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Abstract

Among the generalised measures of entropy, there is a special class of mea-

sures whose functional dependence dismisses all free parameters, but instead

relies exclusively on probability. From this class, we will pay attention to

full-stable measures of entropy having a well defined thermodynamic limit,

provided these attributes are necessary for physical observables to be re-

covered from entropy. To our knowledge, there are only two generalised en-

tropies fulfilling these requirements. Then we investigate their basic mathe-

matical aspects as well as their impact on physics, information and computer

sciences. We will prove formally such entropies converge asymptotically to

the Boltzmann-Gibbs measure, whereas they induce a generalised classifi-

cation of entropies. We study the consequences these entropies convey in

diffusion and transport phenomena, which leads us to derive master equa-

tions out of equilibrium. Interestingly, our master equations adopt a similar

structure to some chemotaxis-aggregation models studied in biology. Fur-

ther, given that entropy is at the interface between statistical mechanics and

information theory, we propose a non-extensive information theory, where

data compression and channel capacities are improved, in relation to Shan-

non’s formulation, in a scenario of high probabilities. Finally, we bring this

non-extensive information theory in its algorithmic counterpart to obtain

generalisations to Kolmogorov’s statistical complexity.
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1

Introduction

In the 1860s, the German physicist Rudolf Clausius coined the term entropy to denote

the amount of heat loss upon to performing work20. He claimed when a physical system

passes from state A to B, the heat absorbed dQ from its surroundings induces a change

of entropy ∆S such that

∆S =

B
Z

A

dQ

T
,

where T is the absolute temperature of the surroundings of the system at the moment

of the transition. Insofar as the process is irreversible, entropy will always increase,

while remaining constant within each reversible process.

Years later, Boltzmann developed a fascinating idea about entropy6. Taking a

statistical view, he claimed the entropy of an ideal gas is proportional to the logarithm

of the number of microstates that the gas might occupy. His ideas, together with those

of Gibbs and Maxwell, gave rise to the statistical formulation of thermodynamics, where

the basic problem is to obtain the distribution of energy—and other observables—over

a defined number of identical systems.

In quantum mechanics, the extension of classical Boltzmann-Gibbs entropy was

given by von Neumann79. In this context, entropy estimates the deviation of the

system from a pure state. So while the system will have a vanishing entropy for a pure

state, entropy will increase as the quantum interference is erased, since a quantum of

transitional energy is required from state A to state B.

A crucial development came during the 1940s, when Claude Shannon66 formulated

a mathematical theory to quantify and compress information—which is still essential

1



1. INTRODUCTION

to our daily digital communication processes. He discovered the minimum compression

ratio a data communication would achieve without losing information is estimated by

the entropy itself. Not merely has this been fundamental in electrical engineering and

computer sciences, but moreover, since Shannon’s entropy and that of Boltzmann-

Gibbs own the same mathematical structure, there exists a natural connection between

information theory and statistical mechanics.

Today, the notion of entropy plays a central role in maximising those probability

distributions that describe the microscopic behaviour of generic statistical systems.

However, while standard distributions successfully represent the thermodynamics of

weakly interactive systems involving a large number of microstates, this is not the case

for complex systems, i.e. systems having a high degree of interaction between compo-

nents. In these cases it is necessary to introduce generalised entropies 1,43,52,62,68,72.

To take into account the thermodynamics of complex systems outside equilibrium,

various measures of entropy depending on probability and free parameters, have been

suggested directly or indirectly. For example, it was well shown in Ref.24 that auto-

similar structures derived from scaling properties in Yang-Mills theories behave as frac-

tals, from which a non-extensive statistical pattern is obtained leading to non-extensive

entropies that convey complexity.

In recent years, by following the superstatistics formalism4, it was proposed in

Ref.56 a pair of non-extensive entropies, S+ and S�, which depend only on the proba-

bility and having the particularity of looking like Boltzmann-Gibbs entropy in the first

approximate order. While these generalised statistics resemble systems slightly outside

the equilibrium, there is a temporal local equilibrium in each of the cells that compose

the system. In fact, this type of entropies results in long-term stationary states taking

into account the spatiotemporal fluctuations of intensive quantities, such as the inverse

temperature. Physically, this delivers the response of a system to attractive or repulsive

effective interactions8,58.

In this work we focus on the analysis of the non-extensive entropies S+ and S�, we

shall look at their mathematical attributes and their physical consequences in connec-

tion with information theory.

Along our exposition, all the systems we consider are modestly outside the ther-

modynamic equilibrium, but having long-term stationary states so that the amplitudes

of the fluctuations will remain small even when they are subject to small variations

2



in the initial conditions. This stable behaviour also grants universality to the scheme,

that is, the corrections made to the standard Boltzmann factor must be almost the

same for all superstatistics if a well defined thermodynamic limit is demanded. Those

corrections to the Boltzmann-Gibbs entropy that S+ and S� convey, are monotonically

subdominant in both cases. We have to remark this is an interesting attribute since

such tendency indicates S+, S� and SBG will coincide asymptotically, thus retrieving

the standard theory when S+ or S� encompass a large number of accessible states,

whereas for a contracted number of them, the modest differences between them will

lead us to discuss worth applications.

Our work consists of four independent chapters, which are the result of our own

research in the area of non-extensive entropies, plus a chapter devoted to the conclusions

and perspectives. We summarise our exposition’s structure as follows.

Chapter 2 We discuss the mathematical attributes of S+ and S�. We show these

entropies are asymptotically equivalent to the Boltzmann-Gibbs entropy and give

a formal proof of their stability. We also discuss how the corresponding entropic

forms of S+ and S� bring a generalised family of entropies, forthwith passing to

a hierarchy of measures of entropy classified according to their scaling exponents.

Our results were published in Ref.9.

Chapter 3 As part of the framework elaborated in Chapter 2, we implement an en-

tropy method to derive generalised Fokker-Planck equations. The motivations

are simple: If classical Boltzmann-Gibbs entropy leads to the mean-field Fokker-

Planck equation, which equations would emerge from generalised measures of

entropy?

We shall limit our discussion to the generalised Fokker-Planck equations obtained

from entropies S+ and S�. Both equations will inherit from these entropies the

asymptotic behaviour, hence, in a scenario where the number of available states is

much greater than the particles involved, our equations’ description will coincide

with that given by the original master equations, see the diagram below.

Some numerical experiments are studied, showing the anomalous diffusion phe-

nomenon carried by our models and the transient behaviour observed in electron

transport. Furthermore, it is worth to mention that the kind of Fokker-Planck

3



1. INTRODUCTION

equations derived here emerge, as well, in several stochastic processes studied in

biological sciences, e.g. we compare our equations with a chemotaxis-aggregation

model.

The results reported in this chapter, were published in Ref.31.

S± SBG

Fokker-Planck
generalised

Fokker-

Planck

Ω ! 1

Ω ! 1

F [⇢] ⇢

Chapter 4 In this chapter, we examine the links between statistical mechanics and

information theory, of which entropy is a common node. We show that entropies

S+ and S� (which will be referred as H+ and H� in the field of information)

improve certain information processes, such as data compression and channel

capacities, in relation with Shannon’s entropy.

We are also developing a variational method for finding optimal codeword lengths,

which allow the formulation of generalised noiseless coding theorems related to

generalised measures of entropy. The outcomes referred to in this chapter were

reported in Ref.29.

Chapter 5 In another application of statistical mechanics to information theory, we

move the formulation of superstatistics to the domain of complexity and algo-

rithmic theory of information. This brings us to propose possible generalisations

for the complexity of Kolmogorov and to foresee an infinite number of measures

of complexity. Still, not all complexity measures are likely to be computationally

affordable, due to stability reasons. So our focus is on the complexity measures

4



associated with H+ and H�. As a result of our research, findings in this area

were reported in Ref.30.

Chapter 6 Finally, we conclude our work with a general and forward-looking discus-

sion in the field of non-extensive entropies.
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2

Measures of Entropy

Entropy is a node where various edges converge. It is a fundamental quantity in classical

thermodynamics, the interface between the microscopic and the macroscopic world in

statistical physics and the key concept in information theory. In modern mathematics,

this notion is widely utilised from topological geometry to combinatorics. Although,

in the same way, it is frequently encountered in computer sciences, chemistry, biology,

economy and sociology. The use of entropy is so broadly diverse that trying to state a

universal definition would not only be unfortunate but surely incorrect.

In this chapter, we focus on the statistical treatment of entropy, whose application

to physics is direct and is equivalent to that of information theory—that we shall survey

in the second part of this work. In what follows, we introduce generalised entropies.

However, we emphasise those functional ones that depend solely on the probability

distribution. Further, the functionals of our interest are also physically congruous with

the standard formulation of thermostatistics.

2.1 Generalised Entropies

In the Boltzmann formulation of thermostatistics entropy S is a quantity both additive

and extensive. By additive we mean, if a thermodynamic system with Ω states is

divided into N subsystems, each one associated with a number Ω1,Ω2, . . . ,ΩN of states,

then the total entropy of the system satisfies the functional equation S(Ω1Ω2 · · ·ΩN ) =

S(Ω1) + S(Ω2) + · · · + S(ΩN ). Conversely, if Ω is composed as Ω1+2+···+N such that

S(Ω1+2+···+N ) = S(Ω1) + S(Ω2) + · · · + S(ΩN ), we say that the entropy is extensive,

7



2. MEASURES OF ENTROPY

inasmuch as the N subsystems do not interact with each other. Clearly, additivity

and extensiveness coincide whenever Ω1+2+···+N = Ω1Ω2 · · ·ΩN . For these reasons, in

standard thermodynamics we say the value of S depends on the amount of material.

There are, however, circumstances in which the former does not hold. As proof,

the condition S(Ω1+2+···+N ) = S(Ω1) + S(Ω2) + · · · + S(ΩN ) is immediately broken

when the system possesses inner correlations, thus implying the individual number

of states overlaps at some point. Although even in the absence of interactions the

entropy production can obey a non-extensive rule. That is the case of charged fields at

fixed temperature in a free bosonic quantum field theory, which endow the geometric

entropy10,41,42 with nonextensive terms32.

In general, therefore, there is a need to appraise entropies beyond the standard

definition due to Boltzmann and Gibbs,

SBG = �kB

Ω
X

j

pj ln pj , 0  pj  1 , (2.1)

kB is a universal constant, that from now on we equal to unit, and P = {p1, p2, . . . , pΩ}

is a probability distribution associated with a thermodynamic scenario. SBG is inter-

preted as a logarithmic measure that estimates the number of microstates that can be

occupied according to a distribution P . Yet this estimation will vary depending on the

functional measure that characterises the entropy, as seen from the following definition.

Definition 1. A generalised entropy defines as

S =

Ω
X

j

g(pj) , (2.2)

where g is a monotonic increasing function known as entropic form.

Remark 1. The form (2.2) is a special case of S = �
⇣

P

Ω

j g(pj)
⌘

, where � is a

Nagumo-Kolmogorov function. We also will survey entropies of this type, nonetheless,

for the sake of simplicity we shall consider (2.2) as the prototype definition of entropy.

Remark 2. If g(x) = �x lnx, then the entropy (2.1) is automatically resembled. Fur-

thermore, a particular attribute of SBG is that it completely satisfies the following def-

inition.

Definition 2. The Shannon-Khinchin (SK) axioms for entropy S read44:

8



2.1 Generalised Entropies

SK1 S : P ! R
+ is continuous in P .

SK2 S takes its largest value for a uniform distribution, pj = 1/Ω for all j.

SK3 S is expandable, S(p1, p2, . . . , pΩ�1, 0) = S(p1, p2, . . . , pΩ�1).

SK4 S is additive, S(PQ) = S(P ) + S(Q), where P = {p1, p2, . . . , pΩ} and Q =

{q1, q2, . . . , qΩ0}.

While some of these axioms may be violated by generalised entropies, we shall limit

our interest to only those entropies that violate SK4 while fulfilling SK1-SK3 thor-

oughly. As we will see, by looking at non-extensive entropies with these requirements,

it is possible to construct equivalence classes that ultimately allow stratifying entropies

into hierarchies.

Our whole discussion centres in the non-extensive entropies

S+ =
Ω
X

j

⇣

1� p
pj
j

⌘

, and S� =
Ω
X

j

⇣

p
�pj
j � 1

⌘

, (2.3)

which are of the form (2.2) and fulfil SK1-SK3 for any distribution P , whereas SK4 is

partially violated. For the sake of illustrating this latter fact, it is convenient to expand

the two entropies in powers of pj ln pj as:

S+ = �
Ω
X

j

✓

pj ln pj +
1

2!
(pj ln pj)

2 +
1

3!
(pj ln pj)

3 + · · ·

◆

,

and

S� = �
Ω
X

j

✓

pj ln pj �
1

2!
(pj ln pj)

2 +
1

3!
(pj ln pj)

3 � · · ·

◆

,

in both cases, the first term is the Boltzmann-Gibbs entropy, which leads the series.

The higher-order terms become negligible if P is very low, i.e. if the number of available

microstates Ω is much greater than the number of particles. In thermodynamics, this

scenario reproduces at high temperatures. Therefore, in the thermodynamic limit,

entropies (2.3) resemble (2.1) and SK4 is satisfied as well. In other words, entropies

S+, S� and SBG belong to the same equivalence class.

Furthermore, focusing on a microcanonical configuration (E, V,N) for which the

functionals S+ and S� attain their maximum at pj = 1/Ω for every j, we expressly

have:

S± = ±Ω⌥ Ω
1⌥1/Ω ,

9



2. MEASURES OF ENTROPY

expanding in series, we get

S± =
1
X

j=1

(⌥1)j+1 lnj Ω

j!Ωj�1
.

As we have previously mentioned, the contribution of the higher-order terms be-

comes negligible as Ω grows since lnj Ω < Ω
j�1, for j > 1. Hence the quotient

lnj Ω/Ωj�1 ⇠ 0 for Ω � 1. Actually, since SBG = lnΩ as for an equipartition configu-

ration, we get

S± =
1
X

n=1

(⌥1)n+1 Sn
BG

n! exp[(n� 1)SBG]
,

which is graphically presented in Figure 2.1. Note the subtle differences conveyed by S+

and S� with respecto to SBG when the number of available states Ω is approximately

less than 400 (ln 400 ⇡ 6).

0 2 4 6

ln(Ω)

0

1

2

3

4

5

6

7

E
n
tr
o
p
y

SBG

S+

S
−

Figure 2.1: Thermodynamic compatibility of S+ and S
−
- Behaviour of S+, S−

and

SBG in terms of a uniform distribution pj = 1/Ω, for all j. The three entropies coincide

as the number of available microstates grows.

The functionals (2.3) were originally proposed by Obregón56 within the superstatis-

tics framework of effective Boltzmann factors4:

B(E) =

Z

1

0
d� f(�)e��E , � 2 R , (2.4)

10



2.1 Generalised Entropies

where f is an arbitrary distribution, E is the internal energy and � is a Lagrange

multiplier. If the integral is computable, it is easy to find the generalised entropy with

the aid of formula76

g(x) =

Z x

0
dy

↵+ E

1� E/E⇤
, (2.5)

the energy E, with minimum value E⇤, is obtained by inverting B(E) and ↵ is a

constant for determining from the condition g(1) = 0.

As for entropies S+ and S�, the corresponding distributions that feed the integral in

(2.4) are Gamma-like distributions characterising a global fluctuation of temperatures

with initial datum �0 and a parameter pj , eventually identified with the probability,

namely

f±
pj (�) =

1

�0pjΓ
⇣

1
pj

⌘

✓

�

�0

1

pj

◆

±1�pj

pj

exp

✓

� �

�0pj

◆

,

which produce the pair of effective Boltzmann factors

B±
pj (E) = (1± pj�0E)

⌥
1

pj . (2.6)

These generalised Boltzmann factors relate to systems whose cells are in local

equilibrium—�0 remains approximately fixed in each cell—while the system slightly

deviates from global equilibrium. For instance, consider the expansions

B+
pj (E) = e��0E

✓

1 +
1

2
(�0E)2pj +

1

24
(�0E)3(3�0E � 8)p2j + · · ·

◆

, (2.7)

and

B�
pj (E) = e��0E

✓

1� 1

2
(�0E)2pj +

1

24
(�0E)3(3�0E � 8)p2j � · · ·

◆

, (2.8)

observe that as the probability approaches zero the contribution of the higher-order

terms tends to vanish. A similar behaviour occurs for high energies, where the number

of accesible states is much greater than the number of particles, see Figure 2.2.

In the next chapter, we are to survey some of the physical consequences conveyed

by the entropies (2.3) in stochastic dynamical systems. Yet, in recent studies, it has

been discussed their relevance in configurations with few available microstates57. E.g.

a study in molecular dynamics33 shows that the entropies S+ and S� describe the

presence of effective forces that would be negligible in a large-scale layout. The impli-

cations in Bose-Einstein condensation have been discussed with detail in Ref.58. And

11



2. MEASURES OF ENTROPY

E →

B+
pj
(E)

pj = 0.01

pj = 0.34

pj = 0.67

pj = 1.0

E →

B−

pj
(E)

pj = 0.01

pj = 0.12

pj = 0.23

pj = 0.35

Figure 2.2: Effective Boltzmann factors - The figure shows the generalised factors

in (2.7) and (2.8) for fixed �0 and varying pj and E. As the probability decreases the

standard Boltzmann factor is resembled.

the quantum counterparts of entropies (2.3) have been obtained in Ref.8 by generalis-

ing the replica trick—a common technique to compute the partition function in spin

glasses.

2.2 Boltzmann Equivalence Class

As we have suggested, there is an asymptotic equivalence shared by entropies S+, S�

and SBG, which is evident from the series expansions presented in the previous section.

Nonetheless, an asymptotic analysis conduces to a more formal approach and indeed

allows classifying measures of entropy in terms of scale exponents. Such a formalism

was proposed by Hanel & Thurner in Ref.34. In what follows, we shall discuss the key

ideas behind their analysis to show that S+, S� and SBG belong to the same asymptotic,

equivalence class.

Definition 3. Any generalised entropy satisfying the axioms SK1-SK3 is thoroughly

characterised by a pair of scale exponents (c, d) pertaining, respectively, to the asymp-

totic laws

lim
Ω!1

�
g
�

1
�Ω

�

g
�

1
Ω

� = �1�c, 0 < c  1, � 2 R , (2.9)

12



2.2 Boltzmann Equivalence Class

and

lim
x!0

g
�

x1+a
�

xacg(x)
= (1 + a)d, a 2 R , (2.10)

the constants a,� are arbitrary.

It is easy to verify that entropies S+, S� and SBG are characterised by the same

pair of scale exponents (c, d) = (1, 1). We start with the case of SBG and the law (2.9),

lim
Ω!1

1
Ω
ln 1

�Ω
1
Ω
ln 1

Ω

= lim
Ω!1

ln 1
�Ω

ln 1
Ω

= 1 = �1�c ,

which means c = 1. The same for Eq. (2.10),

lim
x!0

x1+a lnx1+a

x1+a lnx
= 1 + a = (1 + a)d ,

thus concluding SBG belongs to the equivalence class (c, d) = (1, 1). As for S+ and Eq.

(2.9), this yields

lim
Ω!1

�
1�

�

1
�Ω

�
1

λΩ

1�
�

1
Ω

�
1

Ω

= 1 = �1�c ,

therefore c = 1. Now, applying Eq. (2.10)

lim
x!0

1�
�

x1+a
�x1+a

xac(1� xx)
= lim

x!0

1�
�

x1+a
�x1+a

xa(1� xx)
= 1 + a = (1 + a)d ,

hence d = 1. We proceed analogously in the case of S� to obtain the same exponents

(c, d) = (1, 1). In addition, S+, S� and SBG share another interesting attribute, they

accept the same continuum representation, as it is discussed in Appendix A.

Some comments are in order. Since c = 1, it is necessary d � 0 to have SK2 fulfilled,

which is satisfied inasmuch as g is a convex function. In the case of entropy SBG this

is a well known fact, but we shall prove that this condition is also satisfied by S+ and

S�.

The convexity of S+ and S� is easily demonstrated as long as the condition

tS(p) + (1� t)S(p0) � S(tp+ (1� t)p0), 0  t  1 ,

is complied.

Beginning with S+, we get

(1� t)
Ω
X

j

p
0p0j
j � t

Ω
X

j

p
pj
j � � ,

13



2. MEASURES OF ENTROPY

such that

� � �
Ω
X

j

⇥

p0j + t(pj � p0j)
⇤p0j+t(pj�p0j) .

Given that inequalities must hold for every pj and p0j , the following is true:

(1� t)p
0p0j
j > tp

pj
j and �  0 ,

therefore we have

�  (1� t)p
0p0j
j � tp

pj
j  0 ,

and S+ is convex. Ditto for S�, we get

tp
�pj
j + (1� t)p

0�p0j
j �

⇥

t0pj + (1� t0)p0j
⇤�t0pj�(1�t0)p0j .

The right-hand member attains zero at t0 = p0j/(p
0
j �pj) whereas the left-hand member

at t = �p
pj
j /(p

0p0j
j � p

pj
j ), that is t0 > t, hence S� is convex. That concludes our proof.

2.3 An Extended Classification for Entropies

Despite S+ and S� are generalisations of SBG, the equivalence class (c, d) = (1, 1)

reveals the three entropies relate to the same asymptotic behaviour. What we are to

discuss below is a generalisation of the formulation introduced by Hanel & Thurner

in Ref.34. While the authors’ classification for entropy depends upon the Boltzmann

generator lnx, we consider the corresponding generators of S+ and S� instead. Ac-

cordingly, we shall introduce the functional generators:

�+(x) = 1� xx, and ��(x) = x�x � 1 . (2.11)

Definition 4. For any pair of scaling exponents (c, d), there exists a factor

� =
1

1 + (d� 1)c
,

and a characteristic function �(x), such that the functional generators �±(x) in (2.11)

define the set of universal entropic forms

g±(x; c, d) = � (�(x)� Γ[d+ 1,↵±(x; c)]e
r) , (2.12)

where

↵±(x; c) = 1� cW (��±(x)), r > 0 ,

14



2.3 An Extended Classification for Entropies

Γ[·, ·] is the incomplete gamma function and W (x) is the product logarithm (Lambert

function).

The function �(x) in Def. 4 is determined by each entropic form g± and the corre-

sponding exponents (c, d). In the case of entropy S+, we have (c, d) = (1, 1) and � = 1,

which conduces to

↵+ = 1�W (xx � 1) ,

having fixed r = 1. In turn, the corresponding characteristic function is

�(x) = 2 (1� xx + exp [W (xx � 1)]) ,

finally, from (2.12), one gets

g+(x, 1, 1) = 1� xx ,

and S+ is directly recovered according to (2.2).

An analogous procedure takes place for S�, whose characteristic function reads

��(x) = 2
�

x�x � 1 + exp
⇥

W
�

1� x�x
�⇤�

,

once again, after simplifying the expression in (2.12), one obtains

g�(x, 1, 1) = x�x � 1 ,

and the entropy S� is recovered.

Remark 3. The formulation in Ref.34 is recovered if the generators (2.11) are at first-

order truncated. I.e. �±(x) = �x lnx+O(� 1
n!(x lnx)

n), which means

W (��±(x)) ! lnx ,

leading to g±(·) ! g(·), where

g(x; c, d) = � [�(x)� Γ[d+ 1, a(x, c)]er] , (2.13)

and a(x; c) = 1� c lnx, r > 0.

Remark 4. The entropic form (2.13) characterised by the equivalence class (c, d) =

(1, 1) yields g(x; 1, 1) = �x lnx, restoring the Boltzmann-Gibbs entropy

�
Ω
X

j

pj ln pj .
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2. MEASURES OF ENTROPY

Entropy c d

p-entropy � S�(P ) =
P

Ω

j

⇣

p
�pj
j � 1

⌘

1 1

p-entropy + S+(P ) =
P

Ω

j

⇣

1� p
pj
j

⌘

1 1

W -exponential Se(P ) =
1�

P
Ω

j exp[rW (p
pj
j �1)]

r�1 0 < r < 1 0

Boltzmann SB(P ) = �P

Ω

j pj ln pj 1 1

Tsallis Sq(P ) =
1�

P
Ω

j pqj
q�1 0 < q < 1 0

Kaniadakis S(P ) = �
P

Ω

j pj
pκj �p�κ

j

2 0  1�  < 1 0

Table 2.1: Generalised entropies of the form (2.2). These entropies are particular cases

of (2.12) as for Def. 4. Note that S±(P ) and SB(P ) are asymptotically equivalent, they

belong to the equivalence class (c, d) = (1, 1).

We are now in a position to classify various entropies, based on either the Boltzmann

generator lnx or the generators (2.11) as well as the equivalence class defined by (c, d).

Some entropies of regular interest are shown in Table 2.1.

Worth mentioning theW -exponential entropy—an outcome proper for this investigation—

represents a generalisation of Tsallis entropy: While the first one is built from generator

g+, the second one is built from g. Further, the average of S+ and S� does assemble a

third entropy:

S0 =

Ω
X

j

p
�pj
j � p

pj
j

2
,

which also belongs to the equivalence class (c, d) = (1, 1) and rapidly converges to SBG,

as manifested by the following expansion

S0 = �
Ω
X

j

✓

pj ln pj +
1

3!
(pj ln pj)

3 +
1

5!
(pj ln pj)

5 + · · ·

◆

,

although in this work we do not put special emphasis into this entropy, we shall reflect

that the analytical features of S+ and S� are inherited to S0.
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2.4 Entropic Stability

2.4 Entropic Stability

The fact that an entropy satisfies the first three Shannon-Khinchin’s axioms does not

inevitably grant it the quality of representing physical systems. The latter is only

assured if the entropy is stable50. That is, the entropy value will not change abruptly

if the point where it has been evaluated is slightly shifted.

Namely, for a given ✏ > 0 there exists a �✏ > 0 such that for two distributions of

probability P and P 0, defined over the number of states Ω, it follows that kP�P 0k1 < �✏,

hence |S(P ) � S(P 0)| < ✏S⇤(Ω), where S⇤ is the maximum of entropy. Therefore it is

said that S is stable.

Lemma 1. The non-extensive entropies S+ and S� are stable for any probability dis-

tribution P .

Proof. Let A±(p; t) be defined as

A±(P ; t) =

Ω
X

n

�

pj � e�t
±

�

✓
�

pj � e�t
±

�

, (2.14)

where ✓(x) is the Heaviside theta function and the stretched exponential functions e±

are such that ln±(e
x
±) = e

ln±(x)
± = x, with ln±(x) = (±1⌥ x±x)/x.

Since the inequality |x✓(x) � y✓(y)|  |x � y| holds, it follows from (2.14) that

|A±(P ; t) � A±(P
0; t)|  kP � P 0k1. As well, the entropies S± are now expressed in

terms of (2.14) as

S±(P ) = �+

1
Z

0

dt [1�A±(P ; t)] , (2.15)

and we arrive at the following relations:

�

�S±(P )� S±(P
0)
�

� =

�

�

�

�

�

�

1
Z

0

dt[A±(P ; t)�A±(P
0; t)]

�

�

�

�

�

�


a±+ln± Ω
Z

0

dt
�

�A±(P ; t)�A±(P
0; t)

�

�

+

1
Z

a±+ln± Ω

dt
�

�A±(P ; t)�A±(P
0; t)

�

� ,

(2.16)
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where a± � � ln±Ω. In particular, if a± � 0 we easily compute the integral in the first

term, whereas the integral in the second term is performed by using (1� e
�P+ln± Ω

± ) 
A±(P ; t) < 1, then we obtain

�

�S±(P )� S±(P
0)
�

�  kP � P 0k1(a± + ln±Ω) + e
�a±
± R±(Ω) , (2.17)

here R±(Ω) are the residual functions from the integration of e�t
± w.r.t. t such that

R±(1) ⇠ 1. Moreover, given that a± � 0, the right-hand side becomes minimum at

a± = � ln± kP � P 0k1, where kP � Pk1 < 1, therefore from (2.17) one gets

|S±(P )� S±(P
0)|

ln±Ω
 �

✓

1 +
R±(Ω)

ln±Ω

◆

� � ln± � , (2.18)

this follows from the fact that �x ln± x is a nonnegative, continuous function in the

interval [0, 1/e±], in consequence kP � P 0k1 < � < 1/e± concluding that there is an

appropriate �✏ for every ✏ such that the right-hand side in (2.18) is a continuous function

approaching 0 as � ! 0. And we conclude the proof.

What Lemma 1 entails, is that S+ and S� enjoy the necessary attributes to truly

represent physical systems. On top of that, given the arguments extracted from super-

statistics, we suggest that any reasonable generalisation of (2.12) depending on x lnx

should nearly coincide with the features already conceived in S+ and S� (or S0).

2.5 Parametric Entropies

Although entropies S+, S� and SBG depend only on the probability distribution, there

are entropy functionals that, in addition, are subject to free parameters. Next, we

survey some of the most representative cases usually found in the literature, to wit:

Sharma-Mittal67, Rényi64 and Tsallis75 entropies. We will see that unlike S+ and S�,

parametric entropies do not have a well-defined thermodynamic limit.

2.5.1 Sharma-Mittal Entropy

This non-extensive entropy has the form S = �
⇣

P

j g(pj)
⌘

, cf. Remark 1, and defines

as:

Sq,r =
1

r � 1

2

6

4
1�

0

@

Ω
X

j

pqj

1

A

1�r
1�q

3

7

5
, q, r 2 R , (2.19)
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by taking the limits (q, r) ! 1 and r ! q we recover Boltzmann and Tsallis entropies,

respectively.

Even Sq,r does not possess the structure of (2.2), we are still entitled to classify it by

the direct application of the asymptotic laws (2.9) and (2.10), yielding (c, d) = (r,+1).

In principle, due to the exponent d is unbounded, Sq,r will satisfy SK1-SK3 whenever

0 < r < 1, but the entropic stability will be dismissed.

To clarify this, consider an equipartition configuration, pj = 1/Ω, then Sq,r becomes

Sq,r =
Ω
1�r � 1

1� r
=

exp[(1� r)SBG]� 1

1� r
, (2.20)

in the limit r ! 1 we recover the standard expression given by Boltzmann, otherwise

the entropy will exponentially separate from SBG as Ω increases, no matter how close

r is from the unit, as we shall prove now.

First, we solve Ω from (2.20) and use SBG = lnΩ to express the Boltzmann-Gibbs

entropy in terms of Sq,r as

SBG = lim
r!1

1

r � 1
ln[1 + (1� r)Sq,r] , (2.21)

expanding in series, we get

SBG = lim
r!1



Sq,r +
1

2
(r � 1)S2

q,r +
1

3
(r � 1)2S3

q,r +
1

4
(r � 1)3S4

q,r + · · ·

�

,

in the limit r ! 1 + ✏, for ✏ arbitrarily small, the former becomes

SBG 6= Sq,1+✏ +
1

2
✏S2

q,1+✏ +
1

3
✏2S3

q,1+✏ +
1

4
✏3S4

q,1+✏ + · · · ,

however, as seen from (2.20), Sq,1+✏ will diverge for ✏ ⌧ 1. Therefore, Sq,r will never

reach the thermodynamic limit, regardless of the value of ✏.

2.5.2 Rényi Entropy

In turn, we shall expand (2.19) in powers of r in the vicinity of the unit sphere:

S↵,r =
lnx

↵� 1
+

(r � 1) ln2 x

2(↵� 1)2
+

(r � 1)2 ln3 x

6(↵� 1)3
+

(r � 1)3 ln4 x

24(↵� 1)4
+ · · · ,

where x =
P

Ω

j p↵j . Taking the limit r ! 1 and substituting x, we have the Rényi

entropy:

S↵ =
ln
⇣

P

Ω

j p↵j

⌘

1� ↵
, (2.22)
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where ↵ is a parameter associated with the degree of convexity; actually those values

outside 0 < ↵  1 could compromise the axioms SK2-SK3. Nonetheless, values ↵ > 1

have a place in the study of magnetic anisotropies28.

This entropy is additive and belongs to the equivalence class (c, d) = (1, 1), which is

rapidly verified by direct application of (2.9) and (2.10) or, alternatively, by maximising

S↵ subject to the normalisation constraint
P

pj = 1, hence obtaining SBG = S↵ = lnΩ.

2.5.3 Tsallis Entropy

As for this entropy, it can be derived in several ways—for the initial proposal see Ref.37.

One of them, as aforementioned, results from the substitution r ! q in Eq. (2.19).

Interestingly, we also obtain this entropy from (2.22) by the following expansion:

S↵ = �
ln
⇣

P

Ω

j p↵j

⌘

r � 1
= �

P

Ω

j p↵j � 1

r � 1
+

(
P

Ω

j p↵j � 1)2

2(↵� 1)
+ · · ·

⇡
↵!q

1�P

Ω

j pqj
q � 1

= Sq , (2.23)

thus yielding the Tsallis entropy iff |
P

pqn � 1| ⌧ 1. Much alike the case of Rényi,

the free parameter q should be restricted to values in (0, 1) to avoid violations to SK2

or SK3. Nevertheless, in some studies on turbulence5, apparently consistent outcomes

have been achieved taking into account values q > 1.

Tsallis entropy belongs to the equivalence class (c, d) = (q, 0). In the limit q ! 1

it resembles SBG and, in general, there is no well-defined thermodynamic limit for this

entropy, as is evident from the following argument. If we maximise Sq subject to the

normalisation condition
P

pj = 1, its maximum value is reached at pj = 1/Ω for all j.

Therefore, for a microcanonical ensemble, we have:

Sq =
Ω
1�q � 1

1� q
=

exp[(1� q)SB]� 1

1� q
, (2.24)

which is nothing but Eq. (2.20). It follows that, by the same reasons already exposed

in Sec. 2.5.1, Sq will diverge from SBG as the number of available states grows, see

Figure 2.3.
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Figure 2.3: Tsallis entropy - The behaviour of Tsallis entropy for different values of q

according to Eq. (2.24). Compare with the thermodynamic compatibility of S+ and S
−

in Fig. 2.1.
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3

Generalised Stochastic Dynamics

In this chapter, we focus on an entropy approach to obtain generalised Fokker-Planck

equations. We are particularly interested in those Fokker-Planck equations derivable

from the non-extensive entropies S+ and S� introduced in Chapter 2. As a result, the

generalised models will include nonlinear terms, which are interpreted as corrections to

the usual mean-field Fokker-Planck equation.

As we have shown in Chapter 2, S+ and S�, as well as SBG, belong to the same

equivalence class, suggesting they are thermodynamically compatible. This is a pleasing

result, in that the generalised Fokker-Planck equations leveraged by S+ and S� will

bring suitable corrections to the mean-field Fokker-Planck equation in a scenario where

the accessible microstates are comparable to the number of particles.

Besides, given that S+ and S� were originally obtained from the superstatistics

framework, the resulting Fokker-Planck equations will inherit the nonequilibrium at-

tributes bestowed to these entropies. We shall discuss the anomalous diffusion the

generalised Fokker-Planck equations exhibit, while accompanying our exposition with

some numerical experiments. We remark that there are diffusion models in biological

sciences, whose structure coincides with that of our models.

3.1 Asymptotic Scaling of Dynamical Distributions

The asymptotic classification introduced in Chapter 2 consists of two scale exponents

(c, d) granted by Eqs. (2.9) and (2.10). These exponents form an equivalence class that

groups entropies into a certain category. However, in case that we are interested in time-
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3. GENERALISED STOCHASTIC DYNAMICS

dependent problems, a third exponent shall be introduced to observe the asymptotic

scaling of time-dependent probability distributions. Those distributions are customarily

studied in stochastic processes, e.g. the transport phenomena described by the Fokker-

Planck equation27,61.

Exploratory generalisations of the Fokker-Planck equations and the corresponding

asymptotic scalings were calculated from some non-extensive entropies in Refs.19,23; in

our opinion a noteworthy drawback enters the picture as those non-extensive entropies

dismiss the stability criterion, cf. Sec. 2.4. In contrast, our purpose in this chapter is

to derive generalised Fokker-Planck equations associated with S+ and S�, which are

stable entropies. To this aim, we need in the first place examining the time-dependent

scaling laws.

Some of these attempts come from the phenomenological classification of transport

phenomena25 following the rescaling of a given distribution ⇢ = ⇢(x, t) by a factor of

the type ⌧�� . In this respect, the distribution ⇢(x, t) subjects to the condition that

⇢(x, t) = ⌧��⇢

✓

x

⌧�
,
t

⌧

◆

(3.1)

remains invariant under rescaling of space x and time t coordinates7,53.

In turn, let J(x, t) be the flux (or probability current), then by condition (3.1) the

following continuity equation must be satisfied:

⌧�(�+1)@t⇢ = �⌧��(c+2)r · J(x, t) , (3.2)

given that equality must hold, we get � = 1/(c+ 1), which suggests the role exponent

c has in the classification of dynamical systems.

In this context, now the exponents (�, c, d) amount to an equivalence class for time-

dependent systems. Accordingly, the equivalence class (�, c, d) =
�

1
2 , 1, 1

�

, which relates

to S+, S� and SBG, suggests the three entropies enjoy the same asymptotic time-scale

attributes, while S+ and S� will modestly separate from SBG at early times of evolution

of a stochastic system.

3.2 Generalised Fokker-Planck Equations

Analogously to the Langevin equation in Brownian motion, the Fokker-Planck equation

models the time evolution problem of a density function associated with the movement
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of a particle governed by stochastic and drifting forces. Depending on the application,

the density may be related to distinct observables, such as the velocity or the position

of a particle.

There are various generalisations of the Fokker-Planck equation, e.g. both the

Kirkwood46 and Rice-Allnatt65 theories of transport phenomena in dense fluids, derive

Chandrasekhar equations17 as generalisations of the Fokker-Planck equation to phase

space. Listing all the generalisations, however, would be challenging and perhaps a

fruitless endeavour. Thus, we shall limit our discussion to those generalisations in the

configuration space, having the form:

@t⇢ = r · [D(⇢)rF [⇢] + �(⇢)⇢rΦ] , (3.3)

where D(⇢) and �(⇢) are the diffusion and effective drift coefficients, Φ(x) is the po-

tential field wherein Brownian particles are assumed to move and F [⇢] is a Lyapunov

functional oftentimes referred as effective density. As we will see, the functional de-

pendence of F [⇢] and �(⇢) shall be determined from the measure of entropy with the

possibility of involving nonlinearities in ⇢.

Instead the Fokker-Planck equation is also expressed in a conservative form by

associating Eq. (3.2) with Eq. (3.3), hence, we identify:

J(x, t) = � (D(⇢)rF [⇢] + �(⇢)⇢rΦ) , (3.4)

on the right-hand member, the first and the second terms convey the diffusion and

drifting responses, respectively. Accordingly, Eq. (3.3) becomes

@t⇢ = �r · J

= �r · (Jdiff + Jdrift) .
(3.5)

As aforementioned, the measure of entropy is the route to obtain the functionals

F [⇢] and �(⇢). In the case of the effective density F [⇢], it is leveraged from the notion of

generalised logarithms36 Λ(⇢), whilst the relation between the diffusion coefficient and

the entropic form leads to the generalised drift coefficient. In turn, we shall introduce

their formal definitions.

Definition 5. Let g(⇢) be the entropic form, as defined in (2.2), and let !(⇢) be the

energy weight, such that

w(⇢) =
⇣

1 +
↵

E⇤

⌘

Z ⇢

0

dx

1� E(x)/E⇤
, (3.6)
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where E is the inverse of the Boltzmann factor (2.4) whose minimum value is E⇤ (if

any) and ↵ = �
R 1
0 dyE(y), then the generalised logarithm is defined as:

Λ(⇢) =
g0(⇢)� ↵

�w0(⇢)
, Λ(1) = 0 , Λ

0(1) = 1 , (3.7)

which results from the maximisation of the functional:

Γ = g(⇢)� ↵⇢� �w(⇢)E . (3.8)

Expressly, the effective logarithm results from the maximisation of the entropic form

subject to conditions of normalisation of the density and conservation of energy, with

↵ and � as Lagrange multipliers.

Definition 6. Let Λ(⇢) be a generalised logarithm, we formally define the effective

density as23:

F [⇢] = ��
Z ⇢

0
dx x @xΛ(x) . (3.9)

Remark 5. The functional in (3.9) may be nonlinear in ⇢ and owns the required

information to ponder the changes in diffusion throughout space. The particular case

F [⇢] = ⇢, resembled by SBG, corresponds to the mean field Fokker-Planck equation.

Definition 7. Let D(⇢) be the diffusion coefficient and �(⇢) the effective drift coeffi-

cient. From Eq. (3.3), we introduce the notations

D⇣(⇢) =
d

d⇢
⇢D(⇢), �⇠(⇢) = �(⇢)⇢ , (3.10)

then the effective drift weight fulfils the relation19:

⇠(⇢) = � ⇣

g00(⇢)
� 0 , (3.11)

such that to preserve the Einstein relation, the temperature is defined by

T =
D

�
. (3.12)

To illustrate how this formalism works, let us consider the Boltzmann-Gibbs en-

tropy. In this case the Boltzmann factor is B(E) = x = exp(��E), then E(x) =

� 1
�
lnx. It follows from Eq. (3.6) that the energy must be weighted by w(⇢) = ⇢ and

the effective logarithm (3.7) is ΛBG(⇢) = � 1
�
lnx. Substituting the effective logarithm

into (3.9), it yields

F [⇢] =

Z ⇢

0
dx x

1

x
= ⇢ .

26



3.2 Generalised Fokker-Planck Equations

As for (3.11) and assuming the diffusion coefficient is constant, we have

⇠(⇢) =
⇣

1/⇢
/ ⇢ ,

therefore, the resulting mean-field Fokker-Planck equation is

@t⇢ = Dr ·



r⇢+ 1

T
⇢rΦext

�

, (3.13)

this equation is commonly referred as the Smoluchowski equation, describing the Brow-

nian motion of classical particles in a fixed potential field. For example, if Φext is the

gravitational potential, we would have a model for self-gravitating Brownian particles,

that is:

@t⇢ = Dr ·



r⇢+ 1

T
⇢rΦext

�

,

r2
Φext = SdG⇢ ,

G is the universal gravitational constant and Sd = 2⇡
d
2 /Γ

�

d
2

�

is the solid angle in d

dimensions. Likewise, the Poisson equation can be generalised by measures of entropy,

we shall not enter into such discussion however.

Further models are obtained from Eq. (3.3) by selecting a particular measure of

entropy and turning on or off the potential field. We list a few of them in Table 3.1.

Model D(⇢) F [⇢] �⇠(⇢) Φ Entropy

Smoluchowski D ⇢ �⇢ Φext SBG

Debye & Hückel D ⇢ �⇢ Φelectric SBG

Diffusion D ⇢ 0 0 SBG

Porous medium D ⇢q 0 0 Sq

Plastino D ⇢q �⇢q Φext Sq

Table 3.1: Some models characterised through the Fokker-Planck equation (3.3).
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3. GENERALISED STOCHASTIC DYNAMICS

3.3 Models with Asymptotic-Boltzmann Behaviour

In this section, we are to obtain the Fokker-Planck equations that correspond to the

non-extensive entropies S+ and S�. We point up these non-extensive entropies are

stable for any probability distribution—regardless of the number of available states—

in contrast with parametric entropies such as Sq and S↵, which exhibit instabilities

and therefore cannot represent experimentally observable quantities. Those Fokker-

Planck equations derived from unstable entropies will undoubtedly inherit the same

unfavourable etiquette, and the dynamics they describe shall be regarded as devoid of

physical meaning.

The differential equations that we are to obtain are nonlinear in ⇢, nonetheless

the linear response is refurbished once the process involved attains the equilibrium or

whenever the number of available states is much greater than the number of particles

playing a role.

To begin with, we recall the effective Boltzmann factors (2.7) and (2.8) univocally

linked to S+ and S�:

B+
⇢ (E) = (1 + ⇢�0E)

�
1

ρ , B�
⇢ (E) = (1� ⇢�0E)

+ 1

ρ ,

solving for E in both cases and substituting into (3.6), we obtain the corresponding

energy weights:

w+(⇢) = ⇢⇢+1 , w�(⇢) = ⇢⇢�1 .

Given the weights w+ and w�, we readily compute the effective logarithms

Λ+(⇢) =
1

�

1� ⇢�⇢ + ln ⇢

1 + ⇢+ ⇢ ln ⇢
, (3.14)

and

Λ�(⇢) =
1

�

1� ⇢⇢ + ln ⇢

1� ⇢� ⇢ ln ⇢
. (3.15)

These logarithms converge to ΛBG for low and high ⇢, i.e. they show an equivalent

asymptotic behaviour as the one already reviewed for S+ and S�, see Fig. 3.1. Hence

we anticipate a smooth transition, from our models to the dynamics described by the

mean-field Fokker-Planck equation, as the process approximates to the equilibrium.
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Figure 3.1: Effective logarithms related to S+, S−
and SBG - The three effective

logarithms tend to converge for low and high densities, whereas smooth differences manifest

at in-between regimes.

To proceed, we now compute the effective densities F+[⇢] and F�[⇢] by substituting

Eqs. (3.14) and (3.15) into (3.9), we obtain

F+[⇢] =

Z ⇢

0
dx

 

1 + x1�x + x1�x lnx

1 + x+ x lnx
� (lnx+ 2)

�

x� x1�x + x lnx
�

(1 + x+ x lnx)2

!

= ⇢+
⇢2

4
+
⇢3

27
+

⇢4

128
+ · · · ,

(3.16)

analogously, we have

F�[⇢] =

Z ⇢

0
dx

 

1� x1+x � x1+x lnx

1� x� x lnx
+

(lnx+ 2)
�

x� x1+x + x lnx
�

(1 + x+ x lnx)2

!

= ⇢� ⇢2

4
+
⇢3

27
� ⇢4

128
+ · · · ,

(3.17)

as expected, the nonlinear terms are monotonically subdominant provided the density

⇢ is normalised and the accompanying coefficients diminish progressively.

The effective drift weight must be obtained from Eq. (3.11), to this aim we assume

the diffusion coefficient is constant, then we obtain:

⇠+(⇢) =
⇢1�⇢

1 + (1 + ln ⇢)2⇢
, ⇠�(⇢) =

⇢1+⇢

1� (1 + ln ⇢)2⇢
, (3.18)
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3. GENERALISED STOCHASTIC DYNAMICS

in the limiting case ⇢ ⌧ 1 both expressions resemble ⇠BG(⇢) = ⇢, as presumed, yet

for high densities we shall stick to (3.18). Note the weight ⇠� blows up as the density

approaches the unit, this flaw shall be removed by introducing a cutoff condition, which

we will discuss later in our numerical computations.

In summary, from Eqs. (3.16)-(3.18) and (3.3) the generalised Fokker-Planck equa-

tions asymptotically equivalent to the mean-field Fokker-Planck equation (3.13) are

@t⇢ = �r · J+ , @t⇢ = �r · J� , (3.19)

where

J+(x, t) = �D



r
✓

⇢+
⇢2

4
+
⇢3

27
+ · · ·

◆

+
1

T

⇢1�⇢

1 + (1 + ln ⇢)2⇢
rΦext

�

, (3.20)

and

J�(x, t) = �D



r
✓

⇢� ⇢2

4
+
⇢3

27
� · · ·

◆

+
1

T

⇢1+⇢

1� (1 + ln ⇢)2⇢
rΦext

�

, (3.21)

for numerical purposes, we shall eventually truncate the diffusion term Jdiff (first term

inside brackets) to third-order in both cases, higher-order terms indeed will barely

contribute to the dynamical picture.

Besides, Eqs. (3.19) suggest is the mass distribution M =
R

d3x ⇢ is a conserved

quantity, then the normal component of each J± will vanish at the boundary, which

turns evident by applying the divergence theorem to (3.19):

@t

Z

V
d3x ⇢ = �

I

S
dS · J± . (3.22)

Contrary, whenever a system is thermodynamically open it will experience the exchange

of energy and matter with the environment, then the analysis of solutions can be put

in terms of a free energy with the form of a Lyapunov functional18,19.

We cannot give closed solutions to the generalised Fokker-Planck equations (3.19),

except when the potential is neglected, in which case only semi-analytical solutions are

stated—as we discuss next. We will also present some numerical solutions for some

idealised physical models in Sec. 3.4.
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3.3 Models with Asymptotic-Boltzmann Behaviour

3.3.1 Anomalous Diffusion

Next, we shall neglect the drift terms in the Fokker-Planck equations (3.19), staying

only with the generalised components of diffusion, that is

@t⇢ = Dr2

✓

⇢+
⇢2

4
+
⇢3

27
+ · · ·

◆

, @t⇢ = Dr2

✓

⇢� ⇢2

4
+
⇢3

27
� · · ·

◆

. (3.23)

An interesting feature these nonlinear diffusion equations possess is the appearance

of an effective drift term conveyed by the carriage of nonlinearities. To illustrate this

fact, observe the effective densities (3.16) and (3.17) are alternatively expressed in the

form

F±[⇢] =

Z ⇢

0
dxR±(x) , (3.24)

hence the generalised currents become:

J±(⇢) = �Dr
Z ⇢

0
dxR±(x)

�

, (3.25)

these currents are each one proportional to the chemical potential21:

J± = �Drµ±(⇢) , (3.26)

even more, provided the chemical potential µ(⇢) comes from the gradient of a function

f [⇢], namely µ(⇢) = f 0[⇢], then by association we identify

f 0
±[⇢] =

Z ⇢

0
dxR±(x) , (3.27)

and finally, from the continuity equation, we obtain:

@t⇢ = r · [DR±(⇢)r⇢] , (3.28)

where we recognise the generalised diffusion coefficients of our models:

D±(⇢) = DR±(⇢) , (3.29)

of course, the standard diffusion coefficient is reconstructed at first-order approximation

from either the effective density in Eq. (3.16) or (3.17). Likewise, the nonlinear diffusion

equation (3.28) are expressed in terms of f±[⇢] as

@t⇢ = Dr · [@⇢⇢f±[⇢]r⇢] , (3.30)
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3. GENERALISED STOCHASTIC DYNAMICS

where

f±[⇢] =
⇢2

2
±
⇢3

12
+

⇢4

108
± · · · , (3.31)

therefore Eq. (3.30) becomes:

@t⇢ = D
⇥

r2⇢+ '(⇢)r⇢
⇤

, (3.32)

where '(⇢) contains all the ⇢-dependent terms in f 00[⇢].

We notice that Eq. (3.32) induces an effective drift term weighted by '(⇢)—which

can be connected to congregation-diffusion models77—while preserving the ordinary

diffusion term. In summary, the contribution of the nonlinearities in Eq. (3.23) stands

for effective drifting forces in a regime of high densities, otherwise, at low densities the

ordinary diffusion will be recovered without picking up the presence of the effective

drift terms.

3.4 Numerical Solutions

We are right away to look at some numerical solutions to the nonlinear Fokker-Planck

equations (3.19) considering specific external potentials Φ = Φext. As it was discussed

in Sec. 3.3.1, the nonlinearities in the diffusion terms of J± convey an effective drift

behaviour that we shall test numerically. Additionally, we compare our generalised

diffusion models with the chemotaxis-aggregation approach studied by P. Turchin77.

To end this discussion, we introduce a transient-diffusion modification into our models,

which agrees with experiment and the respective phenomenological model whenever

long relaxation times are appointed in our non-equilibrium approach.

3.4.1 Effective Equilibrium

We have numerically integrated Eqs. (3.13) and (3.19) (truncating F± to third order) in

1+1 dimensions, see Fig. 3.2. In the figure it is shown the time evolution of a Gaussian

distribution in the presence of an attractive linear potential Φ = �5x in the domain

x 2 [�20, 20] and evolving along the interval t 2 [1, 10], according to the boundary and

initial conditions:

⇢(x = �20, t) = ⇢(x = 20, t) =
e�

100

t

2
p
⇡t

,
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3.4 Numerical Solutions

and

⇢(x, t = 1) =
e�

x2

4

2
p
⇡

,

in our numerical example we have considered the diffusion coefficient D = 1.
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Figure 3.2: Solutions to the generalised Fokker-Planck equations - The drifting

behaviour at different times of ⇢+, ⇢− and ⇢BG, which are solutions to the Fokker-Planck

equations (3.13) and (3.19), respectively, in the presence of a linear external potential. The

density ⇢+ drifts faster than the other solutions, i.e. the system is more sensitive to the

response of the linear potential.

The example in Fig. 3.2 confirms the solution ⇢+ evolves faster than the standard

solution ⇢BG and ⇢�. This latter case becomes resistant to the influence of the attractive

linear potential and spreads slower than the other two cases.

To enlarge our discussion next we shall examine the time evolution of Gaussian

distributions in 2+1 dimensions. In our following numerical experiment, we considered

diffusion coefficients Dx = 5 and Dy = 1/3 along the Ox and Oy directions, and the

external potential Φ(x, y) = �x � y with a drift coefficient � = 1. We integrated

Eqs. (3.13) and (3.19) in a square domain x, y 2 [�10, 10] within the time interval

t 2 [1/2, 15], and set the boundary and initial conditions:

⇢(x = 10, y, t) = ⇢(x = �10, y, t) =
e�

y2

4t
�

25

4t

4⇡t
,
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and

⇢(x, y = 10, t) = ⇢(x, y = �10, t) =
e�

x2

4t
�

25

4t

4⇡t
,

with

⇢

✓

x, y, t =
1

2

◆

=
e�

x2

2
�

y2

2

2⇡
,

the results are shown in Fig. 3.3, where each row corresponds to the solutions ⇢BG, ⇢+, ⇢�,

in that order, and each column relates to the evolution times t = 1
2 , t = 1, t = 3

2 , t = 2.

Observe how the density ⇢� propagates reticently in comparison with the other densi-

ties, while ⇢+ exhibits the fastest diffusion of the three cases.
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Figure 3.3: Solutions to the Fokker-Planck equations in 2+1 dimensions - Each

row from top to bottom corresponds to the solutions ⇢BG, ⇢+ and ⇢
−
, respectively, to

the generalised Fokker-Planck equations (3.13) and (3.19) in 2+1 dimensions at evolution

times t = 1
2
, t = 1, t = 3

2
, t = 2, from left to right, responding to the potential Φ = �x� y.

Observe how the density ⇢
−

evolves slower than the other solutions.
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3.4 Numerical Solutions

As another example, we now consider the same boundary and initial conditions

as for the previous numerical experiment, but this time implementing the potential

Φ(x, y) = �sech
�

x
2 � 2

�

� sechy
2 and the diffusion coefficients Dx = 2 and Dy = 8,

while the drift coefficient is fixed with � = 1. The time evolution of the densities

⇢BG, ⇢+ and ⇢� is displayed in Fig. 3.4. The spread of ⇢� (third row) manifests a

slower diffusion and drift behaviour in contrast with ⇢+ (second row), which reacts

faster than the other densities in the presence of the same potential.
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Figure 3.4: Time Evolution of the solutions to the Fokker-Planck equations

- Similar to the example in Fig. 3.2, each row from top to bottom corresponds to the

solutions ⇢BG, ⇢+ and ⇢
−
, respectively, to Eqs. (3.13) and (3.19) in 2+1 dimensions at

evolution times t = 1
2
, t = 2, t = 3, t = 4, from left to right, responding to the potential

Φ = �sech
�

x
2
� 2

�

� sechy
2
.
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3.4.2 Chemotaxis Aggregation Models

In this section we look at a biological application to describe the random behaviour of

bacterial populations or aggregation movements in ecology, which are modelled by the

chemotaxis-aggregation diffusion equation proposed in Ref.77. This model comprises

random walks of length � with average times ⌧ and a maximum degree of attraction

bias k0, namely:

@t⇢ = r2



D⇢� ⇢2 +
2

3!
⇢3
�

⌘ r2Fagg ,

(3.33)

where  = k0�
2/⌧ and ! stands for the critical density that turns the movement from

attractive into repulsive. We are to compare this equation to the generalised diffusion

equations (3.23) or (3.30). The similitudes between Fagg and F± are direct: The three

effective densities possess the same structure if F± are to third-order approximated,

except Fagg enjoys of free parameters (,!) that are phenomenologically adjusted.

The parameter  in Eq. (3.33), indicates either of two types of movement: if  > 0,

then there is a tendency to move away from conspecifics, otherwise there is a tendency

to move towards conspecifics. Comparing Fagg with F+ and F�, this means that the

effective density F+ characterises an attractive movement between conspecifics for a

fixed critical density ! < 0, whereas F� describes a repulsive movement for ! > 0. In

addition, notice the nonlinear terms in F+ are always positive, thus concentrating high

densities, whereas the nonlinear terms in F� represent low concentration densities. In

practice, however, organisms usually aggregate at low densities.

Furthermore, our equations (3.23) exhibit nonlinear diffusion for regions of space

where the system experiences a sort of faint interactions before reaching the equilibrium,

in other words, those regions where the confined constituents are arranged such that

the resulting interaction forces are not entirely negligible.

The behaviour manifested by each of the effective densities F+, F� and Fagg is shown

in Fig. 3.5. As for the aggregation model, it will account for the diffusion driven by a

congregation movement mode inasmuch as the dynamic level is above that of the usual

diffusion77. This behaviour, however, will tend to transform as the density increases,

which means the movement will retract until its character finally swaps, thus turning

into a weakly congregation mode. The inflection points are regarded as equilibrium

points.
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Figure 3.5: Diffusion levels - Diffusion levels characterised by the effective densities

F+, F−
, Fagg compared with the ordinary level FBG = ⇢. In the case of Fagg, we fixed the

parameters  = �2 and ! = 8/6. Those densities lying in the region above (below) ⇢ will

spread faster (slower) than the usual linear diffusion.

The chemotaxis-aggregation models are worth a broad application in biology and

ecology54. In those contexts, the nonlinear terms appearing in the effective density func-

tions convey effective fluctuating forces resulting from either the interaction between

bacterial populations and the concentration of acrasin—in the case of biology—or be-

tween animal species and their surroundings—in the case of ecology. In both cases, the

phenomenon consists of collective movements throughout a region where environmental

conditions will favour or prevent such transit. However, in the case of our models, the

effect of interactions will vanish as the number of available states becomes much grater

than the number of individuals.

As a numerical example, we have integrated Eqs. (3.23) and (3.33) in 1+1 dimen-

sions, in the spatial domain x 2 [�20, 20] along the evolution interval t 2 [1/2, 10], with

the following boundary and initial conditions:

⇢(x = �20, t) = ⇢(x = 20, t) =
e�

100

t

2
p
⇡t

,

and

⇢

✓

x, t =
1

2

◆

=
e�

x2

2

p
2⇡

,
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the outcomes are displayed in Fig. 3.6. Observe how ⇢agg experiences a retarded

diffusion response in contrast with ⇢+ and ⇢�. The reason is rather for this simulation

we set  = 3, which is the coefficient accompanying the nonlinear term �⇢2, thus

exerting a stronger effective opposition to spreading than the other two cases.

In contrast, see Fig. 3.7, where we have integrated Eqs. (3.23) and (3.33) exactly

the same way as in the previous example, but swapping the sign of . Thus ⇢agg

describes a type of congregation slightly stronger than the one estimated by ⇢+.
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Figure 3.6: Diffusion-aggregation behaviour type I - Evolution of Gaussian distri-

butions according to the chemotaxis models, Eqs. (3.23) and (3.33), at different times.

In this example, we chose  = 3 and ! = 2 as for the model (3.33), these values would

correspond to a scenario with high segregation.
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Figure 3.7: Diffusion-aggregation behaviour type II - Similar to the previous ex-

ample, but fixing  = �3. The diffusion described by the model (3.33) spreads faster than

the other two cases.
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3.4.3 Ultrafast Electron Transport

The scanning ultrafast electron microscopy is a technique efficiently implemented to

observe transient super-diffusion behaviour in the dynamics of electrons and holes in

Si after excitation with a short pulse laser55. This configuration allows observing an

ultrafast electron transport phenomenon, which worths our attention in this section.

As we will see, those early electronic excitation stages are significantly influenced

by the presence of nonlinearities that are beyond the scope of ordinary diffusion mod-

els. In our approach, we shall introduce modifications to one of our equations (3.30)

and compare it with a phenomenological model, which formidably coincides with the

experiment.

Let µ be the electron mobility in the transport of excited carriers with fundamental

charge e. Then the Einstein relation73 becomes D0 = µkBT0/e, where kB is the

Boltzmann constant and T0 is the room temperature (circa 300K). Whenever the excess

energy of excited carriers is taken into account, a transient-diffusion term will emerge:

D+(t) =
µkBT

⇤(0)

e
exp+

✓

� t

⌧

◆

,

where T ⇤(0) is the initial carrier temperature (T ⇤(0) � T0), ⌧ is the relaxation time38

and exp+ is a stretched exponential function, see Appendix B. In fact, one is aware that

exp+(�t/⌧) decays slower than exp(�t/⌧), although both vanish after a brief relaxation

time ⌧ .

Accordingly, we shall explore a transient-diffusion version of Eqs. (3.30) by means

of the substitution D ! D0 +D+(t). As a remark, in the present discussion, we shall

refrain from considering the case related to D� since it performs transient-diffusion

slower than the phenomenological model of Ref.55:

@t⇢c = (D0 +D⇤(t))r2⇢c , (3.34)

⇢c denotes the distribution associated with the carriers and

D⇤ =
µkBT

⇤(0)

e
exp

✓

� t

⌧

◆

.

We solved numerically Eqs. (3.30) and (3.34) implementing the initial data used

in Ref.55, namely, a relaxation time ⌧ = 77ps and initial carrier temperature T ⇤(0) =

4 ⇥ 105K for electrons, and ⌧ = 161ps and T ⇤(0) = 2.7 ⇥ 105K for holes. Here we set
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Figure 3.8: Transient-diffusion in electron transport - Left panel: It is shown

the normalised distributions characterising the transport of excited carriers. Right panel:

Square mean deviation of transient diffusion regarding non-interacting carriers ⇢c and in-

teracting carriers ⇢+.

these same values for Eq. (3.34) except we chose different relaxations times for Eq.

(3.30), since our model already incorporates those attributes related to nonequilibrium

phenomena.

In the case of holes, we have considered an initial temperature T ⇤(0) = 2.16⇥ 105K

and a relaxation time ⌧ = 40ns, i.e. more than three hundred times the relaxation time

adjusted phenomenologically for Eq. (3.34). The results are shown in Fig. 3.8. Notice

the behaviour of both distributions—left panel—as well as the square mean deviation

(SMD)—right panel—are roughly the same. The right panel exhibits a transient super-

diffusion that increases monotonically in both models at early times, less than 250ps,

whereas a steady-diffusion state is attained as time elapses.

The diffusion behaviour described by Eq. (3.30) is a consequence of its high relax-

ation time as compared with those values of ⌧ given for the model in Ref.55. The reason

is that the relaxation parameter ⌧ associates with the time that the sample needs to

reach the equilibrium with the medium after the laser pulse excitation.

Recall that Eq. (3.30) comes from a nonequilibrium background, involving nonlin-

ear forces and other interactions, which have been disregarded in (3.34). Therefore,

our model inherently needs a larger time to reach the equilibrium. Yet, if higher laser

intensities feed the sample, the presence of electron-electron interactions would not be

40



3.4 Numerical Solutions

negligible anymore and the description brought by Eq. (3.34) might fall into controver-

sial results. Indeed, our model carries enough flexibility to describe a nonequilibrium

stage at prior times, converging onto the region of steady-states for large periods of

relaxation time.
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4

Optimisation in Information

Theory

The inclusion of non-extensive entropies in information theory has gained recognition

in recent decades. Nonetheless, those parameter-dependent entropies frequently receive

more attention than those depending exclusively on the probability distribution. In this

chapter we study a set of measures of lengths for prefix-free codes based on the non-

parametric, non-extensive entropies S+ and S�. We will show that, by implementing a

variational method, one is able to find the optimal codeword lengths that permit for-

mulating generalised noiseless coding theorems associated with each of these measures

of entropy, implying the resulting average lengths are bounded from below and above.

If our scheme truncates to first-order, Shannon’s framework is promptly recovered.

Otherwise, there exists a regime where our proposal might produce more efficient data

compression than that the standard theory estimates. Besides, we shall discuss how

to apply the variational method to attain optimal lengths given generic measures of

entropy.

4.1 The Standard Results

In 1948, Claude Shannon published the first rigorous study on data compression66,

setting the modern foundations of information theory. He analysed an alphabet of D

symbols produced by a collection of uncorrelated random sources of letters to quantify

to what extent could one compress an arbitrary number of emitted symbols. Shannon

43



4. OPTIMISATION IN INFORMATION THEORY

found the entropy itself limits any process of data compression, such that a codeword

is optimal if its average length attains the entropy. In other words, this result led

to quantify the average amount of information—or absence of redundancy—by simply

measuring the entropy.

However, as we have seen in previous chapters, there are numerous measures of

entropy, in such a way that one would think data compression could reach absurdly

small sizes according to the entropy of our interest. In principle, it is possible as long

as the measure of entropy is stable and fulfils at least SK1-SK3. As far as we know,

there are only three measures of entropy that satisfy such conditions: S+, S� and SBG.

Even the Rényi entropy S↵ fails to be stable, despite it belongs to the equivalence

class (c, d) = (1, 1), hence any compression process leveraged by S↵ must be cautiously

examined.

In what follows, we shall slightly modify the notation that we have formerly adopted

to refer to measures of entropy. For the sake of consistency with the notation usually

found in the literature, henceforth we shall represent the entropy with the letter H

instead of S, used in physics. Moreover, in this context the Boltzmann-Gibbs entropy

is known as the Shannon’s entropy:

HS
D(P ) = �

Ω
X

j

p(xj) lnD(p(xj)) ,

where D is the dimension of the alphabet and Ω the number of states. In information

theory, one used to draw on an alphabet of two symbols, 1s and 0s—known as bits—

hence D = 2. Yet we shall stick to the general case throughout our discussion unless

another thing is properly specified.

Likewise, the nonextensive entropies S+ and S� are now expressed as:

H+
D(P ) = �

Ω
X

j

p(xj) ln
+
D(p(xj)) , H�

D(P ) = �
Ω
X

j

p(xj) ln
�

D(p(xj)) , (4.1)

where ln± are generalised logarithms (see Appendix B).

The entropies (4.1) demand another generalised quantities, as we will see below.

For instance, we cannot find effective coding theorems in terms of these measures if the

constraint
Ω
X

j

D�l(xj)  1 ,
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4.1 The Standard Results

is imposed to minimise the corresponding codeword length, therefore, leading to the

necessity of a generalised constraint, as stated in Prop. 1.

Intuitively, one could ask to what degree could the standard information theory26

be modified by implementing the information measures (4.1), given Fig. 2.1 tells in

advance the existence of upper and lower bounds on the Shannon’s entropy in certain

regions of Ω.

In turn, we shall present coding theorems in terms of the non-extensive entropies

(4.1). We will apply a variational method to find the average length L that a codeword

is allowed to attain when the data compression is subject to a given constraint. This

constraint is not arbitrary. As we will show, there is an intertwining between the

measure of entropy and the minimisation constraint so that the entropy preserves its

functional structure.

For the sake of simplicity, we will assume the communication channel is perfectly

noiseless, that is the information between two points A and B is transmitted without

any loss. In addition, we will suppose those transmitted codes are prefix-free, i.e. there

is no a single codeword which is the initial segment of any other available codeword in

the set generated by a random source X.

The purpose of our discussion is to find codes that minimise a monotonic increasing

function of the form

L = '�1

0

@

Ω
X

j

p(xj)'(l(xj))

1

A , (4.2)

where p(xj) is the probability of finding the codeword xj , l(xj) 2 Z+ is a function that

relates a codeword xj to its length, and '(l(xj)) : R+ ! R+ is the Nagumo-Kolmogorov

function, which specifies the cost of managing a sequence of length l(xj).

The quantity defined in (4.2) is called the average length for the cost function ', in

accordance with Campbell12, although for brevity we refer to it simply as the average

or mean length.

A number of cost functions ' have been studied in Ref.2. Still for most generic

entropies, we simply have that

'(z) = z .
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In the case of Shannon’s entropy, for instance, the average length

LS = '�1

0

@

Ω
X

j

pS(xj)'(lS(xj))

1

A

=
Ω
X

j

pS(xj)lS(xj)

(4.3)

is optimised via the functional

JS = LS + �KS , (4.4)

where � 2 R is a Lagrange multiplier and the constraint

KS =
Ω
X

j

D�lS(xj)  1 , (4.5)

is the Kraft-McMillan inequality22, accounting for the fundamental control function in

the optimisation of this case.

To solve the optimisation problem in (4.4), one has to vary JS with respect to lS(xj)

and equate to zero, recalling that the rule to find the extrema of (4.4) must be the same

for every xj 2 X. We readily outperform the calculation to obtain:

l⇤S(xj) = � lnD(pS(xj)) , (4.6)

the notation * indicates that the average length is optimal, to wit, it solves the problem

(4.4).

By substituting lS into (4.3) we recover Shannon’s entropy,

LS =

Ω
X

j

pS(xj)lS(xj)

= �
Ω
X

j

pS(xj) lnD(pS(xj))

= HS
D(P ) ,

(4.7)

which means the measure of entropy determines the average optimal length. This is the

original result derived by Shannon66 which places entropy as a fundamental measure

of information, in that it quantifies the length a codeword should have to achieve its

optimal compression without loss of information.
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4.2 Effective Noiseless Coding Theorems

4.2 Effective Noiseless Coding Theorems

In turn, we are to proceed in an analogous way but using the measures of entropy

(4.1). Nonetheless, a generalisation to (4.5) shall be devised to optimise the mean

lengths related to H±
D(P ).

This is a striking aspect of our scheme, for the quantity to be minimised will grant

a different rate of data compression than that estimated in the standard theory. Hence,

in our case, the problem consists of choosing codes that become minima when they are

subject to the quantities in the following definition.

Proposition 1. The entropies H±
D(P ) define functionals of the class (4.4)

J± = L± + �K± , (4.8)

where � is a Lagrange multiplier and the average lengths L± are univocally determined

by the constraints:

K± =
Ω
X

j

1
X

j

a±(j)Γ
h

j + 1,� lnD�l±(xj)
i

 const. , (4.9)

the individual lengths l±(xj) will eventually be related to the probability distributions

p±(xj), the real coefficients a±(j) are given in Appendix B and

Γ(y, x) =

Z

1

x
dz zy�1e�z ,

is the incomplete gamma function.

Proof. Since we are able to express (4.1) in the generalised form, the corresponding

Nagumo-Kolmogorov function is '(z) = z. Consistently, the average lengths in (4.8)

read as

L± =
Ω
X

j

p±(xj)l±(xj) . (4.10)

To find the optimal individual lengths l⇤±(xj), we now differentiate (4.8) with respect

to l±(xj), that is:

@J±
@l±(xj)

=
@L±

@l±(xj)
+ �

@K±

@l±(xj)
, (4.11)

47
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provided we are looking for a global minimum, the equality must vanish term to term,

therefore

@L±

@l±(xj)
=

Ω
X

j

p±(xj)

= �� @K±

@l±(xj)

= � lnD
Ω
X

j

exp± [�l±(xj) lnD]

=

Ω
X

j

exp± [�l±(xj) lnD] ,

(4.12)

where the Lagrange multiplier has been selected as � = 1
lnD and exp± are stretched

exponential functions (see Appendix B).

In addition, the equality in (4.12) is satisfied for all xj 2 X iff

l⇤±(xj) = � ln±D (p±(xj)) .

At this point it should be evident that we have obtained two optimal individual lengths

as given by each probability distribution p±(xj), for that reason we have appended the

label ± to l⇤±(xj), since the lengths and the distributions are univocally related. That

completes the proof.

Remark 6. The non-extensive entropies H±
D bound the expected lengths L± from above

and below, which is consistent with the standard formulation. Thus, we are entitled to

introduce the coding Theorems 1 and 2. However, before formally introducing these

theorems, some comments deserve attention:

1. Note that the individual lengths l± and the probabilities p± are determined by each

other, therefore the constraints (4.9) are not arbitrary, but must be constructed

so that measures of entropy are recovered at the optimal points.

2. We also remark the standard theory is straightforwardly recoverable from our

scheme. Notice the Kraft inequality (4.5) is obtained by truncating K± at first
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order, that is:

K± = a±(0)
Ω
X

j

D�l±(xj)

+ a±(1)

Ω
X

j

Γ[2,� ln[D�l±(xj)]

+ a±(2)
Ω
X

j

Γ[3,� ln[D�l±(xj)] + · · · ,

(4.13)

with a±(0) = 1.

Equivalently, the limit Ω ! 1 means the system will possess low probabilities

due to a high number of accessible states, in that case our proposal is asymptotically

equivalent to Shannon’s theory, symbolically expressed as pS(x) = limΩ!1 p±(x).

Theorem 1. Let D be the number of symbols in an alphabet, then the expected lengths

defined by Eq. (4.10) and the entropies H±
D(P ) satisfy the relation

L± � H±
D(P ) ,

with equality iff l⇤±(xj) = � ln±D (p±(xj)) for every xj in X.

Proof. We begin by writing the difference between the expected lengths L± and the

entropies H±
D , we readily obtain:

L± �H±
D(P ) =

Ω
X

j

p±(xj)l±(xj)

+

Ω
X

j

p±(xj) ln
±
D (p±(xj))

=
Ω
X

j

p±(xj)
⇥

l±(xj) + ln±D (p±(xj))
⇤

� 0 ,

(4.14)

necessarily leading to

l±(xj) � � ln±D (p±(xj)) ,

given that every l±(xj) is an integer. Then, the equality is attained iff the individual

lengths l±(xj) = l⇤±(xj) are optimal. And the theorem is demonstrated.
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Furthermore, the entropies H±
D amount to a lower bound on the expected lengths

L±, yet as we are to show these lengths are within one dit of the lower bound as well.

Theorem 2. Consider an alphabet of D symbols and a random source distribution X.

Let l±(xj) be the optimal individual lengths that solve the optimisation problem (4.8),

where the associated average lengths are defined by Eq. (4.10). Then, the following

relation is true:

H±
D(P )  L± < H±

D(P ) + 1 . (4.15)

Proof. According to Theorem 1, the simple choice of codeword lengths

l⇤±(xj) = � ln±D (p±(xj))

leads to L⇤
± = H±

D . Notwithstanding, to assure that every l±(xj) is an integer, we shall

take

l±(xj) =
⌃

� ln±D (p±(xj))
⌥

in order that the individual lengths fulfil

� ln±D (p±(xj))  l±(xj) < � ln±D (p±(xj)) + 1 . (4.16)

Thereupon, we multiply each member by p±(xj) and sum over all xj , which leads to

�
Ω
X

j

p±(xj) ln
±
D (p±(xj)) 

Ω
X

j

p±(xj)l±(xj)

< �
Ω
X

j

p±(xj) ln
±
D (p±(xj))

+

Ω
X

j

p±(xj) ,

(4.17)

then from Eqs. (4.1) and (4.10) together with the normalisation of the probability, we

finally arrive at the expression

H±
D(P )  L± < H±

D(P ) + 1 , (4.18)

and we have the theorem.

We would like to draw attention that the expected lengths L± satisfy

H±
D  L± < H±

D + 1 ;
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nonetheless, those optimal codes prescribed by H±
D can only be better than those

prescribed by L±, therefore one addresses Theorem 2.

To clarify how our formulation works, we generated some random processes with

uncorrelated sources that we shall use as datasets to compute the average lengths L±

as well as LS , cf. Figure 4.1 and Table 4.1.

Events 20 150 300 600

L⇤
S [bits] 4.60 7.42 8.45 9.45

L⇤
+ [bits] 4.10 7.30 8.38 9.40

L⇤
� [bits] 4.75 7.49 8.51 9.47

Table 4.1: Chart of optimal lengths varying the number of random events, or number of

codewords composing a dataset.
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Figure 4.1: Uncorrelated random processes - Left panel: A random process with

20 events. Right panel: A random process with 150 events. The x axis represents the

individual events xj whose probabilities p(xj) were randomly assigned.

Considering the random process in Fig. 4.1, with a binary alphabet D = 2, we

have obtained an average length L⇤
S=4.6bits, whereas the average lengths regarding
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entropies H+ and H� are L⇤
+=4.1bits and L⇤

�=4.75bits, respectively. That means that

a more efficient transmission process would result from the entropy H+ in comparison

to a code compressed via HS . However as the number of random events increases, the

lengths L⇤
± tend to coincide with L⇤

S . For instance, with respect to the process with 150

events in Fig. 4.1, the standard average length is L⇤
S=7.42bits, while L⇤

+=7.3bits and

L⇤
�=7.49bits, hence diminishing the difference between L⇤

S and L⇤
±, see also Table 4.1:

The more random events the less difference between the three average lengths. This

comes as no surprise since entropies H± converge asymptotically to HS .

4.3 Effective Channel Capacities

It would appear that to increase the capacity of a communication system, it would be

sufficient to increase the number of signalling events that move freely from Alice to

Bob. That is, why not arbitrarily transmit various packets of voltages per symbol over

a communication channel? In practice, this conveys unfavourable consequences. As

Alice increases the number of emitted signals, Bob is left with other difficulties. The

reason is all the signals Alice casts are constrained by the unavoidable surrounding

noise. So that Bob retrieves the proper signals, the difference between the signal events

sent by Alice must be higher than the noise level.

To skirt this problem, the notion of channel capacity becomes fundamental to know

the maximum amount of symbols per unit time, n, that is emitted and the many

differences per symbols, s, that can be selected for the message space sn. Indeed, those

codewords Bob computes generate a probability distribution living in the message space

that the decision tree sn spans.

Definition 8. Let P and Q be different probability distributions. The amount of in-

formation shared between them is measured through the mutual information

I(P,Q) = HD(Q)�HD(Q|P ) ,

where HD(Q|P ) is the conditional entropy. Then the channel capacity is defined as:

C = max
P

I(P,Q). (4.19)

This is the standard definition of channel capacity and is interpreted as the maxi-

mum rate at which the signal is reconstructed in terms of a given measure of entropy.
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4.3 Effective Channel Capacities

We shall proceed considering the entropies (4.1), which bring novel bounds on the

channel capacity due to Shannon.

4.3.1 Binary Symmetric Channel

In some circumstances we obtain the same outcome given two different inputs, making

the signals looking ambiguous. As a first approach to trim this problem, a possible

choice of unambiguous inputs is realisable with a binary symmetric channel (BSC),

which allows the signal reconstruction with a negligible rate of error.

The BSC is one the simplest models of communication channels with errors. Each

input is complemented with probability p, see the diagram below.

p

p

1− p

1− p
1 1

0 0

If an error occurs, an input with value 1 (0) will be regarded as 0 (1), undermining

our ability to identify those error bits and leaving us with set of non-trusted messages.

For that reason, we shall assume that every bit Alice sends has a negligible probability

of error. Henceforth all operations are binary, i.e. D = 2, so we prefer to drop this

label from our notation.

To calculate the channel capacity of a BSC, first note the mutual information I(P,Q)

is bounded by22

I(P,Q)  1�H(P ) , (4.20)

observe that the equality is attained whenever a uniform distribution feeds the input.

Accordingly, from (4.19) we easily obtain

CBSC = 1�H(P ) , (4.21)

and we have the general expression for the channel capacity of a BSC.

In particular, note that if Shannon’s entropy quantifies the channel capacity (4.21)

of a BSC communication system, where P = {p, 1� p}, it yields

CS
BSC = 1 + p ln p+ (1� p) ln(1� p) , (4.22)
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Figure 4.2: Capacity of a BSC - The figure shows the capacity of a BSC in terms

of the measures of entropy H+(P ), H−(P ) and HS(P ). The entropy H−(P ) estimates a

hardly greater capacity than that obtained from Shannon’s entropy.

where logarithms are base 2.

We proceed in a similar fashion to determine the channel capacities of a BSC in

terms of the entropies H±(P ), namely:

C+
BSC =

p
2� pp � (1� p)1�p

p
2� 2

, (4.23)

and

C�

BSC =
2
p
2� p�p � (1� p)�(1�p)

2
p
2� 2

, (4.24)

where we normalised the capacities C±
BSC to be comparable with the standard estimation

CS
BSC.

The capacities C+
BSC, C

�

BSC and CS
BSC have been plotted in Fig. 4.2. Observe that

C�

BSC � CS
BSC with equality at the points p =

�

0, 12 , 1
 

, otherwise C�

BSC exhibits a

modest improvement with respect to CS
BSC, indicating a tentative upper limit above

Shannon’s. Consistently, at p = 1
2 the three capacities coincide, since at this point

occurs the highest degree of uncertainty, resembling the scenario in which Bob cannot

form any judgment from the received bits.
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4.3 Effective Channel Capacities

4.3.2 Binary Erasure Channel

We shall survey right away another scenario in which a fraction ↵ of bits is erased or

lost during the transmission process, yet the receiver is aware of those bits. This is

known as a binary erasure channel (BEC). As for the BSC, there are two entries, but

now there will be three exits:

0 0

1 1

∗

α

α

1− α

1− α

This diagram represents an input X, which emits 0s and 1s with probabilities p

and 1� p, correspondingly. Whereas the output delivers 0s, 1s or ⇤s with probabilities

(1�↵)p, (1�↵)(1�p) or ↵, in that order. Furthermore, if the source emits either 0s or

1s, the probabilities of receiving these bits without errors are (1�↵)p and (1�↵)(1�p),

otherwise the probabilities that these bits swap across the communication channel are

p↵ and (1� p)↵.

The channel capacity of a BEC with an erasure probability ↵, is calculated as:

CBEC = max
P

H(X) +H(Y )�H(X,Y ), (4.25)

where H(X,Y ) is the joint entropy computed in terms of the joint distributions, which

alternatively can be done via transition matrices39.

Once more, we start by computing the capacity (4.25) in terms of Shannon’s entropy,

we obtain:

CS
BEC = max

P
(1� ↵)HS(P ), P = {p, 1� p}, (4.26)

since the entropy attains its maximum for a uniform distribution, p = 1
2 , the channel

capacity of the BEC reduces to CS = 1�↵, a well known result in Shannon’s theory26.

It shall not escape attention, that the channel capacities (4.22) and (4.26) are com-

pletely additive, that is, given the distributions p1 and p2, we have:

CS(p1p2) = CS(p1) + CS(p2) , (4.27)
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a direct result that follows from

CS(p1p2) = maxpX1,X2
I(X1, X2;Y1, Y2) , (4.28)

with

I(X1, X2;Y1, Y2) = I(X1, Y1) + I(X2, Y2) . (4.29)

Although this property will not be satisfied by the non-extensive entropies H±(P ),

in which case the additivity is asymptotically achieved, rather we are not interested in

such aspects but precisely in the non-additive consequences and possible applications,

if any.
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Figure 4.3: Capacity of a BEC - Channel capacity of a BEC, for measures of entropy

that depend only on the distribution P , namely: H+(P ), H−(P ) and HS(P ).

We shall now compute the channel capacity of a BEC addressing the information

measures (4.1). Similar to the BSC case, we will have to normalise the corresponding

capacities to compare with the standard result (4.25). We get:

C+
BEC = max

P

1� ↵↵ +H+(P )�H+(P↵)

2�
p
2

, (4.30)

and

C�

BEC = max
P

↵�↵ � 1 +H�(P )�H�(P↵)

2
p
2� 2

, (4.31)
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as it happens for Eq. (4.26), here the maximum will be attained at p = 1
2 .

The channel capacities CS
BEC and C±

BEC have been plotted in Fig. 4.3. Interestingly

C±
BEC behave such that the three measures coincide at the points p =

�

0, 12 , 1
 

, although

the character of C±
BEC flips at p = 1

2 , which shows the flexibility of our approach.

We interpret the flipping behaviour of C±
BEC as follows. Note that C�

BEC will estab-

lish an upper bound on CS
BEC as long as the fraction of errors ↵ does not dominate the

communication channel, i.e. < 50%. Otherwise there is a tradeoff and C�

BEC will be

slightly reduced immediately after the threshold at p = 1
2 . For the same reason, the

lower bound suggested by C+
BEC, will eventually be promoted to an upper bound, with

respect to CS
BEC, when the ratio ↵ dominates the channel (> 50%).

4.4 Parametric Average Lengths

The application of the variational method discussed in Secs. 4.1 and 4.2 is not limited

to those entropies of the form (2.2). The same method works in those entropies such

as the Rényi entropy. Below we are to illustrate how this method is applied to the

Tsallis and Rényi entropies to find their optimal lengths. However, we will not derive

their corresponding coding theorems, which have been studied in depth in Refs.11,60,

although following an approach different than that exposed here.

4.4.1 Tsallis Average Length

The measure of entropy proposed in Refs.37,75, known as the Tsallis entropy, is a

parameter-dependent entropy of the form (2.2), it reads

HT
D(P ) = �

Ω
X

j

p(xj) ln
q
D(p(xj)), q > 0, (4.32)

where the q-logarithm function is defined as

lnq(x) =
xq�1 � 1

q � 1
if q 6= 1 and x > 0 ;

if q = 1 the standard logarithm function is retrieved and if x  0 the function becomes

undefined.

We are to show how the variational method is applied to find the optimal length

L⇤
T in the context of Tsallis statistics. Nonetheless, as it was discussed in Sec. 4.2, we

need the proper constraint.
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4. OPTIMISATION IN INFORMATION THEORY

Proposition 2. Let D be the number of symbols in an alphabet. For the measure of

entropy HT
D(P ) there exists a functional of the form:

JT = LT + �KT , (4.33)

where � is a multiplier to determine and LT is an average length univocally related to

the entropy iff the constraint is defined as:

KT =

Ω
X

j

⇥

1 + (1�Dq�1)lT (xj)
⇤

1

q�1  const. , q > 0 , (4.34)

where lT (xj) is the length of the codeword xj.

Proof. We shall prove that if LT is optimised subject to the constraint (4.34), we are

led to the Tsallis entropy. Since the entropy (4.32) is of the form (2.2), the Nagumo-

Kolmogorov function is �(z) = z. Hence, we write down the functional (4.33) as:

JT =
Ω
X

j

pT (xj)lT (xj) + �

Ω
X

j

⇥

1 + (1�Dq�1)lT (xj)
⇤

1

q�1 , (4.35)

varying JT w.r.t. lT (xj) and equating to zero, we have that for every xj

pqT (xj) = � lnq D
⇥

1 + (1�Dq�1)lT (xj)
⇤

q

q�1

=
⇥

1 + (1�Dq�1)lT (xj)
⇤

q

q�1 ,
(4.36)

having selected � = 1/ lnq D. Elevating both members to q � 1:

pq�1
T (xj) = 1 + (1�Dq�1)lT (xj) . (4.37)

We want to solve for lT (xj) from the last equation. To proceed, notice this individual

length must be optimal at this point, therefore we get:

l⇤T (xj) = �pq�1
T (xj)� 1

Dq�1 � 1
= � lnqD(pT (xj)) , (4.38)

finally, substituting l⇤T (xj) into the average length:

L⇤
T =

Ω
X

j

pT (xj)l
⇤
T (xj)

= �
Ω
X

j

pT (xj) ln
q
D(pT (xj))

= HT
D(X) ,

(4.39)

thus, recovering the entropy (4.32). That concludes the proof.
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4.4 Parametric Average Lengths

Remark 7. Looking at the constraint (4.34), if q ! 1, then KT ! KS =
P

Ω

j D�lS(xj),

and Eq. (4.5) is retrieved.

The variational method is applied to obtain the optimal expected lengths in view

of a given measure of entropy and subject to an adequate constraint. This constraint

is not arbitrary since the optimal length must correspond to the entropy, on account of

the optimal individual lengths l⇤(xj). For a code to be minimised in view of the Tsallis

statistics, the suitable constraint to impose is (4.34), so that coding theorems can be

stated.

Following an algebraic method, the authors in Ref.60 proved the bounds on LT are

given in terms of the measure of entropy (4.32), leading to the corresponding coding

theorems in Tsallis statistics. We recall that HT
D(P ) is unstable.

4.4.2 Rényi Average Length

We shall discuss the corresponding average lengths to the Rényi entropy64

HR
D(X) =

1

1� ↵
lnD

0

@

Ω
X

j

p↵(xj)

1

A , ↵ > 0 . (4.40)

As we discussed in Chapter 2, this entropy does not adopt the form (2.2), rather it

belongs to the family of entropies expressed as

HD = �D

0

@

Ω
X

j

g(pj)

1

A ,

see Remark 1.

Proposition 3. For the measure of entropy HR
D(P ) there exists a functional of the

form:

JR = LR + �KR , (4.41)

where � is a multiplier to determine and LR is an average length univocally related to

the entropy iff the constraint is defined as:

KR =
Ω
X

j

D�lR(xj) , (4.42)

where lR(xj) is the length of the codeword xj.

59



4. OPTIMISATION IN INFORMATION THEORY

Proof. To apply the variational method, we must choose the Nagumo-Kolmogorov func-

tion '(l(xj)) = D�lR(xj), with � > 0. Therefore, from Eq. (4.2), the length to optimise

reads11

LR =
1

�
lnD

0

@

Ω
X

j

pR(xj)D
�lR(xj)

1

A , (4.43)

substituting into Eq. (4.41), we obtain:

JR =
1

�
lnD

0

@

Ω
X

j

pR(xj)D
�lR(xj)

1

A+ �

Ω
X

j

D�lR(xj) , (4.44)

which we shall variate w.r.t. lR(xj). Even more, provided we are looking for a global

minimum, @JR/@lR(xj) = 0 implies every term on the right-hand side of (4.44) must

vanish independently, hence

pR(xj)D
�lR(xj)

 �

= � ln(D)D�lR(xj), (4.45)

where

 � =

Ω
X

j

pR(xj)D
�lR(xj) (4.46)

with � = 1/ lnD.

To find the definite expression for the optimal lengths l⇤R(xj) comprised in the

relation (4.45), we consider Hölder’s inequality:

0

@

Ω
X

j

p(xj)D
�l(xj)

1

A

�
1

β
0

@

Ω
X

j

p↵(xj)

1

A

1

1�α


Ω
X

j

D�l(xj)  1 , (4.47)

with the condition ↵ = (1 + �)�1. Notice the sum in the first factor on the left-hand

side is exactly  � . Accordingly, we get:

 � 

0

@

Ω
X

j

p↵R(xj)

1

A

1

α

, (4.48)

and from Eq. (4.45) we also find

 � = pR(xj)D
(1+�)lR(xj) , (4.49)

replacing this expression into (4.48), yields

pR(xj)D
(1+�)lR(xj) 

0

@

Ω
X

j

p↵R(xj)

1

A

1

α

, (4.50)
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4.4 Parametric Average Lengths

taking the logarithm on both sides and dividing by lnD, one obtains

lR(xj) + ↵ lnD pR(xj)  lnD

Ω
X

j

p↵R(xj) , (4.51)

with equality iff lR(xj) is the optimal length l⇤R(xj), therefore, we obtain the optimal

codeword lengths:

lR(xj)
⇤ = � lnD

 

p↵R(xj)
P

Ω

j pR(xj)↵

!

, (4.52)

coinciding with the result given in Ref.11.

The next step is verifying that l⇤R(xj) is in truth optimal. One merely substitutes

(4.52) into the mean length (4.43) to recover the Rényi entropy, that is:

1

�
lnD

0

@

Ω
X

j

pR(xj)D
�lR(xj)

⇤

1

A =
1

�
lnD

0

@

Ω
X

j

p↵R(xj)

1

A

+
1

�
lnD

0

@

Ω
X

j

p1�↵�
R (xj)

1

A

= (1� ↵)HR
D(X) + ↵HR

D(X)

= HR
D(X) ,

(4.53)

and we conclude the proof.

Remark 8. Alternatively, since the optimal mean length L⇤
R must coincide with the

measure of entropy HR
D(X), it follows that Eq. (4.43) is also obtained through a map

between the Tsallis and Rényi average lengths LT ! LR as:

L⇤
R =

lnD
⇥

1 +
�

D↵�1 � 1
�

HT!R
D

⇤

1� ↵

=
lnD

h

1 +
�

D↵�1 � 1
�
P

Ω

j pT!R(xj)l
⇤
T!R(xj)

i

1� ↵

=
lnD

h

P

Ω

j p↵R(xj)
i

1� ↵

= HR
D(X),

(4.54)

entitling a map between lT (xj) and lR(xj) by means of the relations

l⇤R(xj) =
lnD

⇥

1 +
�

D↵�1 � 1
�

l⇤T!R(xj)
⇤

1� ↵
, pT ! pR,

l⇤T (xj) = �D�(q�1)l⇤R!T (xj) � 1

Dq�1 � 1
, pR ! pT .

(4.55)
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4. OPTIMISATION IN INFORMATION THEORY

It is easily proved that LR � HR
D(X), which leads to the corresponding coding

theorems, Refs.11,78. Despite we shall not further inspect such discussion, we observe

from our previous exposition that to each information measure corresponds a specific

optimal length, so that there exists a code whose mean length becomes optimal iff it

attains the entropy. For that reason, one shall not expect two individual lengths l(xj)

coincide if they come from a different measure of entropy, unless a good approximation

or a particular case have been fetched.

Furthermore, the standard average length
P

Ω

j p(xj)l(xj) can be seen as a linear

combination of the individual lengths l(xj) weighted by the corresponding probabili-

ties p(xj). Besides, in the standard formulation, the lengths obey l⇤(xj) = � lnD p(xj),

meaning the codeword lengths will be long (short) for low (high) probabilities. Nonethe-

less, in general, the cost of using a codeword is not necessarily a linear function of its

length, e.g. H±
D(X) or HR

D(X). Indeed, there are weights that privilege particular

lengths such as D�lR(xj) in (4.43), which encompasses an exponential law for the dis-

tribution of the lengths and, ultimately, raising the importance of those terms with low

probabilities.
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5

Superstatistical Measures of

Complexity

In this chapter, a possible generalisation to the algorithmic theory of information is

examined using the superstatistical formulation already studied in Chapter 2. The

proposal is simple: It consists of relating the concept of generalised entropy to its

corresponding complexity measure—also known as algorithmic entropy. Nevertheless,

entropy as a measure of information must meet the stability criterion50 to become

eligible as a suitable tool for such purposes. Which reduces the whole universe of gen-

eralised entropies to a small set. To our knowledge, there are only two non-parametric

entropies that generalise Shannon’s entropy, while simultaneously fulfil the condition of

stability, namely: the entropies (2.3) or (4.1). For this reason, we support the following

discussion about these measures of entropy and the related measures of complexity,

from now on identified as K+(X) and K�(X).

5.1 Algorithmic Superstatistics

In Chapter 2, we briefly discussed how the superstatistics framework4 is employed

to generate an infinite set of measures of entropy. Curiously, in the context of the

algorithmic theory of information, one proceeds in an analogous way to obtain an

infinite set of measures of complexity. However, to achieve these goals, certain concepts

must be reworded.
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5. SUPERSTATISTICAL MEASURES OF COMPLEXITY

To proceed, let us begin by summarising the basic ideas. The superstatistics ap-

proach addresses macroscopic systems outside equilibrium segmented into cells. These

ones manifest asymptotic stationary states with a spatiotemporally fluctuating inten-

sive quantity, which hardly varies over time, e.g. the inverse temperature �. There is a

specific � assigned to each cell, so that � distributes according to a piecewise continuous

probability density f(�). Inside each region, � is approximately constant and, therefore,

there exists a local equilibrium. However, at a global level, the system lies in a state

out of equilibrium but enough isolated from external upheavals, thus behaving slightly

deviated from equilibrium. When the entire fluctuations are averaged—inasmuch as

the sum converges—an effective Boltzmann factor is obtained giving rise to generalised

statistics. In addition, given the method relies on normalisable distributions f(�), we

are allowed to think of an infinite set of possible generalised statistics.

From the standpoint of computer science, we are conceiving of these cells as individ-

ual programs x that cast an outcome and halt, suggesting that the total system could

be thought of as a universal computer U of general purpose, i.e. a Turing machine. In

fact, in a real-world scenario, the tasks a computer surpasses are the results of a large

collection of different recipes stored in it. In consequence, we say U is in the state x

with probability p(x). That is, each of these programs has a definite probability p(x)

of being taken at random by U .

Accordingly, if we denote with |x| the length of the program x, hence the Boltzmann

factor (2.4) becomes:

BU (|x|) =

1
Z

0

d� fU (�)e
��|x| , � > 0 , (5.1)

this is the effective Boltzmann factor related to a Turing machine U .

Remark 9. If all cells share the same �, then the whole system will be considered as

a single cell, in that case fU (�) = �(� � �0), yielding the ordinary Boltzmann factor:

BU (|x|) = e��|x| .

Provided the generalised statistics must be normalisable over the whole domain of

program lengths, the integral (partition function Z)

1
Z

0

d|x|BU (|x|) (5.2)

64



5.1 Algorithmic Superstatistics

must converge.

Nevertheless, the partition function is oftentimes uncomputable. For example, sub-

stituting the ordinary Boltzmann factor BU (|x|) = e��|x| into (5.2), the integral will

exist provided that � � ln 2, even though, as shown in Ref.74, the integral will be

uncomputable and partially random for ln 2. For our purposes we mus assume fU (�)

is absolutely integrable.

Definition 9. A function fU : R ! R is absolutely integrable when

1
Z

�1

dt |fU (t)| < 1 . (5.3)

Let us now relate these concepts with algorithmic entropy. As we have previously

discussed, the gist of the superstatistics approach is the effective Boltzmann factor

BU (|x|) whose construction rests on a probability distribution well-nigh customised

for a system of particular characteristics. In practice, this serves as a pivot to sprout

general statistics in which the related fundamental quantities (entropy, free energy, etc.)

must be rewritten in the frame of the new strategy.

The overall expression of entropy among superstatistics is particularly interesting.

Its formal definition was already given in Chapter (2). We recall that we must consider

only measures of entropy of the form (2.2).

In succession, assuming the integral (5.1) exists and can be computed, and since

each program x lies in a set X of dimension Ω, we say the entropy is alternatively

expressed as

�
X

x2X

p(x)ΛD(p(x)) ,

where ΛD(x) is an effective logarithm with base D (see Appendix B).

Some comments are in order. Notice the entropy is also interpreted as the expected

value of �ΛD(p(x)), HD(X) = E[�ΛD(p(x))]. Although our notation varies somewhat

from the previous chapter, it will be evident soon, it makes exposure easier in this

context. As well, along this discussion all logarithms either effective or not are base 2,

hence, from now on we shall drop D from our notation unless a different thing needs

to be specified.
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5. SUPERSTATISTICAL MEASURES OF COMPLEXITY

5.2 Superstatistical Measures of Complexity

To examine some of the aspects conveyed by the superstatistical approach to measures

of complexity, henceforth we are to assume p(x) belongs to a recursive probability

distribution, i.e. distributions computable with a Turing machine U . Besides, we also

assume U is running over a prefix-free domain X. Recall that a set of strings X is

prefix-free if no string x 2 X is prefix of another string x0 2 X.

The randomness of an object x can be measured in a number of ways16,49. There

is a particular measure, that despite being uncomputable it is conceptually riveting.

That is the Kolmogorov complexity13,47,69 and is formally defined as follows.

Definition 10. Kolmogorov complexity. Let U be a prefix-free Turing Machine, the

complexity of the string y with respect to U is determined as

KU (y) = min
x

{|x| : U(x) = y} ,

that is the minimum possible length over all programs x with the halt property, whose

outcome is y.

The quantity KU (y) has an intuitive but profound meaning. For a person describing

the recipe for a certain dish to another individual, such that this one cannot construct

a different interpretation of the directions for the correct realisation of such meal, then

the number of bits in that communication constitutes an upper bound on KU (y).

Nonetheless, instead of considering the complexity associated with a program x, we

are interested in the probability p(x) associated with that program, i.e. we look for the

way this (minimum-length) program is distributed over the domain of programs that

achieve a specific outcome y. Thus rather than KU (y), from now on we refer to this

quantity as

K(X) ⌘ KU (p(x)) .

Both KU (y) and K(X) are measures of information. The first one strictly arises

from combinatorial arguments, while the latter is a purely statistical measure of com-

plexity that represents the average rate at which information is extracted from a com-

binatorial trial. Since the second measure of complexity depends on how the program

x is distributed according to the law p(x), there might be a number of ways in which

such probability distribution can be maximised, depending upon the choice of entropy

and maybe some inherent constraints that typically relate to system’s attributes.
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5.2 Superstatistical Measures of Complexity

Theorem 3. Let p(x) be a recursive probability distribution. For any generic entropy
P

x2X h(x) of the form (2.2), there exists a statistical measure of complexity K(x) such

that they satisfy the relation

0  '�1

 

X

x2X

p(x)'(K(x))

!

�
X

x2X

h(x)  '(K(X)) , (5.4)

where ' is the Nagumo-Kolmogorov function.

Proof. The Nagumo-Kolmogorov function provides an estimate of the cost of processing

any information measure12 as '(K(X)), which is interpreted as the cost of treating

specific rates of complexity.

Further, ' is not arbitrary but depends on the entropy functional that maximises

the distribution p(x), such that

0  '�1

 

X

x2X

p(x)'(K(x))

!

,

which is nothing but the average length (4.2).

Likewise, for any superstatistical entropy of the form (2.2), one obtains an effective

coding theorem (cf. Chapter 4):

X

x2X

h(x)  '�1

 

X

x2X

p(x)'(K(x))

!

, (5.5)

where, as shown in Refs.45,51, the complexity K(x) and Chaitin’s formulation of com-

plexity16 relates to each other through the formula

K(x) = �Λ(m(x)) +O(1) ,

where

m(y) =

(

X

x2X

2�|x| : U(x) = y

)

, (5.6)

in other words, a Turing machine U running over the programs X will print the output

y with probability m(y).

The summation over the whole set of programs in (5.6) is easily simplified on the

grounds that there is only one program x in X whose outcome is y. To see this, imagine

n programs x1, . . . , xn, all having the same outcome y. Still, we are solely interested in

the short one given that K regards the minimum possible description of y. Moreover,

in the hypothetical case that X contains n shortest programs x = x1 = · · · = xn, all

printing the same output y, then |x| > lnn.
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5. SUPERSTATISTICAL MEASURES OF COMPLEXITY

Accordingly, Eq. (5.5) is equivalently expressed as:

X

x2X

h(x)  '�1

 

X

x2X

p(x)'(|x|+O(1))

!

,

reordering terms and invoking Theorem 2, we obtain the relation:

0  '�1

 

X

x2X

p(x)'(K(x))

!

�
X

x2X

h(x)  '(K(X)) ,

and we have the Theorem.

This theorem states that entropy and complexity, as measures of information, are

truly connected if the complexity is treated from a statistical viewpoint. Not only does

the latter relation comprise the coding theorem formulated by Shannon66, but it also

suggests the entropy provides the minimum rate at which the complexity is expressed.

Some of the consequences conveyed by Eq. (5.4), in terms of generalised entropies,

shall be surveyed in the following section.

5.3 Superstatistical Measures of Complexity

As an application of Theorem 3, in this section we are to derive the effective measures

of complexity associated with entropies (4.1):

H+(X) = �
X

x2X

p(x) ln+(p(x)) , H�(X) = �
X

x2X

p(x) ln�(p(x)) , (5.7)

whose series representations

H+(X) = �
X

x2X

X

k2N

[p(x) ln p(x)]k

k!
,

H�(X) = �
X

x2X

X

k2N

(�1)k+1 [p(x) ln p(x)]
k

k!
,

(5.8)

will simplify the following discussion. Besides, we are to focus on the nonequilibrium

region associated with (5.7), since the limiting case Ω ! 1 coincides with the widely

known Shannon’s results.

Indeed, Theorems 1 and 2 state the minimum rate of data compression that are

accomplished by a codification process is bounded from above and below by the measure
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5.3 Superstatistical Measures of Complexity

of entropy that characterises the statistics of the system involved. This result has been

deeply studied in Chapter 4, still, it conforms a cornerstone for our current purposes,

namely for the statement of the following theorem.

Lemma 2. Let p(x) be a recursive probability distribution. For a Nagumo-Kolmogorov

cost function '(z) = z, the measures of entropy H+(X) and H�(X) induce the exis-

tence of effective complexities K+(X) and K�(X) such that:

0 
X

x2X

p(x)K±(x)�H±(X)  K±(X) ,

where K+(X) and K�(X) are interpreted, respectively, as average lower and upper

bounds on the statistical complexity K(X).

Proof. The inequality at the left implies

H±(X) 
X

x2X

p(x)K±(x) ,

which is assured by Theorem 1 provided K±(x)  |x|±, with equality iff |x|± = |x|±⇤.

On the other hand, to prove the second inequality, suppose that

K±(x) = c0|x|±⇤ , c0 � 1 ,

namely K±(x) +O(1) = |x|±⇤, then

c0
X

x2X

p(x)|x|±⇤ +
X

x2X

p(x) ln±(p(x))  c0|X|±⇤ ,

regrouping terms on both sides, we get

c0
X

x2X

�

1� p(x)�1
�

p(x) ln±(p(x)) 
X

x2X

p(x) ln±(p(x)) ,

since p(x)  1, it follows that 1�p(x)�1  0, hence the inequality is true, while equality

holds for p(x) = 1. That concludes the proof.

It shall not escape attention K±(X) are not combinatorial measures of information

but statistical measures of complexity and they shall not be interpreted as descriptive

bounds on the Kolmogorov complexity as stated in Def. 10. Rather, what the measures

K±(X) quantify is an average rate of complexity in agreement with that information

estimated by entropies H±(X).

69



5. SUPERSTATISTICAL MEASURES OF COMPLEXITY

As an example, consider the probability distribution:

p(x) =

8

>

>

>

>

>

<

>

>

>

>

>

:

0.y if x = x1

1� 0.y if x = x2

0 otherwise,

where y is the binary representation of a number 0.y between 0 and 1.

For the entropy measure H+(X) we have:

0  (c0 � 1)(�0.y ln+ 0.y � (1� 0.y) ln+(1� 0.y))  c0(� ln+ 0.y � ln+(1� 0.y)) ,

but �x ln± x  � ln± x, with equality if x = 1, then from the expression above we get

(c0 � 1)(� ln+ 0.y � ln+(1� 0.y))  c0(� ln+ 0.y � ln+(1� 0.y)) ,

analogously for H�(X).

5.3.1 Kullback-Leibler Divergence as a Measure of Complexity

At times, it may be worthwhile to quantify how different a given probability distribution

is from another, e.g. a prior with respect to a trial distribution. In statistics this is

performed by defining the entropy of the distribution p relative to another distribution

q, to wit:

H(p k q) = �
X

x2X

p(x)Λ(p(x)) +
X

x2X

p(x)Λ(q(x)) , (5.9)

of course, if p = q the outcome is zero. This expression stands for a generalisation of

the Kullback-Leibler divergence48.

As well, Eq. (5.9) is a measure of information gain70,71. This is fairly intuitive

since q is known as the prior in the Bayesian probability theory and conveys all initial

speculations about something before any observation is carried out. Even though, one

should move with caution since the prior may haul redundancies, to give an idea, the

special case q(x) = 1/dim(X) = 1/Ω for all x 2 X, leads again to the entropy up to a

constant.

Nonetheless, as shown in Ref.3, the prior distribution q would induce interesting

results. Imagine the Turing machine U runs the program x, prints the outcome y
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and halts, which is expressed in symbols as U(x) = y. In that regard, we reach a

generalisation of Eq. (5.6):

q(y) =

(

X

x2X

✏��|x| : U(x) = y

)

, (5.10)

which acts as a counterpart of p ⇠ ✏��|x| over the set N.

Indeed, using this prior, and following the same arguments given in Ref.3, we are to

show that one could think of (5.9) as a generalisation of a superstatistical algorithmic

entropy.

Suppose we are particularly interested in those programs whose output is the string

s, hence the auxiliar distribution that allows us to select that sort of programs is

py(s) =

8

>

<

>

:

1 if y = s

0 otherwise ,

(5.11)

then we compute the entropy of py(s) relative to (5.10) to obtain

H(py k q) = �
X

l2N

py(l)Λ(py(l)) +
X

l2N

py(l)Λ

 

X

x2X

✏��|x| : U(x) = y

!

= KU (y) + Λ (Z) ,

(5.12)

where Z =
P

x2X ✏��|x| is the partition function, and the algorithmic entropy reads

KU (y) = �Λ

 

X

x2X

✏��|x| : U(x) = y

!

, (5.13)

suggesting relative entropy (5.12) would generalise algorithmic entropy in Def. 10, cf.

Refs.14,15,80.

Thereby, when the generalised logarithm and exponential functions in Eq. (5.12)

reduce to the fundamental functions ln(x) and ex, one simply obtains the algorithmic

entropy (parallel to Shannon’s entropy) reported by Baez3, explicitly:

KU (y) = � ln

 

X

x2X

e��|x| : U(x) = y

!

,

the special case � = ln 2 yields KU (y) = |x|+ O(1), which indicates the complexity of

the shortest program x 2 X that prints y and halts, in agreement with Def. 10.
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We now express Eqs. (5.12) and (5.13) by attending the structure of entropies

H+(X) and H�(X). To simplify the calculations we shall resort to their series repre-

sentations in Eq. (5.8).

Correspondingly, the entropy H+(X) of a distribution py(s) relative to the prior

q(y) defined in Eq. (5.10), simply becomes:

H+(py k q) = �
X

l2N

X

k2N

1

k!
[py(l) ln py(l)]

k

+
X

l2N

X

k2N

1

k!

"

py(l) ln

 

X

x2X

e��|x| : U(x) = y

!#k

= �
X

k2N

1

k!
lnk

 

X

x2X

e��|x| : U(x) = y

!

+
X

k2N

1

k!
lnk

 

X

x2X

e��|x|

!

= K+
U (y) +

X

k2N

1

k!
lnk(Z) ,

(5.14)

where

K+
U (y) = �

X

k2N

1

k!
lnk

 

X

x2X

e��|x| : U(x) = y

!

, (5.15)

is the effective algorithmic entropy that generalises the one given in Ref.3 and conse-

quently in Refs.14,15,80.

Ditto, the entropy H�(X) of a distribution py(s) relative to a prior q(y), reads:

H�(py k q) = �
X

l2N

X

k2N

(�1)k+1

k!
[py(l) ln py(l)]

k

+
X

l2N

X

k2N

(�1)k+1

k!

"

py(l) ln

 

X

x2X

e��|x| : U(x) = y

!#k

= �
X

k2N

(�1)k+1

k!
lnk

 

X

x2X

e��|x| : U(x) = y

!

+
X

k2N

(�1)k+1

k!
lnk

 

X

x2X

e��|x|

!

= K�

U (y) +
X

k2N

(�1)k+1

k!
lnk(Z) ,

(5.16)
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where

K�

U (y) = �
X

k2N

(�1)k+1

k!
lnk

 

X

x2X

e��|x| : U(x) = y

!

, (5.17)

is the algorithmic entropy related to entropy H�(X).
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Figure 5.1: Measures of complexity or algorithmic entropies - Numerical compar-

ison of effective algorithmic entropies, K, K+ and K− varying the data size |x|. The three

measures converge as |x| grows, while they differ from each other at extremely small size

of information, below 8 bits. As of today, still there are applications depending on codes of

such lengths. That is the case of the American Standard Code for Information Interchange

(ASCII), which is an 8-bit code.

There is a compelling aspect we would like to highlight regarding the effective

algorithmic entropies K+ and K�, derived from (5.14) and (5.16) respectively. Not

only do they generalise the algorithmic entropy in Ref.3, but they are both special

cases of the relative entropies H+(py k q) and H�(py k q) while satisfying Lemma 2.

Since these entropies enjoy of full stability, we think K+ and K� are both reasonable

generalised measures of complexity.

We discussed the fact that the algorithmic entropies K+ and K� differ from the

standard case K in a low-density program scheme, while the three measures coincide

for enormous blocks of data. Although, in general, these functionals are uncomputable,
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5. SUPERSTATISTICAL MEASURES OF COMPLEXITY

we still use a numerical trick to give an indication of their behaviour, see Fig. 5.1,

where there is a region in which the algorithmic entropy K� would account for a more

economical description than the two other measures, yet as the program lengths |x|

increases the three measures tend to coincide. We cannot evaluate the precise impact

of their real differences in describing complex objects. However, can those complex

structures with a relatively small number of components enjoy a description different

from that the standard formulation estimates?
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Conclusions

Throughout this work, we studied the impact of entropies S+ and S� (or H+ and H�)

on statistical mechanics, information theory and computer sciences. In all instances,

they manifest differences with respect to the standard measures of entropy in physics

and information sciences, as long as the number of available states is comparable to

the number of particles or components of a given system, i.e. within a scheme of high

probabilities. Whereas, in a regime of low probabilities, our proposal—which is free

from ad hoc parameters—will retrieve the standard picture of thermostatistics.

Indeed, as we showed, the non-extensive entropies S+ and S� belong to the same

asymptotic class that SBG, which means they share the same properties in the thermo-

dynamic limit.

Further, since S+ and S� are generalisations to the Boltzmann-Gibbs entropy, we

proposed a possible extension to the entropic classification reported in Ref.34, but in

terms of the generators (2.11). It follows that, on the basis of entropies S+ and S�, we

obtain a set of non-extensive entropies.

We compared S+ and S� with other proposals oftentimes referred in the literature,

such as the Sharma-Mittal, Rényi and Tsallis entropies. However, these measures of

entropy are unstable due to their dependence on free parameters. For example, we

observed the Tsallis entropy, which is a special case of the generalised entropic forms

in Eqs. (2.12)-(2.13), does not continuously resemble SBG in the thermodynamic limit.

This turns evident by applying the asymptotic laws (2.9)-(2.10) or by observing the

leading contributions of the entropy in a microcanonic configuration.
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Because of the stability S+ and S� enjoy, we were motivated to looking into further

physical consequences conveyed by this kind of statistics; inasmuch as stability implies

compatibility with observable phenomena50. Hence, we pursued an entropic derivation

of Fokker-Planck equations, similar to the method discussed in Refs.19,23.

We obtained two generalised Fokker-Planck equations outside the equilibrium. These

models carry nonlinear terms that act as corrections to the mean-field Fokker-Planck

equation. These corrections become unnecessary in a scenario where density ⇢ is very

low, but at the mesoscopic level, nonlinear corrections could represent effective inter-

actions between system components. Curiously, the first two nonlinear terms in the

series representation of F±[⇢], in fact, correspond to the corrections introduced in some

aggregation models studied in biology77, although following a different approach.

We must remark these generalised Fokker-Planck equations are thermodynami-

cally compatible with the usual Fokker-Planck equation, provided the equivalence class

(�, c, d, ) =
�

1
2 , 1, 1

�

is common to S+, S� and SBG.

Besides, observe from Eq. (3.19) the potential term is weighted by a function

depending only on ⇢. This function is univocally determined from the entropic form; an

aspect that deserves attention since every generalisation to the Fokker-Planck equation

must attend the suitable weight of the drift term to be consistent with the respective

stochastic equation.

To compare Eqs. (3.19) with other models, we realised some numerical experiments.

We found the weighted-drift terms in (3.19) are equivalent to effective potentials. In

fact, we noted the drift terms

�⇠+(p)rΦ and �⇠�(p)rΦ

induce a stronger influence on the density ⇢ than the standard term

�⇢rΦ .

This behaviour allows us to claim that for systems owning few available microstates,

the degree of heterogeneity is such that the interaction between its components pro-

duces non-negligible effective forces, which tend to vanish as the number of microstates

increases substantially.
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Likewise, the generalised diffusion models (3.23) portray anomalous diffusion. As

mentioned earlier, we found our equations are directly comparable with those segrega-

tion models studied in Refs.54,77. We point out that, as far as Eqs. (3.23) are concerned,

non-linear terms associated with interactions between organisms in biological contexts

naturally appear as a consequence of generalised entropies S+ and S�.

We also reproduced numerically the general properties of the distributions that fit

the transient diffusion model in Eq. (3.34), see Ref.55. In our proposal, this model is

rewritten with regard to Eqs. (3.30). We observed interesting differences in the super-

diffusion regime, mainly regarding the relaxation time. Under our model, differences

in the relaxation time will occur due to non-equilibrium effects as well as intrinsic

nonlinearities. It is also observed that equilibrium is restored after the entry into the

super-diffusion regime, which is in line with the long-term recovery of the Boltzmann

distribution.

In our investigation of the applications of non-extensive entropies and their effects,

it was interesting for us to examine some optimisation processes in information theory.

Above all, because entropy has a functional form similar to that used in the statistical

formulation of thermodynamics. And also, because to some extent, the entropy inter-

pretations are similar in both cases. The diligence of the entropies S+ and S� led us

to introduce a non-extensive theory of information whose differences with the standard

theory lie in regimes where the number of messages in a communication channel is

comparable to the number of available states.

In a first step, using a variational method, we found the appropriate constraints to

optimise the average lengths that a codeword achieves. These constraints, defined in

Prop. 1, are not arbitrary provided the average lengths L± must equal the entropies

H±
D(P ) when they reach their optimal values.

Accordingly, we stated the Generalised, Noiseless Coding Theorems 1 and 2, that

account for an effective data compression at different average rates, either in terms of

H+
D(P ) or H�

D(P ). Therefore, the corresponding average lengths L+ and L� must be

bounded from below and above in terms of the information measures themselves, which

are directly associated with the optimal individual lengths l+(xj) and l�(xj).

Based on our findings, we noticed H+
D(P ) might bring some novelty with respect

to the data compression estimated through Shannon’s entropy, in a low-density data

pattern. We think such efficiency could be sustained in other regimes, if one pinpoints
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a reasonable way to divide the system into sub-assemblies to outperform local data

compression in each of them.

In addition, we studied the channel capacity of two simple generic models, a BSC

and a BEC, regarding the entropies H+
D(P ) and H�

D(P ). In the BSC case, the channel

capacity we obtained is higher than the estimated using Shannon’s theory,

C�

BSC � CS
BSC ,

where the equality is attained at the probability values p = {0, 1/2, 1}.

Yet an interesting effect is observed in the capacities of a BEC, obtaining a twofold

behaviour in each of the capacities C+
BEC and C�

BEC, see Fig. 4.3. The swapping

behaviour occurs due to the variation of alpha, which is the parameter representing the

ratio of errors over the communication channel.

Our variational method can also be employed for other generalised measures of en-

tropy. Without stating the corresponding coding theorems, we showed how the method

works in the Tsallis and Rényi entropies.

Entropy is also the relationship between probabilistic and algorithm formulations

of information theory. We explored one way to generalise the algorithmic formulation

implementing the superstatistics framework. The consequences of such unification may

lead to a differing understanding of the information processes.

The connection between the superstatistical framework and the Kolmogorov com-

plexity comes immediately by following the relation (5.4), which is nothing but a

generalisation of the statement formulated in Refs.14,15,80, where Shannon’s entropy

is associated with the Kolmogorov complexity. Still, from our generalised statistical

viewpoint, any measure of complexity constitutes an average rate of data compression

that, in general, will differ from that appraised by the standard theory. This does not

mean that all measures of complexity are truly feasible.

Note the effective Boltzmann factor (5.1) is calculated from a probability distribu-

tion that can be dependent on free parameters. While this parametric anatomy offers

entropy flexibility sufficient to be potentially suitable for any circumstance, there is a

trade-off with the functional’s stability, which is a condition that must indistinctly be

satisfied in order to qualify as an information measure and, therefore, as a measure of

complexity.
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However, we showed the stability H+ and H� own is inherited to K+ and K�,

thus, they genuinely qualify as measures of complexity. To strengthen our arguments,

we also showed that a generalised definition of relative entropy enables us to reconstruct

the complexities K+ and K�, as specified in Eqs. (5.14) and (5.16). These results are

equivalent to our preceding calculations, using Theorem 2.

As far as we have seen, there are entropy-induced effects produced by S+ and S�

that are partially subtle in some probabilistic regimes. However, such modest differ-

ences led us to an effective theory of electron transport in super-diffuse environments

that is consistent with what is observed in the laboratory. Whereas in terms of infor-

mation, it led us to data compression that could be leveraged to other probabilistic

orders. How much can so little mean?
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Appendix A

On the continuum

representations of S±

Let us begin with the known facts. The differential entropy

Sd = �
Z

dx p(x) ln p(x) ,

is not a limiting case of SBG for Ω ! 1.

In fact, SBG diverges from Sd if we outperform a successively fine space discretisa-

tion63. In other words, the growth rate given by entropy is in general not the same as

the one calculated through the substitution

X

j

∆xj !
Z

dx .

In such a case, entropy may not remain invariant under coordinate transformations,

even providing negative values. To overcome this difficulty, in the case of a limiting

density of discrete points, a measure m(x) must be introduced into the process in order

to preserve invariance40.

Hence, given an interval [a, b] divided into Ω uniform subintervals

a = x1 < x2 < · · · < xΩ = b ,

the limit Ω ! 1 reads as the density of points approaches a positive function m(x).

Furthermore, assuming the transition to the limit is sufficiently smooth so the adjacent

differences between states is negligible, (xj+1 � xj) ⇠ 0, then

lim
Ω!1

[(xj+1 � xj)Ω] =
1

m(xj)
, (A.1)
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therefore, whenever the number of states Ω is large enough, the discrete probability

distribution pj and the continuous probability density ⇢(xj) both relate to each other

as

pj = ⇢(xj)(xj+1 � xj) = ⇢(xj)∆xj , (A.2)

leading to pj ! ⇢(xj)/Ωm(xj).

To investigate the continuous representation of S±, we shall consider their series

representations:

S± =

Ω
X

j=1

1
X

k=1

(⌥1)k+1

k!



pj ln
1

pj

�k

=
Ω
X

j=1

1
X

k=1

(⌥1)k+1

k!



⇢(xj)∆xj ln
1

pj

�k

=
Ω
X

j=1



⇢(xj)∆xj ln
1

pj

�

+ h.o.t.

(A.3)

where the higher-order terms (h.o.t.) equal

Ω
X

j=1

1
X

k=1

(⌥1)k+2

(k + 1)!



⇢(xj)∆xj ln
1

pj

�k+1

. (A.4)

Notice the first term in Eq. (A.3) corresponds to the ordinary entropy, SBG, whose

continuum limit is given by Jaynes’ formula40, to wit:

lim
Ω!1

SB = lim
Ω!1

2

4

Ω
X

j=1

⇢(xj) ln



m(xj)

⇢(xj)

�

∆xj + lnΩ

3

5

=

Z b

a
dx ⇢(x) ln



m(x)

⇢(x)

�

,

(A.5)

where the diverging term, limΩ!1 lnΩ, has been discarded since it is the entropy

change the observable to be measured59.
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We have to proceed in a similar fashion regarding (A.4), we get

lim
Ω!1

h.o.t. = ⌥ lim
Ω!1

1

2!

Ω
X

n=1

✓

⇢(xj)∆xj ln



Ωm(xj)

⇢(xj)

�◆2

(A.6)

+ lim
Ω!1

1

3!

Ω
X

n=1

✓

⇢(xj)∆xj ln



Ωm(xj)

⇢(xj)

�◆3

+ · · ·

= ⌥ lim
Ω!1

1

2!

Ω
X

n=1

Ω
X

n0=1

�n,n0⇢(xj)∆xj ln



m(xn)Ω

⇢(xj)

�

⇢(xn0)∆xn0 ln



m(xn0)Ω

⇢(xn0)

�

+ lim
Ω!1

1

3!

Ω
X

n=1

Ω
X

n0=1

Ω
X

n00=1

�n,n0�n,n00⇢(xj)∆xj ln



m(xn)Ω

⇢(xj)

�

⇢(xn0)∆xn0 ln



m(xn0)Ω

⇢(xn0)

�

⇥ ⇢(xn00)∆xn00 ln



m(xn00)Ω

⇢(xn00)

�

+ · · ·

= ⌥ 1

2!

Z b

a
dx

Z b

a
dx0�(x� x0)⇢(x) ln



m(x)Ω

⇢(x)

�

⇢(x0) ln



m(x0)Ω

⇢(x0)

�

1

m(x)Ω

+
1

3!

Z b

a
dx

Z b

a
dx0

Z b

a
dx00�(x� x0)�(x� x00)⇢(x) ln



m(x)Ω

⇢(x)

�

⇢(x0) ln



m(x0)Ω

⇢(x0)

�

⇥ ⇢(x00) ln



m(x00)Ω

⇢(x00)

�

1

m(x)2Ω2
+ · · · .

In the last step we have applied the formula

�̂j,j0 = m(xj)Ω�j,j0 ! �(x� x0) , (A.7)

with
X

j

�̂j,j0∆xj = 1 . (A.8)

Hence, we found that transition of S± from discrete to continuous leads to

S
(c)
± = lim

Ω!1
(SB + h.o.t.) ,

however, provided the contribution of higher-order terms to the continuum is negligible,

let us conclude that Jayne’s formula corresponds to the continuous representation of

S±.
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Appendix B

Generalised Logarithms and

Exponentials

Let ✏ : R ! R be a stretched exponential. Those functions Λ : R ! R satisfying the

conditions Λ(1) = 0 and Λ
0(1) = 1, such that Λ(✏x) = ✏Λ(x) = x are called generalised

(or effective) logarithms. Their series representation can usually be put into terms of

the fundamental logarithm functions ln or log. For a more detailed discussion than the

one presented here, see Ref.35. We limit to present the basic structure of the effective

logarithms ln+ and ln�, and their inverses.

We have the functions

ln+(x) ⌘ �1� xx

x

ln�(x) ⌘ �x�x � 1

x
,

(B.1)

for x 2 [0, 1], otherwise the functions become undefined. From such definitions it

becomes evident that the functions ln(±) do not fulfil the three laws of logarithms. Yet

they can be expanded in series as

ln+(x) = lnx+
1

2!
x ln2 x+

1

3!
x2 ln3 x+

1

4!
x3 ln4 x+ · · · , (B.2)

and

ln�(x) = lnx� 1

2!
x ln2 x+

1

3!
x2 ln3 x� 1

4!
x3 ln4 x+ · · · , (B.3)

note that the first term is in both cases leads the series, while higher order terms

become subdominant as x ! 0. This peculiar flexibility grants to entropies (5.7)
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the simultaneous character of accounting for non-equilibrium phenomena in the low-

probability regime, while preserving a well defined thermodynamical limit.

The corresponding stretched exponentials of (B.1) do not posses a closed form,

in this case we make use of a numerical representation. These functions have been

constructed as

exp±(x) ⌘ exp(�x)

1
X

j=0

a±(j)x
j , a±(j) 2 R, (B.4)

the first nine coefficients a±(j) are given in Table B.1.

a+(j) a�(j)

j = 8 -0.000157095 0.000105402

j = 7 0.00373467 -0.00211934

j = 6 -0.0362676 0.0166679

j = 5 0.186358 -0.0675544

j = 4 -0.546751 0.16867

j = 3 0.905157 -0.317048

j = 2 -0.709322 0.3725

j = 1 0.0228963 0.0147449

j = 0 1 1

Table B.1: a±(j) coefficients.
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24

[62] A.R. Plastino and A. Plastino. Non-extensive statistical mechanics and gen-

eralized fokker-planck equation. Physica A: Statistical Mechanics and its Ap-

plications, 222(1):347 – 354, 1995. ISSN 0378-4371. doi: https://doi.org/10.

1016/0378-4371(95)00211-1. URL http://www.sciencedirect.com/science/

article/pii/0378437195002111. 2
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