For the alternative contenders, three are based on error-correcting codes

(Bike [26], HQC [27], Sike [28]) and two on lattices (FrodoKEM [29], NTRU Prime

[30]).

Once a new post-quantum cryptosystem standard is created, it will be necessary to

integrate it into existing security protocols for network communications usage. One such

protocol is Transport Layer Security, and it provides means of protecting the communica-

tion links.

2.6 The transport layer security protocol

The transport layer security (TLS) is an application protocol that provides security fea-

tures to computer network communications and is a successor of the Secure Socket Layer

(SSL) protocol. Any other application that requires it can use this protocol.

The protocol defines a set of ciphers, schemes for key exchange and public-key cryp-

tography, authentication schemes, and data compression functions that provide the secu-

rity features needed in computer communications and data transmission.

The TLS protocol consists of two main components: the TLS Handshake protocol,

allowing the communicating parties to agree in security parameters for the TLS Record

protocol; and the Record protocol, for protecting the the traffic among the parties involved

in the communication. Other protocols are defined within TLS that provide additional fea-

tures and handle cases that might reside outside of the scope of the two main components,

for more information on those protocols see the RFC8446 [31].

We are interested on the handshake protocol, as this protocol uses the key exchange

mechanisms for the parameter agreement. In the following subsection we give a brief

description of the protocol.

2.6.1 TLS handshake protocol

As mentioned, the handshake protocol negotiates the security parameters of a connection.

Figure 2.4 shows the basic flow of a full TLS handshake. Three phases are present in the

flow:

• Key Exchange: Phase at which the client initiates the connection, establishes the

shared key material and selects the cryptographic parameters.

15

2.6. THE TRANSPORT LAYER SECURITY PROTOCOL

• Server Parameters: The server establishes other handshake parameters, like the

application-layer in support, whether the client is authenticated, among others.

• Authentication: The server authenticates itself (and optionally, the client does as

well) and provides key information and handshake integrity.

After this negotiation, the data transmission can begin.

Session Start

Client Server

+pre-shared-key*

+KeyShare*

+signature-algorithm*

ClientHello

+psk-key-exchange-modes*

Key
Exch

ServerHello

+key-share*

+pre-shared-key*

{EncryptedExtensions}

{CertificateRequest*}

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData*]

Key
Exch

Server

Params

Auth

{Certificate*}

{CertificateVerify*}

{Finished}

[ApplicationData] [ApplicationData]

Auth

Figure 2.4: The full flow of a basic handshake for TLS v1.3 protocol. The client starts

with the Key Exchange; then the server performs the three phases at once; and finally, the

client authenticates itself, if required. After finishing the handshake, both endpoints share

a common key, and data can be transmitted. Fields with * are optional.

On the ClientHello message, the client must include a randomly generated nonce2, a

list of the TLS versions supported by the client, a list of supported symmetric-key ciphers

and data compression functions, and a set of Deffie-Hellman key shares. Other potentially

useful parameter may be included.

The server includes in its ServerHello message the key share parameters, the server

parameters, and authentication data, which includes a Certificate field and a CertificateV-

erified field. It includes a Finished field, indicating that the handshake ended successfully.

2A number used only once

16

2.6. THE TRANSPORT LAYER SECURITY PROTOCOL

After the client received the ServerHello message, it proceeds to authentica the server

by verifying that the parameters at the Certificate field are valid, and that the message

ServerHello itself is valid.

With this phase, the handshake protocol finishes, and both the client and the server

proceeds to echange the application information.

2.6.2 Crypto libraries implementing the TLS protocol

Several libraries exist that implement the TLS protocol. In the following list, we present

some of the most common implementations of the protocol.

• OpenSSL: a free implementation [32].

• Java Secure Socket Extension: Java implementation in the Java Runtime Environ-

ment, supporting TLS 1.1 and 1.2, and 1.3 for Java 11 [33].

• GnuTLS: a free, LGPL licensed, implementation [34].

• BoringSSL: An OpenSSL fork adapted to Chrome/Chromium, Android and other

Google applications and programs build on top of them.ehw [35].

• LibreSSL: A fork of OpenSSL by the OpenBSD project [36].

• mbedTLS: Tiny SSL library implementation for embedded devices that is designed

for ease of use [37].

• wolfSSL: TLS/SSL library for embeded applications, with a strong focus on speed

and size [38].

The most popular one is the OpenSSL library.

We introduced in this chapter the basics for the Internet of Things, cryptography, and

the Post-Quantum cryptosystems. We briefly introduce cryptography, especially public-

key cryptography, and gave some context for the need of public-key Post-Quantum cryp-

tosystems, introducing its two main types and representatives. We introduced the process

for creating a new standard for the Post-Quantum era that will affect protocols like the

TLS protocol. As Quantum Computers’ existence will affect all the communications, we

introduced the IoT as a way of indicating the need to start adapting the Post-Quantum

cryptosystems to protect the communications from the beginning.

In the following chapter, we present the materials and methods used to develop this

work, the NIST post-quantum cryptosystems, the IoT prototype, and the performacne

measuremnt.

17

Chapter 3

Methodology

In this chapter, we begin by presenting the post-quantum cryptosystems that, according

to the literature, are suitable to use in resource-contraind and IoT devices.

From the NIST standardization process, we indicate which cryptosystems are suitable

to IoT devices, present their algorithm specification, and considering their keys’ sizes

and some theoretical aspects, present the versions we considered are better suited for the

devices in consideration.

We then present the IoT prototype, along with its hardware and software components,

that we used for making the tests series. Finally, we present the variables we choose to

study and how we study them. We also present the way we make the data exploration.

3.1 Introducing post-quantum cryptosystems to IoT

Not all KEMs are suitable for resource-constrained devices, as some mechanisms require

a considerable amount of computational resources to execute at the required security level.

The complexity of the most used classical cryptosystem, RSA, is O(m3) for decryption

and O(m2) for encryption, where m = log(N) is the size in bits of the modulus N . This

makes RSA unsuitable on resource-constrained devices.

A common choice is to use Elliptic Curve Cryptography, which requires smaller keys’

sizes, reducing the resources needed to perform the cryptographic operations. Never-

theless, considering that Quantum Computers are currently under development and the

existence of Shor’s algorithm, it is reasonable to have from the beginning post-quantum

cryptosystems that are easily adaptable to resource-constrained devices — considering

that the currently available ones are hard to adapt.

For this reason, we perform a study of the current post-quantum cryptosystems under

the NIST competition process, which would allow us to gain information on the adapt-

ability of the cryptosystems to resource-constrained devices. In the following section, we

introduce the post-quantum cryptosystems that are lattice-based from the NIST standard-

ization process, and indicate which we will use.

18

3.2. POST-QUANTUM CRYPTOSYSTEMS SUITABLE FOR IOT

3.2 Post-quantum cryptosystems suitable for IoT

We established that there exist cryptosystems that have post-quantum resistance, namely

the lattice-based and the code-based cryptosystems. The latter suffers from having a

greater key size (in the order of few megabytes), making them unsuitable to resource-

constrained devices. On the other size, the lattice-based cryptosystems have smaller key

sizes, and, according to the litterature, are more suitable to resource-constrained devices

[39], so we choose them for use with IoT devices.

All the mechanisms submitted to the NIST standardization competition, are build on

top of public-key cryptosystems, making calls to such ones for completing the operations.

3.2.1 Lattice-based NIST post-quantum cryptosystems

As mentioned, the NIST process has five KEM that are based on lattices. Following,

we present a brief description of the specification of each one. We present its security

level, the problem on which it is based, relevant parameters, and the description of the

algorithms involved in the KEM.

3.2.2 Algorithms specification

We begin by introducing the NTRU cryptosystem; then introduce the SABER cryptosys-

tem, CRYSTAL-KYBER, FrodoKEM, and finally the NTRU-LPRIME one.

NTRU Algorithm Specification

The NTRU KEM is a lattice-based cryptosystem whose security problem is based on the

Ring Learning with Errors (RLWE)1 introduced by [40]. It has IND-CCA2 security and

is constructed from a deterministic public-key encryption scheme that is OW-CPA secure.

NTRU is the fusion of two previous submissions from round 1: NTRUEncrypt and

NTRU-HRSS-KEM. The fusion implied a unified design from the submissions, varying

only in the parameters. It has two sets of parameters: NTRU-HPS following from the

NTRUEncrypt submission and NTRU-HRSS following the NTRU-HRSS-KEM submis-

sion. Relevant parameters for the KEM are shown in Table 3.1.

Table 3.1: Relevant parameters of the NTRU KEM.

ntruhps2048509 ntruhps2048677 ntruhps4096821 ntruhrss701

Public-key bytes 699 930 1230 1138

Private-key bytes 935 1234 1590 1450

Ciphertext bytes 699 930 1230 1138

Shared-key bytes 256 256 256 256

Security Category 1 3 3 5

The components of the KEM are:

1RLWE is a variant of the problem Learning With Errors that make cryptosystems based on lattices

more efficient.

19

3.2. POST-QUANTUM CRYPTOSYSTEMS SUITABLE FOR IOT

1. KeyGeneration

• Input: A bit string seed.

• Output: Private key, public key.

• Operations:

(a) Parse seed as fgbits||prfkeys. The operator || implies concatenation.

(b) Set

(packed dpke private key, packed public key)

= DPKE key pair(fg bits)

DPKE key pair is the function that generates the key pair for the PKE

over which the KEM is based.

(c) Set

packed private key = packed private key||bits to bytes(prf key)

(d) Output (packed private key, packed public key).

2. Encapsulate

• Input: Public key.

• Output: Shared key, ciphertext.

• Operations:

(a) Let coins be a string of uniform random bits .

(b) Set (r,m) = Sample rm(coins).

(c) Set packet rm = pack s3(r)||packs3(m).

(d) Set

shared key

= Hash(byte to bits(packed rm, 8 ∗ dpke plaintext bytes))

(e) Set

packed ciphertext

= DPKE Encrypt(packed public key, packed rm)

(f) Output (shared key, packed ciphertext).

3. Decapsulate

• Input: Private key, ciphertext.

• Output: Shared key.

• Operations:

20

3.2. POST-QUANTUM CRYPTOSYSTEMS SUITABLE FOR IOT

(a) Parse packed private key as

packed f ||packed fp||packed hq||prf key

(b) Set

(packed rm, fail)

= DPKE Decrypt(packed private key, packedCiphertext)

(c) Set

shared key

= Hash(bytes to bits(packed rm, 8 ∗ dpke plaintext bytes))

(d) Set

random key

= Hash(bytes to bits(prf key, prf key bytes))

||bytes to bits(packed ciphertext, 8 ∗ kem ciphertext bytes)

(e) If fail = 0, output shared key, else output random key.

SABER Algorithm Specification

Saber is a lattice-based KEM believed to offer resistance to Quantum Computers. Its

security is based on the hardness of solving the problem Module Learning with Rounding

(MLR) problem and offers IND-CCA. The KEM is built over a PKE that offers IND-CPA

security. Relevant parameters for the KEM are shown in Table 3.2

Table 3.2: Relevant parameters of the SABER KEM.

LightSaber Saber FireSaber

Public-key bytes 672 1568 736

Private-key bytes 992 2304 1088

Ciphertext bytes 1312 3040 1472

Shared-key bytes

Security Category 1 3 5

Classical 169 244 338

Quantum 153 226 308

The components of the KEM are:

1. KeyGeneration:

• (seedA,b, s) = Saber.PKE.KeyGen().

• pk = (seedA,b).

• pkh = F(pk).

21

3.2. POST-QUANTUM CRYPTOSYSTEMS SUITABLE FOR IOT

• z = U({0, 1}256).

• return (pk := (seedA,b), sk := (z, pkh, pk, s)).

2. Encapsulation:

• m = U({0, 1}256).

• (K̂, r) = G(F(pk),m).

• c = Saber.PKE.Encrypt(pk,m; r).

• K = H(K̂, c).

• return (c,K).

3. Decapsulation:

• m′ = Saber.PKE.Decap(s, c).

• (K̂ ′, r′) = G(pkh,m′).

• c′ = Saber.PKE.Enc(pk,m′; r′).

• if c = c′ then

• return K = H(K̂ ′, c).

• else

• return K = H(z, c).

CRYSTAL-KYBER Algorithm Specification

The Cryptographic Suite for Algebraic Lattices (CRYSTAL) encompasses two crypto-

graphic primitives: KYBER, an IND-CCA2-secure KEM, and Dilithium, a strong digital

signature. KYBER is a lattice-based KEM whose security resides on the hardness of

solving the Module Learning With Errors (MLWE) problem and is built over an IND-

CPA-secure public-key cryptosystem. Relevant parameters are shown in Table 3.3:

Table 3.3: Relevant parameters for the CRYSTAL-KYBER KEM.

Kyber512 Kyber768 Kyber1024

Public-key bytes 1632 2400 3108

Private-key bytes 800 1184 1568

Ciphertext bytes 736 1088 1568

Shared-key bytes 32 32 32

Security Category 1 3 5

Classical Security 111 181 254

Quantum Security 100 164 230

The components of the KEM are:

1. KeyGeneration:

22

3.2. POST-QUANTUM CRYPTOSYSTEMS SUITABLE FOR IOT

• z ← B32. Uniform random sampling a 32-byte array.

• (pk, sk′) := KY BER.CPAPKE.KeyGen(). Generate the keys fromm the

Kyber CPA PKE.

• sk := (sk′||pk||H(pk)||z), where H is the hash function SHA3-256.

• return (pk, sk).

2. Encapsulate:

• m← B32.

• m← H(m).

• (K, r) := G(m||H(pk)). G is the hash function SHA3-512

• c := KY BER.CPAPKE.Enc(pk,m, r).

• K := KDF (K, ||H(c)). KDF, key derivation function, instantiated with

SHAKE-256.

• return (c,K).

3. Decapsulate:

• pk := sk + (12 ∗ k ∗ (n/8)).

• h := sk + (24 ∗ k ∗ (n/8)) + 32 ∈ B32.

• z := sk + (24 ∗ k ∗ (n/8)) + 64.

• m′. = KY BER.CPAPKE.Dec(s, (u,v)), where c = (u,v).

• (K
′

, r′) := G(m′||h).

• c′ := KY BER.CPAPKE.Enc(pk,m′, r′).

• if c = c’ then

• return K := KDF (K
′

||H(c)).

• else

• return K = KDF (z||H(c)).

• end if

FrodoKEM Algorithm Specification

FrodoKEM is a lattice-based KEM whose security resides on the hardness of solving

the Learning With Errors (LWE) problem. It is designed for IND-CCA security and

is built over a PKE scheme with IND-CPA security. The authors designed this KEM

following a conservative approach, preferring simplicity and security over performance

and optimization, resulting in a KEM with the largest key sizes and execution times.

The KEM has three variants, as described in the Table 3.4. For each variant, the

authors have two implementations: one with AES and another with SHAKE2. The logic

2Both are compression functions.

23

3.2. POST-QUANTUM CRYPTOSYSTEMS SUITABLE FOR IOT

for this is: the KEM is faster with AES when there is a hardware implementation, while

the KEM is faster with SHAKE when the implementation is purely software.

Relevant parameters are shown in Table 3.4, and its components of FrodoKEM are

described as follows:

Table 3.4: Relevant parameters for the FrodoKEM KEM.

FrodoKEM-640 FrodoKEM-976 FrodoKEM-1344

Public-key bytes 9616 15632 21520

Private-key bytes 19888 31296 43088

Ciphertext bytes 9720 15744 21632

Shared-key bytes 16 24 32

Security Category 1 3 5

Classical Security 144 209 274

Quantum Security 103 150 196

1. KeyGeneration

• Choose uniformly random seed s.

• Generate pseudorandom seed seedA.

• Generate the matrix A via A← Frodo.Gen(seedA).

• Generate pseudorandom bit string (r(0), r(1), ..., r(2nn−1)).

• Sample the error matrix S.

• Sample the error matrix E.

• Compute B← AS + E.

• Compute b← Frodo.Pack(B).

• Compute pkh← SHAKE(seedA|| b, lenpkh)

• Return public key pk ← seedA||b and secret key sk′ ← (s||seedA||b, S, pkh).

2. Encapsulation

• Choose a uniformly random key µ.

• Compute pkh← SHAKE(pk,lenpkh).

• Generate pseudorandom values

seedSE||k ← SHAKE(pkh||µ, lenseedSA
+ lenk)

• Generate pseudorandom bit string (r(0), r(1), ..., r(2mn+mn−1)).

• Sample error matrix S’.

• Sample error matrix E’.

• Generate A← Frodo.Gen(seedA).

24

3.2. POST-QUANTUM CRYPTOSYSTEMS SUITABLE FOR IOT

• Compute B’← S’A + E’.

• Compute c1 ← Frodo.Pack(B’).

• Sample error matrix E”.

• Compute B← Frodo.Unpack(b, n, n).

• Compute V← S’B + E”.

• Compute C← V + Frodo.Encode(µ).

• Compute c2 ← Frodo.Pack(C).

• Compute ss← SHAKE(c1||c2||k, lenss).

• Return ciphertext c1||c2 and shared secret ss.

3. Decapsulate

• B’← Frodo.Unpack(c1).

• C← Frodo.Unpack(c2).

• Compute M← C -B’S.

• Compute µ′ ← Frodo.Decode(M).

• Parse pk ← seedA||b.

• Generate pseudorandom values seedSE′ ||k′.

• Generate pseudorandom bit string (r(0), r(1), ..., r(2mn+mn−1)).

• Sample error matrix S’.

• Sample error matrix E’.

• Generate A← Frodo.Gen(seedA).

• Compute B”← S’A + E’.

• Sample error matrix E”.

• Compute B← Frodo.Unpack(b, n, n).

• Compute V← S’B + E”.

• Compute C’← V + Frodo.Encode(µ′).

• if B′||C = B′′||C then

• Return shared secret ss← SHAKE(c1||c2||k
′, lenss).

• else

• Return shared secret ss← SHAKE(c1||c2||s, lenss).

25

3.2. POST-QUANTUM CRYPTOSYSTEMS SUITABLE FOR IOT

Table 3.5: Relevant parameters for the NTRUPLPrime KEM.

sntrup653 ntrulpr653 sntrup761 ntrulpr761 ntrulpr857 sntrup857

Public-key bytes 994 897 1158 1039 1184 1322

Private-key bytes 1518 1125 1763 1294 1463 1999

Ciphertext bytes 897 1025 1038 1167 1312 1184

Shared-key bytes 32 32 32 32 32 32

Security Category 2 3 4 2 3 4

Classical Security 174 176 208 210 237 239

Quantum Security 160 160 180 185 208 209

NTRU Prime Algorithm Specification

NTRU Prime provides two KEMS: ”Streamlined NTRU Prime” and ”NTRU LPrime.”

NTRU Prime is a lattice-based cryptosystem whose security is based on the Ring Learn-

ing With Errors (RLWE) problem, and it provides IND-CCA2 protection. The Stream-

linedNTRU Prime KEM is constructed from a deterministic PKE scheme with OW-CPA

security. NTRU LPrime is built from a deterministic PKE with OW-CPA security, named

NTRU LPRime Expand, which in turn, is constructed from a randomized PKE.

Relevant parameters are shown in Table 3.5, and its components are as follows:

The components of NTRU LPrime are the following:

1. KeyGeneration

• Compute (K, k)← KeyGen(), where KeyGen comes from the PKE scheme.

• Encode K as a string K ∈ PublicKeys.

• Encode k as a string k ∈ SecretKeys.

• Generate a uniform random number ρ ∈ Inputs.

• Output (K, (k,K, ρ)).

2. Encapsulate

• Input K ∈ PublicKeys. Decode K, obtaining K ∈ PublicKeys.

• Generate a uniform random number r ∈ Inputs. Encode r as a string r ∈
Inputs.

• Compute c = Encrypt(r,K) ∈ Ciphertexts. Encode c as a string c ∈
Ciphertexts.

• Compute C = (c,HashConfirm(r,K)) ∈ Ciphertexts x Confirm.

• Output (C, HashSession(1, r, C)).

3. Decapsulate

• Input C = (c, γ) ∈ Ciphertexts x Confirm, and k,K, ρ ∈ SecretKeys x

PublicKeys x Inputs.

• Decode c, obtaining c ∈ Ciphertexts.

26

3.2. POST-QUANTUM CRYPTOSYSTEMS SUITABLE FOR IOT

• Decode k, obtaining k ∈ SecretKeys.

• Compute r′ = Decrypt(c, k) ∈ Inputs, where Decrypt comes from the PKE

scheme.

• compute r′, c′, c′, c′ as in the Encapsulate operation.

• If C ′ = C, output HashSession(1, r, C). Otherwise output HashSession(’,

ρ, C).

The components of Streamlined NTRU Prime are the following:

1. KeyGeneration

• Compute

(K, k)← KeyGen′()

where KeyGen’ comes from the PKE scheme.

• Encode K as a string K ∈ PublicKeys′.

• Encode k as a string k ∈ SecretKeys.

• Generate a uniform random ρ ∈ Inputs.

• Output (K, (k,K, ρ)).

2. Encapsulate

• Input K ∈ PublicKeys′.

• Decode K, obtaining K ∈ PublicKeys′.

• Generate a uniform random r ∈ Inputs.

• Encode r as a string r ∈ Inputs.

• Compute c = Encrypt′(r,K) ∈ Ciphertexts. Encode c as a string c ∈
Ciphertexts.

• Compute C = (c,HashConfirm(r,K)) ∈ Ciphertexts x Confirm.

• Output (C, HashSession(1, r, C)).

3. Decapsulate

• Input C = (c, γ) ∈ Ciphertexts x Confirm, and k,K, ρ ∈ SecretKeys x

PublicKeys’ x Inputs.

• Decode c, obtaining c ∈ Ciphertexts.

• Decode k, obtaining k ∈ SecretKeys.

• Compute r′ = Decrypt(c, k) ∈ Inputs, where Decrypt comes from the PKE

scheme.

• compute r′, c′, c′, c′ as in the Encapsulate operation.

• If C ′ = C, the output HashSession(1, r, C). Otherwise output HashSes-

sion(’, ρ, C).

27

3.3. THE IOT PROTOTYPE

3.2.3 NIST’s post-quantum cryptosystems suitable to IoT devices

Complying with a requirement from the NIST, the capability of the mechanism to run on

a wide variety of devicesm, each mechanism has different versions with different levels

of security.

The security levels allowed from the NIST, are categorized from level 1 (equivalent

128-bit cipher security) to level 5 (equivalent 512-bit symmetric security.) The lower the

security level, the smaller the keys’ sizes. Considering that the mechanisms’ execution

time is directly proportional to the keys’ size, choosing those implementation with the

lowest security level is convenient for use with resource-constrained devices.

From each mechanism, the versions with the smaller keys’ sizes are:

• For SABER, LightSaber with a public-key size of 672, private-key size of 992, and

ciphertext of size 1,312 bytes. Its expected security is category 1.

• For CRYSTAL-KYBER, Kyber512 with a public-key size of 1,632, a private-key

size of 800, and ciphertext of 736 bytes. Its claimed security level is 1.

• For NTRU, NTRUhps2048509 with a public-key size of 699, a private key-size of

935, and a ciphertext size of 699 bytes. It provides security of level 1.

• For NTRU Prime, NTRULPr653 with a public-key size of 897, a private-key size

of 1,125, and ciphertext of 1,025 bytes. Its expected strength falls in category 2.

• For FrodoKEM, FrodoKEM640 with a public-key size of 9,616, a private-key size

of 19,888, and ciphertext size of 9,720 bytes. It provides security of level 1.

We study the previously mentioned mechanisms to know their performance on resource-

constrained devices.

3.3 The IoT prototype

An objective of this work is to test the performance of the different mechanisms into IoT

devices. As stated previously, two basic types of IoT devices exist a WSN and RFID

tags. We focus primarily on the WSN, as the working principle is the same for both, a

component that communicates with a server for information transmission, and a node in

a WSN provides more computation capability than a tag of an RFID system.

A WSN consists of three components: a server, a gateway or sink, and a set of nodes,

known as the sensor field. The gateway and the server communicate over the Internet.

In contrast, the nodes communicate with the gateway using a wide variety of wireless

technologies, like NFC, Bluetooth, or LoRa. In the following, we will introduce the

system implemented for the IoT prototype and its components.

3.3.1 The proposed system

The proposed system for testing is shown in Figure 3.1 with all the blocks that comprises

it. Its three main components are: a sensor field from which data is gathered; a gateway

28

3.3. THE IOT PROTOTYPE

for collecting the data from the sensor field, a client for displaying it; and a cloud server

on which a broker instance from the MQTT procotol is mounted.

Sensor Node Sensor Node Sensor Node

Sensor Field

Gateway Client

Cloud Server / Broker

Figure 3.1: A general overview of the system architecture, showing all the necessary

components to have a minimal IoT prototype working: A server, a gateway, and set of

node.

The broker runs on a cloud server, accessed globally. The system uses technology

available on the market and can be easily replicated. In the following, we provide a brief

description for each component.

3.3.2 The nodes

The first component of the system is the sensor field, comprise of several sensing nodes.

The nodes consist of three physical components: a processing unit, a communication unit,

and a sensing unit.

For the processing unit, we decided to use the Arduino Nano with the ATmega 328P

microcontroller. For the communication unit, we used the module RFM69HCW compat-

ible with the LoRa standard. It has a reach of up to 400 m and an operating frequency of

915 MHz. For the sensing unit, we used the DHT 22 sensor for humidity and temperature.

We also need to access and control the hardware from the processing unit. For using

the RFM module, we use the library provided by RadioHead, specifically the version for

29

3.3. THE IOT PROTOTYPE

unreliable datagram [41]. For the DHT sensor, we used the library provided by Adafruit

[42]. All the programs were written using the Arduino IDE available on its web page.

Figure 3.2 shows the node’s diagram with its three elements.

Processing Unit Communication
Unit

Sensing
Unit

SPI
protocol

Figure 3.2: The block diagram of the sensor node. It consists of three parts, the process-

ing unit, which uses an Arduino Nano; the communication unit, an RFM69HCW; and a

sensing unit, the DHT22 sensor.

3.3.3 The gateway

Another system’s essential part is the gateway, whose function is to collect data from the

sensors and send it to the broker. We use the gateway as well for testing the mechanisms

and getting the necessary data for measure the performance and give the guidelines.

We used three hardware components for creating the gateway: an RFM69HCW mod-

ule for receiving the data from the sensor nodes, an Arduino Uno that controls the RFM,

and a Raspberry Pi 3B+. The Raspberry communicates with the Arduino via a USB cable

and the UART protocol.

The gateway’s software has two components, the software for the Arduino and the

software for the Raspberry. The Arduino receives the packets from the nodes via the RFM

modules and sends them to the Raspberry via USB, and its diagram is shown in Figure 3.3.

The Raspberry runs an MQTT client, which receives the data from the Arduino and then

sends the data to the broker.

30

3.3. THE IOT PROTOTYPE

For the Arduino, we used once again the library by RadioHead for controlling the

RFM [41]. For the Raspberry, we used the following libraries:

• OpenSSL with the post-quantum cryptosystems integrated.

• Modified Paho C MQTT client, to add support to the TLS 1.3 API, necessary for

using the post-quantum cryptosystems.

Radio controller Radio
SPI Gateway UART

Figure 3.3: The block diagram for the gateway part of the system. No direct connection

between the gateway and the radio was possible, so an intermediary was necessary. For

the gateway, we used a Raspberry Pi 3B+; for the radio controller, we used an Arduino

Nano; and an RFM69HCW for the radio.

We also have a client running on a separate computer, which subscribes to the broker

to receive the broker’s data. It runs as well with the following libraries:

• OpenSSL with the post-quantum cryptosystems integrated.

• Modified Paho C MQTT client, same as the gateway.

Both clients have access to the CA certificate so they can complete the handshake with

the broker appropriately.

3.3.4 The broker

The final part of the system is the broker. The broker runs on an Azure cloud system

running Ubuntu 18.04.5 LTS. The broker is an instance of Mosquitto, modified to use

the TLS 1.3 interface provided by OpenSSL. The OpenSSL library integrates the post-

quantum mechanisms, same as with the clients. The broker also has access to the follow-

ing certificates:

• Server certificate.

• Server private key.

• CA certificate.

The broker is configured to only receive connections on port 8883 and accept the post-

quantu KEMs and the available elliptic curves.

31

3.4. MEASURING THE CRYPTOSYSTEMS PERFORMANCE

3.4 Measuring the cryptosystems performance

On resource-constrained devices, one of the most limiting factors in the design is the

energy source used by the device. Usually, the devices are designed to operate with

batteries with a minimal capacity, such as watch batteries, 9V batteries, or alike. The

components of the device are designed to use as little battery as possible, including the

software.

3.4.1 Variables of interest

For software implementations, it is not easy to directly measure the impact that the code

has on energy consumption, as different subsystems might be operating concurrently

when a particular code is executed. However, it has been demonstrated that, in embedded

devices, the subsystems that most use energy are: radios (such as Bluetooth and Wi-Fi),

and the CPU. If we can minimize the radios’ and CPU usage of our program, we might

indirectly diminish the device’s energy consumption [43].

It is possible to measure how many CPU cycles a particular piece of code uses dur-

ing execution on software implementations. We can measure the size and quantity of

packets a program transmits when using the radios, giving us metrics of the program’s

performance and can be used for optimization purposes.

Another essential variable considered in the design of software for embedded devices,

which has less impact on energy consumption but more on resource consumption on the

software side, is memory usage. Minor use of memory allows having more tasks exe-

cuting concurrently, or if the number of tasks is fixed, it allows hardware usage with less

capability. Hardware with fewer capabilities can have two impacts on the design: less

energy consumption, and minor manufacturing costs.

For the reasons exposed previously, and considering that the software will be com-

municating via the Internet (and thus using the Wi-Fi), we considered that the previously

mentioned variables of interest are the most important to study. We now describe how to

measure such variables.

3.4.2 Profiling the variables

For profiling the different KEMs, we implemented a program with the following charac-

teristics:

• It allows the user to select at compile time what resource to profile: memory or

CPU.

• It allows the user to select at compile time the KEM to test.

• It allows the user to select at compile time the platform to test the KEM on an x86

architecture or an ARM architecture.

• It has a function to profile each operation separately: Key Generation, Encapsula-

tion, Decapsulation.

32

3.4. MEASURING THE CRYPTOSYSTEMS PERFORMANCE

• For profiling the CPU usage, it executes each operation 2,000 times (arbitrarily

chose); and, for the memory, it executes each operation only once.

• The CPU’s results are stored on a CSV file (name provided by the user).

For executing the tests, a static library containing all the corresponding KEM func-

tions should be created and stored on the same file as the code. The program executes

the corresponding operations to measure the memory, leaving out all the code necessary

for profiling the CPU. For CPU usage, we have two functions that return the number of

cycles, depending on the platform chosen. For x86 architectures, we have an assembly

instruction that returns the timestamp counter of the CPU: rdtsc. In ARM architecture, we

use the system’s call clock gettime and convert the result to cycles. We call this function

before and after the call to the operation and then subtract the results to obtain the total

number of cycles used. For getting the time in milliseconds, we use the system’s call

gettimeofday and use before and after executing the corresponding operation. We convert

the result to milliseconds and subtract the results to get the total time.

For measuring the memory’s usage of a program, there exists a command-line tool

called Valgrind. This tool allows profiling the memory of a program to obtain information

such as memory leaks, heap and stack usage, memory error detection, and many other

functions. It provides a set of tools to accomplish such a goal. We are interested in a tool

called massif, which profiles the heap and stack usage. For profiling the memory, we used

the following command:

valgrind --tool=massif --stacks=yes --time-unit=B

--massif-out-file=outputfile cmd

Where –time-unit=B tells massif to use the number of bytes allocated on the heap,

the option –massif-out-file tells the program where to store the information. massif only

profiles the heap by default, so to completely measure the memory’s usage, the option –

stacks=yes tells the tool to profile the entire memory (heap and stack). cmd is the program

to profile. We run once the program for profiling the memory, as in every run, the same

results are returned. For more information on valgrind, we recommend to visit its web

page or check the man page [44].

For monitoring the connection, we used Wireshark, and a lightweight alternative it

provides for resource-constrained devices. Wireshark is a program that allows the user

to monitor the usage of different network interfaces, such as wireless interfaces, Ether-

net, Bluetooth, among others. It provides data such as the protocol in use (TCP, UDP,

SSL, among others), statistics on the connection (such as duration, number of packets,

among others), and allows to trace a connection, among many others functionalities. Its

lightweight alternative for resource-constrained devices is named tshark and runs on the

command-line It provides the same basic functionalities as Wireshark and can store the

data on a file that later can be loaded with Wireshark.

For profiling the connection, we used the following command:

sudo tshark -i wlp2s0b1 -t ad -w outputfile host ip

The option −i tells tshark which interface to monitor, −tad tells tshark to print the

timestamp in absolute date, −w indicates the file to store the data captured, host tells the

IP to monitor. Then, using Wireshark, we opened the file generated by the command and

got statistics from the connection; specifically, we obtain information about the number

33

3.4. MEASURING THE CRYPTOSYSTEMS PERFORMANCE

of packets sent, the number of bytes per connection, and the connection duration mil-

liseconds. For more information on tshark or Wireshark, we recommend to visit the

Wireshark web page, or to read the corresponding man page [45].

3.4.3 Data exploration and tests execution

Having a way to collect the data from the KEMs’ performance, we should obtain informa-

tion from it, specifically obtain guidelines in the use of the KEMs in resource-constrained

devices.

For giving the guidelines, we first execute the tests for obtaining data on the cryptosys-

tems’ performance. Then we obtain a summary of the performance via a set of statistics.

The proposed statistics are: mean, maximum, and standard deviation. The mean, maxi-

mum, and standard deviation have the same units as the variable of interest. With those

statistics, we could get an idea of the overall performance of the ciphers.

A way of quickly obtaining information is via graphs, so the next step is to plot the

data on a graph. Different graphs can be used for that purpose. The mean and maximum

can be plotted on bar graphics; the bar graphs can give us an idea of the magnitude of

the statistics or variable and compare different values of the same statistic or variable.

Plotting the standard deviation in a bar graph could give us an idea of how much each

KEM’s performance deviates from the mean, and which deviates the least.

Other information can be obtained from graphics that are not obtainable from statis-

tics. Specifically, we can obtain information about the behavior over time of the variable

of interest. A line graph is used to observe the behavior of the variable, plotting the data

obtained from all the iterations. We could get other information from such a line graph, for

example, how much the variable deviates from the mean and thus gaining more insight.

The third step is to plot the data on a line graph for each variable.

For executing Wi-Fi tests, it is required that the mechanisms are already integrated

into the OpenSSL library, as it is requried a fully functional implementation of the TLS

protocol. On the other side, executing the tests for CPU and RAM can be done without

any external library. For those reasons, the performance tests were devided into two parts,

the first part for testing the CPU and the RAM usage, and the second part for the Wi-Fi

usage.

In the second part, we also compare the post-quantum mechanisms’ performance

against classical ciphers. In particular, because the TLS protocol version 1.3 removed

RSA for key exchange, we compared the KEMs against elliptic curves with similar secu-

rity levels: the elliptic curve P-256, and the elliptic curve X25512, both with key size of

256 bits.

For both tests series, we apply these three steps several times; first, on a PC to gain

a general overview of each variable’s behavior, and then on the Raspberry Pi, to obtain

the real data on a device with fewer resources than an average computer. It is worth

mentioning that we also considered theoretical aspects of the different cryptosystems,

precisely the strength, security level in bits, and keys’ sizes.

34

3.5. POSTAMBLE

3.5 Postamble

In this section, we introduced the materials and methods used for the development of this

work. We introduced the software and hardware components we used, the proposed IoT

system, and the post-quantu cryptosystems currently in the standardization process. We

also presented the method for gaining the required information.

In the next section, we present the results of the data’s exploration. We then present the

results of the tests in the form of figures. We present first the memory results regarding

the memory performance and then the CPU ones, and after this, we select three out of

the five available at the process for testing on the IoT prototype. We then proceed to

test the KEMs on the prototype, especially from the connection stand-point of view. We

then review all the results to present the guidelines for selecting an appropriate KEM for

resource-constrained devices.

35

Chapter 4

Results

We now begin the study of the KEMs suitable for resource-constrained devices. To this

end, we will restate the theoretical considerations for selecting it, and develop an empirical

study by measuring several variables of interest. Finally, we present a proof-of-concept,

where we compare the post-quantum ciphers with classical ciphers.

We begin by studying the different KEMs’ CPU and memory performance, as this

experiment does not require integrating the KEMs into OpenSSL.

After knowing the KEMs’ performance and the theoretical security parameters, we

present the three most suitable ones, giving preference to the empirical performance rather

than the theoretical security parameters.

We then proceed to test the selected KEMs on an IoT prototype. We test the ciphers

with a real-world scenario using a commonly-used crypto library, an IoT application pro-

tocol, and a cloud server. With all these, we give some recommendations on the ciphers,

which to use, and under which circumstances.

4.1 Measuring the cryptosystems’ performance

We begin by studying the CPU and memory usage for each KEM. We measure how

much time and cycles each of the operations take (Key Generation, Encapsulation, and

Decapsulation). Besides, we measure the memory used for each KEM as a whole.

4.1.1 Memory and CPU Performance

First, we start by analyzing the amount of memory used for each KEM. For the memory,

we focused only on the maximum amount; this limits the device’s minimum requirements.

Figure 4.1 shows the maximum amount of memory used for each KEM. We can see

that the KEM that uses the least memory is LightSaber, followed by NTRU Prime, then

NTRU, and Kyber. The KEM that uses the most memory is FrodoKEM, with a difference

of two orders of magnitude with respect to Kyber512 (the second mechanisms that uses

the most memory.)

Figure 4.2 shows the behavior of memory access over time. This information can also

help us select the cipher, as more time using the memory could imply more CPU usage.

36

4.1. MEASURING THE CRYPTOSYSTEMS’ PERFORMANCE

Figure 4.1: The figure shows the maximum amount of memory in bytes each mechanism

uses.The y-axis has logarithmic scale.

We can see that the KEM that uses the memory for the least amount of time is LightSaber,

about half the time with respect to the one that uses the most memory, NTRUP. By mem-

ory time usage, Saber is followed by Kyber, NTRU, FrodoKEM, and NTRUP. Although

FrodoKEM uses less memory than NTRU and NTRUP, it is not an option for resource-

constrained devices, as the maximum amount memory is more significant than the others.

We can start thinking about discarding FrodoKEM for the memory requirements and

consider only the other four. We will still show the CPU usage of the five KEMs, as we

can have a better-informed decision from such data.

Now we analyze the KEMs’ CPU performance. From the four statistics computed, the

one that gives us the most information is the mean, as it tells us how the variable behaved

over time. Figure 4.3 shows the mean execution time for each operation: Key Generation,

Encryption, and Decryption. The units are the number of cycles.

Figure 4.3 shows that the two best mechanisms are LightSaber and Kyber512, the last

mechanism has the best execution time overall. Although NTRU has a Key Generation

execution time more significant than the FrodoKEM, the other two operations take less

CPU time.

Analyzing the total CPU time, we can see as well that FrodoKEM is the second slow-

est one, with slowest one being NTRU Prime.

Table 4.1 presents the standard deviation from each operation execution time. We can

see that the KEM that presents the least dispersion is Kyber512, followed by a LightSaber.

The data follow a similar pattern to that of the mean, having NTRU Prime the most dis-

persion.

Having that information, we can now select three ciphers to be used in resource-

37

4.1. MEASURING THE CRYPTOSYSTEMS’ PERFORMANCE

Figure 4.2: The memory behavior through time for each of the mechanisms, indicating

for how long each mechanism accessed the memory. The y-axis has logarithmic scale.

Figure 4.3: Mean usage of the CPU for each operation of each mechanism.

38

4.2. TESTING THE MECHANISMS ON THE IOT PROTOTYPE

Table 4.1: The standard deviation of CPU usage, for each of the KEMs and each opera-

tion.

KEM KeyGeneration Encryption Decryption

LightSaber 13.5401 17.7455 21.0055

Kyber512 10.3901 13.3879 15.1921

NTRUhps2048509 333.2433 18.2681 37.3123

NTRULPr653 912.384 1,519.0519 2,042.7712

FrodoKEM640 34.1741 55.5502 54.5737

constrained devices and integrate them into OpenSSL.

4.1.2 Selecting the first three KEMs

From the previous results, we can now select three mechanisms to be used in resource-

constrained devices and integrate them in OpenSSL. In Table 4.2 the performance sum-

mary of the different mechanisms is shown. Kyber512 is the best performing mechanism

on all aspects, memory usage, time of memory access, and CPU usage.

Table 4.2: Summary of the different cryptosystems performance.

KEM RAM Usage (bytes) Memory Access Total CPU usage (ms)

LightSaber 994 50 255.35

Kyber512 18,528 65 204.04

NTRUhps2048509 18,080 70 8,598.91

NTRULPr653 14,064 90 58,149.07

FrodoKEM640 921,360 95 7,823.76

We can see as well that, although FrodoKEM is the third that accesses the least time

the memory, it is the one that uses the most memory and the second slowest in CPU usage.

So, by these two later variables, we can discard FrodoKEM as an option.

We are left with LightSaber, NTRU, and NTRU Prime. NTRU Prime is the second that

uses the least memory, but the slowest in terms of CPU usage, and the one that accesses

the most memory. The only favoring point for NTRU Prime is that it has security strength

level 2. However, considering that we prefer the KEMs’ empirical performance and the

last two tests’ results, we can discard this KEM.

So, the mechanisms to use are the following: NTRUhps2048509, Kyber512, and

LightSaber. Now we proceed to test the KEMs on the prototype system with an exist-

ing crypto library and IoT protocol.

4.2 Testing the mechanisms on the IoT prototype

Now we present the results of the second set of tests, were we measure the Wi-Fi perfor-

mance of the selected post-quantum mechanisms along side the elliptic curves.

39

4.2. TESTING THE MECHANISMS ON THE IOT PROTOTYPE

4.2.1 Performance on the number of packets

We begin by presenting the number of packets transmitted during the connection. We

present the maximum and mean value, the standard deviation, and the behavior through

time. Figures 4.4 and 4.5, show the maximum and mean value for the number of packets

transmitted in the connection.

Figure 4.4: The maximum number of packets transmitted during the connection, from a

total of 1,000 executions.

The KEM that transmits the least amount of packet is Kyber512, with a maximum

number of 27 packets and a mean of 24 packets per connection. It is followed by the

curves X95512 and P-256, both having a maximum of 30 packets and a mean of 27.92 and

27.93, respectively. The two that use the most packets are NTRU followed by LightSaber.

The curve P-256 presents the least deviation with 0.36, followed by the curve X95512

with 0.41, and finally Kyber512 with a value of 0.48. The last two are LightSaber with a

value of 0.58 and NTRUhps2048509 with a value of 0.92.

Looking at the standard deviation, we can see that the elliptic curves are the best

mechanisms; but in terms of the number of packets, Kyber512 outperforms the rest, with

the elliptic curves in the middle and the other two post-quantum mechanisms at the end.

4.2.2 Performance on packet size

Now, we present the performance of the cryptosystems in terms of packet size. In Figure

4.7, we plot the maximum value in bytes of the packet, and in Figure 4.8, we show the

mean value.

40

4.2. TESTING THE MECHANISMS ON THE IOT PROTOTYPE

Figure 4.5: The mean number of packets transmitted during the connection, from a total

of 1,000 runs.

Figure 4.6: The standard deviation for the number of packets sent over a connection for

each KEM. From this image we can know how much variation expect during the initial

connection.

41

4.2. TESTING THE MECHANISMS ON THE IOT PROTOTYPE

Figure 4.7: The maximum number of bytes transmitted during the connection, for each of

mechanism involved.

Figure 4.8: The average number of packets used for the connection. They present a similar

behavior as the maximum number of packets, with the elliptic curves performing better

than the post-quantum mechanisms.

42

4.2. TESTING THE MECHANISMS ON THE IOT PROTOTYPE

We can see that the KEM whose packet uses the most bytes is LightSaber, followed

by NTRUhps2048509. The KEM that uses the least amount of bytes is the elliptic curve

X25519, followed by the curve P-256. The KEM Kyber512 falls in between the post-

quantum mechanisms and the elliptic curves.

Figure 4.9: The standard deviation for the different mechanisms involved in terms of the

number of bytes used per connection.

The standard deviation shows that the KEMs with the least deviation on the number

of bytes are the elliptic curves, with a deviation of 23.5 for the curve P-256 and 26.2

bytes for the curve X25512, approximately. Then comes the KEMs Kyber512 with a

deviation of 32.2 bytes and LightSaber with 38.5 bytes, approximately. Figure 4.9 shows

the comparison between the standard deviation between the different KEMs. The one

with the highest deviation is NTRUhps2048509.

In this analysis, the elliptic curves outperform the post-quantum cryptosystems, with

the curve X95512 being the best. However, from the post-quantum KEMs, the Kyber512

KEM still outperforms the other two. Now we compare the duration of the connection for

each mechanism.

4.2.3 Performance on connection’s duration.

We present the performance results in terms of the connection’s duration, beginning with

the connection’s maximum value, then the mean, and finally the standard deviation.

Figures 4.10 and 4.11 show the maximum and mean duration for each KEM. We

can see that with the Kyber512 KEM, the handshake was the fastest, with a maximum

duration of 2.9 milliseconds and a mean of 0.2 milliseconds. Next comes the KEMs P-

256 and LightSaber, with a maximum value of 15.1 and 15.86 milliseconds and a mean

43

4.2. TESTING THE MECHANISMS ON THE IOT PROTOTYPE

Figure 4.10: The maximum duration of the connection for each mechanism in use.

Figure 4.11: The mean value of the duratoin of the connection for all the mechanisms

involved.

44

4.2. TESTING THE MECHANISMS ON THE IOT PROTOTYPE

of 14.97 and 14.98 milliseconds. The duration is almost the same, especially considering

the mean. Then comes the curve X25519 with a maximum value of 1.51 and a mean

of 14.99 milliseconds. The mean value of the last mechanism is also very close to that

of the curve P-256 and LightSaber. The KEM that takes the most amount of time is

NTRUhps2048509, with a maximum of 146.49 and a mean of 15.1 milliseconds.

Figure 4.12: The standard deviation for the different KEMs involved in terms of the

duration. The deviation for all the KEMs, except NTRUhps2048509, is minimal. We can

expect a fairly constant duration for all the KEMs.

Considering the duration, we see some differences concerning the packet size. On the

packet size, we saw that the elliptic curves outperformed the post-quantum mechanisms.

Now, the KEM Kyber512 has the minimum duration, while it has the most deviation (after

NTRU), while the curve P-256 has the least deviation but is slower in the handshake than

Kyber512, with a difference of almost 12 milliseconds.

Considering the mean, maximum duration, and standard deviation, the key exchange

method that best performs is Kyber512, as even considering the standard deviation, the

maximum value it can reach is still less than the curve P-256.

Considering only the post-quantum mechanisms, Kyber512 still outperforms in prac-

tice the other two mechanism and even outperforms the classical KEMs on the handshake

duration. On the number of bytes transmitted during the connection, the curves outper-

form the post-quantum mechanisms.

In the following, we will briefly discuss the theoretical strength of the different KEMs,

give a final comparison between the classical and post-quantum mechanisms, and give

some guidelines to select the proper mechanism for IoT devices.

45

4.3. GUIDELINES ON SELECTING POST-QUANTUM KEM

4.3 Guidelines on selecting post-quantum KEM

Knowing the different cryptosystems’ performance and theoretical strength, we can now

present some guidelines to follow when using post-quantum cryptosystems in resource-

constrained devices. We begin by presenting a summary of the theoretical strength and

how the different cryptosystems performed.

From the selected KEMs in the first test series, we eliminated FrodoKEM640 and

NTRULpr653, given that those use more resources in terms of CPU and memory usage.

We kept Kyber512, NTRUhps2048509, and LightSaber. Both the elliptic curves and the

post-quantum mechanisms have 128 bits security level and IND-CCA2 strength.

We saw as well that, in terms of CPU and memory usage, the two best performings

are NTRUhps2048509 and LightSaber, followed by Kyber512. We present a summary of

each KEM’s performance in Table 4.3.

Table 4.3: Performance of the different KEMs in terms of CPU usage in milliseconds,

and memory usage in number of bytes.

KEM KeyGeneration Encryption Decryption Memory usage

Kyber512 50.0715 67.6643 81.3896 18,528

LigthSaber 61.2086 84.3791 101.2356 994

NTRUhps2048509 7,618.4692 287.8924 684.0030 18,080

We now present a summary of the initial connection data and results. Recall that we

studied the number of packets transmitted, their size in bytes, and the connection duration.

In all of those, without considering the elliptic curves, the KEM Kyber512 outperformed

the other two mechanisms.

Kyber512 outperformed NTRUhps2048509 and LightSaber, with the least amount of

packets transmitted and the least deviation, followed by the KEMs NTRUhps2048509 and

LightSaber. It also outperformed the elliptic curves. Table 4.4 presents a brief summary

of the performance of the KEMs, in terms of the number of packets transmitted.

Table 4.4: A summary of the performance of the different cryptosystems in terms of the

number of packets transmitted. On the top we present the best performing, that is, the one

that uses the least amount of packets. The last is the worst performing.

KEM Mean Maximum Standard Deviation

Kyber512 24.086 27 0.2326

X25519 27.926 30 0.4129

P-256 27.938 30 0.3579

NTRUhps2048509 28.05 32 0.9249

LightSaber 30.086 36 0.5818

In terms of the number of packets, we saw that the best performing is Kyber512,

followed by NTRUhps2048509 and the LightSaber. In this case, the elliptic curves out-

performed the post-quantum KEMs. Table 4.5 presents a summary of the KEMs’ perfor-

mance in terms of bytes per connection.

46

4.3. GUIDELINES ON SELECTING POST-QUANTUM KEM

Table 4.5: This table summarizes the performance of the different packets in terms of size

in bytes. The best performing is on the top, and the worst on the bottom.

KEM Mean Maximum Standard Deviation

X25519 7,681.331 7,807 27.1832

P-256 7,748.311 7,876 23.5715

Kyber512 8,236.481 8,442 31.2484

LightSaber 9,168.695 9,556 38.4691

NTRUhps2048509 9,016.969 9,284 278.1027

In the final summary we provide the duration of the connection. Recall that all the

connections had a constant behavior with a small amount of deviation. Kyber512 still

outperformed the other mechanisms, including the elliptic curves, with a duration around

2 ms. The other had a very similar mean, except for NTRUhps2048509. Table 4.6 presents

a summary of the connection’s duration.

Table 4.6: A summary of the duration of the connection for each KEM. It is shown the

mean, maximum and standard deviation for each KEM.

KEM Mean Maximum Standard Deviation

Kyber512 0.2133 2.8836 0.0931

P-256 14.9884 15.1039 0.0147

LightSaber 14.9727 15.8695 0.0353

X25519 14.9901 16.2665 0.0455

NTRUhps2048509 15.1022 146.4901 4.1642

Now we give some guidelines to select the appropriate post-quantum mechanism for

devices with low resources. Table 4.7 summarizes the results from the tests done on the

usage of the different resources, and Table 4.8 summarizes the theoretical aspects of the

cryptosystems.

We are mainly interested in the performance aspects of the KEMs and, considering

that the components that most consume energy on resource-constrained devices are the

CPU and the radios, we will consider the following hierarchy when giving a guideline on

selecting a KEM: first the CPU and Wi-Fi performance, then memory usage, and finally

the theoretical aspects of the ciphers.

Depending on the constraints, several post-quantum cryptosystems could be chosen.

If a minimal usage of the Wi-Fi and the CPU is the objective, Kyber512 would be the

option, as it gives us the fastest connection and minimum CPU usage, without considering

the elliptic curves. It also has the smallest private key of all. As a disadvantage, we can

see that Kyber512 has a greater public-key size than LightSaber and NTRUhps2048509,

and it is vastly outperformed in terms of memory usage by LightSaber, and slightly by

NTRUhps2048509, it is even outperformed by NTRULPr652.

If minimal memory usage is the goal, LightSaber would be the best option, as it out-

performs both Kyber512 and NTRUhps2048509. It does not present an advantage in

terms of Wi-Fi usage having similar values to NTRUhps2048509 and greater than Ky-

47

4.3. GUIDELINES ON SELECTING POST-QUANTUM KEM

ber512. In terms of CPU usage, it is slower than Kyber512 and has a similar value to

NTRUhps2048509. LightSaber also has the smallest public-key size than the others.

From the three mechanisms used in the IoT prototype, NTRUhps2048509 is the worst

performing, so it is recommended to use it only when no other alternatives are left.

NTRULPr653 is also an excellent option to consider, as in terms of CPU and memory

usage performs similar to Lightsaber and NTRUhps2048509, its main disadvantage is

that it is an alternative candidate and it would take longer to reach the status standard.

FrodoKEM640 is completely ruled out, as the amount of memory and CPU it requires is

far more significant than the other KEM, exceeding the typical resources available for a

resource-constrained device.

Table 4.9 presents each KEM’s advantages and disadvantages and some guidelines for

selecting it.

When the device has restrictions in resources, especially in energy, use the KEM

Kyber512, which is the best overall. Its disadvantages are that it uses more memory

than the other two post-quantum mechanisms. Use LightSaber when the memory is the

most limiting factor, as it uses the least. Use it if the energy constraints can be traded off

with the resource utilization. Again, use NTRUhps2048509 when no other options are

left. The only advantage is that it uses less Wi-Fi than LightSaber, but the difference is

minimal.

Consider that these cryptosystems are not yet an approved standard, so usage in pro-

duction environments is not recommended yet. For this reason, it is recommended to

currently make use of the elliptic curves for the handshake, considering as well that there

is more work on optimizations for elliptic curves for resource-constrained devices than

there is for the post-quantum mechanisms. Also, the standardization process has not

concluded yet, so the authors of the different KEMs might propose future optimizations,

changing the performance data for each KEM.

48

4
.3

.
G

U
ID

E
L

IN
E

S
O

N
S

E
L

E
C

T
IN

G
P

O
S

T
-Q

U
A

N
T

U
M

K
E

M

Table 4.7: Summary of the implementation performance of the key exchange mechanisms. We show memory and CPU usage, and bytes,

packets and the duration of the connection.

Cryptosystem Memory Usage (bytes) CPU Usage Total (ms) Bytes per connection (mean) Packets per connection (mean) Connection’s Duration (mean)

Kyber512 18,528 204.0401 8,236 24 0.2133

LightSaber 994 255.3597 9,168 30 14.9727

NTRUhps2048509 18,080 8,598.9120 9,016 28 14.9884

NTRULPr653 14,064 58,149.07331 N/A N/A N/A

FrodoKEM640 921,360 7,823.7653 N/A N/A N/A

P-256 N/A N/A 7,748 28 14.9884

X25519 N/A N/A 7,681 28 14.9901

Table 4.8: Summary of the theoretical aspects of the key exchange mechanisms considered so far, including key size, security level in

bits, and theoretical strength.

Cryptosystem Theoretical Strength Security Level (bits) Key Size (Public/Private)

Kyber512 IND-CCA 128 1,623/800

LightSaber IND-CCA2 128 672/992

NTRUhps2048509 IND-CCA2 128 699/935

NTRULPr652 IND-CCA2 192 897/1,125

FrodoKEM640 IND-CCA2 128 9,616/19,888

P-256 IND-CCA2 128 256

X25519 IND-CCA2 128 256

4
9

4
.3

.
G

U
ID

E
L

IN
E

S
O

N
S

E
L

E
C

T
IN

G
P

O
S

T
-Q

U
A

N
T

U
M

K
E

M

Table 4.9: General guidelines for selecting the appropiate post-quantum cryptosystem for resource-constrained devices, according to its

performance and security.

KEM Advantages Disadvantages Guidelines

Kyber512 • Minimal usage of CPU • Uses the most memory • Use for minimal energy requirement

• Minimal usage of Wi-Fi • Greater public-key size • Use for fast computing and handshake

• Smallest private key • Use when suficient memory available

• Fastest handshake

• Finalist in the NIST process

LightSaber • Strong security • Greater Wi-Fi usage • Use when little memory is available

• Smaller public-key size • Greater CPU usage • Use when there is sufficient energy available

• Finalist in the NIST process • Use when strong security can be traded

with energy and resource requirements

NTRUhps2048509 • Strong security • Worst performing overall • Use when no other available

• Smaller private-key size

• Minimal usage of memory

• Finalist in the NIST process

5
0

Chapter 5

Conclusions

The cryptosystems currently used for key exchange in the industry, were not designed

with resource limitation in mind, making them hard to adapt to resource-constrained de-

vices, requring a significant amount of computational resources. For that reason, and

considering that the Internet of Things is increasingly becoming more popular, we con-

sidered necessary to study the performance of existing post-quantum cryptosystems and

how the might impact on devices with low resources.

We chose to study the cryptosystems from the United States National Institute of

Standards standardization process, as those will be deployed to industry and used by most

users that connect to the Internet. From those available at the process, we choose the

lattice-based ones, as those, according to the literature, are more suitable for resource-

constrained and Internet of Things devices. From these lattice-based cryptosystems, we

chose those with the smaller key size, because they require the least amount of computa-

tional resources.

Knowing that the most critical components in a resource-constrained device are CPU

and Wi-Fi, from an energy point of view, and memory from a software standpoint of

view, we proceeded to measure the performance of such variables on a device that can be

considered on the edge of resources-constrained devices, a Raspberry Pi. It does not have

as many resources as PC or laptop, but has more than other Internet of Things devices

such as an Arduino or a PIC microcontroller. This hardware still gave us an idea of how

the cryptosystems behave on devices with low capabilities and present some guidelines

for selecting an appropriate one for such devices.

We saw that the cryptosystem that performs the best in terms of CPU and Wi-Fi usage

is Kyber512, while LightSaber performs the best in memory consumption. For testing the

cryptosystem on an Internet of Things prototype, we present data on the elliptic curves’

performance. Such data allowed us to compare the possible future standards with an

existing one, giving us a reference point. Although in some cases the elliptic curves

performed better than the post-quantum key exchange mechanisms, in general, we saw a

similar performance among the two types, and, in the case of Kyber512, it outperformed

the elliptic curves.

51

5.1. FUTURE WORK

5.1 Future Work

Except for Kyber512, we saw a similar performance between the elliptic curves and

the post-quantum key exchange mechanisms, using the implementation included within

OpenSSL for the elliptic curves and the implementation by the authors to the standardiza-

tion process. The results could indicate the need to make more optimizations to such key

exchange mechanisms, so they are more adaptable to devices with low resources.

We considered only those cryptosystems based on lattices as those are more suitable

for Internet of Things devices, but remains to study the performance of the lowest secu-

rity versions of the code-based cryptosystems and possibly find a way to adapt them to

resource-constrained devices, in case the lattice-based ones are proved to be insecure to

quantum computers attacks in the future. A study on the performance of all the versions

and available key exchange mechanisms can be done as well.

Work on porting the post-quantum cryptosystems to hardware implementations could

also be done as a component of a System on Chip, thus freeing resources to the software

and possibly reducing the energy requirements. Research is needed to know which type

of quantum-safe cryptosystems are more easily portable to hardware implementations.

Whether the implementation can reduce the energy consumption, and if it is possible to

have a version with the strongest security settings (level 5 security) while at the same time

keeping or even reducing the energy required by their software counterparts considered

in this work.

Once quantum computers come to existence, quantum-safe cryptosystems will be the

norm, as all classical cryptosystems will become obsolete, so porting such cryptosystems

to other areas of cryptography will be necessary. We know that only doubling the key

size for symmetric-key cryptography will be sufficient for protecting the different ciphers

available. For other areas that use public-key cryptography it is worth start porting such

cryptosystems to it. One such example is homomorphic encryption, which currently uses

elliptic curves. There is work on homomorphic encryption using lattice-based cryptosys-

tems, but again, work for code-based cryptosystems is also essential to be considered,

given that we have no formal proof of the safeness of lattice-based cryptosystems.

52

Appendices

53

Appendix A

Basic Mathematics for Cryptography

The cryptosystems presented here are built on algebraic structures, which are the union of

a set A and binary operations ”+” that work over the elements of the set. It also defines a

set of rules, called axioms, which indicate how the binary operator should work over the

set elements. The binary operation is denoted usually by ”+” and is a map from the set to

itself:

+ : A× A→ A (A.1)

The most basic algebraic structure is known as a group, and we define it in the follow-

ing. We also introduce the concept of integer rings, fields, and lattices.

A.1 Groups

Given a set G and a binary operator (+), a group is defined as {G,+} and has the following

properties. Given elements a, b, c ∈ G, we have that:

1. Closure: a + b ∈ G. That is, the result of applying the binary operator to any two

elements of G, is still in G.

2. Associative: (a+ b) + c = a+ (b+ c) ∈ G.

3. Identity: There exists an element 0 ∈ G, such that 0 + a = a + 0 ∈ G, ∀a ∈ G,

known as the identity element of G.

4. Inverse of elements: ∀a ∈ G, there exists−a ∈ G such that a+(−a) = (−a)+a =
0.

These are the basic properties that a group should hold to be considered one. Another

property is:

5. Commutative: ∀a, b ∈ G, we have that a+ b = b+ a ∈ G.

If a group also has that property, it is said to be is an abelian group.

54

A.2. INTEGER RINGS

Also, if an abelian group has exponentiation, there is an element g ∈ G from which

all other elements can be generated, then the group is called a cyclic group. The element

g is called the generator.

From an abelian group, another mathematical structure can be constructed with the

use of a second binary operation: a ring.

A.2 Integer Rings

Given a set G and two binary operations (+) and (×), the set {G,+,×} is said to be a

ring, if it is an abelian group under the operation (+), and has the following properties for

the (×):

6. Closure: a× b ∈ G.

7. Associativity: (a× b)× c = a× (b× c) ∈ G.

8. Distribution: a× (b+ c) = a× b+ a× c ∈ G.

An optional property under operation (×) is:

9. Commutative: a× b = b× a.

From an integer ring, a third mathematical structure can be created, and is known as a

field.

A.3 Fields

Given an integer ring {G,+,×} that is commutative under the operation (×), it is said to

be a field, if it has as well the following property:

10. Inverse: For all a ∈ G\{0}, there exists a−1 such that a× (a−1) = (a−1) ∗ a = 0

In the following, we introduce another mathematical structure known as lattice, which

is used for the construction of cryptosystems suitable to the IoT.

A.4 Lattices

A lattice is a subset of the vector space R
m; a collection of vectors constructed in a

particular way.

Let {b1, · · · ,bn} be a linearly independent set of (row) vectors in R
m, with n ≤ m.

The lattice generated by {b1, · · · ,bn} is the set

L = {
n∑

i=1

libi : li ∈ Z} (A.2)

55

A.4. LATTICES

of integer linear combinations of the bi. The vectors {b1, · · · ,bn} are called a basis of

the lattice.

These are the basic mathematical structures from which several others are created,

such as the vector fields. Some cryptosystems are constructed using only the group struc-

ture, e.g., the RSA cryptosystem. Others make use of more complex mathematical struc-

tures like lattices or codes.

Some instantiations of the structures mentioned above used for the construction of

cryptosystems include the Elliptic and Hyperelliptic Curves, which is a group constructed

from equations describing certain types of curves.

56

Appendix B

List of acronyms

Computers Structures terms.

• CPU – Central Processing Unit.

• RAM – Random Access Memory.

Cryptography

• CPA – Passive Attack/Chosen Plain Text Attack.

• CCA1 – Lunchtime Attack/Chosen Ciphertext Attack.

• CCA2 – Adaptive Chosen Ciphertext Attack.

• DH – Diffie-Hellman key exchange mechanism.

• IND – Indistinguishability.

• KEM – Key Exchange Mechanism.

• MAC – Message Authentication Code.

• OWE – One-way Encryption.

• PKC – Public-key Cryptography.

• RSA – Ravist-Shamir-Adleman cryptosystem.

Hardware protocols related terms.

• SPI – Serial Peripheral Interface.

• UART – Universal Asynchronous Receiver/Transceiver.

• USB – Universal Serial Bus.

Institutes and Businesses.

• ETSI – European Telecommunication Standard Institute.

57

• IETF – Internet Engineering Task Force.

• IBM – International Business Machines.

• NIST – National Institute of Standards.

Internet of Things terms.

• AMQP - Advance Messaging Query Protocol.

• CoAP – Constrained Application Protocol.

• DDS – Data Distribution Service.

• IoT – Internet of Things.

• MQTT – Message Queue Telemetry Transport.

• RTOS – Real-Time Operating System.

• WSN – Wireless Sensors Network.

• XMPP – Extensible Messaging and Presence Protocol

Internet-related terms.

• DTLS – Datagram TLS.

• IP – Internet Protocol.

• RFC – Request for Comments.

• SSL – Secure Socket Layer.

• TCP – Transport Control Protocol.

• TLS – Transport Layer Security.

• UDP – User Datagram Protocol.

Wireless technologies.

• NFC – Near Field Communication technology.

• RFID – Radio Frequency Identifier.

• Wi-Fi – Wireless Fidelity.

Other.

• CSV – Comma Separate Values.

58

Bibliography

[1] Deutch D. “Quantum theory, the Church-Turing principle and the universal quan-

tum computer.” In: Proceedings of the Royal Society of London 400 (1985), pp. 97–

117. DOI: https://doi.org/10.1098/rspa.1985.0070.

[2] T. Güneysu and T. Oder. “Towards lightweight Identity-Based Encryption for the

post-quantum-secure Internet of Things”. In: 2017 18th International Symposium

on Quality Electronic Design (ISQED). IEEE. 2017, pp. 319–324. DOI: 10.1109/

ISQED.2017.7918335.

[3] M. O. Saarinen. “Ring-LWE ciphertext compression and error correction: Tools

for lightweight post-quantum cryptography”. In: Proceedings of the 3rd ACM In-

ternational Workshop on IoT Privacy, Trust, and Security. 2017, pp. 15–22. DOI:

https://doi.org/10.1145/3055245.3055254.

[4] T. M. Fernández-Caramés. “From pre-quantum to post-quantum IoT security: A

survey on quantum-resistant cryptosystems for the Internet of Things”. In: IEEE

Internet of Things Journal 7.7 (2019), pp. 6457–6480. DOI: 10.1109/JIOT.

2019.2958788.

[5] Singh A., Payal A., and Bharti S. “A walkthrough of the emerging IoT paradigm:

Visualizing inside functionalities, key features, and open issues.” In: Journal of

Network and Computer Applications 143 (2019), pp. 111–151. DOI: https://

doi.org/10.1016/j.jnca.2019.06.013.

[6] Al-Fuqaha A. et al. “Internet of Things: A Survey on Enabling Technologies, Pro-

tocols, and Applications”. In: IEEE Communication Surveys and Tutorials 17.4

(2015). DOI: 10.1109/COMST.2015.2444095.

[7] Atzori L., Iera A., and Morabito G. “The Internet of Things: A survey”. In: Com-

puter Networks 54 (2010), pp. 2787–2805. DOI: https://doi.org/10.

1016/j.comnet.2010.05.010.

[8] C. M. Roberts. “Radio frequency identification (RFID)”. In: Computers & security

25.1 (2006), pp. 18–26. DOI: https://doi.org/10.1016/j.cose.

2005.12.003.

[9] Akyildiz I.F., Sankarasubramaniam Y., and Cayirci E. “Wireless sensor networks:

a survey”. In: Computer Networks 38 (2002), pp. 393–422. DOI: https://doi.

org/10.1016/S1389-1286(01)00302-4.

59

BIBLIOGRAPHY

[10] Mosenia A. and Jha N.J. “A Comprehensive Study of Security of Internet-of-

Things”. In: IEEE Transactions on Emerging Topics in Computing 5 (2016), pp. 2168–

6750. DOI: 10.1109/TETC.2016.2606384.

[11] Kouicem D. E., Bouabdallah A., and Lakhlef H. “Internet of thing security: A top-

down survey”. In: IEEE Transactions on Emerging Topics in Computing 5 (2016),

pp. 2168–6750. DOI: https://doi.org/10.1016/j.comnet.2018.

03.012.

[12] Whitfield D. and Hellman M. E. “New Directions in Cryptography”. In: IEEE

Transactions on Information Theory IT-22 (6) (1976), pp. 644–654. DOI: 10.

1109/TIT.1976.1055638.

[13] Rivest R.L., Shamir A., and Adleman L. “A Method for Obtaining Digital Sig-

natures and Public-Key Cryptosystems”. In: Communications of the ACM 21 (2)

(1978), pp. 120–126. DOI: https://doi.org/10.1145/359340.359342.

[14] S. D. Galbraith. Mathematics of Public Key Cryptography. Ed. by Cambride Uni-

versity Press. Cambridge, 2018.

[15] Shor P. “Algorithms for quantum computation: discrete logarithms and factoring”.

In: vol. 143. IEEE, 1994, pp. 124–134. DOI: 10.1109/SFCS.1994.365700.

[16] D. J Bernstein and T. Lange. “Post-quantum cryptography”. In: Nature 549.7671

(2017), pp. 188–194. DOI: https://doi.org/10.1038/nature23461.

[17] R. J. McEliece. “A public-key cryptosystem based on algebraic”. In: Coding Thv

4244 (1978), pp. 114–116. DOI: 19780016269.

[18] J. Hoffstein, J. Pipher, and J. H. Silverman. “NTRU: A ring-based public key cryp-

tosystem”. In: International Algorithmic Number Theory Symposium. Springer.

1998, pp. 267–288. DOI: 10.1007/BFb0054868.

[19] O. Regev. “On lattices, learning with errors, random linear codes, and cryptogra-

phy”. In: J. ACM 56.6 (2009). DOI: 10.1145/1568318.1568324.

[20] Post-Quantum Cryptography. https://csrc.nist.gov/Projects/

post- quantum-cryptography/Post-Quantum- Cryptography-

Standardization. [Online; last access: July-2020].

[21] et al. Alagic Gorjan Alperin-Sheriff Jacob. “Status Report on the Second Round

of the NIST Post-Quantum Cryptography Standardization Process”. In: 1.1 (2020).

DOI: https://doi.org/10.6028/NIST.IR.8309.

[22] Bernstein D. J. et al. Albrecht M. R. “Classic McEliece: conservative code-based

cryptography”. In: Post-Quantum Cryptography Standarization Process (2020).

[23] Avanzi R., Bos J., and et al. Ducas L. “CRYSTAL-Kyber. Algorithm Specification

And Supporting Documentation”. In: Post-Quantum Cryptography Standarization

Process (2019).

[24] Cheng C., Danba O., and Hoffstein J. et al. “NTRU. Algorithm Specification and

Documentation”. In: Post-Quantum Cryptography Standarization Process (2019).

60

BIBLIOGRAPHY

[25] D’Anvers J.-P. et al. “SABER: Mod-LWR based KEM (Round 2 Submission)”. In:

Post-Quantum Cryptography Standarization Process (2019).

[26] Barreto P. S. L. M. et al. Aragon N. “BIKE: Bit Flipping Key Encapsulation”. In:

Post-Quantum Cryptography Standarization Process (2020).

[27] et al. Melchor C. A. Aragon N. “Hamming Quasi-Cyclic (HQC)”. In: Post-Quantum

Cryptography Standarization Process (2020).

[28] et al. Azarderakhsh R. Campagna M. “Supersingular Isogeny Key Encapsulation”.

In: Post-Quantum Cryptography Standarization Process (2020).

[29] Alkim E., Bos J. W., and Ducas L. et al. “FrodoKEM. Learning With Errors Key

Encapsulation. Algorithm Specification And Supporting Documentation”. In: Post-

Quantum Cryptography Standarization Process (2020).

[30] Bernstein D. J. et al. “NTRU-prime: round 2”. In: Post-Quantum Cryptography

Standarization Process (2019).

[31] The Transport Layer Security (TLS) Protocol Version 1.3. https://tools.

ietf.org/html/rfc8446. [Online; last access: Sepember 23, 2020].

[32] The OpenSSL Library. https://www.openssl.org/. [Online; last access:

September 23, 2020].

[33] Java Secure Socket Extension (JSSE) Reference Guide. https://docs.oracle.

com/en/java/javase/11/security/java- secure- socket-

extension - jsse - reference - guide . html # GUID - 93DEEE16 -

0B70 - 40E5 - BBE7 - 55C3FD432345. [Online; last access: September 23,

2020].

[34] The gnuTLS Transport Layer Security Library. https://www.gnutls.org/.

[Online; last access: September 23, 2020].

[35] BoringSSL. https://boringssl.googlesource.com/boringssl/.

[Online; last access: September 23, 2020].

[36] LibreSSL. https://www.libressl.org/. [Online; last access: September

23, 2020].

[37] Mbed TLS. https://tls.mbed.org/. [Online; last access: September 23,

2020].

[38] WolfSSL. https://www.wolfssl.com/. [Online; last access: September 23,

2020].

[39] R. Chaudhary, Singh Aujla G., and Zeadally S. Kumar N. “Lattice-Based Public

Key Cryptosystem for the Internet of Things Environment: Challenges and So-

lutions”. In: IEEE Internet of Things Journal 6 (3) (2019), pp. 4897–4909. DOI:

10.1109/JIOT.2018.2878707.

[40] V. Lyubahsevsky, Piekert C., and Oded R. “On Ideal Lattices and Learning With

Errors over Rings”. In: Annual International Conference on the Theory and Appli-

cations of Cryptographyc Techniques. Springer. 2010, pp. 1–23.

61

BIBLIOGRAPHY

[41] The RadioHead Library. https://www.airspayce.com/mikem/arduino/

RadioHead/index.html. [Online; last access: September 23, 2020].

[42] DHT Sensor Library. https://github.com/adafruit/DHT-sensor-

library. [Online; last access: September 23, 2020].

[43] A. Carroll and G. Heiser. “An analysis of power consumption in a smartphone.”

In: USENIX annual technical conference. Vol. 14. Boston, MA. 2010, pp. 21–21.

[44] Valgrind User Manual. https://valgrind.org/docs/manual/manual.

html. [Online; last access: September 23, 2020].

[45] Wireshark User Manual. https://www.wireshark.org/docs/wsug_

html_chunked/. [Online; last access: September 23, 2020].

62

BIBLIOGRAPHY

Figure 5.1: SARS-CoV-2: Algo microscópico fue capaz de detener el mundo de forma

abrupta, cambiando la forma en que vivimos y nos relacionamos. Es una lección sobre la

forma moderna de vivir, ¿aprenderemos de ella?

63

	970d297d-bf89-4f19-abad-bf1221f7ea8f.pdf
	Introduction
	Background
	The Internet of Things
	IoT communication protocols at the application layer
	Basic IoT devices at the object layer
	Security for the IoT

	Cryptography
	Public-key cryptography and key exchange mechanism
	Encryption security

	Post-quantum cryptography
	Quantum computers and the Shor's algorithm
	Existing post-quantum cryptosystems

	Post-quantum cryptosystem standards
	Currently competing cryptosystems

	The transport layer security protocol
	TLS handshake protocol
	Crypto libraries implementing the TLS protocol

	Methodology
	Introducing post-quantum cryptosystems to IoT
	Post-quantum cryptosystems suitable for IoT
	Lattice-based NIST post-quantum cryptosystems
	Algorithms specification
	NIST's post-quantum cryptosystems suitable to IoT devices

	The IoT prototype
	The proposed system
	The nodes
	The gateway
	The broker

	Measuring the cryptosystems performance
	Variables of interest
	Profiling the variables
	Data exploration and tests execution

	Postamble

	Results
	Measuring the cryptosystems' performance
	Memory and CPU Performance
	Selecting the first three KEMs

	Testing the mechanisms on the IoT prototype
	Performance on the number of packets
	Performance on packet size
	Performance on connection's duration.

	Guidelines on selecting post-quantum KEM

	Conclusions
	Future Work

	Appendices
	Basic Mathematics for Cryptography
	Groups
	Integer Rings
	Fields
	Lattices

	List of acronyms

