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ABSTRACT

Among various alternative fuels to gasoline an diesel, hydrogen remains to be a very

attractive alternative. Nowadays, several types of porous materials have been ex-

tensively studied and tested as potential candidates for storage of hydrogen. On

the other hand, the evaluation of an adsorptive process is commonly based in new

adsorptive materials nanoporous technologies and predictive models based on equa-

tions of state. The great importance of hydrogen, thinking as a green combustible,

have increased the searching for more accurate predicting models of thermodynamic

properties. Molecular simulations and theoretical approaches are of key importance

because the prediction of the adsorption properties over a wide range of temperatures

and pressures would reduce the number of time consuming experiments required for

performance evaluations. This thesis presents a theoretical analysis of the adsorption

of mixtures containing quatum fluids at high pressures and low temperatures. Com-

puter simulations under the Metropolis Monte Carlo scheme and molecular equation

of state was the main methodology used in this work. The thesis is integrated in

three items: The first step is the development of a semiclassical approach to model

quantum fluids using the Statistical Associating Fluid Theory for Potential of Vari-

able Range (SAFT-VR), that can be used to determine thermodynamic properties of

quantum fluids. This theory is applied to the prediction of liquid-vapor properties

of fluids like molecular hydrogen, neon, deuterium and helium-4. To understand the

behaviour of these fluids under confinement and their adsorptive properties, in the

second part of the thesis a MC simulation study of quantum fluids using semiclassical

effective pair potentials is presented. The first and second parts are the basis for the

development of a two-dimentional equation of state to predict adsorption isotherms

of pure quantum fluids and mixtures of there onto different surface substrates. In all

cases: theory, experimental data, and computer simulations were compared.
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CHAPTER 1

INTRODUCTION

During the recent years, we have seen a recognition of a hydrogen based economy as

a possible replacement for the current oil based economy. The initial interest in the

use of hydrogen as a replacement for oil goes back to the late 1970s when the oil price

increased dramatically.1 The interests of using hydrogen as a fuel are environmental,

due to a potential reduction in air pollution. On the other hand, hydrogen is widely

used in the chemical industry, petroleum recovery and refining, electronic circuits and

power generation.2–5

Due to its clean combustion and high heating value, hydrogen is under consider-

ation as a replacement for fossil fuels in mobile applications.6 The development of

a suitable storage method is the major problem in order to change from petroleum

to hydrogen as an energy carrier. The amount of hydrogen that can be safely stored

in a vehicle is one of the more realistic problems of the storage of hydrogen. Ph-

ysisorption is a promising method for storing hydrogen because the adsorbed hydro-

gen can be easily released at lower pressure.7 Adsorbents such as dry activated car-

bon, nanoporous materials, zeolite-templated, graphene nanosheets and metal-organic

frameworks (MOFs) have been intensively investigated.8–15 Interesting methods to

storage hydrogen as high pressure gas, liquid hydrogen, adsorption on porous mate-

rials at relatively low pressure, complex hydrides, among others, begin to be the best

options. The successful development of new materials for hydrogen storage is the key

to the success of hydrogen fuel cell technology.

Recently, major efforts to developing molecular simulations methods and molec-
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ular theories have become become to be a necessity in the industry. All these efforts

are made in order to characterize a storage material, measurements of the amount of

hydrogen adsorbed at various temperatures and pressures. In addition, Monte Carlo

simulation and SAFT-VR theories are appropriate and convenient methods in the

case of gas adsorption onto different substrates. Prediction and calculation of ther-

modynamic properties, as well as the appropriate description of adsorption process

with molecular equations of state as SAFT-VR, remains a crucial step in the develop-

ment of the physico chemical process of adsorption. Therefore, the study on quantum

effects on physical adsorption is now one of the attractive subjects in the field of ad-

sorption.16 The rigorous way to calculate thermodynamic properties of liquids using

quantum contributions such as path-integral methods are necessary to understand

the phenomenological behavior of hydrogen at low temperatures and high pressures

under confinement. Such confinement can modify the localization of the gas-liquid

transition.

The thesis is divided accordingly into the following chapters:

− CHAPTER 2: Semiclassical theory for quantum fluids

This chapter introduces the reader with some concepts and definitions of the

statistical mechanics and quantum mechanics. The classical and quantum par-

tition function are discussed in order to explain how thermodynamic properties

of the system; such as pressure, energies, chemical potential among others can

be calculated. In this chapter we establish the difference between quantum and

classical statistics.

− CHAPTER 3: Semiclassical approach to model quantum fluids using the

SAFT-VR theory

In this chapter, thermodynamic properties of quantum fluids are described using

an extended version of the Statistical Associating Fluid Theory for Potentials

of Variable Range (SAFT-VR), that takes into account quantum corrections to

the Helmholtz free energy A, based on the Wentzel-Kramers-Brillouin (WKB)

approximation.17–19 A theoretical background of this approach (SAFT-VRQ)

is presented, considering two different cases depending on the continuous or

discontinuous nature of the particles pair interaction. On the other hand, an

analytical expression for the first-order quantum perturbation term for a square-

well potential, and the theory is applied to model thermodynamic properties of
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hydrogen, deuterium, neon and helium. Vapor-liquid equilibrium (VLE), liq-

uid and vapor densities, isochoric and isobaric heat capacities, Joule-Thomson

coefficient and inversion curves are predicted accurately with respect to exper-

imental data.

(Vı́ctor M. Trejos and Alejandro Gil-Villegas, Semiclassical approach to model quantum flu-

ids using the statistical associating fluid theory for systems with potentials of variable range.

Journal of Chemical Physics, 136, 184506, (2012).)

− CHAPTER 4: Computer simulation of liquid -vapor coexistence of confined

quantum fluids

In this chapter, the liquid-vapor coexistence (LV) of bulk and confined quan-

tum fluids has been studied by Monte Carlo computer simulation for particles

interacting via a semiclassical effective pair potential Veff (r) = VLJ +VQ, where

VLJ is the Lennard-Jones 12-6 potential (LJ) and VQ is the first-order Wigner-

Kirkwood (WK-1) quantum potential, that depends on β = 1/kT and de Boer’s

quantumness parameter Λ = h/σ
√
mǫ, where k and h are the Boltzmann’s and

Planck’s constants, respectively, m is the particle’s mass, T is the temperature

of the system, and σ and ǫ are the LJ potential parameters. Confinement effects

were introduced using the Canonical Ensemble (NVT) to simulate quantum flu-

ids contained within parallel hard walls separated by a distance Lp, within the

range 2σ ≤ Lp ≤ 6σ.

(Vı́ctor M. Trejos and Alejandro Gil-Villegas and Alejandro Martinez, Computer simulation

of liquid-vapor coexistence of confined quantum fluids. Journal of Chemical Physics, 139,

184505, (2013).)

− CHAPTER 5: Theoretical modeling of adsorption of classical and quantum

fluids

In this chapter is presented a summary of a semiclassical theoretical framework

to model adsorption isotherms of quantum fluids based on the Statistical As-

sociating Fluid Theory approach for classical and quantum bulk fluids (SAFT-

VRQ), and its combination with (SAFT-VRQ-2D) to model quantum fluids.

Adsorption of classical fluids as: methane, ethane, propane, butane, nitrogen

and propylene are predicted onto different porous materials. On the other hand,

adsorption of molecular hydrogen (H2) onto graphene and other carbon-based
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substrates is studied at low temperatures and high pressures. Results obtained

for ǫw according to this procedure are consistent with experimental values of

the isosteric heat and the prediction of adsorption isotherms is in very good

agreement with experimental data.

(Vı́ctor M. Trejos, Mario Becerra,Susana Figueroa-Gerstenmaier, and Alejandro Gil-Villegas,

Theoretical modeling of adsorption of hydrogen onto graphene, MOFs and other carbon-based

substrates. Molecular Physics, 1, 1-9, (2014).)

− CHAPTER 6: Semiclassical theory for adsorption of mixtures

In this chapter a semiclassical theory for the adsorption of mixtures of fluids is

presented. Adsorption of binary mixtures containing molecular hydrogen (H2)

onto different nanoporous materials are studied. A semiclassical theoretical

framework to model adsorption based isotherms on the statistical associating

fluid theory approach for classical and quantum bulk fluids (SAFT-VRQ), and

its extension to described adsorbed systems (SAFT-VR-2D) is used. Addition-

ally, the expression for the calculations of vapor-liquid equilibrium of binary

mixtures is presented.

− CHAPTER 7: Conclusions and perspectives

In this chapter, the conclusions and perspectives exposed in previous chapters

are summarized.
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CHAPTER 2

SEMICLASSICAL THEORY FOR QUANTUM FLUIDS

This chapter introduces the reader with some concepts and definitions of the statistical

mechanics and quantum mechanics. The classical and quantum partition function

are discussed in order to explain how thermodynamic properties of the system as

pressure, energies, chemical potential, radial distribution function among others can

be calculated. This chapter will focus on definitions, for example as a ensembles,

density matrix and others used to describe quantum fluids. The basic knowledge and

terminology required for understand the following chapters will be introduced at an

elementary level.

2.1 Classical Statistical Mechanics

A hundred of years ago, experimental studies of the macroscopic behavior of physical

systems allowed thermodynamics to grow up, through the work of Carnot, Joule,

Clausius and Kelvin. From the first and second laws of the thermodynamics theo-

retical conclusions were obtained.1 At the same time, the kinetic theory of gases,

began to emerge as a real mathematical theory; but it could not be made until about

1872 when Boltzmann developed his H-theorem and thereby established a direct con-

nection between entropy and molecular dynamics. At the same time, the kinetic

theory opened the door to understanding the ensemble theory. Here, in this point

the classical thermodynamics was reduced to the status of an essential consequence

of the get-together of the statistics and mechanics of the molecules constituting a
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given physical system. It was then natural to give the resulting formalism the name

Statistical Mechanics.1

2.1.1 Macroscopic and microscopic states

Considering a system composed of N identical particles confined to a space of volume

V and the particles comprising the system could be regarded as noninteracting, the

total energy of the system E, satisfy the following conditions

E =
∑

i

niǫi (2.1)

N =
∑

i

ni (2.2)

where ni is the number of particles with energy ǫi. According with the quantum

mechanics, the single-particle energies ǫi are discrete and their values depend on

the volume V to which the particles are confined. The possible values of the total

energy E are also discrete. Therefore, the specification of the parameters N , V and E

defines a macrostate of the system. At the molecular level, a large number of different

ways in which the macrostate (N, V,E) of the system can be realized; so, there will

be a large number of different ways in which the total energy E of the system can

be distributed among the N -particles constituting it. Each of these different ways

specifies a microstate of the system. The number of all microstates will be a function

of N , V and E and may be denoted by the symbol Ω(N, V,E).

2.1.2 Classical partition function

Actually there are several different types of partition functions, each corresponding to

different types of statistical ensemble (or, equivalently, different types of free energy).

One of them is an ensemble whose members have fixed the number of particles of the

system N , the volume V and the total energy E. This is called the microcanonical

ensemble and is useful for theoretical discussions.3 In the case of practical applications

there are other ensembles most commonly used in statistical thermodynamics. The

canonical ensemble, is one, in which the individual system have N , V and T are fixed.
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Canonical Ensemble

In the limit of large quantum numbers and using a high-temperature approximation,

the partition function in the canonical ensemble NV T can be written as1

Z =
∑

n

e−βEn (2.3)

where En is the energy of the n quantum state and β = 1/kT , being k the Boltzmann

constant. In the 3N-dimensional phase space of spacial coordinates r and momenta

p using an integral rather than a sum, the partition function is given by

Z(N, V, T ) =
1

N !h3N

∫

e−βH(p1···pN ,r1···rN )d3p1 · · · d3pN d3r1 · · · d3rN (2.4)

where h is the Planck’s constant, pi is the particle momenta, ri is the particle position

and H is the classical Hamiltonian. The factor 1/N ! appears, in concordance with

the rule of “correct Boltzmann counting”.2 Suppose, then, that the Hamiltonian can

be written as H = K(pN) + U(rN) where K and U are the kinetic and potential

energy of the system respectively. Then the Eq. 2.4 can be written as

Z(N, V, T ) =
1

N !λ3NB

∫

e−βU(r1···rN )d3r1 · · · d3rN (2.5)

where λB is the De Broglie wave length, due the integral of
∫

dpNe−βK . The thermo-

dynamic properties of the system can be obtained from the formula

Z(N, V, T ) = e−βA(V,T ) (2.6)

where A is the Helmholtz free energy. The Eq. (2.6) represents the connection

between the canonical partition functions and the thermodynamic properties of the

system. The chemical potential µ, pressure P and total energy E, can be obtained

as follows

µ = −kT
(

∂ln(Z)

∂N

)

V,T

(2.7)

P = kT

(

∂ln(Z)

∂V

)

N,T

(2.8)
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E = kT 2

(

∂ln(Z)

∂T

)

N,V

(2.9)

where T , V and N are the temperature, volume and number of particles of the system,

respectively.

2.1.3 Radial distribution function

The radial distribution function, (or pair correlation function) g(r) in a system of

particles (atoms, molecules, colloids, etc.), describes how density varies as a function

of distance from a reference particle. Consider a system of N particles in a volume V

and a temperature T . The probability that molecule 1 is in dr1 at r1, and molecule

2 in dr2 at r2, etc., is given by3

P (N)(r1, . . . , rN)dr1 . . . drN =
e−βUN

QN

dr1 . . . drN (2.10)

where QN is the configuration integral given as

QN =

∫

. . .

∫

e−βUNdr1 . . . drN (2.11)

where UN is the potential energy due to interaction between particles. The proba-

bility that molecule 1 is in dr1 at r1, . . ., molecule n in drn at rn, irrespective of the

configuration of the remaining N −n molecules is obtained by integrating Eq. (2.10)

over the remaining coordinates rn+1 . . . rN

P (n)(r1, . . . , rn) =
1

QN

∫

. . .

∫

e−βUNdrn+1 . . . drN (2.12)

The particles being identical, it is more relevant to consider the probability that any

n of them occupy positions r1 . . . , rn in any permutation, thus defining the n-particle

density

ρ(n)(r1, . . . , rn) =
N !

(N − n)!
P (n)(r1, . . . , rn) (2.13)

In the specific case of n = 1, the quantity ρ(1)(r1)dr1 is the probability that any one

molecule will be found in dr1. For a (homogeneous) liquid, it is independent of the
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position r1 and equal to the overall density of the system:

1

V

∫

ρ(1)(r1)dr1 = ρ(1) =
N

V
= ρ (2.14)

It is now time to define a correlation function g(n)(r1, . . . rn) by

ρ(n)(r1 . . . rn) = ρng(n)(r1 . . . rn) (2.15)

g(n) is called a correlation function, since if the atoms are independent from each other

ρ(n) would simply equal ρn and therefore g(n) corrects for the correlation between

atoms. From Eq. (2.13) and Eq. (2.15) it follows that

g(n)(r1 . . . rn) =
V nN !

Nn(N − n)!
· 1

QN

· · ·
∫

e−βUNdrn+1 · · · drN (2.16)

The particle densities and the closely related, equilibrium particle distribution func-

tions, defined below provide a complete description of the structure of a fluid, while

knowledge of the low-order particle distribution functions, in particular of the pair

density g(2)(r1, r2), is often sufficient to calculate the equation of state and other

thermodynamic properties of the system.4 In the case where the system is also

isotropic, the pair distribution function g(2)(r1, r2) is a function only of the sepa-

ration r1,2 = |r2 − r1|; it is then usually called the radial distribution function an

written as g(2)(r1, r2) = g(r). This is a standard notation. The function g(r) can

also be thought of as the factor that multiplies the bulk density ρ to give a local

density ρ(r) = ρg(r) about some fixed molecule. There are two important features

of the radial distribution function, a) g(r) → 1 as r → ∞ and b) g(r) → 0 as

r → 0. The radial distribution fucntion has a remarkable importance because all the

themodynamic properties of the system can be calculated using the g(r) function.

2.1.4 Thermodynamic properties in terms of g(r)

Several thermodynamic properties, such as total energy E, pressure P , among others

can be calculated from the radial distribution function. The total energy E in terms

of g(r), can be written as3

E

NkT
=

3

2
+

ρ

2kT

∫ ∞

o

u(r)g(r, ρ, T )4πr2dr (2.17)
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where N is the number of particles in the system, ρ is the number density, u(r) is the

pair potential, k is the Boltzmann’s constant and T is the temperature. The pressure

of the system can also be calculated using g(r) as follows

P = ρkBT − 2

3
πρ2

∫ ∞

0

du(r)

dr
r3g(r)dr (2.18)

The chemical potential µ can be written in terms of a so-called coupling parameter ξ,

wich varies from 0 to 1 and which has the effect of replacing the interaction of some

central molecule, say 1, with the jth molecule of the system by ξu(r1j).

µ

kT
= ln(ρλ3B) +

ρ

kT

∫ 1

0

∫ ∞

0

u(r)g(r; ξ)4πr2drdξ (2.19)

where λB is the Broglie wave length. From E, P and µ all the other thermodynamic

properties can be obtained.

2.2 Semiclassical Statistical Mechanics

In previous sections we have treated the problem of systems composed of distinguible

entities, in the case of quantum-mechanical systems composed of indistinguible en-

tities the treatment and language is a little different. It’s advisable to rewrite the

ensemble theory in a language of the operators and the wave functions. Another

interesting feature of the mechanical-quantum system is the behavior of interacting

and noninteracting systems, where the patterns becomes even more complicated.1 In

the limit of high temperatures and low densities, the behavior of all physical systems

tends asymptotically to classical behavior.

2.2.1 Quantum-mechanical: the density matrix

Considering an ensemble composed of N identical systems characterized by a Hamil-

tonian, which may be denoted by the operator H. At the time t, the physical states

of the various systems in the ensemble can be characterized by the wave functions

ψ(ri, t), where ri denote the position coordinates relevant to the system under study.

Let ψk(ri, t) denote the normalized wave function characterizing the physical state in

which the kth system of the ensemble happens to be at time t. The time variation of
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the function ψk(t) will be determined by the Schrödinger equation

i~
d

dt
|ψ(t)〉 = H |ψ(t)〉 (2.20)

where ~ = h/2π. A state of the system is a vector |ψ >. In the phase space of

the positions, then the wave function can be denoted as ψ(rN), and |ψ > using the

proyection as

ψ(rN) =< rN |ψ > (2.21)

The probability of finding a system in the small configuration volume element drN at

the time t, is given by

ψ∗ψdrN (2.22)

If, in particular we use the complete function base of the Hamiltonian H to represent

the wavefuntion ψ, we obtain

ψ =
∑

n

Cnun(r
N)e−iEnt/~ (2.23)

where En is the energy for an arbitrary state n, u(rN) is the stationary wave function,

and Cn is complex coefficient. From the Eqs. 2.22 and 2.24, we obtain

ψ∗ψdrN =
∑

n

∑

m

C∗
mCnu

∗
mune

−i(En−Em)t/~drN (2.24)

In Eq. 2.24 the probability is a function of time; therefore, its necessary to calculate

from the Eq. 2.24 the average on the time, as

ψ∗ψdrN =
∑

n

|Cn|2|un|2drN (2.25)

where the overline is a temporal average. The square modulus |Cn|2 is the probability
that a measurement performed on the system will find it to have the quantum numbers

n. Using the corresponding principle,5 we can obtain

|Cn|2 =
1

N !

e−βEn

ZQ

(2.26)
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where ZQ is the quantum partition function of the system. From Eqs. 2.25 and 2.26

we obtain

ψ∗ψdrN =
1

N !

∑

n

e−βEn

ZQ

|un|2drN (2.27)

Since the ψ′s are normalized, we have

∫

ψ∗ψdrN = 1 (2.28)

The Eq. 2.27 can be rewritten as

ZQ =
1

N !

∫

∑

n

e−βEn |un|2drN (2.29)

Using properties of state vectors in the Hilbert space, the above equation can be

written in terms of the density matrix.2,6 If |n > is an state with a wave function

un(r
N) =< rN |n >, then |n > is a complete base. Therefore

∑

n

|n >< n| = 1 (2.30)

From the Eq. 2.29 we may take

∑

n

e−βEn |un|2 =
∑

n

e−βEn < n|rN >< rN |n >

=< rN |
∑

n

e−βĤ |n >< n|rN >

=< rN |e−βĤ |rN > (2.31)

where Ĥ is the Hamiltonian operator. Now the operator Ĥ|n >= En|n >. Therefore
the Eq. 2.29 can be written as

ZQ =
1

N !

∫

< rN |e−βĤ |rN > drN (2.32)

The partition function can be written in the form

ZQ = Tre−βĤ (2.33)
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where the trace is to be taken over all states of the system that has N particles in

the volume V . This form, which is explicitly independent of the representation, is

sometimes convenient for calculations. The density operator ρ̂Q is given by

ρ̂Q =
1

N !

e−βĤ

ZQ

(2.34)

Furthermore, the density operator ρ̂Q must satisfy the condition

Tr(ρ̂Q) = 1 (2.35)

An analogous expression to Eq. 2.5 is given by2,7

ZQ =
1

N !λ3NB

∫

WNdr
N (2.36)

Using the sum of Slater determinants, we can obtain

WN = N !λ3NB < rN |e−βĤ |rN >

= N !λ3NB
∑

n

u∗n(r
N)e−βĤun(r

N) (2.37)

The sum of Slater determinants give the probability, WNdr
N , to find the system in a

small volume drN centering over the point rN .1 In the classical limit, we have

WN = e−βU (2.38)

where U is the potential energy of the system. In the Wentzel- Kramers-Brillouin

(WKB) approximation,

WN = e−βUeff (2.39)

where Ueff is the effective potential. The evaluation of WN require to specify the

Hamiltonian Ĥ and the wave function basis un(r
N). There are two formalisms used

in this thesis:

− Wigner and Kirkwood formalism that uses free-particles as wave function ba-

sis.8,9

− Singh and Sinha formalism that uses hard-spheres as wave function basis.7,10
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In the following chapters we will use these mentioned approaches.
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CHAPTER 3

SEMICLASSICAL APPROACH TO MODEL QUANTUM

FLUIDS USING SAFT-VR

Thermodynamic properties of quantum fluids are described using an extended ver-

sion of the Statistical Associating Fluid Theory for Potentials of Variable Range

(SAFT-VR), that takes into account quantum corrections to the Helmholtz free en-

ergy A, based on the Wentzel-Kramers-Brillouin (WKB) approximation. We present

the theoretical background of this approach (SAFT-VRQ), considering two different

cases depending on the continuous or discontinuous nature of the particles pair in-

teraction. For the case of continuous potentials, we demonstrate that the standard

Wigner-Kirkwood theory for quantum fluids can be derived from the de Broglie-Bohm

formalism for quantum mechanics, that can be incorporated within the Barker and

Henderson perturbation theory for liquids in a straightforward way. When the parti-

cles interact via a discontinuous pair potential, the SAFT-VR method can be combined

with the perturbation theory developed by Singh and Sinha (J. Chem. Phys. 67, 3645,

(1977); J. Chem. Phys. 68, 562, (1978)). We present an analytical expression for

the first-order quantum perturbation term for a square-well potential, and the the-

ory is applied to model thermodynamic properties of hydrogen, deuterium, neon and

helium. Vapor-liquid equilibrium (VLE), liquid and vapor densities, isochoric and

isobaric heat capacities, Joule-Thomson coefficient and inversion curves are predicted

This chapter is based on a paper: Vı́ctor M. Trejos and Alejandro Gil-Villegas, J. Chem. Phys.,
136, 184506, (2012).
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accurately with respect to experimental data. We find that quantum corrections are

important for the global behavior of properties of these fluids and not only for the

low-temperature regime. In specific, predictions obtained for hydrogen compare very

favorably with respect to cubic equations of state.

3.1 Introduction

Perturbation theories based on statistical mechanics have been developed and used

extensively to model thermodynamic properties of classical fluids, characterized by a

negligible de Broglie’s wavelength, given by λB = h/
√
2πmkT , where h and k are the

Planck’s and Boltzmann’s constants, respectively; m the mass of the particle and T

the temperature. Since the triple point of most of the substances occurs at relative

high temperatures, λB becomes very small compared to a characteristic size scale such

as the mean distance between close particles, 〈s〉. Quantum fluids are typically sub-

stances of small molecular weight that exhibit a fluid phase at low temperatures, and

their de Broglie’s wavelength is of the same magnitude as 〈s〉, i.e, quantum effects are

present; typical examples are hydrogen, deuterium, helium-4 and neon. The case of

hydrogen is particularly relevant due to its technological application as an alternative

energy resource in fuel cells, food industry, petroleum recovery and refining, pharma-

ceuticals, aerospace, electronic circuits and power generation.1−3 Several equations of

state have been proposed to describe thermodynamic properties of hydrogen, specif-

ically cubic equations of state,4 without considering quantum corrections.

On the other hand, quantum effects have been found to be important in the

characterization of phase diagrams of fluids with more complex structures,5−10 and

in the last decade several experimental studies have shown the relevance of quantum

entanglement in macroscopic systems, even at high temperatures.11

There have been a number of studies about quantum corrections in the pre-

diction of thermodynamic and structural properties of fluids following different ap-

proaches,5−34 being the Wigner-Kirkwood (WK) theory the first method used with

this purpose.12,13 In the WK theory, the partition function for a system of particles

interacting via a pair-potential u(r) is expanded in powers of h, using a complete set

of wave functions for the evaluation of the expansion terms. In its original formalism,

this expansion is obtained from non-interacting particles wave functions, and it is

valid for continuous potentials;18 a set of hard-spheres wave functions is required for
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discontinuous interactions.20 Other extensions and further analysis of this approach

have been considered,28,29 including its connection to the path-integral description,35

which is a robust approach to model quantum fluids, particularly in computer simu-

lations.10,30−34

In this chapter, we are interested in the modeling of thermodynamic properties

of quantum fluids based on a Wentzel- Kramers-Brillouin (WKB) extension of the

statistical associating fluid theory (SAFT).36,37 Over the years, SAFT has been a

very powerful method to describe a wide range of systems, most of them of indus-

trial interest, and different versions have been derived. One of the versions of SAFT

that has been useful in the task of understanding the correlation between molecular

behavior and macroscopic properties is the SAFT for potentials of variable range

(SAFT-VR) approach,38,39 that models particles interacting via variable-ranged po-

tentials. Quantum-mechanical calculations to determine size parameters in models

using the SAFTVR approach was previously considered by Sheldon et al.7 In this

chapter, we study a different route, by modifying the SAFT-VR formalism with the

introduction of quantum contributions to the Helmholtz free energy. In Sec. 3.2,

we present the theoretical background behind the extension of SAFT-VR to include

quantum effects. In Sec. 3.3, we focus our analysis in the case of a square-well

potential. In Sec. 3.5, the SAFTVRQ method is applied to model phase behavior

and thermodynamic properties of quantum fluids, studying two possible routes: (a)

a high-temperature perturbation expansion where the quantum corrections are only

taken at the level of the attractive part of the square-well (SW) potential and (b) the

same as (a) but considering a quantum hard-spheres (QHS) free energy.

3.2 Quantum corrections for continuous and dis-

continuous potentials

3.2.1 Continuous potential

Green14 developed a semiclassical theory for fluids applying the WK approach,12,13

in order to obtain distribution functions satisfying a quantum version of the Liouville

equation. Quantum corrections to distribution functions are given as a series expan-

sion in powers of h2, where the first term is the classical distribution function. A

semiclassical distribution function was used to derive several thermodynamic proper-
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ties for a fluid comprised of N particles interacting via a pair-potential u(r). In the

case of the Helmholtz free-energy, the corresponding quantum expression is given by

A

NkT
=

Ac

NkT
+
ρβ2h2

24πm

∞
∫

0

gc (r)∇2u (r) r2dr

=
Ac

NkT
+ 2πρβD

∞
∫

0

gc (r)∇2u (r) r2dr, (3.1)

where ρ is the number density, β = 1/kT , D = λ2B/24π and Ac and gc(r) are the

Helmholtz free-energy and the radial distribution function for the classical system,

respectively. Eq.(3.1) has a quantum correction proportional to λ2B since the linear

term must be null in order to guarantee a real value of the free energy (see Ref. [15]).

Kim et al.16 used this approach to study the liquid-vapor equilibrium (VLE)

for several quantum fluids assuming a Lennard-Jones pair potential (LJ), applying

the Barker and Henderson perturbation theory (BH) for classical fluids,40,41 deriving

expressions for Ac and the quantum contribution AQ given in the last term of Eq.

(3.1). The high-temperature BH perturbation expansion for Ac was performed up

to second order, in combination with the local compressibility approximation. The

quantum energy AQ was obtained using the hard-spheres (HS) radial distribution

function g0(r) according to the procedure developed by Wertheim and Thiele,42,43

with g0(r) = 1 for r > 5σ, where σ is the LJ size parameter defined by u(σ) = 0, and

the HS effective diameter was determined by the BH rule as in the classical theory.

Very good descriptions were obtained for hydrogen, deuterium, helium-4 and neon,

although some deviations were observed for neon with respect to the experimental

data. It was assumed by the authors that the LJ potential was not a suitable pair

interaction for neon.

A close-related approach was introduced by Jaen and Khan.17 These authors

applied the WKB method44–46 in order to obtain the pair radial distribution function

of a quantum fluid, using the statistical density matrix ∆. The WKB method deals

with the approximate solution of the Schrödinger wave equation in the limit of short

wavelengths, as in the case considered in optics when the geometric limit is obtained.47

The properties of the classical system are used to calculate quantum corrections to the

wave function or ∆. In the case considered by Jaen and Khan, the diagonal element

of ∆ of a system of interacting particles in the canonical ensemble was expanded in
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a series of powers on α = ~
2/2m, where the zeroth-order terms corresponds to the

classical ∆. In this way, semiclassical expressions for the radial distribution function

and the pair potential, ue, were obtained as a power expansion on D,

g(r) = gc(r) +D∇2gc(r) +
1

2
D2∇2∇2gc(r) + ..., (3.2)

and

ue(r) = u(r) +D∇2u(r) +
9

10
D2∇2∇2u(r) + .... (3.3)

Particle-exchange contributions are not included in Eq.(3.3). By the nature of D, the

effective quantum potential ue depends on powers of β.

The statistical routes described previously are not independent, since Eq.(3.1)

can be obtained directly from ue considering the expansion up to first-order in D in

Eq.(3.3). This connection, that apparently has not been noted before, allows us to

apply the BH perturbation theory, obtaining the first-order perturbation term for a

fluid interacting via the pair potential ue and using the classical hard-spheres fluid as

the reference system,

a1 = 2πρ

∫ ∞

0

g0(r)u
e(r)r2dr, (3.4)

where g0(r) is the classical HS radial distribution function that must be evaluated

with a temperature-dependent BH diameter. It results that a1 can be expressed as

the sum of the classical and quantum contributions:

a1 = ac1 + aQ1 , (3.5)

with

ac1 = 2πρ

∫ ∞

0

g0(r)u(r)r
2dr, (3.6)

and

aQ1 = 2πρD

∫ ∞

0

g0(r)∇2u(r)r2dr, (3.7)

the last term being temperature dependent. In this way, Eq.(3.1) can be rewritten as

a WKB Barker and Henderson perturbation expansion:

A

NkT
=

Ac

NkT
+ βaQ1 . (3.8)
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It is interesting to note that the derivation of Eq.(3.8) and related expressions can be

done using a different route to the statistical methods already described, using the de

Broglie-Bohm formalism of quantum mechanics.48−50 The wave function Ψ(r, t) of a

particle of mass m in a potential V (Ref. [51]) satisfies the Schrödinger equation,

− ~
2

2m
∇2Ψ(r, t) + V (r)Ψ(r, t) = −i~∂Ψ(r, t)

∂t
, (3.9)

where r denotes the vector position of the particle at time t . Introducing the

Madelung representation of the wavefunction,

Ψ(r, t) = R(r, t)eiS(r,t)/~, (3.10)

where R(r, t) and S(r, t) are amplitude and phase functions of real variable, respec-

tively, Eq.(3.9) is transformed into the following equations:

∂S

∂t
+

(∇S)2
2m

+ V − ~
2

2m

∇2R

R
= 0, (3.11)

∂R2

∂t
+∇ ·

(

R2∇S
m

)

= 0. (3.12)

Following the de Broglie-Bohm approach, Eq.(3.11) can be reinterpreted as a Quan-

tum version of the Hamilton-Jacobi equation of classical mechanics,

∂Sc

∂t
+

(∇Sc)
2

2m
+ V = 0, (3.13)

where Sc is the action of the particle. The motion equation of the particle can be

obtained from the solution of Eq.(3.13), since the particle’s momentum p is given by

p = ∇Sc. The quantum potential is defined by

Q = − ~
2

2m

∇2R

R
, (3.14)

in such a way that Eq.(3.11) is an extended version of Eq.(3.13), assuming that for

quantum systems there is an effective potential energy defined by ue(r) = V (r) +Q,

and that p = ∇S. In the WKB approximation, once the phase function S of Ψ is

expanded in powers of ~, the corresponding WKB quantum potential for a stationary
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state of energy E is given by50

QWKB =
~
2

8m

∇2V

V − E
− 5~2

32m

( ∇V
V − E

)2

, (3.15)

This expression is valid in either case E > V or E < V . By assuming that the kinetic

energy E−V ≈ 3kT/2, and considering the leading term in powers of β in Eq.(3.15),

then the quantum potential reduces to

QWKB = ±D∇2V. (3.16)

where the plus/minus sign corresponds to the E < V or E > V cases, respectively.

Assuming that

V = ∓u(r), (3.17)

where the selection of signs must be consistent with the respective cases in Eq.(3.16),

we then recover Eq.(3.1) and Eq.(3.3). Consequently, we have demonstrated, within

the semiclassical limit where the WKB approach is valid, that the statistical routes

used to obtain the quantum free energy contribution for a system of particles inter-

acting via a continuous potential are consistent with the assumption that the effective

pair interaction to be taken into account in the evaluation of the perturbation terms

is given by

ue(r) = u(r) +QWKB. (3.18)

3.2.2 Discontinuous potentials

The h2 expansion has several shortcomings when applied to discontinuous potentials,

as has been reported by several authors.18−29 Although most of these previous studies

have been focused in low-density fluids and prediction of virial coefficients, a general

framework, equivalent to Green’s theory, has been developed for fluids by Singh and

Sinha,23,24 based in an alternative WK expansion that uses a hard-spheres wave

function basis instead of the free-particle’s one.20 According to this approach, a high-

temperature perturbation expansion can be performed for hard-core potential models

given by

u(r) = uHS(r) + φ(r), (3.19)
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where the discontinuous potential is divided into a hard spheres contribution, uHS,

and a perturbative potential, φ. The corresponding Helmholtz free energy can be

expressed as

A

NkT
= aideal + aQHS + βa1 + β2a2 − 24πρβD

∞
∫

0

gQ0 (r)∇2φ (r) r2dr, (3.20)

where aideal is the ideal free energy, aQHS = AQ
HS/NkT is the Helmholtz free energy of

the QHS system, a1 and a2 are the first and second order perturbation terms defined

in the same way as in the Barker and Henderson classical perturbation theory40,41

but re-expressed in terms of correlation functions of the QHS fluid, being gQ0 the

corresponding radial distribution function. The perturbation expansion of the radial

distribution function also follows the same formal expressions as in the the classical

theory but in terms of the QHS correlation functions.21

The quantum behavior of the HS fluid introduces a significant difference with

respect to its classical expression, since its contact value vanishes, i.e, gQ0 (σ) = 0.

Formally,

gQ0 (r) = W (r)g0(r), (3.21)

where W → 1 when λB → 0 and W → 0 when r → σ; in the low-density limit W

has been determined22 and the leading term is given by

W (r) = 1− exp

[

− 2π

λ2B
(r − σ)2

]

, (3.22)

Quantum hard-sphere repel each other before they come into contact and an effective

diameter can be defined,19 given by

σeff = σ + (1/2
√
2)λB, (3.23)

i.e., spheres “swell” in the quantum regime. Remarkably, Yoon and Sheraga27 found

that the classical formulas for the Helmholtz free energy and pressure given by the

Carnahan Starling equation of state (CS EoS) (Ref. [52]) can reproduce Monte Carlo

simulation values of the QHS system if this effective diameter is introduced in the

CS EoS through the evaluation of a temperature dependent packing fraction given

by ηeff = ησ3
eff. In this way, a shifted contact value of the QHS radial distribution

26



function, g0(σeff), is derived and the pressure is expressed according to the classical

formula

Z =
βP

ρ
= 1 + 4ηeffg0(σeff), (3.24)

a result that will be important when we discuss the theory in the context of the

SAFT-approach. A semiclassical limit of Eq.(3.20) can be obtained by considering

the limit gQ0 → g0 in the evaluation of the perturbation terms a1 and a2, obtaining

A

NkT
= aideal + aQHS + β(ac1 + aQ1 ) + β2ac2, (3.25)

where aQHS can be determined either by the CS EoS, aCS
HS = (4η − 3η2)/(1 − η)3,

expressed in terms of ηeff, or by the approximated expression given by Jancovici,19

aQHS = aCS
HS +

6λB√
2σ
ηg0(σ), (3.26)

The quantum mean attractive energy aQ1 is given in this case by

aQ1 = −24πρD

∞
∫

0

g0 (r)∇2φ (r) r2dr. (3.27)

Notice that the main difference between Eqs. (3.7) and (3.27) for aQ1 is the nature of

the pair potential, that has also a repulsive contribution in Eq. (3.7).

3.3 SAFT-VRQ for square-well monomer fluid

In this section, we present an analytical evaluation of Eq.(3.27) when φ is considered

as a square-well (SW) potential,

φ(r; σ) =

{

−ǫ if σ ≤ r ≤ λσ

0 if r > λσ
(3.28)

where r is the distance between two segments, −ǫ is the depth energy, and λ is the

range of the attractive forces. Introducing reduced variables, we have from Eq. (3.27)

aQ1 = −3

[

Λ

π

]2

βǫηIQ, (3.29)
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where x = r/σ, η = πρσ3/6 is the packing fraction, Λ = h/σ
√
mǫ is the de Boer’s

quantumness parameter, and

IQ =

∞
∫

1

gc (x)
d2φ

dx2
x2dx. (3.30)

Parameters D and Λ are related through the following expression

12D

σ2
=

[

Λ

2π

]2

βǫ. (3.31)

According to Eq.(3.28),

β
dφ

dx
= −eβφ

(

de−βφ

dx

)

(3.32)

β
d2φ

dx2
=

(

eβφ
de−βφ

dx

)2

− eβφ
(

d2e−βφ

dx2

)

, (3.33)

where
de−βφ

dx
= eβǫδ(x− 1) + (1− eβǫ)δ(x− λ). (3.34)

In order to obtain IQ by Eqs.(3.30)-(3.34), the HS cavity function y0(x) is used instead

of g0(x), since y0(x) = g0(x) for x ≥ 1 and it is a continuous function. Then we can

apply the following result that is valid for an arbitrary continuous function F (x):

∫ ∞

−∞
F (x)

dδ(x− x0)

dx
dx = −

[

dF

dx

]

x=x0

. (3.35)

Substituting Eqs. (3.33)-(3.35) in Eq. (3.30), we obtain

IQ = IQ1 + IQ2 , (3.36)

where

βIQ1 = (1− e−βǫ)2y0(λ)λ
2, (3.37)

βIQ2 = −(1− e−βǫ)

[

d

dx
(y0x

2)

]

λ

. (3.38)

28



These expressions require to know y0(x) for a HS fluid. In this work we used the

formula proposed by Boublik,53

y0 (x) = ef(ϑ;x) = eϑ0+ϑ1x+ϑ2x2+ϑ3x3

, (3.39)

where ϑ0, ϑ1, ϑ2 and ϑ3 are functions of the packing fraction η given in Ref. [53].

Using this result in Eq.(3.38) gives

[

d

dx
(y0x

2)

]

λ

= λy0(λ)

[

2 + λ

(

∂f

∂x

)

λ

]

, (3.40)

with
(

∂f

∂x

)

λ

= ϑ1 + 2ϑ2λ+ 3ϑ3λ
2. (3.41)

Eq. (3.40) can be evaluated using y0(λ) as given by Eq.(3.39). Instead of doing this,

we used the compact expressions derived from the Carnahan-Starling theory52 and

the SAFT-VR approach,38 respectively,

y0(λ) = − 1

12ηǫλ2

(

∂ac1
∂λ

)

. (3.42)

Combining equations (3.29), (3.36)-(3.38) and (3.40)-(3.42), a final expression for aQ1

is obtained, that is an explicit function on β, η, and λ, as in the case of the classic

mean-attractive energy term ac1. It is important to note that the power expansion in

β of Eqs. (3.37) and (3.38) introduces perturbation terms starting in β2 in aQ1 .

We now consider the more general case of a fluid composed of N chain molecules

that could present more complex interactions, like associating anisotropic short-

ranged attractive sites. In this case, the introduction of quantum corrections is more

subtle and is not only given by the addition of a quantum free-energy contribution

like in Eqs.(3.1) and (3.20). Following the statistical associating fluid theory,36,37 the

Helmholtz free energy is given by

A

NkT
=
Aideal

NkT
+
Amono

NkT
+
Achain

NkT
+
AAssoc

NkT
, (3.43)

where Aideal, Amono, Achain and Aassoc are the ideal, monomer, bonding and asso-

ciating energy contributions, respectively; arising from the different structural ele-

ments involved in this case, and obtained following the SAFT-VR approach where
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the monomers forming the chain molecules interact via potentials of variable repul-

sive or/and attractive ranges.38,39,54,55 In the case of the energy contribution due to

monomers, we have that
Amono

NkT
= msa, (3.44)

where ms is the number of segments of the chain molecule, and a is the free energy

of a monomeric fluid whose properties are given by Eq.(3.25). The second-order term

can be derived from the local compressibility approximation,40,41

a2 =
1

2
K0η

∂a1
∂η

, (3.45)

with

K0 =
(1− η)4

1 + 4η + 4η2
. (3.46)

Then it is clear that a2 follows a similar expression as a1,

a2 = ac2 + aQ2 , (3.47)

where

ac2 =
1

2
K0η

∂ac1
∂η

, (3.48)

and

aQ2 =
1

2
K0η

∂aQ1
∂η

. (3.49)

In this work, we have used a2 = ac2. The consideration of the other SAFT-VR terms,

Achain and Aassoc, is more subtle; since in the classical theory, they are functions

of the contact value of the SW radial distribution function g(σ), which is obtained

by a first-order perturbation expansion.38 This term arises in the evaluation of the

bonding volume, whose expression is formally the same for a quantum fluid. However,

quantum mechanically g(σ) = 0 when we consider fluids whose particles interact via

a hard-core potential.56 This effect is consequence of the extinction of the wave

functions when the particles come into contact, i.e, pressure is not given by collisions,

as in the classical case, but by repulsions. However, since we know that QHS behave

as a fluid formed by spheres with a larger diameter,19,27 we can use an effective contact

distance σeff defined by Eq. (3.23), that is taken into account to reproduce the QHS

pressure, according to Eq. (3.24). In this way, an effective contact value can be
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obtained from the self-consistency between Eqs.(3.24) and (3.26):

g0(σeff) =

[

1 +
3λB

2
√
2σ

]

g0(σ) +
3λB

2
√
2σ
η
dg0(σ)

dη
, (3.50)

that can be substituted in the SAFT-VR expression for gSW (σ),38

gSW (σ) = g0(σeff) +
1

4
β

[

∂a1
∂η

− λ

3η

∂a1
∂λ

]

. (3.51)

Notice that g0(σeff) → g0(σ) when λB → 0, and Eq. (3.51) reduces to the standard

SAFT-VR expression for classical fluids. Eqs. (3.50) and (3.51) imply that the energy

terms Achain and Aassoc contain quantum contributions that are not additive, as in

the case of Amono. This is particularly significant in the case of the associating term,

that describes hydrogen-bonding thermodynamics. The relevance of quantum effects

in the formation of hydrogen bonds has been discussed by several authors,8–10 and

the SAFT-VRQ approach presented here gives a theoretical route to model some of

these effects.

3.4 Discrete perturbation theory (DPT)

According to the DPT theory,57 a system of N spherical particles contained in a

volume V , interacting via a pair potential u(r), can be approximated by a discrete pair

potential ud(r), given as a sequence of SW and square-shoulders (SS). The resulting

pair potential is given by

ud(r) = uHS(r) +
n
∑

i=1

φi (r) (3.52)

where uHS(r) is the hard-sphere contribution and φi (r) a perturbative pair potential

given by

φi (r) =

{

ǫi λi−1σ ≤ r < λiσ

0 otherwise
(3.53)

where ǫ is the well-depth potential and its value could be: i) positive in the case of

a SW interaction, (ǫ < 0), ii) negative in the case of a SS interaction, (ǫ > 0). A

schematic representation of the discrete pair potential ud(r) is displayed in Fig. 3-1
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The Helmholtz free energy, a = A/NkT , for a system of particles interacting via

a discrete pair potential can be written as57

A

NkT
=
AHS

NkT
+ β

n
∑

i=1

[

aC1 (λi, ǫi; η)− aC1 (λi−1, ǫi; η)
]

(3.54)

+ β

n
∑

i=1

[

aQ1 (λi, ǫi; η)− aQ1 (λi−1, ǫi; η)
]

+ β2

n
∑

i=1

[

aC2 (λi, ǫi; η)− aC2 (λi−1, ǫi; η)
]

where N is the number of particles, η is the packing fraction, λi is the parameter of

the variable range in each step, and AHS is the hard-sphere contribution.

-
ii-1

- i

u(
r/

)

r/

 Continous Pair-Potential
 Discrete Pair-Potential

Figure 3-1: Schematic representation of a hard-core attractive potential (solid line). It can be

approximated by a sequence of square-wells and square-shoulders. The details of the discretization

are discussed explicitly in the text.

The quantum contribution aQ1 given by Eq. 3.29, can be rewritten via a discrete

pair potential as

aQ1 (λi, ǫi; η) =
1

4
η

[

Λ

π

]2

(1− e−βǫ)2y0(λi)λ
2
i − (1− e−βǫ)

[

d

dx
(y0x

2)

]

λi

(3.55)

In order to discretize the Lennard-Jones pair potential, we construct a succession of

steps i and truncate the potential at a distance of r < 1.95σ.
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3.5 Results and Discussion

Quantum corrections are required at low temperatures and high pressures. We ana-

lyzed these effects for hydrogen, deuterium, neon and helium-4, comparing the predic-

tion obtained using a classical EoS, as given by SAFT-VR, and two variations of the

semiclassical approach, according to Eq.(3.25): using a classical hard-spheres fluid,

i.e., aQHS ≈ aCS
HS , and the QHS free energy given by Eq.(3.26), that has a quantum

correction with a linear term on λB. We will denote these equations as SAFT-VRQ

and SAFT-VRQL, respectively. As detailed bellow, we found that both quantum EoS

give very accurate results, although in overall SAFT-VRQ performs better, particu-

larly when we consider the case of helium-4. We also tested the Yoon and Sheraga

QHS free energy,27 although it is not very accurate in comparison with SAFT-VRQ

and SAFT-VRQL, and the corresponding results are not presented here.

In Table 3.1, we report the model parameters for the studied substances that

were obtained by fitting experimental data of vapor pressure and saturated liquid

density, as reported in Ref. [58], and assuming monomeric fluids, i.e., ms = 1. The

optimal parameters were determined by using a Levenberg-Marquartd minimization

algorithm,75 based on previous work on the VLE of asymmetric mixtures at high

pressures,60−62 using the following objective function:

fob =
M
∑

i=1

(

P cal
i − P exp

i

P exp
i

)2

+
M
∑

i=1

(

ρL,cali − ρL,expi

ρL,expi

)2

, (3.56)

whereM is the number of experimental data points, and P and ρ are the pressure and

density, respectively. The superscripts exp and cal denote experimental and calculated

values, respectively. The set of optimized parameters are segment diameter (σ), SW

depth energy (ǫ/k) and SW attractive range (λ). As can be observed in Table 3.1

by comparing with the classical values, in all the cases the inclusion of quantum

effects systematically reduces the diameter σ and range λ and increases the depth

energy ǫ when SAFT-VRQ is used. For SAFT-VRQL the effects are similar, with

exception of the range λ that is always higher. The variation of these parameters

has a global effect on the phase diagram. It is important to bear in mind that SW

fluids of different attractive ranges are non-conformal fluids, i.e., they do not follow

corresponding states, as in the case of fluids described by the LJ potential. Although

the SW parameters reported in Table 3.1 are close to the corresponding LJ values
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(see Ref. [16], for example), their differences are also determined by the change in the

shape of the SW potential as λ varies.

Using the molecular parameters given in Table 3.1, the VLE coexistence curves

were obtained by finding the liquid and vapor densities satisfying thermal equilibrium,

TL = T V , mechanic equilibrium, PL = P V and chemical equilibrium gL = gV , where

P and g are the pressure and chemical potential, respectively. A standard Newton-

Raphson method75 was used to solve the system of non-linear equations.

Table 3.1: Optimized SAFT-VR, SAFT-VRQ and SAFT-VRQL parameters for hydrogen (H2),
deuterium (D2), neon (Ne) and helium-4 (He) fluids obtained by fitting to experimental data of vapor
pressure and saturated liquid density.58 Monomeric fluids are considered (ms = 1). Molecular
parameters are: the range of the square-well interaction (λ), the hard-spheres diameter (σ), the
attractive square-well energy (ǫ) and the scaled de Broglie wavelength ( Λ = h/σ

√
mǫ). The values

for every substance correspond to the classical (SAFT-VR, first row) and quantum versions (SAFT-
VRQ and SAFT-VRQL, second and third rows, respectively).

Substance λ σ/Ȧ (ǫ/k) /K Λ

H2 1.7184 3.0232 18.0805 0
1.7114 2.8983 19.9291 2.3921
1.7170 2.8690 26.4096 2.0992

D2 1.7374 2.9150 20.4311 0
1.6006 2.9066 25.9657 1.4723
1.5990 2.8906 34.6549 1.2815

He 1.7260 2.9860 2.6943 0
1.6799 2.7595 3.4973 4.2409
1.6852 2.7461 5.6091 3.3650

Ne 1.5442 2.6914 32.8498 0
1.5328 2.6949 33.4450 0.6252
1.5823 2.6463 34.0730 0.6308

Results are shown in Fig. (3-2). For all the substances, the addition of quantum

corrections clearly improves the classical prediction for the whole phase diagram. The

SAFT-VRQL approach, that considers a λB linear term contribution to the QHS free

energy, improves the SAFT-VRQ prediction of the critical temperature and pressure

for hydrogen, deuterium and neon; however, in the case of helium-4, SAFT-VRQ

is more accurate. Notice that for this last substance, the VLE occurs at very low

temperatures (2.5 K - 5.3 K) and we can expect that the QHS free energy must

include higher terms on λB, since helium-4 has the largest value of the reduced de

Broglie wavelength Λ (see Table 3.1).
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Figure 3-2: Vapor-liquid coexistence as predicted by the SAFT-VR, SAFT-VRQ and SAFT-VRQL

approaches. Experimental data were taken from NIST Chemistry WebBook.58 Substances presented

are: a) hydrogen, b) deuterium, c) helium-4 and d) neon.

The predicted VLE and pressure-volume P -V super critical isotherms for the same

substances using the SAFT-VRQ approach are shown in Fig. (3-3). Results are very

accurate compared to experimental data, with the well-known overestimation of the
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critical pressure.38 These results validate the application of the SAFT-VRQ approach

for high values of temperature and pressure, where most of the use of these fluids is

required. Another important thermodynamic property to consider is the specific heat

capacity. The following relationship between the isochoric heat capacity (CV ) and

the isobaric heat capacity (Cp) can be established:63

Cp = C id
p + Cres

V +R

[

Z + T
(

∂Z
∂T

)

V

]2

[

Z + ρ
(

∂Z
∂ρ

)

T

] −R, (3.57)

where the superscripts id and res denote ideal and residual heat capacity contribu-

tions, respectively, Z is the compressibility factor defined by Z = η(∂a/∂η), and R is

the gas constant. The ideal isobaric heat capacity (C id
p ) can be expressed as a power

series on temperature,64 and Cres
V is given by:

Cres
V

RT
= −2

(

∂ares

∂T

)

− T

(

∂2ares

∂T 2

)

(3.58)

or
Cres

V

R
= −β2

[

2ac2 + 2

(

∂aQ1
∂β

)

+ β

(

∂2aQ1
∂β2

)]

. (3.59)

where ares is the residual free Helmholtz energy contribution defined as,

ares = aHS + βa1 + β2a2 + βaQ (3.60)

In Fig. (3-4), the accuracy in the predictions of Cp is given for (a) hydrogen, (b)

deuterium, (c) helium-4, and (d) neon reported as the percentage deviation error.

Deviations are below 6% for a wide range of temperatures and pressures.

In Fig. (3-5), we present predictions for the Joule-Thomson coefficient µ for (a)

hydrogen, (b) deuterium, (c) helium-4, and (d) neon. This coefficient is defined by

µ =

(

∂T

∂P

)

H

, (3.61)

where H is the enthalpy. Depending of state conditions of µ, the fluid is cooled

(µ > 0) or heated (µ < 0) for a small change in pressure at constant enthalpy H.

The sign of the Joule-Thomson coefficient, µ, depending on: i) hte identity of gas, ii)

pressure and temperature, iii) the relatives magnitudes of the attractive and repulsive
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Figure 3-3: Pressure-volume isotherms as predicted by SAFT-VRQ and compared with experi-

mental data in the vapor-liquid coexistence and supercritical regions. Experimental data were taken

from NIST Chemistry WebBook.58 The supercritical temperatures are given in solid lines for each

substance, from top to bottom: a) hydrogen, 160K, 90K, 70K, 45K and 35K; b) deuterium, 150K,

120K, 60K and 45K; c) helium-4, 20K, 12K, 9K and 6K; d) neon, 230K, 180K, 90K and 60K. The

envelope of the coexistence curve is denoted by a dotted line.
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Figure 3-4: Percentage error deviation for the isobaric heat capacity as predicted by the SAFT-

VRQ approach. Experimental data were taken from NIST Chemistry WebBook.58 Substances

presented are: a) hydrogen, b) deuterium, c) helium-4 and d) neon.

The cooling effect is observed when attractive interactions are dominant i.e. (Z <

1), and the warming effect is observed under conditions when repulsive interactions

are dominant i.e. (Z > 1).65 From standard thermodynamics relationships is known
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that

µ = − 1

Cp

[

V − T

(

∂V

∂T

)

p

]

= − 1

Cp

[

V + T
(∂P/∂T )V
(∂P/∂V )T

]

, (3.62)

or equivalently,

µ = − 1

ρCp

[

1− T ∗

η

(∂P ∗/∂T ∗)η
(∂P ∗/∂η)T ∗

]

, (3.63)

where P ∗ = Pσ3/ǫ and T ∗ = kT/ǫ, and

(

∂P ∗

∂T ∗

)

η

= η2
(

6

π

)[(

∂a

∂η

)

+ T ∗ ∂

∂T ∗

(

∂a

∂η

)]

, (3.64)

(

∂P ∗

∂η

)

T ∗

= T ∗
(

6

π

)

η

[

2

(

∂a

∂η

)

+ η

(

∂2a

∂η2

)]

. (3.65)

Equations (3.64)-(3.65) can be used to derive the predicted values of µ according to

the SAFT-VRQ approach. The behavior of µ as a function of the pressure is observed

in Fig. (3-5) for three isotherms corresponding to: (a) hydrogen, T = 160 K, 200

K, and 300 K; (b) deuterium, T = 150 K, 250 K, and 300 K; (c) helium-4, T =

10 K, 15 K, and 20 K; and (d) neon, T = 150 K, 250 K, and 300 K SAFT-VRQ

predictions deviate systematically from experimental values, an effect basically due

to the magnification of the inaccuracy on Cp. However, the accuracy obtained for

helium-4 is remarkable.

The constant enthalpy lines on the T -P diagram pass through a point where

µ = 0, and the inversion curve corresponds to the set of all these points, that has an

inflection point, characterized by the Inversion Temperature, Tinv. Gases that show a

heating effect at one temperature also present a cooling effect when the temperature

is below their upper Tinv. The inversion curve is obtained by solving the following

equation at every thermodynamic point:

T ∗
(

∂P ∗

∂T ∗

)

η

− η

(

∂P ∗

∂η

)

T ∗

= 0, (3.66)

that combined with Eqs. (3.64−3.65) is used for the prediction of Tinv for hydrogen,

Fig. (3-6). The Eq. (3.66) can be rewritten in terms of the compresibility factor (Z),

as

1 + ZHS − β2

[

Z2 +

(

∂ZQ

∂β

)]

− 2Z − η2
(

∂2a

∂η2

)

= 0 (3.67)
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Figure 3-5: Joule-Thomson coefficient as predicted by the SAFT-VRQ approach. Experimental

data were taken from NIST Chemistry WebBook.58 Substances presented are: a) hydrogen, b)

deuterium, c) helium-4 and d) neon.
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with

Z = 1 + ZHS + βZ1 + β2Z2 + βZQ (3.68)

Four different results are given: the SAFT-VR predictions where Amono is obtained by

a first or second-order perturbation expansion (denoted by SAFT-VR(1) and SAFT-

VR(2), respectively), the SAFT-VRQ results, and the Predicting-Soave-Redlich-Kwong

(PSRK);66 the last EoS being the best cubic equations of state used for this sub-

stance.4
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Figure 3-6: Joule-Thomson inversion curves for hydrogen as predicted by the first and second-

order perturbation SAFT-VR expressions (denoted as SAFT-VR(1) and SAFT-VR(2), respectively),

the SAFT-VRQ approach and Predicting-Soave-Redlich-Kwong (PSRK).66 Experimental data taken

from Perry’s Chemical Engineers’ Handbook.64 The fitted parameters for the cubic equation was

taken from Ref. [4].

The lower branch of the inversion curve is predicted accurately by all the EoS.

However, for the upper branch the introduction of the quantum correction improves

the classical prediction given by SAFT-VR. It is interesting to see that the SAFT-

VRQ prediction works better even at high temperatures where is not expected that

quantum effects should be important. We found here again that the introduction of

quantum corrections has an important global effect on the thermodynamic property.

The PSRK EoS has a very good performance at low and high temperatures. The

results obtained here by using cubic equations of state were extended for the study of
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refrigerants.67 Finally, SAFT-VR + DPT, is an original form to built different kinds

of continuous pair potential via a sequence of SW and SS interactions. In Fig. 3-7,

we present predictions for the VLE for methane using a discrete Lennard-Jones pair

potential. Experimental data are compared with the calculations with SAFT-VR +

DPT approach. The predictions were accurate in both density and temperature.
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Figure 3-7: Vapor-liquid coexistence as predicted by the SAFT-VR using a discrete pair potential.

Experimental data were taken from NIST Chemistry WebBook.58 Substances presented are: a)

Schematic representation of a discrete Lennard-Jones pair potential (solid line), b) VLE predictions

for methane.

All the results obtained in this chapter can be approximated by SAFT-VR + DPT

for quantum fluids. This methodology is a more realistic description for the shape of

the potential of real fluids.

Conclusions

This chapter has been concerned with the development of a semiclassical theory to

model quantum effects in fluids within the framework of the SAFT-VR approach.

Depending on the nature of the pair potential between particles, two different routes

can be established. In the first one, valid for continuous potentials, the WKB ap-

proximation can be used following the standard statistical mechanics method derived
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previously by several authors14,16,17 based on the Wigner-Kirkwood expansion.12,13

We have shown that the de Broglie-Bohm approach for quantum mechanics can be

used within the Barker and Henderson perturbation theory when the WK expansion

is applied for continuous potentials. In the second approach, valid for discontinu-

ous potentials, we have applied the theory developed by Singh and Sinha23−25 and

evaluated analytically the first quantum perturbation term arising from the attrac-

tive potential of a square-well interaction. By considering different expressions of

the QHS Helmholtz free energy, we have studied quantum fluids such as hydrogen,

deuterium, helium-4 and neon, finding that the VLE properties can be accurately

described by SAFT-VRQ, and other thermodynamic properties like isobaric heath

capacity, Joule-Thomson coefficient and related inversion curves are also satisfacto-

rily predicted. Although results have been presented for the most simple cases where

only the ideal and monomeric contributions are required, we have considered semi-

classical expressions for contributions to the free energy due to chain formation and

association that are used in the SAFT formalism, where the evaluation of the bonding

volume depends on the radial distribution function. This feature is particularly rele-

vant in the modeling of hydrogen-bonded fluids, such as water, where there is a whole

evidence that quantum effects are very important to understand its phase diagram

at low temperatures.10 Computer simulations studies would be desirable in order to

confirm and validate the extension of SAFT-VRQ for continuous model interactions

such as the Mie potential, taking advantage that a robust SAFT-γ approach has been

proposed recently for this potential,55 whose quantum potential is given by

QWKB =
CDǫ

r2

[

λr(λr − 1)
(σ

r

)λr

− λa(λa − 1)
(σ

r

)λa

]

, (3.69)

where ǫ and σ are the energy and size potential parameters of the Mie potential,

C =
λr

λr − λa

(

λr
λa

)
λa

λr−λa

, (3.70)

and λr and λa are exponents that determine the range of the repulsive and attrac-

tive interactions. Computer simulations using the Feynman’s pathintegrals method

provides very accurate results for quantum fluids;30−32 since the de Broglie-Bohm

theory can be related to this method (see Sec. 6.9 of Ref. [50]) and the WK expan-

sion can be expressed in terms of action functions used either in the Feynman’s or
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de Broglie-Bohm’s theories,29 it would be desirable to develop a further analysis of

the approach used here. Finally, the results obtained for the SW fluid can also be

applied to model other discrete potentials based on classical perturbation theory,57

whose WKB extension can be obtained using the semiclassical approach followed in

this study.
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[32] M. Sesé and R. L. E. Bailey,119, 10256 (2003).

[33] D. M. Ceperley, Rev. Mod. Phys. 67, 279, (1995).

[34] Q. Wang, J. K. Johnson, Fluid Phase Equil. 132, 93, (1997).

[35] R. P. Feynman, Statistical Mechanics, (Benjamin, New York, 1972).

[36] W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, Fluid Phase Equil. 52, 31, (1989).

[37] W. G. Chapman, K. E. Gubbins, G. Jackson, M. Radosz, Ind. Eng. Chem. Res. 29, 1709, (1990).

[38] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, J. Chem. Phys. 106, 4168,
(1997).

[39] A. Galindo, L. A. Davies, A. Gil-Villegas, G. Jackson, Mol. Phys. 93, 241, (1998).

[40] J. A. Barker, D. Henderson, J. Chem. Phys. 47, 2856, (1967).

[41] J. A. Barker, D. Henderson, J. Chem. Phys. 47, 4714, (1967).

[42] M. S. Wertheim, Phys. Rev. Lett. 10, 321, (1963).

[43] E. Thiele, J. Chem. Phys. 39, 474, (1963).

[44] G. Wentzel, Z. Phys. 45, 952, (1926).

[45] H. A. Kramers, Z. Phys. 39, 828, (1926).

[46] L. Brillouin, C. R. Acad. Sci. Paris 183, 24, (1926).

[47] M. Born, E. Wolf, Principles of Optics (Cambridge University Press, Cambridge, 2005).

[48] D. Bohm, Phys. Rev. 85, 166, (1952).

[49] D. Bohm, Phys. Rev. 85, 180, (1952).

[50] P. R. Holland, The Quantum Theory of Motion (Cambridge University Press, Cambridge, 1993).

[51] S. Gasiorowicz, Quantum Physics (John Wiley & Sons, New York, 1996).

[52] N. F. Carnahan, K. E. Starling, J. Chem. Phys. 51, 635, (1969).

46



[53] T. Boublik, Mol. Phys. 59, 371, (1986).

[54] L. A. Davies, A. Gil-Villegas, G. Jackson, Int. J. Thermophys. 19, 675, (1998).

[55] C. Avendaño, T. Lafitte, A. Galindo, C. S. Adjiman, G. Jackson, E. Müller, J. Phys. Chem. B 115, 11154,
(2011).

[56] B. P. Singh, S. K. Sinha, Phys. Rev. A 18, 2701, (1978).

[57] A. L. Benavides, A. Gil-Villegas, Mol. Phys. 97, 1225, (1999).

[58] NIST Chemistry Webbook, webbook.nist.gov/chemistry/.

[59] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery,Numerical Recipes:The art of the scientific
computing (Cambridge University Press, 3rd ed., New York, 2007).
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[67] Susana Figueroa-Gerstenmaier, Martin Ĺısal, Ivo Nezbeda, William R. Smith and Vı́ctor M. Trejos, Fluid Phase
Equilibria 375, 143, (2014).

47



48



CHAPTER 4

COMPUTER SIMULATION OF LIQUID-VAPOR

COEXISTENCE OF CONFINED QUANTUM FLUIDS

The liquid-vapor coexistence (LV) of bulk and confined quantum fluids has been

studied by Monte Carlo computer simulation for particles interacting via a semiclas-

sical effective pair potential Veff (r) = VLJ +VQ, where VLJ is the Lennard-Jones 12-6

potential (LJ) and VQ is the first-order Wigner-Kirkwood (WK-1) quantum potential,

that depends on β = 1/kT and de Boer’s quantumness parameter Λ = h/σ
√
mǫ,

where k and h are the Boltzmann’s and Planck’s constants, respectively, m is the

particle’s mass, T is the temperature of the system, and σ and ǫ are the LJ potential

parameters. The non-conformal properties of the system of particles interacting via

the effective pair potential Veff (r) are due to Λ, since the LV phase diagram is modi-

fied by varying Λ. We found that the WK-1 system gives an accurate description of

the LV coexistence for bulk phases of several quantum fluids, obtained by the Gibbs

Ensemble Monte Carlo method (GEMC). Confinement effects were introduced using

the Canonical Ensemble (NVT) to simulate quantum fluids contained within parallel

hard walls separated by a distance Lp, within the range 2σ ≤ Lp ≤ 6σ. The criti-

cal temperature of the system is reduced by decreasing Lp and increasing Λ, and the

liquid-vapor transition is not longer observed for Lp/σ < 2, in contrast to what has

been observed for the classical system.

This chapter is based on a paper: Vı́ctor M. Trejos and Alejandro Gil-Villegas and Alejandro
Martinez, J. Chem. Phys., 136, 184506, (2013).

49



4.1 Introduction

Confined systems is a major area of basic and applied research with diverse appli-

cations in nanotechnology.1 Properties of fluids are strongly modified when they are

confined, since atoms and molecules adsorbed onto a surface display a different po-

tential energy between themselves as compared to their energy when they are in a

bulk phase;2 in consequence, the phase diagram of the confined fluid is modified and

the critical temperature is reduced; experimental values of the ratio of the critical

temperatures (adsorbed fluid/bulk fluid) vary around 0.4 for a wide range of molec-

ular fluids.3–5 In this way, surfaces work as energy reservoirs that allow different

conditions for the realization of phase transitions as well as the appearance of novel

phases.

Another application of confined fluids are sieving process, where components of

a fluid mixture are separated by the size and shape of molecules, achieved and en-

gineered through molecular-scale filters and pores.6 In the case of quantum fluids,

such as hydrogen and deuterium, i.e, substances of small molecular weight m whose

de Broglie’s wavelength (λB = h/
√
2πmkT , where T , h and k are the temperature,

Planck’s and Boltzmann’s constants, respectively) has a magnitude comparable to

the mean distance between particles, quantum sieving is a novel separation method

based on isotopes distinction performed in nanopores that have a size comparable

to λB.
7–13 Quantum sieving is a promising low-cost method for recycling fuel from

a nuclear reaction; as cryogenic filters, separate mixture components via equilibrium

condensation at low temperatures.14

Prediction of thermodynamic properties of quantum fluids is of particular rele-

vance in physics, astronomy and chemical engineering,15–18 and specifically hydrogen

has deserved great attention due to their technological applications in aerospace, elec-

tronics and petrochemical industry.19–21 The possibility of developing an economy

based on hydrogen22 that could attend energy and environmental problems is based

on optimal methods for hydrogen storaging in cells, that requires a better understand-

ing of the properties of quantum fluids under confinement.23,24 On the other hand, in

the last decade several studies have shown the possibility of observing quantum effects

with molecules of increasing size, like matter wave interferometry of buckyballs25,26

and organic molecules with 430 atoms,27 as well as measuring entanglement effects in

macroscopical systems.28
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Over the years, different models and methods have been proposed to study quan-

tum effects in fluids.29−61 The Wigner-Kirkwood (WK) theory29–32 was the first ap-

proach developed for the prediction of thermodynamic and structural properties of

fluids at a semiclassical level, where quantum corrections are given by h2-power terms

that are functionals of second and higher-order derivatives of a continuous pair poten-

tial V (r). This approach has been applied for the Lennard-Jones model33,34 and also

for other molecular systems.35 Close-related semiclassical methods to the WK the-

ory have also been used36,37 and demonstrated the relevance of quantum corrections

at high pressures.38 However, the WK method does not converge for discontinuous

potentials and alternative approaches are required, where the quantum corrections

include odd powers of h.39,40 Quantum hard-spheres (HS) and square-well (SW) flu-

ids have been studied in this way, either for the calculation of virial coefficients41,42

or by perturbation theories.43–47 Based on the seminal work by Feynman on path

integrals62 and on robust molecular-simulation methods developed for classical flu-

ids,63–67 several authors have studied quantum fluids with computer simulations,49−61

including the reproduction of a metallic phase for hydrogen61 as predicted by Wigner

and Huntington.68

In chapter 3 we presented a semiclassical equation of state valid for quantum flu-

ids60 based on the Statistical Associating Fluid Theory for potentials of variable range

(SAFT-VR)69 and a perturbation theory for quantum fluids;43–46 this approach could

give very good predictions of the liquid-vapor phases of hydrogen (H2), deuterium

(D2), neon (Ne) and helium-4 (He). In this chapter, we review the application of

effective potentials in computer simulations of quantum fluids, and we address the

effect of confinement studying the quantum corrections to a Lennard-Jones fluid con-

tained between hard-parallel walls, that has been studied classically by Liu et al.70

using histogram-reweighting grand canonical Monte Carlo simulations. The informa-

tion obtained is a previous step in the development of a molecular-based equation of

state for confined hydrogen, based on the SAFT-VR extensions to confined71–73 and

quantum fluids.60
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4.2 Mathematical Model

We consider a system of N particles interacting via a semiclassical pair potential Veff

that consists in a pair potential V (r) with a quantum correction VQ(r),

Veff(r) = V (r) + VQ(r) (4.1)

In this work V (r) is given by the Lennard-Jones potential (LJ),

VLJ(r) = 4ǫ

[

(σ

r

)12

−
(σ

r

)6
]

(4.2)

where r is the relative distance between particles, σ is a characteristic length pa-

rameter defined by VLJ(σ) = 0 and ǫ is the depth of the attractive well. Although

Eq.(4.1) can be applied to other potential models besides the LJ interaction, there is

an extensive list of studies performed with this potential that allowed us to compare

our results. The standard theory for VQ is the Wigner-Kirkwood potential,29–32 that

at first-order in β is given by

VQ(r) = D∇2VLJ(r) =
4ǫD

σ2

[

11 · 12
(σ

r

)14

− 5 · 6
(σ

r

)8
]

, (4.3)

where D = λ2B/24π; we will refer to Eq.(4.3) as the WK-1 model. Eq.(4.3) agrees with

the first-order expressions for VQ from Feynman-Hibbs,62 Bohm’s60 and Jaen-Khan

theories.36

In order to assess the effect of considering a second order contribution in β in VQ to

describe the low temperature regime, we studied the WK-2 and Jaen-Khan potentials

(JK), finding that WK-2 gives non-physical results and, consequently, restricting our

study to the the JK model, given by

VQ(r) = D∇2VLJ(r) +
9

10
D2∇2∇2VLJ(r)

= − 9

10
4ǫ

(

D

σ2

)2 [

11 · 12 · 13 · 14
(σ

r

)16

− 5 · 6 · 7 · 8
(σ

r

)10
]

, (4.4)

The Eq. (4.2)-(4.4) provides physical and realistic information about the mechanism

that leads to the phase separation of matter.
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4.2.1 Bulk phases

The Gibbs Ensemble Monte Carlo method (GEMC)66,67 was used to simulate the

vapor-liquid phase equilibrium of quantum fluids. Results were obtained forN = 1000

particles uniformly distributed in a cubic simulation cell divided into two boxes of

equal volumes N = N1 + N2 = 1000. A random distribution of particles was set up

as initial configuration in both boxes, and periodic boundary conditions (PBC) were

used during the simulations. Standard GEMC particles movements were considered:

displacements of particles within each box, trial changes of volumes and trial inter-

changes of particles between the two boxes. The total number of particles N and

the total volume V = V1 + V2 were fixed constant whereas the volumes V1,2 and the

number of particles N1,2 per box were varied during the simulations. The number of

cycles used to reach equilibrium and for averaging was 1-2x107 cycles in each case,

where a cycle was defined by 90 attempts of displacements of particles, 900 attempts

of volume changes and 1 attempt of interchange of particles. Maximum displacement

and maximum volume changes were adjusted to give 30-40% and approximately 50%

of accepted moves for subsystem, respectively. We used the random walk method

developed by Frenkel and Smit65 to generate a new configuration in the volume step.

Finally, particles interchange between the boxes were adjusted to 9-11% of the num-

ber of particles interchanged per cycle. The mean numbers of particles N1 and N2,

volumes V1, V2, and energies for the two coexisting phases were obtained as config-

urational averages over the accumulated stage of the simulation. The errors in the

average properties of interest were estimated by calculating the standard deviations.

For the estimation of the critical point, we used a scaling law and the rectilinear diam-

eters recipe74 as a first estimate for the Wegner expansion, i.e, the critical parameters

ρc and Tc are given by

ρ± = ρc + C2|t| ±
1

2
Bo|t|β (4.5)

where ρ− and ρ+ denote the vapor and liquid densities, respectively, and t = 1−T/Tc.
This expression allowed us to fit the coexistence data and to obtain estimates for ρc,

Tc, β and the amplitude terms C2 and Bo. We used the apparent critical exponent

obtained in this way in order to describe the overall shape of the coexistence curves.

The critical constants were estimated by fitting the GEMC data to Eq. (4.5), using a

non-linear squares procedure.75 Simulations were performed with a cut-off radius rc

for the total potential and a tail contribution U tail was used to correct the systematic
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error induced by the truncation,65

U tail

Nρ
=

1

2

∞
∫

rc

VLJ (r) 4πr
2dr +

D

2

∞
∫

rc

∇2VLJ (r) 4πr
2dr (4.6)

where ρ is the average number density. We have truncated the pair potential at cut-off

ratios 2.5σ and 4σ. We found that the size and cut-off effects are less than 1%.

4.2.2 Confined phases

Liu et al.70 presented the phase behavior of a classical LJ fluid confined between

parallel hard walls, using histogram-reweighting grand canonical Monte Carlo sim-

ulations. In order to study the modification that quantum effects introduce with

respect to a classical system, we selected the same model. The canonical ensemble

method76,77 was applied for a WK-1 fluid with a particle-wall interaction given by

u(r) =

{

∞ if z < σ/2

0 if σ/2 ≤ z
(4.7)

where z is the distance between the fluid particles and the wall, and periodic boundary

conditions were applied in the x and y coordinates. The effective quantum potential

was truncated at rc = 2.5σ and no long-tail corrections were considered.

In order to perform computer simulations with this method, we followed the same

procedures and technical details described in our previous studies with classical dis-

continuous potential systems.78,79 The simulation box consisted of a rectangular

parallelepiped with fixed lengths Ly ≥ 10σ, Lx = 10Ly and 2σ ≤ Lp ≤ 6σ, where Lp

is the wall separation. The density of the system is defined by ρ∗ = Nσ3/V , where

N is the total number of particles and V is the total volume of the confined system

defined by V = LxLyLp. We selected Lz = Lp as the distance between the hard walls.

A dense phase formed by N = 1372 with an initial random distribution was placed at

the center of the rectangular parallelepiped, obtaining two vapor phases with a liquid

phase in between. The acceptance ratio of particle’s displacement was fixed to 40%.

The equilibration process consisted of 1-8x107 MC cycles and 1-8x107 cycles for

accumulated averages. The density profile, ρ∗(x), was obtained every two cycles,

using the data values corresponding to 0 < x < Lx/2, since the profile is symmetrical
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in the x coordinate. The LV coexistence densities were obtained as a function of the

x coordinate of the simulation box, and parametrized using an hyperbolic tangent

function,80

ρ∗(x) =
1

2
(ρ∗L + ρ∗V )−

1

2
(ρ∗L − ρ∗V ) tanh

(

x− xo
d

)

(4.8)

where ρ∗L and ρ∗V are the bulk densities corresponding to the liquid and vapor phase,

respectively, d is the interface width and xo is the position in the transition layer.

4.3 Results

4.3.1 Bulk phases

The semiclassical effective potentials WK-1 and JK for hydrogen (H2) are depicted

in Fig. 4-1, using Λ = 1.7378 as reported by Kim et al.,33 and for temperatures

T ∗ = kT/ǫ = 0.1, 0.6, 1.0, 5.0. Due to the semiclassical approximation used along

this work, no nuclear spin effects are taken into account and there is not a distinction

between the hydrogen isomers (orthohydrogen and parahydrogen) and we can assume

that the description obtained corresponds to a mixture of these isomers.

As expected, the effect of VQ is more important at low temperatures and the

potentials have strong variations between them. These differences reduce as temper-

ature is increased, although quantum effects are still observed at T ∗ = 5. In all the

cases, the net effect of VQ is to increase the effective size of the particles with respect

to the Lennard-Jones fluid parameter σ. We found that the JK model overestimates

the effective size of the particles due to the second-order correction term.

The quantum parameter Λ modifies the scaling behavior of the LJ potential, as

observed in Fig. 4-1, since there is not a universal potential written as a function of

r/σ and u/ǫ as in the case of VLJ , i.e., the WK-1 system does not follow a correspond-

ing states behavior. This non-conformal property has as major effect that the phase

diagram is modified by varying Λ, in similar way to what happens with the range λ

for a SW fluid; in Fig. 4-2, we present the WK-1 pair potentials at T ∗ = 0.60 for

Λ = 0.5991, 1.2249, 1.7378, and 2.6783, that corresponds to the cases of neon (Ne),

deuterium (D2), hydrogen (H2) and helium-4 (He), respectively.33 The corresponding

LV phase diagrams were obtained by the GEMC method; the case of the classical LJ

fluid (Λ = 0.0) is also reported for comparison.
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Figure 4-1: Comparison between pair potentials: Lennard-Jones (LJ), Wigner-Kirkwood (WK-1),

and Jaen-Kahn (JK). The quantum systems were obtained for hydrogen (Λ = 1.7378 reported by

Kim et al.,33) and temperatures a) T ∗ = 0.10, b) T ∗ = 0.60, c) T ∗ = 1.0 and d) T ∗ = 5.0. Each

potential is given scaled by the LJ energy parameter, i. e., V ∗

eff = Veff/ǫ.
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Figure 4-2: (a) WK-1 pair potential, V ∗

eff = Veff/ǫ, for hydrogen, deuterium, neon and helium-4 at

T ∗ = 0.60. The LJ parameters σ and ǫ were taken from Kim et al.,33 and given in Table 4.2. (b)

GEMC LV coexistence curves for the previous WK-1 systems (squares), solid curves were obtained

using Eq (4.5). The critical points obtained by a Wegner expansion,74 as explained in the text, are

denoted by stars.

The Λ dependence of the critical values of temperature and density, and the

corresponding critical exponent, are given in Table 4.1. By increasing Λ, the critical

temperature decreases.

Table 4.1: Critical temperature T ∗

c , critical density ρ∗c , and critical exponent β estimated from
GEMC data for the WK-1 potential used in this work. Fitted values of Bo and C2 are also given.
The errors are estimated from the respective errors in the densities of the coexisting vapor and liquid
phases. Results were obtained with a cut-off radius rc = 4σ.

Λ ρ∗c T ∗

c β Bo C2

0.0000 0.3134±0.0008 1.3019±0.0002 0.3297±0.0026 1.0856±0.0045 0.2307±0.0036
0.5991 0.3118±0.0013 1.2478±0.0001 0.3220±0.0040 1.0220±0.0085 0.1741±0.0075
1.2249 0.2850±0.0008 1.1051±0.0020 0.2963±0.0060 0.8708±0.0055 0.1358±0.0031
1.7378 0.2645±0.0011 0.9787±0.0026 0.2895±0.0079 0.7757±0.0064 0.0979±0.0038
2.6783 0.2273±0.0006 0.8289±0.0001 0.3048±0.0024 0.6957±0.0028 0.0929±0.0026
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Table 4.2: Optimized GEMC parameters for hydrogen (H2), deuterium (D2), neon (Ne), and
helium-4 (He) fluids obtained by fitting to LV coexistence experimental data. The Lennard-Jones
parameters are σ and ǫ, obtained from Kim et al.,33 and de Boer’s quantumness parameter is
Λ = h/σ

√
mǫ.

Substance
LJ parameters33 GEMC parameters

(ǫ/k) /K σ/Ȧ Λ (ǫ/k) /K σ/Ȧ Λ

Ne 37.10 2.670 0.5991 35.283 2.7661 0.5930
D2 37.00 2.928 1.2249 34.118 3.0067 1.2417
H2 37.00 2.928 1.7378 33.434 3.0450 1.7579
He 10.22 2.556 2.6783 6.3141 2.8927 3.0109

Table 4.3: Critical temperature Tc and critical density ρc estimated from GEMC data for the

WK-1 fluid studied in this work. Experimental data (T exp
c and ρexpc ) were taken from the NIST

Chemistry WebBook.81 Results were obtained with a cut-off radius rc = 4σ.

Substance ρexpc /mol L−1 ρc/mol L−1 T exp
c /K Tc/K

Ne 23.882 24.465±0.0318 44.491 44.026±0.0035

D2 17.327 17.412±0.0139 38.340 37.704±0.0682

H2 15.508 15.557±0.0171 33.145 32.722±0.0869

He 17.399 15.594±0.0094 5.195 5.2338±0.0006

A comparison between the molecular parameters reported by Kim et al.,33 and

the parameters recalculated from the GEMC simulation data are given in Table 4.2.

The optimal parameters were determined by fitting to experimental data of vapor

pressure and vapor-liquid density for every system, obtained from the NIST Chemistry

WebBook.81

A damped least-squares method75 was used, based on previous work on the LV

coexistence of asymmetric mixtures at high pressures.82–84 The objective function

required for this calculation was given by

fob =
M
∑

i=1

(

ρV,cali − ρV,expi

ρV,expi

)2

+
M
∑

i=1

(

ρL,cali − ρL,expi

ρL,expi

)2

, (4.9)

where M is the number of experimental data points, and ρ is the density. The

superscripts exp, cal , L and V denote the experimental and calculated values, and
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the liquid and vapor phases, respectively.
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Figure 4-3: GEMC liquid-vapor coexistence of quantum fluids (triangles) compared to experimen-

tal data (circles),81 using a cut-off radius rc = 4σ and rc = 2.5σ. The critical points obtained by a

Wegner expansion,74 as explained in the text, are denoted by stars. The continuous and dotted lines

corresponds to SAFT-VRQ and SAFT-VR results respectively. Results correspond to: a) neon, b)

deuterium, c) hydrogen and d) helium, using the optimized molecular parameters reported in Table

4.2.
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The values of the diameter (σ) and the energy parameter (ǫ/k) were optimized

according to Eq. (4.9). As observed in Table 4.2, the GEMC diameter σ is greater

than Kim et al. values,33 whereas the energies ǫ have lower values.
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Figure 4-4: GEMC LV coexistence curves for optimized values of the LJ parameters σ and ǫ; circles

and stars correspond to Λ values taken from Kim et al.,33 and for the optimized LJ parameters,

respectively.

The reparametrized GEMC LV equilibrium data is compared with the correspond-

ing experimental values in Fig. 4-3. GEMC results were obtained using as a cut-off

distance rc = 4σ. For Ne, D2 and H2 we can observe that the GEMC and experi-

mental data are in very good agreement. For helium-4, the simulations results are

moderately satisfactory, taking into account the range of the experimental data (2.5K

- 5.3K), although we could expect a worse performance of a semiclassical approach

in this case. The corresponding critical values for densities and temperatures for all

the systems are given in Table 4.3. The JK system does not show a liquid-vapor

coexistence, that can be explained in terms of the increase of the repulsive potential

as observed in Fig. 4-1.

Notice that the GEMC fitted parameters values (σ,ǫ) modifies the parameter

Λ originally calculated with the values reported in ref. [33]. In order to assure a

consistent set of molecular parameters (σ, ǫ, Λ), an iterative procedure can be used
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to improve the representation of the experimental data, that consists in repeating the

GEMC simulations using the recalculated Λ parameter, and then to obtain σ and ǫ by

the same fitting procedure used before. The procedure is repeated until a convergence

criteria for the determination of Λ is satisfied. We found that this method converges

very fast after two iterations; the results for the convergence are presented in Fig.

4-4.

A robust version of SAFT-VR for Mie potentials has recently been developed,85

being the LJ interaction a particular case. This new approach, which has given very

accurate predictions for a wide range of substances, can be extended to quantum

fluids using the method presented in Ref. [60], and specific equations of state could

be obtained for the WK-1 potentials studied here.

4.3.2 Confined phases

A first step in the computer simulation of confined quantum fluids consisted in the

study of the classical fluid with Λ = 0. The bulk phase was obtained using the NVT

ensemble for 1372 and 2048 particles with a cut-off radius rc = 2.5σ, contained into a

cell box with dimensions Ly = Lz = 13.41σ and Lx = 39.81σ. Density profiles for the

LV coexistence for temperatures T ∗ = 0.70 and T ∗ = 0.92 are presented in Fig. 4-5(a).

A clear formation of two phases can be observed. To confirm these predictions, results

were also obtained using the GEMC method with N = 1000 particles and a cut-off

radius rc = 2.5σ, without long tail-corrections. Results obtained from both methods

are summarized in Table 4.4, where we observe that are in very good agreement.

Table 4.4: Liquid-Vapor coexistence densities ρ∗L and ρ∗V at temperatures T ∗ = 0.70 and T ∗ = 0.92
obtained from computer simulation for the WK-1 fluid with a cut-off radius rc = 2.5σ.

T ∗ Method ρ∗L ρ∗V N Reference

0.70 NVT-MC 0.812288 0.00284807 1372 This work
0.70 NVT-MC 0.813583 0.00263298 2048 This work
0.70 GEMC 0.815991 0.00390470 1000 This work
0.70 NVT-MC 0.812000 0.00290000 2048 Trokhymchuk et al.,77

0.92 NVT-MC 0.700541 0.03094120 1372 This work
0.92 NVT-MC 0.701654 0.02815890 2048 This work
0.92 GEMC 0.703820 0.02936230 1000 This work
0.92 NVT-MC 0.706500 0.02940000 1000 Trokhymchuk et al.,77
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Figure 4-5: (a) Density profiles for a LJ fluid obtained by NVT-MC simulations, for temperature

and density T ∗ = 0.70 and ρ∗ = 0.92, respectively. Two sets of results are shown corresponding

to simulations using different number of particles (N = 1372 and N = 2048), and a cut-off radius

rc = 2.5σ without tail corrections. (b) LV coexistence curves obtained for bulk and confined LJ fluids

w ith Lp/σ = 1.5, 1.9, 2, 4, 6 (circles) compared with results reported in ref. [70] (stars). Results

were obtained with a cut-off radius rc = 2.5σ, N = 1372 particles and without tail corrections.

The LV phase diagram is presented in Fig. 4-5(b) where the case corresponding

to the bulk system was simulated with GEMC and the confined diagrams at different

values of wall separations Lp were calculated with NVT-MC. The confined systems

were obtained for five different wall separations, Lp/σ = 1.5, 1.9, 2, 4, 6.
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Figure 4-6: LV coexistence of confined WK-1 fluids obtained with the NVT-MC method, using a

cut-off radius rc = 2.5σ, N = 1372 particles and without tail corrections. Results correspond to (a)

neon, (b) deuterium, (c) hydrogen and (d) helium-4, using the LJ parameters reported by Kim et

al.33 Three wall separations were considered, Lp/σ = 2, 4, 6, and GEMC results for the bulk system

are also included. Solid curves were obtained using Eq (4.5), with an estimation of the critical points

denoted by stars, using the Wegner expansion.74
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Figure 4-7: (a) Critical temperature T ∗

c as a function of the wall separation Lp for confined WK-1

fluids. Results correspond to neon, deuterium, hydrogen and helium-4, using the LJ parameters

reported in .33 Three wall separations were considered, Lp/σ = 2, 4, 6. Results for the classical LJ

system are included, obtained in this work and from Liu et al.70 (b) Thermal de Broglie wavelength

as a function of temperature for the systems considered in (a).

Very good agreement was found between the results obtained here with the data

reported by Liu et al.,70 even for Lp < 2. However, it is important to bear in mind

that the method followed by these authors consisted in histogram-reweighting grand

canonical MC simulations, which is more appropiate for the detailed study of the

critical region.

The LV coexistence curves for WK-1 fluids under confinement were obtained for

three wall separations Lp/σ = 2, 4, 6, see Fig. 4-6. Results correspond to (a) neon,

(b) deuterium, (c) hydrogen and (d) helium-4. The phase diagrams are modified in

similar way by reducing Lp or increasing Λ, i.e., confinement and quantumness tend

to reduce the LV phase region.

The trend of the critical temperature Tc versus the wall separation Lp is shown

in Fig. 4-7(a), and compared with the classical behavior obtained by Liu et al.70

Since the LV coexistence could be preempted by a solid phase, it is clear that the

determination of the triple point is necessary in order to have a proper determination

of the phase diagram; however, we can conclude that the introduction of quantum
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effects substantially modifies the phase diagram of a confined fluid with a Λ value of

a typical substance like H2. On the other hand, the de Broglie wavelengths for all the

substances reported here are of the same order of magnitude than the confinement

distance Lp, as observed in Fig. 4-7(b). This is a clear indication that the presence of

a liquid phase for a confined fluid requires the introduction of the quantum potential

in order to describe its properties when Lp < 6σ, since quantum diffraction becomes

very relevant.
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Figure 4-8: (a) Comparison between density profiles of confined LJ and WK-1 systems (black

and blue lines, respectively), obtained by NVT-MC simulations with 1000 particles for temperature

T ∗ = 0.54 and Lp/σ = 1.9. (b) and (c) are the corresponding snapshots of configurations for both

systems.

For Lp/σ < 2 we found that the density profiles have strong variations not ob-

served in the classical system. In Fig. 4-8(a) we present a comparison of the density

profiles observed for the LJ and WK-1 systems, for Λ = 0.5991, T ∗ = 0.54 and

Lp/σ = 1.9, as well as the corresponding snapshots of configurations in Figs. 4-8(b)

and 4-8(c) for the LJ and WK-1 systems, respectively. Whereas the classical system
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clearly shows a liquid-vapor transition, the quantum system presents a modulated

phase with the presence of voids, similar to the phases observed for 2D disks sys-

tems.86,87 The trend observed for the classical LJ fluid is that just for Lp = 2σ there

is evidence of a 3D-2D crossover in the behavior of the critical temperature T ∗
c .
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Although in the quantum case was not possible to determine T ∗
c when Lp/σ < 2, the

similarity between phases with 2D-systems suggest a dimensional crossover although

the liquid-vapor transition could be already lost.

Semiclassical expressions for a effective radial distribution geff(r) were obtained by

Jaen and Khan, using the statistical density matrix ∆. The effective radial distribu-

tion function geff(r), were obtained as a power expansion on D:

geff(r) = gc(r) +D∇2gc(r) +
1

2
D2∇2∇2gc(r) (4.10)

The Eq. (4.10) is a powerful tool in the calculation of the radial distribution function

when analytical expressions for gc(r) are available. Other suitable way to obtain the

radial distribution function is usually by calculating the distance between all particle

pairs and binning them into a histogram. Given the interaction pair potential, the

radial distribution function can be computed via computer Monte Carlo simulation

method.

In this work, we obtain the effective radial distribution function and the energy

profiles using the Wigner-Kirkwood potential29–32 WK-1 model. The JK approxima-

tion for the quantum radial distribution function were not taking into account in this

work. In the case of the semiclassical approximation the radial distribution functions

were obtained by using Monte Carlo simulation in the canonical NVT ensemble for

a system of N = 1000 particles and a cut-off radius rc = 4.0σ, without long tail-

corrections. The semiclassical effective potential WK-1 were used in the both cases,

radial distribution function and energy profiles. On the other hand, quantum sim-

ulations using path integrals were developed using a system of N = 125 particules

interacting via LJ pair potential given by the Eq. (4.2).

A comparison between semiclassical approximation (using WK-1 pair potential

system) and quantum approximation (using path integrals) for the radial distribu-

tion function and internal energy are shown in Figs. (4-9)-(4-10), respectively. Re-

sults correspond to neon, deuterium, hydrogen and helium-4 using the LJ parameters

reported in ref. [33].
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Figure 4-9: Predictions for the radial distribution function g(r), for a system of particles interacting

via: a) semiclassical aproximation using a WK-1 pair potential. b) quantum aproximation using

path-integrals.88,89 Results correspond to (a) neon, (b) deuterium, (c) hydrogen and (d) helium-4,

using the LJ parameters reported by Kim et al.33 The simulations were obtained at temperature

T ∗ = kT/ǫ = 1.036 and density ρ∗ = ρσ3 = 0.65.
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Figure 4-10: Predictions for the internal energy U∗ = U/Nǫ, for a system of particles interacting

via: a) semiclassical aproximation using a WK-1 pair potential b) quantum aproximation using

path-integrals.88,89 Results correspond to (a) temperature constant T ∗ = 2.0, (b) density constant

ρ∗ = 0.60.

As can be observed in Fig. 4-9 when the de Boer’s parameter increase, the first

peak of the radial distribution function using the semiclassical approximation, in-

creased significantly compared with the path integrals results. At low values of the

Boer’s parameter (i.e. Neon), the concordance between the semiclassical approxima-

tion and path integrals is remarkable. In the case of neon, deuterium and hydrogen

the results are very close between the two approximations when r/σ > 1.5, i.e. after

the value of the second peak in the g(r).

In Fig. 4-10 the reduced internal energy U∗ = U/Nǫ, as a function of the density

ρ∗ = ρσ3, and the reduced temperature T ∗ = kT/ǫ, for the WK-1 pair potential are

given. Semiclassical approximation is compared with path-integrals88,89 for several

values of the the Boer’s quantumness parameter, that measure the strength of the

quantum contribution. From Fig. 4-10(a), it is clear that semiclassical and quantum

approximations are identical at low densities; the behavior differs considerably at

densities nearly to 0.9, when the quantum effects becomes to be remarkable. Finally,

internal reduced energy profiles as a funtion of the reduced temperature at density

constant of ρ∗ = 0.60, are presented in Fig. 4-10(b). Here the concordance between
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the semiclassical and path integrals is not good in all temperature ranges.

Conclusions

We have presented semiclassical simulations for thermodynamic properties of quan-

tum fluids using GEMC and NVT-MC methods, either for bulk or for a specific con-

finement geometry-parallel hard walls. Several effective potentials were considered,

based on semiclassical approaches.29,30,36 As a model system we considered molecules

interacting via a Lennard-Jones pair potential complemented by a temperature-dependent

quantum potential. This effective potential determines non-conformal properties to

the fluid system. Very good agreement has been obtained for the prediction of bulk

phases where experimental data is available, and a simple approach to obtain opti-

mized parameters of the LJ potential from GEMC data has been provided. For the

case of confined fluids, we have compared their LV phase diagram with respect to

the classical model studied in ref. [70], and the effect of the reduction of the critical

temperature by reducing Lp is now enhanced by increasing the quantumness of the

system, measured by Λ. For Lp/σ < 2 the liquid-vapor transition seems to be lost,

and this could be as a consequence of the preempting of a solid phase; however, a

dimensionality crossover could be present as in the case of the classical LJ fluid, since

the configurations observed have strong similarities with classical 2D-systems at low

temperatures.

Although robust methods based on the path-integral formalism are well known,

we have shown that an accurate description of the liquid and vapor phases can be

obtained using semiclassical potentials. The information presented here is a valuable

tool to be used in combination with thermodynamic theoretical approaches devel-

oped previously for classical confined fluids,71–73 that require equations of state for

three- and two-dimensional fluids, as well as a semiclassical version of the SAFT-VR

approach.60
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CHAPTER 5

THEORETICAL MODELING OF ADSORPTION OF

CLASSICAL AND QUANTUM FLUIDS

Adsorption of molecular hydrogen (H2) onto graphene and other carbon-based sub-

strates is currently a research area of interest, where molecular-based approaches are

required to describe thermodynamic properties of this and other related systems. We

present a semiclassical theoretical framework to model adsorption isotherms of quan-

tum fluids such as H2, based on the Statistical Associating Fluid Theory approach

for classical and quantum bulk fluids (SAFT-VRQ), and its extension to describe ad-

sorbed systems (SAFT-VR-2D). Although the application of the theory relies on the

determination of eight molecular parameters, seven of them can be obtained from bulk

thermodynamic properties, the ratio of the critical temperatures of the adsorbed and

bulk phases, and theoretical estimations about the range of the surface-particles po-

tential and the energy-depth of the particle-particle potential of the adsorbed fluid.

The energy-depth of the surface-particle potential, ǫw, is the free molecular parameter

that can be obtained by fitting to experimental data of adsorption isotherms. Results

obtained for ǫw according to this procedure are consistent with experimental values of

the isosteric heat and the prediction of adsorption isotherms is in very good agreement

with experimental data.

This chapter is based on a paper: Vı́ctor M. Trejos, Mario Becerra, Susana Figueroa-
Gerstenmaier, and Alejandro Gil-Villegas, Mol. Phys., 1, 1-9, (2014).
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5.1 Introduction

Recently, the interest in green fuels as hydrogen is due to a number of factors such

as security of supply issues, increased of global demand, oil price rises and concerns

that world oil production is close to reaching a peak. Therefore, the benefits of using

hydrogen as a fuel are strategic, arising from potential decreased reliance on oil, and

environmental, due to a potential reduction in air pollution

For this century, hydrogen plays a major role as an energy resource with great

potential to transform our economy.1 One of the fundamental problems to solve is

the suitable storage of hydrogen in cells, that requires a better understanding of the

properties of quantum fluids under confinement.2,3 Hydrogen and its isotopes, deu-

terium and tritium, are substances of small molecular weight, m, whose de Broglie’s

wavelength (λB = h/
√
2πmkT , where T and k are the temperature and Boltzmann’s

constants, respectively) has a magnitude comparable to the mean distance between

particles. It is also possible that λB is comparable to a typical nanopore size and then

to perform a process of separation between isotopes, known as quantum sieving.4,5

Quantum sieving is a promising low-cost method for recycling fuel from a nuclear

reaction and as cryogenic filters that separate mixture components via equilibrium

condensation at low temperatures.6

Hydrogen storage methods currently under consideration include high pressure

gas, liquid hydrogen, adsorption on porous materials at relatively low pressure, com-

plex hydrides and hydrogen intercalation in metals. Nanoporous materials have been

the focus of attention for solving the challenge of hydrogen storage in an efficient,

cheap, and safe way. At the same time, the discovery of graphene has made possible

to get advances in this area, and is one of the most intense areas of development

in recent years. Among the most common materials considered to adsorb hydrogen

are porous carbons, nanotubes, zeolites, porous polymers, and metal-organic frame-

works.7–9 Microporous carbons are, among all these possible choices, the most popular

ones due their very high surface area, particularly microporous activated carbons, ac-

tivated carbon fibers and carbon nanotubes. Unfortunately, both experimental data

and theoretical predictions are, in general, not in a good agreement, and there is

free room to improvements using statistical mechanics methods and molecular ther-

modynamic theories. For example, density functional theories (DFT) and molecular

simulations are very successful methods in this direction, since they are able to pre-
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dict adsorption isotherms and capillary condensation. A recent review devoted to

present the current state and capabilities of DFT family of methods and the role of

molecular modeling in confined systems.10,11

The interest to describe the thermodynamic properties of confined fluids requires

the possibility of generating molecular based theories with the same level of accuracy

as the most recent theories used to model a wide range of substances and their ther-

modynamic phases in bulk conditions.12,13 Since the pioneering work by Hill14 and de

Boer,15 thermodynamic properties of adsorbed phases can be explained in terms of

two-dimensional (2D) systems. A 2D van der Waals model for pure fluids and their

mixtures can describe adsorption in homogeneous substrates,16–19 and 3D equations of

state like Peng-Robinson, Soave-Redlich-Kwong and Eyring can be adapted to their

2D versions for binary mixtures of molecular fluids adsorbed on zeolite.20 Accurate

2D equations of state based on perturbation theories for Lennard-Jones21 and square-

well fluids22–25 have been used to model adsorption of monolayers, based on a now

well-established 2D behavior of these systems, as evidenced by experiments, includ-

ing the case of colloidal particles at the air-water interface.26 Nevertheless, results

from computer simulations suggest that the 2D approach is not restricted to model

monolayer adsorption,24 since once the first adsorbed layer reaches a high packing

value in its density, then a second layer starts to form following a 2D arrangement.

This mechanism also explains the formation of quantum fluid films on substrates and

its quasi two-dimensional behavior.27

Recent advances on the modeling of adsorption have been made extending the Sta-

tistical Associating Fluid Theory for chain molecules interacting with potentials of

variable range (SAFT-VR)28,29 in order to include a two-dimensional approximation

for adsorbed phases (SAFT-VR-2D).23,24 This approach has been successfully applied

to the prediction of adsorption isotherms of substances like nitrogen, carbon-dioxide

and methane and their mixtures, adsorbed onto activated carbon,25,30 and for more

complex systems like asphaltenes in porous rocks,31 using a previous theory devel-

oped for bulk asphaltenes.32 In the chapter 3, a SAFT-VR approach was extended

to describe quantum fluids in bulk phases33 and used to describe the liquid-vapor

phase equilibria of substances like molecular hydrogen (H2), molecular deuterium

(D2), helium-4 (He4) and neon (Ne). This new theory (SAFT-VRQ) combines the

SAFT-VR method with perturbation theories for quantum square-well (SW) fluids

in two and three dimensions (3D).22,34–37
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In this chapter, we present a semiclassical theory of adsorption based on the

SAFT-VRQ approach, presenting a modeling of classical fluids (e.g. methane, ethane,

propane) and quantum fluids (e.g. hydrogen) adsorbed onto different materials such

as activated carbon, silica gel and others materials, i.e., graphene, activated carbon,

metallic organic frameworks.

5.2 Classical adsorption model

In this study, we consider a model of a single-component fluid composed ofN spherical

particles of diameter σ in the presence of a uniform wall. Due to the wall, the behavior

of the particles is different depending upon their distance to the wall. The interaction

potential exerted by the wall on a particle is denoted as upw, and we can assume the

potential upw as a function of the perpendicular distance of the wall (see Fig. 5-1).

In this case, the particle-wall potential is given by

upw(z, σ, λw) =















∞ if z ≤ 0

− ǫw if 0 < z ≤ λwσ

0 if z > λwσ

(5.1)

where z is the perpendicular distance of the particles from the wall, ǫw is the depth,

and λwσ is the range of the attractive potential. In our approximation, we describe

the system as being composed of two subsystems: a fluid whose particles are near to

the wall, i.e., when z ≤ λwσ, which we shall refer to as the “adsorbed fluid”, and a

fluid whose particles are far from the wall, i.e, when z > λwσ, i.e., the “bulk fluid”.

In this way, the length scale that characterizes the adsorbed fluid is given by λwσ.

This approach is formally valid if we do not take into account the interface between

the adsorbed and bulk fluids.

The adsorbed and bulk fluids have different properties due to the wall; it is well

known that the interaction between molecules is modified by the presence of the wall

and therefore the pair interaction between particles is different for the adsorbed and

bulk phases. In the adsorption model, we denote upp(r, ǫ, λ) and u
ads
pp (r, ǫads, λads) as

the pair potential for particles in the bulk and adsorbed phases, respectively (see Fig.

5-1). where ǫ, λ and ǫads, λads are parameters that describe the energy depth and the

range of the potential for the bulk and adsorbed particles, respectively.38
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Figure 5-1: Illustration of surface area of adsorption. Adsorbed particles of the adsorptive gas a
function of distance from the adsorbent surface. The upp, u

ads
pp and upw are the pair potentials for

the bulk, adsorbed phase and wall-particle, respectively.

In the case of the adsorbed fluid, the pair potential interaction can be described as

a decoupling of the x,y coordinates from the coordinate z for each adsorbed particle,

as follows

φ(x, y) =

∫

uadspp (x, y, z)dz. (5.2)

According with Eq. (5.2), the pair potential of the adsorbed particles uadspp , only

depends of the coordinates in parallel directions to the wall. Therefore, the adsorbed

fluid can be approximated by a quasi-two dimensional system. The canonical partition

function of the adsorbed fluid is given by

Qads(N, V, T ) =
V N
ads

N !λ3NB
Zads, (5.3)

where Vads is the adsorbed volume, λB, is the de Broglie wavelength, and Zads is the

configurational partition function defined by

Zads =
1

V N
ads

∫

dN~re−βU , (5.4)

where β = 1/kT , and U is the total interaction potential, expressed as the sum of
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two terms as

U = Upw + Uads
pp . (5.5)

where Upw is the total particle-wall interaction potential (Upw = Nupw(z)), and U
ads
pp

is the total particles pair potential (Uads
pp = (1/2)N(N − 1)φ(x, y)), where the factor

(1/2)N(N −1) corresponds to distinct pairs in the system. In this way, Eq. (5.4) can

be rewritten as

Zads =
1

V N
ads

∫

dNze−βNupw(z)

∫

dNxdNye−β
N(N−1)

2
φ(x,y). (5.6)

The adsorbed fluid can be characterized by a volume Vads, that corresponds to an ad-

sorption area (S), and perpendicular distance between the wall and the fluid affected

by the wall (zo). Therefore, the Eq. (5.6) can be rewritten as

Zads = Z1DZ2D, (5.7)

where

Z1D =
1

zN0

∫ z0

0

dNze−βNupw(z), (5.8)

Z2D =
1

SN

∫

dNxdNye−β
N(N−1)

2
φ(x,y), (5.9)

where Z1D and Z2D are the one and two-dimensional configurational partition func-

tions, respectively. The distance zo can be written as a function of the range of the

attractive potential of the wall and the diameter of the particles (zo = λwσ). In this

way, the Eq. (5.8) can be expressed as

Z1D =
1

(λwσ)N

∫ λwσ

0

dNze−βNupw(z) =

[

1

λwσ

∫ λwσ

0

dze−βupw(z)

]N

, (5.10)

The configurational partition function Z1D in Eq. (5.10) can be evaluated using the

mean-value theorem, i .e.,

Z1D = e−βNupw(z∗). (5.11)

where z∗ is the value of the coordinate z that guarantees the mean value of the

Boltzmann factor. The canonical partition function of the adsorbed fluid is given by

Qads = Q1D
adsQ

2D
ads (5.12)
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where

Q1D
ads =

zNo
λNB

e−βNupw(z∗) (5.13)

Q2D
ads =

SN

N !λ2NB

∫

dNxdNye−β
N(N−1)

2
φ(x,y), (5.14)

Rearranging the Eqs. (5.12-5.14) we can obtain

Qads = Q2D
ads

(

λwσ

λB

)N

e−βNupw(z∗), (5.15)

Applying the standard relation Aads = −kT ln(Qads), the Helmholtz free energy of

the absorbed fluid is given by

Aads

NkT
=

A2D

NkT
− ln

(

λwσ

λB

)

+ βupw(z
∗). (5.16)

where A2D is the Helmholtz free energy of a two-dimensional fluid interacting via the

potential φ(x, y), which can be described by perturbation theory using hard-disks as

a reference fluid,
A2D

NKT
=
Aideal

2D

NkT
+
Amono

2D

NkT
+
Achain

2D

NkT
(5.17)

where Aideal is the ideal free energy, Amono is the excess free energy due to monomer

segments, Achain is the contribution due to the formation of the chains of monomers

and the subscript 2D correspond to the 2D-fluid. In this study, the free energy due to

intermolecular association is not considered. In the case of 2D-fluids the Eq. (5.17)

can be rewritten as

A2D

NkT
= ln (ρadsλ

2
B)− 1 +m

(

aHD + βa2D1 + β2a2D2
)

+ achain2D , (5.18)

where m is the number of monomer segments of chain, aHD is the excess Helmholtz

free energy for a fluid of hard-disks, a2D1 and a2D2 are the first two terms of the

perturbation theory and achain2D is the term of the free energy of chains for for a 2D-

fluid. In the particular case of the wall-particle interaction is given by a square-well

interaction of range λwσ and energy depth ǫw, we have that upw(z∗) = −mǫw. On

the other hand, we consider an analogous perturbation expression for the bulk fluid,

A3D

NKT
=
Aideal

3D

NkT
+
Amono

3D

NkT
+
Achain

3D

NkT
(5.19)
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where the Helmholtz free energy is defined similarly as a 2D-fluid but the subscript

3D makes reference to a 3D-fluid. The Eq. (5.19) can be rewritten as

A3D

NkT
= ln (ρbλ

3
B)− 1 +m

(

aHS + βa3D1 + β2a3D2
)

+ achain3D , (5.20)

where aHS is the hard-sphere free energy, a3D1 and a3D2 are the first two terms of the

perturbation theory and achain3D is the term of the free energy of chains for for a 3D-

fluid. Detailed information about the 3D expressions for the Helmholtz free energy

was presented in the references [28, 33].

5.3 Semiclassical approximation

The semiclassical approximation include terms containing quantum information of the

system, assuming that the quantum corrections are relatively small compared with

the classical result. The semi-classical approximation must be included in the classical

theory; for example, at relatively high temperatures when the de Broglieś wavelength

becomes very small compared to a characteristic scale such as the mean distance

between close particles. The adsorption model is a function of a pair potential that

describe the interaction between particles. Therefore, two routes arise to describe

the behavior of the quantum fluids (use continuous or discrete pair potentials). The

semiclassical expression for the Helmholtz free energy can be written as

A

NkT
=
Aideal

NkT
+
Amono

NkT
+
Achain

NkT
+ βaQ1 , (5.21)

where aQ1 is a first-order of quantum corrections. The Eq.(5.21) is particularly valid

two-dimensional24 and three-dimensional28,33 fluids. In the following section, we are

interested in the modeling of thermodynamic properties of the 2D quantum fluids

using a semiclassical approach by the quantum expressions proposed by Mishra and

Sinha.22 Therefore, the Eq. (5.21) can be rewritten for fluids in two and tree dimen-

sions, including the quantum expressions as

A2D

NkT
= ln (ρadsλ

2
B)− 1 +m

(

aHD + β(a2D1 + aQ2D
1 ) + β2a2D2

)

+ achain2D , (5.22)
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and

A3D

NkT
= ln (ρbλ

3
B)− 1 +m

(

aHS + β(a3D1 + aQ3D
1 ) + β2a3D2

)

+ achain3D , (5.23)

where the superscript Q is refered to quantum expresion in 2D and 3D dimensions.

Notice that in the above equations the terms a1 in 2D and 3D can be expressed as

the sum of the classical and quantum contributions.

5.3.1 Semiclassical 2D SAFT-VR approach

The SAFT-VR approach for 3D-fluids was explained in the last chapters. In the

case of the SAFT-VR-2D, it follows the same structure used to describe a 3D-fluid.

We calculated the aHD, a2D1 , a2D2 , achain2D for the classical Helmholtz free energy of a

two dimensional fluid. On the other hand, the quantum contribution term aQ2D
1 is

calculated using the semiclassical expressions proposed by Mishra and Sinha.22 The

Helmholtz free energy A for a pure 2D-component of chain molecules can be written

into the various contributions as

A2D

NkT
=
Aideal

2D

NkT
+
Amono

2D

NkT
+
Achain

2D

NkT
(5.24)

where N is the total number of molecules, T is the temperature, and k is the Boltz-

mann constant.

Ideal contribution: The free energy of an ideal gas in two dimensions is given

by
Aideal

2D

NkT
= ln (ρ2Dλ

2
B)− 1 (5.25)

where λB is the thermal de Broglie wavelength.

Monomer Contribution: The contribution due to the monomers is given by

Amono
2D

NkT
= m

AM
2D

NskT
= m

(

aHD + β(a2D1 + aQ2D
1 ) + β2a2D2

)

(5.26)

The Helmholtz free energy for a hard-disk fluid is obtained from the Henderson equa-

tion,39

aHD =
9γ

8(1− γ)
− 7

8
ln(1− γ), (5.27)
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where γ = (π/4)ρ2Dσ
2, is the packing molar fraction of a two-dimensional fluid, ρads

is the density of the adsorbed fluid and σ is the diameter of the particle. The first

order perturbation term of the Helmholtz free energy can be written as

a2D1 = −2γǫads(λ
2
ads − 1)gHD(σ, γeff), (5.28)

where gHD is the hard disk radial distribution function in the contact value and γeff

is the effective molar packing fraction, given by

gHD(σ, γeff) =
1− 7/16γeff
(1− γeff)2

, (5.29)

where

γeff = d1γ + d2γ
2 (5.30)

d1 = 1.4215− 0.405625λ− 0.0386981λ2 (5.31)

d2 = 1.5582− 1.89768λ+ 0.405215λ2 (5.32)

The second-order term is given by the local compressibility approximation result

a2D2 =
1

2
ǫadsK

HDγ

(

∂a2D1
∂γ

)

, (5.33)

where KHD is the isothermal compressibility given by

KHD =
(1− γ)3

1 + γ + 3/8γ2 − 1/8γ3
.

According with Mishra and Sinha,22 the semiclassical quantum 2D-expression aQ2D
1

is given by

aQ2D
1 =

√
2γ

(

λB
σ

)

gSW2D (σ) =

(

Λγ√
πT ∗

)

gSW2D (σ) (5.34)

where
(

λB
σ

)

=
Λ√
2πT ∗

(5.35)

where gSW2D (σ) is the contact value of the square-well radial distribution function and

can be obtained as a high-temperature expansion as

gSW2D (σ) = gHD(σ) + (βǫ)g2D1 (σ), (5.36)

84



Applying the Leibnitz theorem we obtain

g2D1 (σ) =
1

2ǫ

[

∂a2D1
∂γ

− λ

2γ

∂a2D1
∂λ

]

(5.37)

Chain Contribution: The contribution due to the formation of chains, is given by

achain2D = −(m− 1) ln
(

yM2D(σ)
)

(5.38)

where yM2D is the contact value of the background function of the monomeric 2D-fluid,

defined by

yM2D(σ) = gSW2D (σ)e−βǫ (5.39)

The 2D-dimensional SAFT-VR formalism have the many advantages in the descrip-

tion of real quantum fluids in terms of a few thermodynamic variables.

5.3.2 Results for 2D SAFT-VR approach

The vapor-liquid equilibria (VLE) for a pure 2D-fluid, can be calculated using the

physical conditions of equilibria, the equality of temperature (T ), pressure (P ) and

chemical potential (µ). We solve the conditions for phase equilibria of the square-

well 2D system that take into account quantum corrections, using the Levenberg-

Marquartd minimization algorithm.40 In Fig 5-2(a) we show the VLE results given

by SAFT-VR 2D for a monomeric segment m = 1. The SAFT-VR 2D EoS provides

an accurate representation of the simulation data for several values of the range λ.

Results obtained from the Eq. 5.21 for the VLE of flexible chains of m = 1; 2; 4; 8

and 16, square-well segments with range of λ = 1.5 are presented in Fig. 5-2(b). The

critical temperatures as a function of the monomeric segment (m = 1; 2; 4; 8 and 16),

and the variable range parameter are showed in Fig. 5-2(c). Here, for the specific

case of m = 1, we fitted the results obtained by using a second order polynomial

expression given by

λ2D = 7.7927T ∗3
c − 19.6364T ∗2

c + 17.6721T ∗
c − 3.9919 (5.40)

where λ2D is the range variable parameter and T ∗
c is the reduced critical temperature,

both for a fluid in 2D.
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Figure 5-2: Vapor-liquid coexistence by SAFT-VR and SAFT-VRQ approaches for a 2D square-

well. Cases presented: (a) monomeric fluids with m = 1, (b) monomeric chains of m segments,

(c) critical temperatures as function of the variable range parameter, (d) quantum contributions

at differents values of the de Boer’s parameter (Λ). In all the cases, T ∗ = kT/ǫ is the reduced

temperature, γ = πρadsσ
2 is the 2D packing-fraction and m is the monomeric segments.
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Similar expressions can be obtained for fluids in 3D.

T ∗3D
c = 0.6845λ23D + 0.1233λ3D − 0.3963 (5.41)

where T ∗3D
c is the reduced critical temperature and λ3D is the range variable parame-

ter, both for a fluid in 3D. Eqs. 5.40 and 5.41 will be a powerful tool in the following

sections.

Table 5.1: Critical parameters obtained for a 2D-Square-Well fluid. T ∗

c , P
∗

c are the predicted
SAFT-VR-2D critical temperature and pressure points in reduced units, T ∗

c = kTc/ǫ and P ∗

c =
Pcσ

3/ǫ. These values are obtained by solving the pair of equations generated by the conditions
(∂P/∂ρ)Tc,Pc

= 0 and (∂2P/∂ρ2)Tc,Pc
= 0. m is the number of monomeric segment, λ is the SW

range parameter, γc is the critical molar packing fraction.

m λ T ∗

c γc P ∗

c

1.0 1.250 0.6099 0.4632 0.1907
1.0 1.375 0.6659 0.3314 0.1053
1.0 1.750 0.9446 0.1915 0.0807
1.0 1.500 0.7510 0.2533 0.0859
2.0 1.250 0.6352 0.3727 0.0502
4.0 1.375 0.9361 0.1801 0.0181
8.0 1.500 1.3936 0.1457 0.0107
16.0 1.750 2.6218 0.2087 0.0166

Table 5.2: Critical parameters obtained for a 2D-Square-Well fluid. T ∗

c , P
∗

c are the predicted

SAFT-VRQ-2D critical temperature and pressure points in reduced units, T ∗

c = kTc/ǫ and P ∗

c =

Pcσ
3/ǫ. These values are obtained by solving the pair of equations generated by the conditions

(∂P/∂ρ)Tc,Pc
= 0 and (∂2P/∂ρ2)Tc,Pc

= 0. m is the number of monomeric segment, λ is the SW

range parameter, γc is the critical molar packing fraction and Λ is the the de Boer’s quantumness

parameter.

m λ Λ T ∗

c γc P ∗

c

1.0 1.50 0.0000 0.7510 0.2533 0.0859

1.0 1.50 0.5991 0.6423 0.2793 0.0871

1.0 1.50 1.2249 0.5860 0.3106 0.1279

1.0 1.50 1.7378 0.5652 0.3228 0.1798

1.0 1.50 2.6783 0.5470 0.3333 0.2903
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In Table 5.1, critical temperatures Tc, critical pressures Pc and critical molar

packing fractions ηc for different values of number of monomeric segments m are

presented. The values reported in the Table 5.1 correspond for a classical square-

well 2D fluid, i.e., Λ = 0.0. On the other hand, for the case of quantum fluids in

2D, the VLE of five different values of the de Boer’s quantumness parameter (Λ =

h/σ
√
mǫ) are obtained in order to contabilized the effect of the quantum corrections

in the classical theory in 2D. Results are shown in Fig. (5-2(d)) for the parameter

of variable range of λ = 1.5, at five different de Boer’s quantumness parameter Λ =

0; 0.5991; 1.2249; 1.7378 and 2.6783. The results are summarized in the Table 5.2.

In this work, we studied quantum fluids characterized by a number of monomeric

segment m = 1. In Table 5.2 are presented the results obtained by modifying the de

Boer’s quantumness parameter (Λ).

5.4 Quantitative expression of adsorption

Without any independent information concerning the structure of the adsorbed layer,

we might suppose that the density of the adsorbable component decreases progres-

sively by increasing, z coordinate, from the adsorbent surface area; at distance

z = λwσ, this density reaches the constant value of the gas or bulk density ρb. This

hypothetical variation of the density in the gas/solid interface is illustrated in Fig.

5-3(a), where we also identify three zones (I, II and III). We shall assume that there

is no penetration of gas into the solid (i .e., no absorption) so that zone I is occupied

solely by the adsorbent. In zone II is the adsorbed layer, which is an intermediate

region confined within the limits 0 < z < λwσ, here the density ρ(z) is higher than

the concentration of the gas in zone III. In zone III, the adsorbable gas is at sufficient

distance from the solid surface to have a uniform bulk density, ρb, and here z > λwσ.

In this region, the concentration is dependent only on the equilibrium pressure and

temperature. The concept of “surface excess” was introduced by Gibbs in 1877 in

order to quantify the amount adsorbed. This concept introduce an imaginary surface

placed parallel to the adsorbent surface and divide the system in two zones (I and

II), as can be observed in Fig. 5-3(b). In this model, the surface excess amount,

n, represented by the hatched area C1, is defined as the difference between the total

area AT and the area C2.

In Fig. 5-3(b), the surface excess amount n is represented by hatched area C1.
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The amount n is a extensive quantity, which depends on the extent of the interface

and can be related with the “surface excess concentration”, Γ [molecules/m2], given

by

Γ/NA = n/As, [mol/m2] (5.42)

where NA is the Avogadro’s number and As is the surface area associated with the

mass of the adsorbent solid ms. The specific surface area a is therefore

as = As/ms, [m2/gs] (5.43)

where the specific surface area as can be obtained by different experimental method-

ologies.41

(a) (b)

Figure 5-3: Representation of the adsorption of a adsorbable gas into a solid surface area as a

funtion of a z distance from the surface. a) The Layer model, b) The Gibbs surface excess amount.

In this work, we use the specific surface area values reported as the Brunnauer-

Emmett-Teller area, SBET , considered as a standard methodology to determine the

specific surface area.42,43 In many cases, the experimental adsorption data values are

reported using the quantity (n/ms) denominated “specific surface excess amount”

and defined as a rate the surface excess amount over solid mass. From the Eqs.
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(5.42-5.43) we can obtain a compacted expression for specific surface excess amount

n/ms = ΓSBET/NA [mol/gs] (5.44)

where as = SBET . For convenience, this quantity (n/ms), will be often referred to as

“amount adsorbed”. According with the Eq. (5.49) the only undefined term is the

surface excess concentration, Γ. In the following chapters we will try to explain, how

the surface excess concentration can be obtained from statistical mechanics.

5.4.1 Surface excess concentration

The subtle task of quantifying the amount of adsorbed particles can be made by using

the surface excess concentration, Γ, which is defined as

Γ =

∫ ∞

0

dz[ρ(z)− ρb], (5.45)

where ρ(z) is the density of the particles and ρb is the bulk density of particles, i .e.,

ρ(z → ∞) = ρb. The surface excess amount is commonly called Gibbs surface excess

concentration, denoted as ΓGibbs (we are adopting this convention in all the document).

In the specific case of a fluid interacting via a a square-well pair-potential with a wall

surface the Eq. (5.45) can be written as

ΓGibbs =

∫ λwσ

0

dzρ(z)− ρbλwσ, [molecules/m2] (5.46)

where λwσ is a length scale of a adsorbed fluid. The related quantity ΓGibbs, is an

intensive quantity which has units of [molecules/m2]. Other amount, as may be

considered attractive, is the absolute adsorption concentration, Γabs, defined by the

total concentration of adsorptive molecules, given by

Γabs = ρads =

∫ λwσ

0

dzρ(z), [molecules/m2] (5.47)

where ρads is the density of the adsorbed fluid, defined in last sections. On the SAFT-

VR and SAFT-VRQ formalism a compacted expression can be obtained for the Eq.

(5.46)

ΓGibbsσ
2 = Γabsσ

2 − 6ηλw/π [molecules] (5.48)
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where Γabsσ
2 = 4γ/π. Finally, from the Eq.(5.48) the Gibbs surface excess concen-

tration and the absolute adsorption concentration values can be calculated when the

equilibrium conditions are satisfied.

Therefore, the connexion with the experimental data values is accomplished by

the calculation of the adsorbed amount, given by

n/ms =
(ΓGibbsσ

2)SBET

NAσ2
[mol/gs] (5.49)

According with Eq. (5.49), the adsorbed amount is dependent on the equilibrium

pressure, P , and the adsorbent temperature, T . Also, is common to find the adsorbed

amount expressed as a weight percent wt.%, where

wt.% =
mexc

ms +mexc

× 100 =
0.1(n/ms)MM

[100 + 0.1(n/ms)MM]
× 100 (5.50)

or

n/ms =

(

wt.%

100− wt.%

)(

1

MM

)

[mol/gs] (5.51)

where mexc is the excess absorbed mass, ms is the mass of the solid and MM is

the molecular mass of the component. Eqs. 5.50 and 5.51 are a useful tool in order

to change the units from [mmol/g] to [wt.%] and vice versa.

5.5 Semiclassical Adsorption Isotherms

The prediction of the adsorption isotherms using classical SAFT-VR, is established by

using the thermodynamic equilibrium conditions. In this case, the chemical potential

of the adsorbed and bulk phases must be equal for a given temperature T and bulk

pressure, P . Therefore, the density of the adsorbed fluid ρads can be obtained by

solving the equation

µads = µb (5.52)

where µ is the chemical potential and the subscripts ads and b correspond to adsorbed

and bulk respectively. The chemical potential for a pure component can be obtained

from the Helmholtz free energy using the following thermodynamic relation

βµb = a3D + η

(

∂a3D
∂η

)

V,T

. (5.53)
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and

βµads = aads + γ

(

∂aads
∂γ

)

V,T

, (5.54)

where η and γ are the molar packing fraction of a three and two dimensional fluid,

respectively. Therefore, substituting the expressions for µb and µads into the Eq.

(5.52), we obtain

a3D + η

(

∂a3D
∂η

)

V,T

= aads + γ

(

∂aads
∂γ

)

V,T

, (5.55)

The Eq. (5.55) is the “equilibrium” equation used in the prediction of the adsorption

curves. On the other hand, obtaining the chemical potentials µads and µb from Eqs

(5.16)-(5.23), we can rewrite the Eq. (5.52) in the following way

βµb = βµ2D + βµw, (5.56)

where µ3D and µ2D are the chemical potentials for 3D and 2D fluids, and µw is the

contribution to the chemical potential due to the wall. These chemical potentials are

redefined as

βµw = ln(2/3)− ln(λw)− βmǫw (5.57)

where

βµ2D = ln(γ) +m
(

aHD + β(a2D1 + aQ2D
1 ) + β2a2D2

)

+ achain2D + Z2D, (5.58)

βµb = ln(η) +m
(

aHS + β(a3D1 + aQ3D
1 ) + β2a3D2

)

+ achain3D + Z3D (5.59)

The adsorption isotherms can be determined solving Eqs. (5.57)-(5.58) by using a

Newton-Rhapson algorithm.40 As can be seen from the above equations, we need

the molecular parameters for the 2D, 3D fluids and the specific parameters of the

interaction between the wall and the particles. In the case of the 3D-fluids, molecular

parameters (m, σ, ǫ/k and λ) have been reported for many classical and quantum

fluids in the literature.28,33

Also, there are some considerations that must be taken into account when the

adsorption isotherms are calculated:

a. The adsorbed particles have the same size as the particles in the bulk, i.e,
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σads = σ. In the particular case of σads 6= σ, the wall modifies the particle size,

this effect is not considered in the adsorption model.

b. Sinanoglu and Pitzer44 obtained theoretical results for Lennard-Jones pair po-

tential interaction, where they show that the energy well depth of the particle-

particle potential in an adsorbed monolayer changes in a range of 0.6ǫ ≤ ǫads ≤
0.8ǫ from its bulk phase value. Recent theoretical studies of adsorption have

shown that a criterion of ǫads = 0.8ǫ, really works for a square-well fluids com-

pared with experimental data.24,45

c. The critical temperature in the adsorbed fluid is related with the bulk tem-

perature as (T bulk
c < T ads

c ), i.e, there are a critical relation (Rc = T ads
c /T bulk

c .)

between the two temperatures. This ratio is known for the case of noble gases

and methane adsorbed onto graphite surface, Rc ≈ 0.4. In this work, experi-

mental adsorption data are obtained using Rc = 0.4.

d. F. del Rio and Gil-Villegas46 reported the upper and lower limit for the wall-

particle potential (0.1305 ≤ λw ≤ 0.8165) that can be used to describe mono-

layer adsorption for square-well according to mean-field criteria. In all cases,

we use the upper limit, i.e, λw = 0.8165.

e. The only free parameter is the wall-energy parameter ǫw. Recently, experi-

mental studies have shown results for energetic values of binding energy for

monolayer adsorption of different fluids onto different materials. These ener-

getic parameters are used to establish a energetic range of possible values of

ǫw. We fitted the energetic parameter ǫw in order to reproduce the adsorption

isotherm data.

5.6 Isosteric heat of adsorption

The heat released when a gas is adsorbed on a solid surface, can be quantified by using

the enthalpy change per molecule adsorbed. This quantity is defined as isosteric heat

of adsorption (qst). The isosteric heat of adsorption of the pure components and

their mixtures has a relevant importance for the design of gas separation pressure

such as: pressure swing and thermal swing adsorption.47 Although there are many
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different definitions of the isosteric heat of adsorption,48 in this section we explain

the difference between the corresponding multiple approaches.

In order to obtain the isosteric heat of adsorption, we use the following conventions

and simplifying assumptions:

- Only the case of a single fluid adsorbed on a solid adsorbent is considered.

- The adsorbent is assumed to remain inert and therefore to undergo no change

in its surface area, internal energy or entropy at any stage of physisorption.

- The model assumes two different phases of equilibrium. Both are 3D but a

quasi 2D approximation is used to model the adsorbed fluid.

- We consider the free Helmholtz energy as the primary thermodynamic potential

since this is most suitable for experiments carried out at constant temperature

and surface area.

- We assume that there is no penetration of gas into the solid, i.e., no absorption.

There are two definitions of the isosteric heat of adsorption (qst), denoted by molar

integral quantities and differential quantities, both are explained in the following

sections.41,49

5.6.1 Integral enthalpy of adsorption

The integral enthalpy of adsorption (qst), is the difference between the enthalpy of

the adsorbed fluid and bulk fluid,41

qst = hb − hads, [kJ/mol] (5.60)

or

βqst =

(

Ub

NkT
+ Zb

)

−
(

Uads

NkT
+ Zads

)

(5.61)

where N is the number of particles, h is the enthalpy, U is the internal energy, Z is the

compressibility factor and the subscripts b and ads refers to bulk and adsorbed phases.

The Eqs. (5.60)-(5.61) describe the thermodynamic relation between the enthalpy of
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the bulk fluid and the adsorbed fluid. The internal energy U , is calculated from the

thermodynamic relation given by

Ub

NkT
= β

(

∂a

∂β

)

p

Uads

NkT
= β

(

∂aads
∂β

)

p

(5.62)

where a is the Helmholtz free energy a = A/NkT and β = 1/kT . By replacing Eqs.

(5.62) into (5.61):

βqst =

(

β

(

∂ab
∂β

)

p

+ Zb

)

−
(

β

(

∂aads
∂β

)

p

+ Zads

)

(5.63)

Therefore, the integral enthalpy of adsorption defined by the Eq. (5.60) can be

calculated using the Eq. (5.63) as follows

qst =ǫw + kT (ZHS − ZHD) + a3D1 − a2D1 + η
∂

∂η
(a3D1 + a3DQ

1 )− γ
∂

∂γ
(a2D1 + a2DQ

1 )

+ 2β(a3D2 − a2D2 ) + β

(

η
∂a3D2
∂η

− γ
∂a2D2
∂γ

)

+ β
∂

∂β
(a3DQ

1 − a2DQ
1 ) (5.64)

where ZHD and ZHS denote the compressibility factor for hard disks and hard spheres

fluids, respectively. In the low-density limit value, qst = ǫw, and this is an important

feature of the present theory, since experimental values of qst can be used to determine

the parameter ǫw.

5.6.2 Differential heat of adsorption

As a gas is adsorbed on the surface, heat is involved and there is enthalpy change per

molecule adsorbed. This quantity is denoted by differential enthalpy of adsorption

(qst), given by49

qst = Ḣb − Ḣads, [kJ] (5.65)

or

qst =

(

U̇b +
Pb

ρb

)

−
(

U̇ads +
Pads

ρads

)

(5.66)

where H is the enthalpy, U̇ is the internal energy, P is the pressure, ρ is the density

and the subscripts b and ads refers to bulk and adsorbed phases. In many cases, U̇ is

named differential surface excess internal energy and this quantity is calculated from
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the canonical partition function (Q) as

U̇b = −k ∂2ln(Qb)

∂Nb∂(1/T )
˙Uads = −k ∂2ln(Qads)

∂Nads∂(1/T )
(5.67)

where N is the number of particles. The Eq. (5.67) can be rewritten using two

thermodynamic relations A = −kT ln(Q) and βµ = a+ Z, as follows

U̇b =
∂ab
∂β

+
∂Zb

∂β
˙Uads =

∂aads
∂β

+
∂Zads

∂β
(5.68)

where a is the Helmholtz free energy and Z is the compressibility factor. Therefore,

the isosteric heat adsorption defined by the Eq. (5.65) can be calculated using Eq.

(5.68) as follows

βqst =

(

∂ab
∂β

+
∂Zb

∂β
+ Zb

)

−
(

∂aads
∂β

+
∂Zads

∂β
+ Zads

)

(5.69)

The differential heat of adsorption given by Eq. (5.69) is not commonly reported in

the concerning adsorption literature.

5.7 Results for classical and quantum fluids

In Figures 5-4(a)-5-4(b) predictions are given for the adsorbed 2D packing-fraction

γ as a function of the bulk 3D packing-fraction η, for a monomeric SW fluid with

range λ = 1.5 adsorbed onto a structureless planar wall at T ∗ = kT/ǫ = 1.5. The

wall-particle interaction has a fixed range λw = 0.2453, the values of the energy well

depth are related as ǫads = ǫ and ǫads = 0.8ǫ in the adsorbed phase. The results

are given for several values for the energy ratio ǫ∗ = ǫw/ǫ, that measures the relative

strength between the particle-wall and bulk particle-particle interactions. Classical

and quantum adsorption are presented for each value of ǫ∗, indicated by the values

of the de Boer’s quantumness parameter, Λ = 0 and Λ = 1.7378, respectively. In

Fig. 5-4(a), good agreement between theoretical predictions and simulations data are

observed at low packing fractions and low values of wall-particle parameter ǫ∗. In

Fig. 5-4(b), a remarkable effect of the decrement of the adsorbed 2D packing fraction

γ from the classical (Λ = 0) to quantum (Λ = 1.7378) model is observed. Quantum

effects increase at high values of the de Boer’s parameter.
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Figure 5-4: (a)-(b) Predictions for the adsorbed two-dimensional packing-fraction γ as a function

of the bulk three-dimensional packing-fraction η, for a monomeric SW fluid with range λ = 1.5

adsorbed onto a planar wall at T ∗ = 1.5. The wall-particle interaction is described by a SW

potential with a fixed range λw = 0.2453 and several values for the energy ratio ǫ∗ = ǫw/ǫ. Solid

and dashed lines correspond to the theoretical predictions obtained from SAFT-VRQ (Λ = 1.7378)

and SAFT-VR (Λ = 0), respectively, where Λ is the de Boer’s quantumness parameter. Squares (�)

correspond to 2D packing fractions obtained obtained from density profiles simulated with the Gibbs

ensemble Monte Carlo technique for inhomogenous fluids. (c)-(d). Predictions for the absolute and

Gibbs adsorption isotherms, Γabs and ΓGibbs, respectively. Solid and dashed lines correspond to the

theoretical predictions obtained from SAFT-VRQ and SAFT-VR, respectively.
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A more complete summary of predictions for the absolute and Gibbs adsorption

isotherms are presented on Ref. [50].

In a previous work,24 we have shown that Monte Carlo (MC) computer simulations

for the same classical system agrees very accurately with the theoretical predictions.

For the quantum case, special methods are required to simulate this system, like the

MC method using path integrals. As it results clear from this figure, the introduction

of quantum corrections modifies the adsorption pattern observed for classical fluids,

and there is an effective decrement on γ, particularly at high values of η and ǫ∗.

This effect is explained as a consequence of a higher effective diameter σ introduced

when the interparticle potential is modified by a quantum correction, as in the case

of the Lennard-Jones potential uLJ(r) in the Wigner-Kirkwood theory,51,52

ueff (r) = uLJ +
Λ2

48π2T ∗∇
2uLJ (5.70)

where the second term gives a repulsive contribution that increase the interparticle

distance σeff where ueff (σeff ) = 0, and also reduces the energy depth of the po-

tential.53 For the case of a hard-spheres system, the effective hard-core diameter is

approximately given by σeff = σHS + λB

2
√
2
.54 In this way, quantum particles have

a bigger size than the corresponding classical ones, and the amount of surface area

available is reduced with respect to the classical prediction, for the same value of the

bulk packing fraction η, i.e., γQ(η) > γC(η).

The behavior of Γabs and ΓGibbs in terms of the adimensional bulk pressure P ∗ =

Pbσ
3/ǫ is presented in Figs. 5-4(c) and 5-4(d), where the effect of the reduction in

the amount of adsorbed fluid is evident. An apparent kink seems to be present for

the Gibbs adsorption isotherms, although from Eq. (5.48) and Fig. 5-4(a) we can see

that γ is a continuous function in η, and ΓGibbs depends linearly on these two packing

fractions. Moreover, its first derivative is continuous, since

∂ΓGibbsσ
2

∂P ∗ =

[

2

3

∂γ

∂η
− λw

]

KT

T ∗ (5.71)

whereKT is the isothermal compressibility of the bulk fluid, given byKT = kT (∂ρb/∂Pb)T .

Since KT > 0 for stable phases, the sign of the derivative is determined by the factor

between brackets. From Fig. 5-4(a) is clear that ∂γ/∂η ≥ 0. For all the values of ǫ∗

shown in Fig. 5-4(a), ∂γ/∂η ≈ 0 when 0.05 ≤ η ≤ 0.25, and ΓGibbs < 0, whereas for
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η < 0.05 or η > 0.25 ΓGibbs > 0. These tendencies explain the shape of the curves

as observed in Fig. 5-4(b). The very fast change around the pressure P ∗ = 0.25 is

mainly due to the damping effect that KT has when η (and then P ∗) increases, since

the isothermal compressibility decreases strongly for dense fluids.

5.7.1 Classical Fluids: Methane, Ethane, Propane, Butane,

Nitrogen and Propylene

The adsorption curves obtained by using the classical model are in concordance with

the simulation results, now, we can apply the developed theory above in the de-

scription of the adsorption phenomena of real fluids with a classical or semiclassical

description. The molecular parameters values of 3D-fluids (m, σ, ǫ/k and λ), 2D-

fluids (λads and ǫads) and wall-particle interaction (λw and ǫw) for methane, ethane,

propane, butane, nitrogen, and propylene on different porous surfaces are reported in

references [24,28,45]. The adsorbed amounts were compared with experimental data

values reported by different types of adsorbents. In all cases the energy parameter of

the wall, ǫw was fitted in order to reproduce the experimental adsorption isotherms.

In Figs. (5-5) and (5-6), we present the results obtained for the adsorption

isotherms of n-alkanes,nitrogen and propylene on different materials. Gibbs and ab-

solute isotherms were obtained according to Eqs. 5.46 and 5.47, respectively, and

compared with experimental data. Adsorption isotherms results on BDH-activated

carbon, NSG silica gel and Na-Y zeolite are shown in Fig. (5-5) for chains-alkanes

(methane, ethane, propane and butane). In all cases, the temperature range was

between [303 - 423]K, and the adsorption isotherms results were in concordance with

the experimental data.

In Fig. (5-6) are shown results for methane, nitrogen and propylene at different

temperatures and pressures. The predicted isotherm adsorption data values for all the

fluids, were in agreement with the experimental data. In all cases, we present differ-

ent adsorbate/adsorbent pairs at two different values of the temperature [303− 423]K

and relative high pressures [0− 1]MPa. The continuous line and circle symbols corre-

spond to SAFT-VR approach and experimental data, respectively. Good agreement

between SAFT-VR results and experimental can be observed in all cases.

99



0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T=333.15 K

T=303.15 K

 Experimental data
 SAFT-VR

 

A
m

o
u

n
t 

A
d

so
rb

ed
/m

m
o

l g
-1

P/MPa

(a)

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

T=333.15 K

T=310.15 K

 Experimental data
 SAFT-VR

 

A
m

o
u

n
t 

A
d

so
rb

ed
/m

m
o

l g
-1

P/MPa

(b)

0.00 0.02 0.04 0.06 0.08 0.10 0.12
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

T=343 K

T=303 K

 Experimental data
 SAFT-VR

 

A
m

o
u

n
t 

A
d

so
rb

ed
/m

m
o

l g
-1

P/MPa

(c)

0.00 0.02 0.04 0.06 0.08 0.10
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

T=423 K

T=343 K

 Experimental data
 SAFT-VR

 

A
m

o
u

n
t 

A
d

so
rb

ed
/m

m
o

l g
-1

P/MPa

(d)

Figure 5-5: Adsorption isotherms for methane, ethane, propane and butane on different porous

materials. Solid and dashed lines correspond to the SAFT-VRQ and SAFT-VR results, respectively.

Symbols correspond to experimental data. (a) methane adsorption on BDH-activated carbon at

303.15, and 333.15 K,57 (b) ethane adsorption on BDH-activated carbon at 310.15, and 333.15 K,57

(c) propane on NSG silica gel at 303, and 343 K,58 (d) butane adsorption on Na-Y zeolite at 343,

and 423 K.59
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Figure 5-6: Adsorption isotherms for methane, nitrogen and propylene on different porous ma-

terials. Solid and dashed lines correspond to the SAFT-VRQ and SAFT-VR results, respectively.

Symbols correspond to experimental data. (a) methane adsorption on dry activated carbon at

318.2 K,55 (b) methane adsorption on microporous carbons at 298 K,56 (c) nitrogen adsorption on

BDH-activated carbon,57 (d) propylene adsorption on WSG silica gel at 303, and 343 K58
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5.7.2 Quantum Fluids: Hydrogen

Predictions of adsorption isotherms for classical systems have been detailed in pre-

vious work for molecular fluids and their mixtures24,25,30 as well as for asphaltenes

in porous materials.31 The molecular parameters required to be determined for non-

associating systems are seven, assuming that the diameter of the particles is not

modified by being adsorbed onto a surface. The parameters are related to the three

types of SW interactions required by the theory, i.e., a) particle-particle interaction

for the bulk phase: σ, λ, ǫ; b) particle-particle interaction for the adsorbed phase: σ,

λads, ǫads; c) particle-wall interaction: λw, ǫw.

Bulk parameters are obtained from experimental data for saturated liquid densities

and vapor pressures, and their values are independent of the adsorption process; the

values reported in Table 5.3 for bulk molecular hydrogen were determined with this

procedure, as reported in Ref. [33]. In this way, there is complete transferability

and it is not necessary to obtain new fitted values to describe the bulk phase in an

adsorption isotherm. The parameters to obtain are then reduced to four: λads, ǫads,

λw, ǫw. From the pioneering work by Sinanoglu and Pitzer,44 it is known that the

pair interaction between molecules is modified by the presence of a surface and that

the energy depth for adsorbed particles is reduced with respect to its bulk phase.

Table 5.3: Molecular parameters used to describe the adsorption of classical and quantum hydrogen

on different surfaces. Parameters λ, σ and ǫ, corresponding to the bulk phase, were taken from

reference [33]. Particles adsorbed have the same diameter σ, whereas the SW attractive parameters

(λads, ǫads) were obtained following the same procedure used in our previous work.24,25,30 The

particle-wall SW attractive range is given by λw.

Substance λ σ/Ȧ (ǫ/k)/K λads (ǫads/k)/K λw

Classical H2 1.7184 3.0232 18.0805 1.7122 14.4644 0.8165

Quantum H2 1.7114 2.8983 19.9291 1.7009 15.9433 0.8165

Theoretical estimations of the range of reduction allowed us to select as a fixed

value for all the systems ǫw = 0.8ǫ, as done in previous work for classical adsorp-

tion.23–25,30,31 On the other hand, critical temperatures for adsorbed monolayers of

different substances follow approximately the relationship T ads
c ≈ 0.4T b

c ,
16,18 where

T ads
c and T b

c are the adsorbed and bulk critical temperatures, respectively. This result
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is exact for the ratio of the critical temperatures for the two- and three-dimensional

Ising models for closed packed lattices60 and agrees very well with results for 2D and

3D Lennard-Jones fluids.21 The range λads as a function of λ is then obtained from

the theoretical expressions for T ads
c and T b

c and its ratio. In this way, the parameters

required to be adjusted to reproduce experimental adsorption isotherms are restricted

only to λw and ǫw. From physical considerations about the formation of a monolayer,

0.1305 ≤ λw ≤ 0.8165,23 we have selected the highest value, λw = 0.8165. In this way,

the only parameter required to be fitted to experimental data is ǫw. The standard

value used for S is the Brunnauer-Emmett-Teller area,42,43 SBET , that is given in

Table 5.4 as reported by different experimental studies for several materials.

Table 5.4: Optimized values for the particle-wall energy parameter ǫw for hydrogen adsorption

onto different substrates. Results are given for the classical (C) and quantum (Q) adsorption SAFT-

VR methods used in this work. Experimental values of the BET specific surface area (SBET ) and

isosteric heats qst are reported. The different substrates correspond to metal organic frameworks

(MOF), activated carbon (DAC AX-21) and graphene.

Adsorbent SBET /m
2g−1 T/K qst/kJ mol−1 ǫw(C)/kJ mol−1 ǫw(Q)/kJ mol−1

MOF-5 380061 77 – 2.45 2.24

MOF-205 446061 77 – 2.60 2.25

MOF-210 624061 77 – 2.12 2.34

DAC AX-21 280062 35 6.00-7.6062 5.04 6.54

40 5.04 6.54

45 5.04 5.88

77 3.23 3.16

93 3.23 3.16

113 3.23 3.16

Graphene 64063 77 5.14-6.3764 3.64 3.46

123 4.19 4.03

173 4.21 4.23

Adsorption isotherms of hydrogen adsorbed onto different materials are presented

in Fig. 5-7, using the set of parameters given in Tables 5.4 and 5.5. Following the

procedure outlined previously, results were obtained comparing with experimental

data published for several adsorbents with high porosity and high specific area such

as metal-organic frameworks (MOF), graphene and dry activated carbon.

103



Classical and quantum approximations are compared with experimental data for

adsorption of hydrogen onto dry activated carbon (AX-21) in Figures 5-7(a) and 5-

7(b). At low temperatures (T = 35 K, 40 K and 45 K) quantum predictions improve

the classical results in all the cases, as observed in Figure 5-7(a), whereas in Figure

5-7(b) the results correspond to higher temperatures (T = 77 K, 93 K and 113 K),

where SAFT-VRQ gives a better prediction for T = 77 K.

Table 5.5: Experimental values of the BET specific surface area (SBET ) use to obtain the adsorp-

tion isotherms of hydrogen at different temperatures.

Adsorbent SBET /m
2g−1 Ref. Adsorbent SBET /m

2g−1 Ref.

DAC AX-21 2800 [62] IRMOF-1 4180 [68]

MOF-5 3800 [61] IRMOF-6 3300 [68]

MOF-205 4460 [61] IRMOF-11 2350 [68]

MOF-210 6240 [61] HKUST-1 2260 [68]

Graphene 640 [63] MSC-30 3244 [66]

ZTC-1 1691 [66] ZTC-2 2964 [66]

MSC-30 3244 [66] CNS-201 1440 [66]

PCN-11 2442 [67] ZTC-3 3591 [66]

A similar pattern is observed when other substrates are considered, like Metal

Organic Frameworks (Fig. 5-7(c)) and graphene nanosheets (Fig. 5-7(d)). In the

first case all the isotherms correspond to the same temperature T = 77 K), and the

differences between the classical and quantum predictions is noticeable and in overall

SAFT-VRQ gives a slight better prediction. The case of graphene behaves similarly,

since for T = 77K the quantum approach gives better agreement with experimental

data, and at higher temperatures there is not a significant difference between theories.

On the other hand, adsorption isotherms of hydrogen adsorbed onto isoreticular

metal organic frameworks (IRMOF), microporous metal organic frameworks (PCN-

11), zeolite-templated carbon (ZTC) and superactivated carbon (MSC-30) are shown

in Fig. 5-8, using the set of parameters reported in Table 5.6. In this table, fit-

ted values of the scaled particle-wall energy parameter, ǫw/ǫ, are reported for the

corresponding adsorption isotherm temperature.

104



1 2 3 4 5 6
10

15

20

25

30

35

40

45

50
 SAFT-VRQ
 SAFT-VR
 Experimental Data

T=40 K

T=35 K

T=45 K

A
m

o
u

n
t 

A
d

so
rb

ed
/m

m
o

l g
-1

P/MPa

(a)

0 1 2 3 4 5 6
0

5

10

15

20

25

30

 SAFT-VRQ
 SAFT-VR
 Experimental Data

T=93 K

T=113 K

T=77 K

A
m

o
u

n
t 

A
d

so
rb

ed
/m

m
o

l g
-1

P/MPa

(b)

0 20 40 60 80
0

20

40

60

80

100

MOF-5

MOF-205

MOF-210

A
m

o
u

n
t 

A
d

so
rb

ed
/m

g
 g

-1

P/bar

 SAFT-VRQ
 SAFT-VR
 Experimental Data

(c)

0 1 2 3 4 5 6 7 8 9 10
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
 SAFT-VRQ
 SAFT-VR
 Experimental Data

T=173 K

T=123 K

T=77 K

 

A
m

ou
nt

 A
ds

or
be

d/
(w

t. 
%

)

P/MPa

(d)

Figure 5-7: Adsorption isotherms of hydrogen on differents porous materials. Solid and dashed

lines correspond to the SAFT-VRQ and SAFT-VR prediction respectively. The symbols correspond

to experimental data. Porous surface materials presented are: (a) hydrogen on dry activated carbon

AX-21 at 35, 40, and 45 K,62,69,70 (b) hydrogen on dry activated carbon AX-21 at 77, 93, and 113

K,62,69,70 (c) hydrogen on metal-organic frameworks (MOF) at 77K,61 (d) hydrogen on graphene

nanosheets at 77, 123 and 173K.63
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Figure 5-8: Adsorption isotherms of hydrogen on differents porous materials. Solid and dashed

lines correspond to the SAFT-VRQ and SAFT-VR prediction respectively. The symbols corre-

spond to experimental data. Porous surface materials presented are: (a) hydrogen on microporous

metal-organic framework IRMOF-1, IRMOF-6, IRMOF-11 and HKUST-1 materials at 77 K,65 (b)

hydrogen on zeolite-templated ZTC-1, ZTC-2, ZTC-3 and superactivated carbon MSC-30 at 298

K,66 (c) hydrogen on superactivated carbon MSC-30, zeolite-templated ZTC-2, and activated car-

bon CNS-201 at 77 and 87 K,66 (d) hydrogen on PCN-11 at 50, 77, 87 and 150 K.67
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Table 5.6: Optimized values for the scaled particle-wall energy parameter ǫw for hydrogen adsorp-

tion onto different substrates. Results are given for the classical (C) and quantum (Q) adsorption

SAFT-VR methods used in this work. The different substrates correspond to isoreticular metal

organic frameworks (IRMOF), microporous metal organic frameworks (PCN-11), zeolite-templated

carbon (ZTC) and superactivated carbon (MSC-30).

Adsorbent T/K ǫw/ǫ (C) ǫw/ǫ (Q) Adsorbent T/K ǫw/ǫ (C) ǫw/ǫ (Q)

IRMOF-165 77 14.7 12.1 ZTC-166 298 16.8 15.5

IRMOF-665 77 17.3 14.3 ZTC-266 298 16.5 15.1

IRMOF-1165 77 18.2 15.0 ZTC-366 298 17.3 15.8

HKUST-165 77 16.8 13.8 MSC-3066 298 17.5 15.9

PCN-1167 50 29.0 26.5 PCN-1167 87 27.5 22.5

PCN-1167 77 28.0 23.0 PCN-1167 150 23.0 20.0

Fig. 5-8 shows classical and quantum adsorption isotherms predictions using

SAFT-VRQ approach compared with experimental data at high pressures. In Fig.

5-8(a), adsorption isotherms of hydrogen on microporous metal-organic framework

materials denoted by IRMOF-1, IRMOF-6, IRMOF-11 and HKUST-1 at T = 77K,65

are presented. Hydrogen adsorption predictions at room temperature onto zeolite-

templated denoted by ZTC-1, ZTC-2, ZTC-3 and superactivated carbon MSC-30 are

shown in Fig. 5-8(b). This figure shows that quantum effects are not remarkable at

low pressures but becomes to be significant at high pressures (P > 20MPa).

Fig. 5-8(c) shows the experimental and predicted adsorption isotherms for hy-

drogen at T = 77 and 87K. Here, superactivated carbon MSC-30, zeolite-templated

ZTC-2, and activated carbon CNS-201 adsorbents are compared. In all the cases,

the amount adsorbed representation are reasonably very accurate taking into account

the range of experimental data. Adsorption isotherms for hydrogen onto microporous

metal organic frameworks denoted by PCN-11 at T=50, 77, 87 and 150 K are shown

in Fig. 5-8(d). Here, the correponding lower BET surface area value reported by

the authors in reference [67] was not taken into account in this work. Therefore, the

adsorption isotherms were obtained using an especific Langmuir surface area value of

SBET = 2442, with good results in all cases.
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Figure 5-9: (a) Predictions for the isosteric heat of adsorption, qst, as a function of the three-

dimensional packing fraction η, for a monomeric SW fluid with a range of λ = 1.5 adsorbed onto

a planar wall at T∗ = 1.5. The wall-particle interaction is described by a SW potential with a

fixed range λw = 0.2453 and several values for the energy ratio ǫ∗ = ǫw/ǫ. Solid and dashed lines

correspond to the theoretical predictions obtained from SAFT-VRQ (Λ = 1.7378) and SAFT-VR (Λ

= 0), respectively, where Λ is the de Boer’s quantumness parameter. (b) Isosteric heat of hydrogen

on dry activated carbon AX-21 at 77, 93, and 113 K.62,69,70 Solid and dashed lines correspond to

the theoretical predictions obtained from SAFT-VRQ and SAFT-VR, respectively, as indicated by

the value of the de Boer’s quantumness parameter Λ.

In Fig. 5-9(a), predictions are presented for the isoteric heat of adsoption, qst, as

a function of the bulk 3D packing-fraction η, for a monomeric SW with range λ = 1.5

adsorbed onto a planar wall at T ∗ = kT/ǫ = 1.5. Results are given for several values

of the energy ratio ǫ∗ = ǫw/ǫ. Classical and quantum isosteric heat predictions are

presented for each value of ǫ∗, indicated by the values of the de Boer’s quantumness

parameter, Λ = 0 and 1.7378, respectively. As can be observed in this figure in the

limit of low densities, qst/ǫ = ǫ∗, classical and quantum predictions are presented for

isosteric heat of hydrogen onto dry activated carbon (AX-21) in Fig. 5-9(b). In all

the cases, in the limit of low adsorption amount, the results are in concordance with

the isosteric heat values reported in Table 5.4 for hydrogen on dry activated carbon

AX-21 at 77, 93 and 113 K.

Finally, it is important to stress that the values obtained for the energy ǫw are very
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close to the experimental values derived from the isosteric adsorption heat, as given

in Table 5.4. The isosteric heat gives information of the strength of the interaction

between an adsorbate and a solid adsorbent.71 This feature remarks that the present

approach uses parameters with a clear molecular basis, and can be very useful to give

accurate estimations of the binding energies in adsorption process where experimental

data is not available.

Conclusions

In this chapter, we have presented an extension of the SAFT-VR theory for confined

fluids introducing quantum corrections to describe adsorption of hydrogen onto several

substrates. The theory relies on the determination of seven parameters, assuming that

the size σ of the particles is the same for bulk and adsorbed fluids. These parameters

are related to the SW interactions used to model the particle-particle potential in the

bulk and adsorbed phases, and the particle-wall potential. The diameter σ and the

SW bulk parameters ǫ and λ can be determined by phase equilibria properties of the

bulk phase and can be transfered to the adsorption model. The SW parameters for

the adsorbed phase, ǫads and λads, can be determined from knowing the modification

of the well potential by the substrate and the ratio of the critical temperatures of the

adsorbed and bulk phases. These quantities have been determined for a wide range of

systems and allows us to use the relations ǫads = 0.8ǫ and Rc = 0.4. The range of the

SW particle-wall interaction can also be fixed as λw = 0.8165, corresponding to the

theoretical maximum value that allows the formation of an adsorbed monolayer. In

this way, the remaining parameter is the energy depth ǫw, that is obtained by fitting

to experimental data. As discussed in this chapter, ǫw is also related to the isosteric

heat capacity in its low density value. We have found that quantum corrections have

a noticeable effect for hydrogen adsorbed onto different substrates for temperatures

T ≤ 77K, according to the systems studied here: graphene, activated carbon and

metallic organic frameworks. In the model developed in this chapter we have not

considered the possibility of having adsorption of reacting hydrogen; however, in

the literature there are two remarkable cases: the first case is the adsorption of

associating classical fluids30 and the second case is the SAFT-VR model for reacting

systems in bulk fluids.72 These developments could be used together to predict the

thermodynamics of reacting adsorbed systems.
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CHAPTER 6

SEMICLASSICAL THEORY FOR ADSORPTION OF

MIXTURES

Adsorption of binary mixtures containing hydrogen onto different nanoporous ma-

terials become to be a particular interest in potential applications for adsorption-

separation of gas mixtures. One of them is when the methane and carbon dioxide must

be removed from the synthetic gas before hydrogen can be used effectively. We present

a semiclassical theoretical framework to model isotherms adsorption of mixtures based

on the statistical associating fluid theory approach for classical and quantum bulk flu-

ids (SAFT-VRQ), and its extension to describe adsorbed systems (SAFT-VR-2D).

The application of the theory relies on the use of eight molecular parameters, seven

of them are obtained from the bulk vapor-liquid equilibrium, the ratio of the criti-

cal temperatures of the adsorbed and bulk phases and finally the energy depth of the

surface-particle potential, ǫw, is obtained by fitting to experimental data from adsorp-

tion isotherms prediction of pure components. Additionally, the expression for the

calculations of vapor-liquid equilibrium of binary mixtures are presented. The results

were found to be in concordance with the experimental data.

6.1 Introduction

Nowadays hydrogen is a good candidate as a replacement for fossil fuels in mobile

applications as fueling vehicles to protect the environment. Burning hydrogen in

fuel cells is the most clean way of releasing energy, but there are other important
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ways to use the hydrogen. For example, liquid hydrogen is used to fuel vehicles

equipped with an inner combustion engine. Therefore, hydrogen storage is the key

in the technology of clean vehicles. The storage techniques available commercially

cannot afford a hydrogen vehicle potential of competition with vehicles fueled by

petroleum products.1 Additionally, conventional storage of large amounts of hydrogen

is difficult and expensive because it requires employing either extremely high pressures

as a gas or very low temperatures as a liquid.2 Then practical materials with higher

capacity when the weight of the tank and associated cooling or regeneration system is

considered. The size and weight of these components will vary substantially depending

on whether the material operates by a chemisorption or physisorption mechanism.3 In

the case of physisorption, promising adsorbent materials such as on carbon activated,1

Metal-Organic Frameworks (MOFs),3,4 graphene nanosheets,5 among others, have

received continuous interest as potential hydrogen storage media. In all of them,

different features as surface area, porosity, size and shape are tuneable and allow

further improvements.6

On the other hand, the design of adsorption-based processes requires two proper-

ties, the adsorption isotherm and the heat of adsorption. The adsorption of gases on

solids is commonly used for the characterization of surface properties and also for the

separation and capture of gases and vapors.7 The adsorption of gases, as hydrogen,

is based on the characterization of adsorption isotherms over a wide range of pres-

sures and temperatures above the critical point of the adsorbate materials. Recently,

more suitable models in order to predict adsorption isotherms are being reported in

the literature. Additionally, accurate predictions of thermodynamic properties and

adsorption isotherms over a wide range of temperatures and pressures would reduce

the number of lengthy experiments required for performance evaluation.8

In this way, Statistical Associating Fluid Theory of Variable Range (SAFT-VR)

has been used to study classical single-component fluids,9 adapted for two-dimensional

(2D) fluids interacting via square-well pair potential.10–14 This approach has been ap-

plied to predict the adsorption of classical pure molecular fluids as carbon dioxide,

nitrogen, propylene, methane among others, onto different adsorbed surface materi-

als.10–14 Recently, a semiclassical version of the SAFT-VR theory for classical and

quantum bulk fluids was developed in order to predict thermodynamic properties and

adsorption isotherms of quantum fluids, such as hydrogen.15

In this work, the semiclassical SAFT-VR approach to model quantum fluids has
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been used to model the adsorption isotherms of binary mixtures of classical and quan-

tum fluids at high pressures. The experimental data were correctly correlated with the

fitted parameters from pure components, presented in previous works. Expressions

for chemical potential of quantum terms in 2D and 3D were obtained and discussed

widely. The adsorption isotherms were studied onto different adsorbed materials.

6.2 Mathematical Model

In this chapter, we present the theory used to describe the adsorption of a mixture of

fluids onto a uniform wall, using a semiclassical approximation of 2D and 3D fluids

within the SAFT-VR approach. We considered a fluid composed of a binary mixture

of M -components, each i-species being formed by Ni-spherical particles of diameter

σii. The particle-particle and particle-wall interactions are modeled by square-well

potentials (SW). The particle-particle SW upp interaction is given by

upp(rij, σij, λij) =















∞ if rij ≤ 0

− ǫij if 0 < rij ≤ λijσij

0 if rij > λijσij

(6.1)

where rij is the interparticle distance between particles of species i and j, ǫij and

λijσij are the energy-depth well and attractive-potential range, respectively, and σij

is the mixture diameter. On the other hand, the particle-wall is denoted as upw, and

we can assume the potential as a function of the perpendicular distance of the wall.

In this case, the particle-wall potential upw is given by

upw(z, σii, λw) =















∞ if z ≤ 0

− ǫw if 0 < z ≤ λwσii

0 if z > λwσii

(6.2)

where z is the perpendicular distance of the particles from the wall, ǫw is the depth,

and λwσii is the range of the attractive potential. In our approximation, we describe

the system as being composed of two subsystems: a fluid whose particles are near to

the wall, i.e., when z ≤ λwσii, which we shall refer to as the “adsorbed fluid”, and a

fluid whose particles are far from the wall, i.e, when z > λwσii, i.e., the “bulk fluid”.
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The pair potential of the adsorbed particles uadspp , only depends of the coordinates in

parallel directions to the wall. Therefore, the adsorbed fluid can be approximated by

a quasi-two dimensional system.

To describe the amount of particles adsorbed onto the wall, we use an analogous

expression for the surface excces concentration, Γ, defined in Chapter 5, as

Γi =

∫ ∞

0

dzi[ρi(zi)− ρbi ] (6.3)

where ρi is the density particles of species i, and ρbi , is the bulk density, i .e., ρi(zi →
∞) = ρb. Since the length scale of the adsorbed phase for species is defined by λwσii,

as follows

Γi =

∫ λwσii

0

dziρi(zi)− ρbiλwσii (6.4)

In order to obtain the density ρi, the thermodynamic equilibrium must be satisfied in

adsorbed and bulk phases. The chemical potential of the adsorbed phase, µads
i , and

bulk phase, µbulk
i must be equal, i.e.,

µb =
∑

i

xiµ
b
i =

∑

i

xiµ
ads
i = µads (6.5)

where

µads
i =

(

∂Aads

∂Nads

)

(6.6)

and

µb
i =

(

∂Ab

∂Nb

)

(6.7)

where Ab and Aads are the Helmholtz free energies for the bulk and adsorbed systems

formed by Nb and Nads particles. The adsorbed phase, Aads, can be obtained from a

2D approximation. Therefore, we need to calculate the canonical partition function

of the mixture of fluids adsorbed onto a surface as

Qads(Ni, Vi, T ) =
∏

i=1

V Ni

i

Ni!λ
3Ni

Bi

Zads, (6.8)

where Vi is the adsorbed volume, λB, is the de Broglie wavelength, and Zads is the
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configurational partition function defined by

Zads =
1

V Ni

i

∫

dNi~re−βU , (6.9)

where β = 1/kT , and U is the total interaction potential, expressed as the sum of

two terms as

U(xN , yN , zN) =
1

2

∑

k

∑

j

∑

Sk

∑

Sj

Uads
pp (rsk,sj) +

∑

k

∑

Sk

Upw(zsk) (6.10)

where rsk,sj is the distance between particles Sk and Sj corresponding to species k and

j, respectively. In the case of the adsorbed fluid, the pair potential Uads
pp (rsk,sj), can

described as a decoupling z-coordinate direction, and then justify a 2D approximation

to describe the particle-particle potential,

Uads
pp (rsk,sj) = Uads

pp (xsk,sj , ysk,sj) (6.11)

In this way, Eq. (6.9) can be rewritten as

Zads =
1

V Ni

i

∫

dNize−β
∑

k

∑
Sk

Upw(zsk )

∫

dNixid
Niyie

−β
∑

k

∑
j

∑
Sk

∑
Sj

Uads
pp (rsk,sj

)/2
.

(6.12)

The adsorbed fluid can be characterized by a volume Vi, that corresponds to an ad-

sorption area (S), and perpendicular distance between the wall and the fluid affected

by the wall (zo). Therefore, the Eq. (6.12) can be rewritten as

Zads = Z1DZ2D, (6.13)

where

Z1D =
1

zNi

0

∫ z0

0

dNize−β
∑

k

∑
Sk

Upw(zsk ) (6.14)

Z2D =
1

SNi

∫

dNixid
Niyie

−β
∑

k

∑
j

∑
Sk

∑
Sj

Uads
pp (rsk,sj

)/2
, (6.15)

where Z1D and Z2D are the one and two-dimensional configurational partition func-

tions, respectively. The distance zo can be written as a function of the range of the

attractive potential of the wall and the diameter of the particles (zo = λwσii). In this
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way, the Eq. (6.14) can be expressed as

Z1D =
1

(λwσii)Ni

∫ λwσii

0

dNize−β
∑

k

∑
Sk

Upw(zsk ) =

[

1

λwσii

∫ λwσii

0

dze−β
∑

k

∑
Sk

upw(zsk )

]Ni

,

(6.16)

The configurational partition function Z1D in Eq. (6.16) can be evaluated using the

mean-value theorem, i .e.,

Z1D = e−βNi

∑
i

∑
Si

upw(z∗si ). (6.17)

where z∗sk is the value of the coordinate z that guarantees the mean value of the

Boltzmann factor. The canonical partition function of the adsorbed fluid is given by

Qads = Q1D
adsQ

2D
ads (6.18)

where

Q1D
ads =

∏

i=1

zNi
o

λNi

B

e−βNi

∑
i

∑
Si

upw(z∗si ) (6.19)

Q2D
ads =

∏

i=1

SNi

Ni!λ
2Ni

B

∫

dNixid
Niyie

−β
∑

k

∑
j

∑
Sk

∑
Sj

Uads
pp (rsk,sj

)/2
, (6.20)

Rearranging the Eqs. (6.18-6.20) we can obtain

Qads = Q2D
ads

∏

i=1

(

λwσii
λBi

)Ni

e−βNi

∑
i

∑
Si

upw(z∗si ), (6.21)

Applying the standard relation Aads = −kT ln(Qads), the Helmholtz free energy of

the absorbed fluid is given by

Aads

NkT
=

A2D

NkT
−
∑

i

xi

[

ln

(

λwσii
λB

)

+ βmiǫwi

]

. (6.22)

where xi = Ni/N is the molar fraction of species i, and A2D is the Helmholtz free

energy of a two-dimensional fluid interacting via the potential Uads
pp , that is given in

terms of classical and quantum contributions,

A2D

NkT
=

AC
2D

NkT
+

AQ
2D

NkT
(6.23)
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where the superindexes C and Q denote classical and quantum contributions, respec-

tively. The classical A2D contribution can be described by using perturbation theory

of hard-disks as a reference fluid,

AC
2D

NKT
=
Aideal

2D

NkT
+
Amono

2D

NkT
+
Achain

2D

NkT
(6.24)

where Aideal is the ideal free energy, Amono is the excess free energy due to monomer

segments, andAchain is the contribution due to the formation of the chains of monomers.

Following the high-temperature expansion theory of Barker and Henderson,16,17

AC
2D

NKT
=
∑

i

xiln(ρ
2D
i λ2Bi)− 1 + S

(

aHD + βa2D1 + β2a2D2
)

+ achain2D (6.25)

where S =
∑

k xkmk, a
HD is the free energy for a mixture of hard disks, a2D1 , a2D2 are

the first and second-order perturbation terms, respectively, and achain2D is the Helmholtz

free energy contribution due to formation of chains. The quantum contribution for

the 2D-mixture system is given by

AQ
2D

NkT
= γx

(

βǫx
π

)1/2
∑

k

∑

j

xs,kxs,jΛkjg
SW
2D (σx;λx) (6.26)

The properties of the bulk fluid may also be obtained as

Ab

NkT
=

AC
3D

NkT
+

AQ
3D

NkT
(6.27)

where the superidices C and Q denote classical and quantum contributions respec-

tively. The classical A3D contribution can be described by using perturbation theory

of hard-disks as a reference fluid,

AC
3D

NKT
=
Aideal

3D

NkT
+
Amono

3D

NkT
+
Achain

3D

NkT
(6.28)

where Aideal is the ideal free energy, Amono is the excess free energy due to monomer

segments, andAchain is the contribution due to the formation of the chains of monomers.

The properties of the bulk 3D-fluid may also be obtained by perturbation theory at

121



the same expansion order in β,18

AC
3D

NKT
=
∑

i

xiln(ρ
3D
i λ3Bi)− 1 + S

(

aHS + βa3D1 + β2a3D2
)

+ achain3D (6.29)

where aHS is the free energy for a mixture of hard-sphere, a3D1 , a3D2 are the first

and second-order perturbation terms, respectively; and achain3D is the Helmholtz free

energy contribution due to the formation of chains. The quantum contribution for

the 3D-mixture system is given by

AQ
3D

NkT
=

1

(2π)2
tx

[

∑

k

∑

j

xs,kxs,jΛ
2
k,j

(

∂a3D1
∂λx

)

]

×
[

(tx −
2

λx
− µ1(ζx)

−2µ2(ζx)λx − 3µ3(ζx)λ
2
x)
]

(6.30)

where tx =
(

1− e−βǫx
)

. The mathematical expressions for the Helmholtz free energy

contributions of bulk and 2D-mixtures are presented on Appendix A and B, respec-

tively. The methodology described in this section can be described by discontinuous

potentials.11

6.3 Results

6.3.1 Adsorption of classical fluids

In this section, we presented the semiclassical version of the SAFT-VRQ theory ap-

plied in the prediction of the binary adsorption isotherms of classical fluids. We

study the case of the adsorption of chain molecule fluids, assuming that the monomer-

monomer and monomer-wall interactions can be described via square-well potentials.

The theory presented in this section was applied to two different systems adsorbed

onto activaded carbon.19 The adsorption isotherms were obtained for two system:

methane/carbon dioxide and nitrogen/methane onto activated carbon at T = 318.2

K. The molecular parameters for the pure components are reported in Table 6.3.1.

The pure parameters are the number of segments, m, the variable range parameter,

λ, the diameter of monomer segments, σ, the energy depth, ǫ, the adsorption vari-

able range parameter, λads, the adsorption energy parameter, ǫads, the particle-wall

attractive range, λw, and the particle-wall potential parameter, ǫw.
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Table 6.1: Molecular parameters used to describe the adsorption of classical fluids on different

surfaces. Parameters λ, σ and ǫ, corresponding to the bulk phase, were taken from references

[13,14]. Particles adsorbed have the same diameter σ, whereas the SW attractive parameters (λads,

ǫads) were obtained following the same procedure used in our previous work.10,11,13 λw is the

particle-wall SW attractive range and ǫw is the particle-wall potential parameter.

Substance m λ σ/Ȧ (ǫ/k)/K λads (ǫads/k)/K λw (ǫw/ǫ)

CH4 1.00 1.444 3.6700 168.800 1.200 135.040 0.8165 7.60

CO2 2.00 1.5257 2.7864 179.270 1.262 143.416 0.8165 3.95

N2 1.33 1.5500 3.1590 81.485 1.474 65.188 0.8165 9.10

The theory requires eight molecular parameters for each pure compound; four of

these (m, σ, ǫ, and λ), were obtained from previous studies.10–14 The relations for the

SW attractive parameters (λads, ǫads), particle-wall parameter (λw) and particle-wall

potential parameter (ǫw), were explained in Chapter 5. To follow up, it is convenient

to summarize the way to translate between theoretical and experimental variables. If

we denote by ni the number of moles of the adsorbed fluid, then it is related either

to Γabs through the equation,

(n/ms)i =
(Γabsσ

2
ii)miSi

NAσ2
x

(6.31)

where Γabsσ
2
ii = 4γ/π, with γi = xiγ, and σ

2
x =

∑

i ximiσ
2
i . Expressions for η and γ

of the mixture are obtained in Appendix A and B, respectively. The relation n/ms is

known as amount of adsorbed fluid. The standard value used for S is the Brunnauer-

Emmett-Teller area,20,21 SBET , that is reported by different experimental studies for

several materials.

Theoretical results and experimental data for pure carbon dioxide, methane and

nitrogen onto dry activated carbon are compared in Fig. 6-1. Here the adsorption

isotherms are reported as absolute adsorption recently explained in Chapter 5.

The BET area value was taken from Sudibarandiyo et al.,19 which has value of

850 m2/g, for the reported isotherms we found two values of 580 m2/g for nitrogen

and 850 m2/g for methane and carbon dioxide. In the limit case of xi → 1, the results

converge to the behavior of pure component i. As can be observed the Fig. 6-2(a) in

the limit of xCH4 → 1 the results converge to the pure methane experimental data.
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Similar results are observed for CO2 and N2 in Figs. 6-2(b) and 6-2(d).
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Figure 6-1: Absolute amount adsorbed for the adsorption of carbon dioxide (CO2), methane (CH4)

and nitrogen (N2) onto dry activated carbon at T=318.2 K. The solid lines and symbols correspond

to the SAFT-VR prediction and experimental data,19 respectively.

Experimental and predicted adsorption isotherms for CH4 + CO2 binary system is

shown in Figs. 6-2(a) and 6-2(b). Predictions with optimal particle-wall parameters,

ǫw obtained from experimental data of pure components are compared. It can be

appreciated that predictions corresponding to molar fraction of CH4 are slightly better

than those corresponding to molar fraction of CO2.

Figs. 6-2(c) and 6-2(d) shows experimental and predicted adsorption isotherms

for CH4 + N2 binary mixture. In these two figures, the predictions with the optimal

particle-wall parameters, ǫw are accurate related to the experimental data. Mereover,

deviations between predictions and experimental data for the adsorption isotherms

of N2 (Fig. 6-2(d)) are better than those corresponding Fig. 6-2(c).
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Figure 6-2: Absolute amount adsorbed for the adsorption of of CH4/CO2 and CO2/N2 mixtures.

In all cases, the adsorption isotherms were obtained using dry activaded carbon at T=318.2 K. Solid

lines and symbols correspond to the SAFT-VR prediction and the experimental data,19 respectively.

Adsorption isotherms presented are: (a) Adsorption of CH4 on the mixture CH4/CO2 (b) Adsorption

of CO2 on the mixture CO2/CH4 (c) Adsorption of CH4 on the mixture CH4/N2 (d) Adsorption of

N2 on the mixture CH4/N2
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6.3.2 Adsorption of Quantum fluids

In this section, the theory presented in this chapter was applied to two different sys-

tems adsorbed onto dry activated carbon AX-21. The systems studied were hydrogen

+ neon and hydrogen + helium-4. The molecular parameters for the pure compo-

nents are reported in Table 6.3.2. The eight molecular parameters required for each

pure compound were explained in detail in Chapter 5. Fig. 6-3 presents a predictive

comparison between the theoretical and experimental adsorption isotherms at T=77

K. The results are reported as Gibbs amount adsorbed of the component i at different

values of molar concentration. In all cases, the surface area, SBET value of 2800 m2/g

was taken from the experimental value reported by Bénard et. al.,.22–24 In Table

6.3.2, the de Boer’s quantumness parameter Λ = h/σ
√
mǫ, take values from classical

fluids (Λ = 0) to quantum fluids as helium (Λ = 4.2409).

Table 6.2: Molecular parameters used to describe the adsorption of classical and quantum fluids

on different surfaces. Parameters λ, σ and ǫ, corresponding to the bulk phase, were taken from

reference [33]. Particles adsorbed have the same diameter σ, whereas the SW attractive parameters

(λads, ǫads) were obtained following the same procedure used in our previous work.24,25,30 λw is the

particle-wall SW attractive range, ǫw is the particle-wall potential parameter and Λ = h/σ
√
mǫ is

the de Boer’s quantumness parameter.

Substance λ σ/Ȧ (ǫ/k)/K λads (ǫads/k)/K λw (ǫw/ǫ) Λ

H2 1.7184 3.0232 18.0805 1.7122 14.4644 0.8165 21.5 0

1.7114 2.8983 19.9291 1.7009 15.9433 0.8165 19.1 2.3921

Ne 1.5442 2.6914 32.8449 1.4506 26.2760 0.8165 18.0 0

1.5328 2.6949 33.4450 1.4304 15.9433 0.8165 19.0 0.6264

He 1.7260 2.9860 2.6943 1.7248 2.1554 0.8165 28.0 0

1.6799 2.7595 3.4973 1.6531 15.9433 0.8165 22.0 4.2409

Adsorption isotherms of pure neon (Ne), hydrogen (H2) and helium-4 (He) onto

dry activated carbon AX-21 at high pressures are presented in Fig. 6-3. Here, clas-

sical and semiclassical approximation using SAFT-VRQ were obtained; in the case

of hydrogen, the results were compared with experimental data reported by Bennard

et. al.,.22–24 For the case of neon and helium-4, the experimental data for adsorption

isotherms are not available in the literature. Figs. 6-3 and 6-4 were obtained esti-

mating the particle-wall potential parameter, ǫw, from the isosteric heat reported by
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several authors.25–27 From experimental isosteric heat values, qst, we could obtain a

range of acceptable values of the wall parameter ǫw for neon and helium-4. The pa-

rameter values used in order to obtained the adsorption isotherms are given in Table

6.3.2.
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Figure 6-3: Gibbs isotherms for the adsorption of neon (Ne), hydrogen (H2) and helium (He) onto

dry activated carbon AX-21 at T=77 K. The solid lines, dashed lines and symbols correspond to

the SAFT-VR, SAFT-VRQ prediction and experimental data,19 respectively.

Adsorption isotherms for the adsorption of hydrogen + neon and hydrogen +

helium-4 are presented in Fig. 6-4 as a function of pressure and molar fraction

composition. Results are reported as Gibbs amount adsorption isotherms. In the

case of the neon adsorption, values near to 43 mmol/g are obtained when molar

fraction of neon approaches to 1 (xNe → 1), this behavior is contrary to the case of

helium-4 were the amount of adsorption is near to 8 mmol/g when (xHe → 1).

In this chapter, we developed a systematic procedure to describe and predict the

adsorption isotherms of mixtures containing hydrogen. Semiclassical theory taking

into account quantum corrections using pure-molecular parameters and only one fitted

parameter was developed. In general, we show the adsorption curves tendency for

quantum fluids as hydrogen, neon and helium-4. This tendency curves of adsorption

is a valuable information for the experimental research, because the SAFT-VRQ is

a predictive approach and these results give a particular range of values in order to
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obtain experimental adsorption data.
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Figure 6-4: Adsorption isotherms for the adsorption of the systyems H2/Ne and H2/He mixture.

For both systems, the adsorption isotherms are studied onto dry activaded carbon AX-21 at T=77

K. Solid lines and symbols correspond to the SAFT-VR prediction and the experimental data,19

respectively. Adsorption isotherms presented are: (a) Adsorption of H2 on the mixture H2/Ne (b)

Adsorption of Ne on the mixture H2/Ne (c) Adsorption of H2 on the mixture H2/He (d) Adsorption

of He on the mixture H2/He.
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Conclusions

An extension of the semiclassical SAFT-VRQ approach to modeling mixtures is de-

scribed and used for two classical systems (methane + nitrogen/methane + carbon

dioxide) and two quantum systems (hydrogen + neon/hydrogen + helium-4). For

classical systems, adsorption isotherm predictions were compared with experimental

data and a good concordance was obtained in all cases. Pure compound parameters

were previously presented by many authors.10–14 Quantum fluids predictions were

obtained using pure compound parameters reported by Trejos et. al,.28 Theory was

found to be capable of predicting the overall phase diagram for real mixtures. Ad-

sorption of reactive systems and vapor-liquid calculations of asymmetric mixtures

containing quantum fluids is an expectative to be studied in a future work.
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CHAPTER 7

CONCLUSIONS AND PERSPECTIVES

As summarizy of the sections of the present thesis, recent developments in molecular

simulations and theoretical approaches of adsorption have enhanced the applicabil-

ity of these methodologies in order to predict quantum contributions in the adsorp-

tion of quantum fluids. This thesis presents multiple aspects of molecular statistical

physics, where theoretical results are compared with simulation and experimental

data. Particular conclusions have been exposed and presented in previous chapters

and summarized throughout the document. In this chapter, future perspectives are

given:

− On Chapter 3, a semiclassical theory to model quantum fluids within the frame-

work of SAFT-VR approach was developed. There, the thermodynamic proper-

ties were obtained using a square-well pair potential. It would be interesting to

obtain thermodynamic properties of quantum fluids, such as second virial coef-

ficient, inversion curves, Joule-Thomson coefficients and heat capacities using a

continuous Mie-pair potentials in the framework of the SAFT-γ. These method-

ology have been not used in the study of complex fluids such as hydrogen or

helium. In this way, further work would be in order to reply all the mentioned

thermodynamic properties using SAFT-γ and discrete pair potentials.

− On Chapter 4, computer simulations of liquid-vapor coexistence of confined

quantum fluids were studied by Monte Carlo computer simulation for particles

interacting via a semiclassical effective pair potential. Other extensions and
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further analysis of this approach is considering quantum methodologies such as

path-integral. This methodology is a powerful tool in order to study quantum

fluids. It would be interesting to obtain the vapor-liquid coexistence of confined

quantum fluids and structure properties; such as radial distribution function by

using path integrals. Our research group is being developing this work.

− On Chapter 5, adsorption of molecular hydrogen onto different substrates are

described using a semiclassical theoretical framework based on the SAFT-VRQ.

In this way, it would be interesting to measure experimentally the differential

heats of adsorption of quantum fluids at low temperatures onto different mate-

rials. On the other hand, further analysis and research are required in the study

of reactive systems. This study is very promising, as it provides the opportunity

to analyze simulation results obtained from reactive Monte Carlo Gibbs ensem-

ble and compared this results with SAFT-VR for square-well pair potentials.

Molecular simulations, together with theoretical studies using SAFT-VR, will

thus be helpful in the study of adsorption-reaction onto catalytic surfaces.

− On Chapter 6, adsorption of binary mixtures containing hydrogen were studied

in the framework of SAFT-VRQ approach. There, adsorption isotherm results

were obtained for mixtures of hydrogen + classic fluids, using fitted molecu-

lar parameters from pure fluids. Further studies should be made in order to

obtain the vapor-liquid equilibrium of asymmetric binary mixtures containing

hydrogen + n-alkanes and n-alkanols. The major problem with adsorption of

mixtures, such as hydrogen + quantum fluid, is due to the poor experimental

data reported in the literature. This difficulty is also present in mixtures with

lower complexity, such as classic fluids.

134



APPENDIX A

APPENDIX A

Expression for the chemical potential

We discuss the chemical potential terms from the corresponding Helmholtz free energy

terms. The expressions are as follows

µi

kT
=
µideal
i

kT
+
µmono
i

kT
+
µchain
i

kT
(A.1)

where µi is the chemical potential of the i-component, T is the temperature and k

is the Boltzmann constant. Using standard thermodynamic relationships the chemical

potentials for the i-component can be obtained as

µi =

(

∂A

∂Ni

)

T,V,Ni 6=j

(A.2)

or
µi

kT
= a+N

(

∂a

∂Ni

)

T,V,Ni 6=j

(A.3)

where N is the total number of molecules, V is the volume of the system, A is

the Helmholtz free energy and a = A/NkT . The Helmholtz free energy for an n-

component mixture of chain molecules can be separated into the various contributions

as

a = aideal + amono + achain (A.4)
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There is no need to include the association term since we are dealing with a nonas-

sociating system.

1. Ideal Contribution: The ideal contribution to the chemical potential, µideal
i ,

can be expressed as

µideal
i

kT
= aideal +N

(

∂aideal

∂Ni

)

T,V,Ni 6=j

= ln
(

ρiλ
3
Bi

)

(A.5)

with

aideal =
n
∑

i=1

xiln
(

ρiλ
3
Bi

)

− 1 (A.6)

where xi = Ni/N is the mole fraction, ρi = Ni/V the molecular number of density,

Ni the number of molecules, λBi the thermal Broglie wavelength of species i.

2. Monomer contribution: The monomer contribution to the chemical poten-

tial, µmono
i , can be expressed as

µmono
i

kT
= amono +N

(

∂amono

∂Ni

)

T,V,Ni 6=j

(A.7)

where amono is the monomer Helmholtz free energy,

amono =

(

∑

k

xkmk

)

aM = SaM = S
[

aHS + βa1 + β2a2
]

(A.8)

where mk is the number of spherical segments of chain i, S is the average of mi,

(S =
∑

k xkmk), β = 1/kT , and aM is the monomer free energy per segment of the

mixture, aHS is the Helmholtz free energy of the a mixture of hard-sphere, and a1,2

are the first and the second order perturbation terms respectively, obtained from the

Barker Henderson expansion. From the Eqs. (A.7)-(A.8), the monomer contribution

to the chemical potential, µmono
i , can be written as

µmono
i

kT
= S

[

aM +N

(

∂aM

∂Ni

)]

+ aM(mi − S)

= S

[

µHS
i

kT
+ β

µ1i

kT
+ β2µ2i

kT

]

+ aM(mi − S) (A.9)
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2.1 Hard-Sphere contribution: The hard-sphere contribution to the chemical

potential, µHS, is given by

µHS
i

NkT
= aHS +N

(

∂aHS

∂Ni

)

T,V,Ni 6=j

(A.10)

The hard-sphere contribution aHS is determined from the expression of Boublik2 and

Mansoori and co-workers3 for multicomponent hard sphere systems

aHS =
6

πρs

[(

ζ32
ζ23

− ζ0

)

ln(1− ζ3) +
3ζ1ζ2
1− ζ3

+
ζ32

ζ3(1− ζ3)2

]

(A.11)

where ρs = Ns/V is the number density of segments, which is defined as the total

number of segments Ns, divided by the total volume V . Note that ρs = ρS where ρ

is the total number density of the mixture. The reduced densities ζl are defined as

ζl =
π

6
ρs

[

n
∑

i=1

xs,iσ
l
i

]

(A.12)

where σi is diameter of spherical segments of chain i, and xs,i is the mole fraction

of segments in the mixtures (xs,i = mixi/S).The overall packing fraction of the mix-

ture is thus given by ζ3, which is equivalent to η in the pure component case. The

differential expression of the Eq. (A.10), can be written as

N

(

∂aHS

∂Ni

)

T,V,Ni 6=j

=
mi

S

(

δΨ− aHS
)

(A.13)

δΨ =

(

3ζ22σ
2
i

ζ23
− 2ζ32σ

3
i

ζ33
− 1

)

ln(1− ζ3) +
3ζ1ζ2σ

3
i

(1− ζ3)2
−
(

ζ32
ζ23

− ζ0

)

σ3
i

(1− ζ3)

+
3ζ1σ

2
i

(1− ζ3)
+

2ζ32σ
3
i

ζ3(1− ζ3)3
+

3ζ2σi
(1− ζ3)

+
3ζ22σ

2
i

ζ3(1− ζ3)2
− ζ32σ

3
i

ζ23 (1− ζ3)2
(A.14)

where ζ0,1,2,3 are acalculated using Eq. (A.12).

2.2 First-order perturbation term: The first-order perturbation term contri-
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bution to the chemical potential, µ1i, is expressed as

µ1i

kT
= a1 +N

(

∂a1
∂Ni

)

T,V,Ni 6=j

(A.15)

The mean-attractive energy represented by the a1 term is obtained from the sum of

the partial terms corresponding to each type of pair interaction,

a1 = −2πρs
∑

k

∑

j

xs,kxs,jǫkj

∫ ∞

σkj

r2kjg
HS
kj (rkj; ζ3)drkj (A.16)

and gHS
kj is the radial distribution function for a mixture of hard spheres. Using the

mean value theorem,4,5 we obtain an expression for a1 in terms of the contact value

of gHS
kj

a1 = −ρs
∑

k

∑

j

xs,kxs,jα
VDW
kj gHS

kj (σkj; ζ
eff
3 ) (A.17)

where

αVDW
kj = 2πǫkjσ

3
kj(λ

3
kj − 1)/3 (A.18)

In the van der Waals one-fluid theory (VDW-1) gHS
kj is approximated by the radial

distribution function for a single fluid such as

a1 = −ρs
∑

k

∑

j

xs,kxs,jα
VDW
kj gHS

o (σx; ζ
eff
x ) = −ρsαVDW

x gHS
o (σx; ζ

eff
x ) (A.19)

where

αVDW
x =

∑

k

∑

j

xs,kxs,jα
VDW
kj (A.20)

where gHS
o is the contact value of the hard-sphere pair radial distribution function

obtained from the Carnahan and Starling equation,3

gHS
o (σx; ζ

eff
x ) =

1− ζeffx /2

(1− ζeffx )3
(A.21)

where ζeffx is the effective packing fraction obtained within the VDW-1 from the cor-

responding packing fraction of the mixture ζx given by,

ζeffx (ζx, λx) = C1(λx)ζx + C2(λx)ζ
2
x + C3(λx)ζ

3
x (A.22)
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where

ζx =
π

6
ρs
∑

k

∑

j

xs,kxs,jσ
3
kj =

π

6
ρsσ

3
x (A.23)

with

σ3
x =

∑

k

∑

j

xs,kxs,jσ
3
kj (A.24)

The coefficients C1, C2 and C3 are approximated by those of the pure fluid,







C1

C2

C3






=







2.25855 −1.50349 0.249434

−0.669270 1.40049 −0.827739

10.1576 −15.0427 5.30827













1

λx

λ2x






(A.25)

The unlike range parameter is obtained from the weighted mean of the pure compo-

nents values used in a previous works7

λ3x =

∑

k

∑

j xs,kxs,jǫkjλ
3
kjσ

3
kj

∑

k

∑

j xs,kxs,jǫkjσ
3
kj

(A.26)

According with the Eq. (A.19), the differential expression in the Eq. (A.15) can be

calculated as

N

(

∂a1
∂Ni

)

T,V,Ni 6=j

=− αVDW
x gHS

o (σx; ζ
eff
x )N

(

∂ρs
∂Ni

)

− ρsg
HS
o (σx; ζ

eff
x )N

(

∂αVDW
x

∂Ni

)

− ρsα
VDW
x N

(

∂gHS
o (σx; ζ

eff
x )

∂Ni

)

(A.27)

with

N

(

∂ρs
∂Ni

)

= ρmi (A.28)

N

(

∂αVDW
x

∂Ni

)

=
2

S

∑

k

∑

j

mixs,jα
VDW
kj (δik − xs,k) (A.29)

The last differential expression in Eq.(B.26), can be development as

N

(

∂gHS
o (σx; ζ

eff
x )

∂Ni

)

=

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)

N

(

∂ζeffx
∂Ni

)

(A.30)
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where
(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)

=

(

5/2− ζeffx
(1− ζeffx )4

)

(A.31)

N

(

∂ζeffx
∂Ni

)

=

(

∂ζeffx
∂ζx

)

N

(

∂ζx
∂Ni

)

+

(

∂ζeffx
∂λx

)

N

(

∂λx
∂Ni

)

(A.32)

The differential terms in Eq. (B.31) are given by

(

∂ζeffx
∂ζx

)

= C1 + 2C2ζx + 3C3ζ
2
x (A.33)

N

(

∂ζx
∂Ni

)

=
π

6
ρ
∑

k

∑

j

mixs,jσ
3
kj(2δki − xs,k) (A.34)

where δki is the Kronecker’s delta.

(

∂ζeffx
∂λx

)

=
3
∑

l=1

ζ lx

(

∂Cl

∂λx

)

(A.35)

N

(

∂λx
∂Ni

)

=
2

3Sλ2x

(

D1σ
3
2x − E1λ

3
2x

(σ3
2x)

2

)

(A.36)

with

D1 =
∑

j

mixs,jǫijλ
3
ijσ

3
ij (A.37)

E1 =
∑

j

mixs,jǫijσ
3
ij (A.38)

σ3
2x =

∑

k

∑

j

xs,kxs,jǫkjσ
3
kj (A.39)

λ32x =
∑

k

∑

j

xs,kxs,jǫkjλ
3
kjσ

3
kj (A.40)

2.3 Second-order perturbation term: The second-order perturbation term con-

tribution to the chemical potential, µ2i, is given by

µ2i

kT
= a2 +N

(

∂a2
∂Ni

)

T,V,Ni 6=j

(A.41)
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The second-order perturbation term for the monomer excess free energy a2, is obtained

through the local compresibility approximation as

a2 =
1

2
ρs
∑

k

∑

j

xs,kxs,jǫkjK
HS

(

∂akj1
∂ρs

)

(A.42)

within the VdW-1 fluid theory the term akj1 is approximated by that for a pure fluid

akj1 = −ρsαVDW
kj gHS

o (σx; ζ
eff
x ) (A.43)

In Eq. (A.42) the differential expression on ρs, can be written as

(

∂akj1
∂ρs

)

= −αVDW
kj

[

gHS
o (σx; ζ

eff
x ) + ρs

(

∂gHS
o (σx; ζ

eff
x )

∂ρs

)]

(A.44)

According with the Eqs. (A.42)-(A.44), the second-order perturbation term a2 can

be reorganized as follows

a2 = −1

2
ρsK

HSαVDW
2x gHS

ox (A.45)

where gHS
ox is given by

gHS
ox = gHS

o (σx; ζ
eff
x ) + ρs

(

∂gHS
o (σx; ζ

eff
x )

∂ρs

)

(A.46)

with

ρs

(

∂gHS
o (σx; ζ

eff
x )

∂ρs

)

=

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)(

∂ζeffx
∂ζx

)

ζx (A.47)

and

αVDW
2x =

∑

k

∑

j

xs,kxs,jǫkjα
VDW
kj (A.48)

where KHS is the Perkus-Yevik expression for the hard-sphere isothermal compresi-

bility,

KHS =
ζ0(1− ζ3)

4

ζ0(1− ζ3)2 + 6ζ1ζ2(1− ζ3) + 9ζ32
(A.49)

For the particular case of xi → 1, Eq. A.49 is reduced to

lim
xi→1

KHS =
(1− ζ3)

4

1 + 4ζ3 + 4ζ23
(A.50)
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Here the KHS of mixtures is reduced to the expression of pure components, with

ζ3 = η. In order to calculate the contribution to the chemical potential, µ2i, the

partial derivative expression for a2 can be written as

N

(

∂a2
∂Ni

)

T,V,Ni 6=j

=− 1

2
KHSαVDW

2x

[

gHS
ox ρmi + ρsN

(

∂gHS
ox

∂Ni

)]

− 1

2
ρsg

HS
ox

[

αVDW
2x N

(

∂KHS

∂Ni

)

+KHSN

(

∂αVDW
2x

∂Ni

)]

(A.51)

The three partial derivative expressions are now

N

(

∂KHS

∂Ni

)

=
π

6
miρ

[

−(f1/f
2
2 )ζ0(1− ζ3)

4 +
(

(1− ζ3)
4 − 4ζ0(1− ζ3)

3σ3
i )
)

/f2
]

(A.52)

with

f1 =ζ2σ
2
i (27ζ2 − 6ζ1σi) + (1− ζ3)[(1− ζ3)− 2ζ0σ

3
i + 6ζ2σi + 6ζ1σ

2
i ] (A.53)

f2 = ζ0(1− ζ3)
2 + 6ζ1ζ2(1− ζ3) + 9ζ32 (A.54)

N

(

∂αVDW
2x

∂Ni

)

=
2

S

∑

k

∑

j

mixs,jǫkjα
VDW
kj (δik − xs,k) (A.55)

and

N

(

∂gHS
ox

∂Ni

)

=

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)[

ζxN
∂

∂Ni

(

∂ζeffx
∂ζx

)

+

(

∂ζeffx
∂ζx

)

N

(

∂ζx
∂Ni

)]

+N

(

∂gHS
o (σx; ζ

eff
x )

∂Ni

)

+ ζx

(

∂ζeffx
∂ζx

)

N
∂

∂Ni

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)

(A.56)

In Eq. (A.56) the first order differential terms were calculated using the Eqs. (A.30)-

(A.40). We only need calculate the following expressions

N
∂

∂Ni

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)

=

[

9− 3ζeffx
(1− ζeffx )5

]

N

(

∂ζeffx
∂Ni

)

(A.57)
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and

N
∂

∂Ni

(

∂ζeffx
∂ζx

)

=(2C2 + 6C3ζx)N

(

∂ζx
∂Ni

)

+N

(

∂C1

∂Ni

)

+ 2ζxN

(

∂C2

∂Ni

)

+ 3ζxN

(

∂C3

∂Ni

)

(A.58)

with

N

(

∂Cl

∂Ni

)

=

(

∂Cl

∂λx

)

N

(

∂λx
∂Ni

)

(A.59)

where l = 1, 2, 3.

3. Chain Contribution: The chain contribution to the chemical potential, µchain
i ,

is expressed as
µchain
i

kT
= achain +N

(

∂achain

∂Ni

)

T,V,Ni 6=j

(A.60)

The contribution to the free energy due to chain formation is expressed in terms of

the contact value of the background correlation function4,5

achain = −
∑

k

xk(mk − 1)ln(ySWkk (σkk)) (A.61)

where ySWkk (σkk) = gSWkk (σkk)exp(−βǫkk). According with the Eq. (A.61) the chemical

potential of chains, µchain
i , can be rewritten

µchain
i

kT
= −(mi − 1)ln(ySWii )−

∑

k

xk(mk − 1)

(

1

gSWkk

)

N

(

∂gSWkk
∂Ni

)

(A.62)

where the gSWkk (σkk) can be expressed as a expansion at high temperature, as

gSWkk (σkk) = gHS
kk (σkk) + βǫkkg1(σkk) (A.63)

The hard-sphere term gHS
kk is given by the expression of Boublik,2

gHS
kj (σkj; ζ3) =

1

1− ζ3
+ 3

Dkjζ3
(1− ζ3)2

+ 2
(Dkjζ3)

2

(1− ζ3)3
(A.64)
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with the parameter Dkj defined by

Dkj =
σkkσjj
σkk + σjj

∑

k=1 xs,kσ
2
kk

∑

k=1 xs,kσ
3
kk

(A.65)

The term g1(σkk) is obtained from a self-consistent representation of the pressure P

from the Clausius virial theorem and from the density derivative of the Helmholtz

free energy,4,5

g1(σkk) = gHS
o (σx; ζ

eff
x ) + (λ3kk − 1)

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

(

λkk
3

∂ζeffx
∂λkk

− ζ3
∂ζeffx
∂ζ3

)

(A.66)

In the above equation the partial differential expressions of ζeffx are given by

(

∂ζeffx
∂λkk

)

=
3
∑

l=1

ζ lx

(

∂Cl

∂λx

)(

∂λx
∂λkk

)

(A.67)

where the last derivative expression can be written as

(

∂λx
∂λkj

)

=

(

xs,jσ
3/2
jj λ

2
kk

λ2xσ
3
2x(λ

3
jj − 1)1/2

)

∑

l

xs,lǫjlσ
3/2
ll (λ3ll − 1)1/2 (A.68)

with
(

∂ζeffx
∂ζ3

)

=

(

∂ζeffx
∂ζx

)(

∂ζx
∂ζ3

)

(A.69)

and
(

∂ζx
∂ζ3

)

= σ3
x/

(

∑

k

xs,kσ
3
kk

)

(A.70)

where σ3
x is given by Eq. (A.24). In order to calculate the chemical potentials of

chains, µchain
i , from the Eq. (A.62), we need to calculate the following expression

N

(

∂gSWkk
∂Ni

)

= N

(

∂gHS
kk

∂Ni

)

+ (βǫkk)N

(

∂g1
∂Ni

)

(A.71)
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where the first differential expression is given by

N

(

∂gHS
kk

∂Ni

)

=

[

1 + 3Dkk

(1− ζ3)2
+

2Dkkζ3(3 + 2Dkk)

(1− ζ3)3
+
6(Dkkζ3)

2

(1− ζ3)4

]

N

(

∂ζ3
∂Ni

)

+

[

3ζ3
(1− ζ3)2

+
4Dkkζ

2
3

(1− ζ3)3

]

N

(

∂Dkk

∂Ni

)

(A.72)

with

N

(

∂Dkk

∂Ni

)

=

(

σkkσkk
σkk + σkk

)(

miσ2
ii

S

)

[

∑

k xs,kσ
3
kk − σii

∑

k xs,kσ
2
kk

(
∑

k xs,kσ
3
kk)

2

]

(A.73)

and

N

(

∂ζ3
∂Ni

)

=
π

6
ρmiσ

3
i (A.74)

In the Eq. (A.71) the second differential expression is given by

N

(

∂g1
∂Ni

)

=N

(

∂gHS
o (σx; ζ

eff
x )

∂Ni

)

+ (λ3kk − 1)×
[

N
∂

∂Ni

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)

ϕkk +

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)

N

(

∂ϕkk

∂Ni

)]

(A.75)

where

ϕkk =
λkk
3

(

∂ζeffx
∂λkk

)

− ζ3

(

∂ζeffx
∂ζ3

)

(A.76)

In Eq. (A.76) the two differential expressions are calculated using Eqs. (A.67)-(A.69).

In Eq. (A.75) the first differential expression are calculated using Eqs. (A.30)-(A.31)

and (A.57), the remaining expression related with ϕkk is given by

N

(

∂ϕkk

∂Ni

)

=
λkk
3
N

∂

∂Ni

(

∂ζeffx
∂λkk

)

− ζ3N
∂

∂Ni

(

∂ζeffx
∂ζ3

)

−N

(

∂ζ3
∂Ni

)(

∂ζeffx
∂ζ3

)

(A.77)

where the first order derivative expressions of ζ3 and ζeffx are obtained from the Eqs.

(A.69) and (A.74), respectively. The second derivative expressions are given by

N
∂

∂Ni

(

∂ζeffx
∂ζ3

)

=

(

∂ζx
∂ζ3

)

N
∂

∂Ni

(

∂ζeffx
∂ζx

)

+

(

∂ζeffx
∂ζx

)

N
∂

∂Ni

(

∂ζx
∂ζ3

)

(A.78)
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where

N
∂

∂Ni

(

∂ζx
∂ζ3

)

= − 1

S2
σx

Sσ3
xN

(

∂Sσx

∂Ni

)

+
1

Sσx

[

σ3
xN

(

∂S

∂Ni

)

+ SN

(

∂σ3
x

∂Ni

)]

(A.79)

with the following derivative expresions

Sσx
=
∑

k

xkmkσ
3
kk (A.80)

N

(

∂Sσx

∂Ni

)

= miσ
3
ii − Sσx

(A.81)

N

(

∂S

∂Ni

)

= mi − S (A.82)

N

(

∂σ3
x

∂Ni

)

=
2

S

∑

k

∑

j

mixs,jσ
3
kj(δik − xs,k) (A.83)

and the remaining second order expresion is given by

N
∂

∂Ni

(

∂ζeffx
∂λkk

)

= N
∂

∂Ni

(

∂ζeffx
∂λx

)(

∂λx
∂λkk

)

+N
∂

∂Ni

(

∂λx
∂λkk

)(

∂ζeffx
∂λx

)

(A.84)

with

N
∂

∂Ni

(

∂ζeffx
∂λx

)

=
3
∑

l

lζ(l−1)
x

(

∂Cl

∂λx

)

N

(

∂ζx
∂Ni

)

+
3
∑

l

ζ lxN
∂

∂Ni

(

∂Cl

∂λx

)

(A.85)

and

N
∂

∂Ni

(

∂λx
∂λkj

)

=
1

λ2xσ
3
2x

[

χjN

(

∂ψkj

∂Ni

)

+ ψkjN

(

∂χj

∂Ni

)]

− χjψkj

(λ2xσ
3
2x)

2

[

σ3
2xN

(

∂λ2x
∂Ni

)

+ λ2xN

(

∂σ3
2x

∂Ni

)]

(A.86)

where σ3
2x is given by the Eq. (A.39). The other derivative expressions in Eq. (A.86)

are

χj =
∑

l

xs,lǫjlσ
3/2
ll (λ3ll − 1)1/2 (A.87)

and

ψkj = xs,jσ
3/2
jj λ

2
kk/(λ

3
jj − 1)1/2 (A.88)
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The first order derivative expressions in Eq. (A.86) are given by

N

(

∂ψkj

∂Ni

)

=
(mi

S

) [

σ
3/2
jj λ

2
kkδij/(λ

3
jj − 1)1/2 − ψkj

]

(A.89)

where δij is the kronecker’s delta.

N

(

∂χj

∂Ni

)

=
(mi

S

) [

ǫjiσ
3/2
ii (λ3ii − 1)1/2 − χj

]

(A.90)

and

N

(

∂σ3
2x

∂Ni

)

=

(

2mi

S

)

[

∑

j

xs,jǫijσ
3
ij − σ3

2x

]

(A.91)

The others derivative expressions are easy to calculate.

4. Quantum Contribution: The quantum contribution to the chemical poten-

tial, µQ
i , is expressed as

µQ
i

kT
= aQ1 +N

(

∂a1Q

∂Ni

)

T,V,Ni 6=j

(A.92)

The first order quantum contribution term aQ1 is given by

aQ1 =
1

(2π)2
τxΓx (A.93)

with

Γx =

(

∂a1
∂λx

)

Λ2
x =

(

∂a1
∂λx

)

∑

k

∑

j

xs,kxs,jΛ
2
k,j (A.94)

τx(ζx; tx;λx) = tx

[

tx −
2

λx
− ϑ1(ζx)− 2ϑ2(ζx)λx − 3ϑ3(ζx)λ

2
x

]

(A.95)

where tx =
(

1− e−βǫx
)

and ǫx is given by

ǫx =
∑

k

∑

j

xs,kxs,jǫkj (A.96)
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The ϑi functions can be written as,

ϑ1(ζx) =
ζ4x + 6ζ2x − 12ζx

2(1− ζx)3
(A.97)

ϑ2(ζx) = − 3ζ2x
8(1− ζx)2

(A.98)

ϑ3(ζx) =
−ζ4x + 3ζ2x + 3ζx

6(1− ζx)3
(A.99)

In the VdW-1 fluid theory the classical term a1 is approximated as a single fluid,

therefore

(

∂a1
∂λx

)

= −ρs
[

αVDW
x

(

∂gHS
o (σx; ζ

eff
x )

∂λx

)

+ gHS
o (σx; ζ

eff
x )

(

∂αVDW
x

∂λx

)]

(A.100)

In order to determine the Eq. (A.100), we may proceed by write the following ex-

pressions

αVDW
x =

2

3
πσ3

2x(λ
3
x − 1) (A.101)

(

∂αVDW
x

∂λx

)

= 2πλ2xσ
3
2xλ

2
x (A.102)

and
(

∂gHS
o (σx; ζ

eff
x )

∂λx

)

=

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)(

∂ζeffx
∂λx

)

(A.103)

In Eqs. (A.102)- (A.103) the differential expressions were defined by Eqs. (A.31)-

(A.35) and (A.68). In order to calculate the quantum contribution to the chemical

potential, µQ
i , the partial derivative expression for aQ1 can be written as

N

(

∂aQ1
∂Ni

)

T,V,Ni 6=j

=

(

aQ1
τx

)

N

(

∂τx
∂Ni

)

+
τx

(2π)2
N

(

∂Γx

∂Ni

)

(A.104)

In order to evaluate the Eq. A.104, we need the Eq. A.36 and the expresions for the
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following two terms:

N

(

∂τx
∂Ni

)

=
τx
tx
N

(

∂tx
∂Ni

)

+ tx

{

−N
(

∂ϑ1

∂Ni

)

− 2λxN

(

∂ϑ2

∂Ni

)

− 3λ2xN

(

∂ϑ3

∂Ni

)

+N

(

∂tx
∂Ni

)

+

[(

2

λ2x

)

− 2ϑ2 − 6λxϑ3

]

N

(

∂λx
∂Ni

)}

(A.105)

From the Eq. A.105 we need the following expresions

N

(

∂tx
∂Ni

)

=

(

2mi

S

)

βe−βǫx

[

∑

j

xs,jǫij − ǫx

]

(A.106)

N

(

∂ϑk

∂Ni

)

=

(

∂ϑk

∂ζx

)

N

(

∂ζx
∂Ni

)

(A.107)

where k = 1, 2, 3.

N

(

∂ϑ1

∂ζx

)

=
1

2

[−12− 12ζx + 6ζ2x + 4ζ3x − ζ4x
(1− ζx)4

]

N

(

∂ϑ2

∂ζx

)

=
−3ζx

4(1− ζx)3
(A.108)

N

(

∂ϑ3

∂ζx

)

=
1

6

[

3 + 12ζx + 3ζ2x − 4ζ3x + ζ4x
(1− ζx)4

]

In Eq. A.104 the second term is given by

N

(

∂Γx

∂Ni

)

=

(

2mi

S

)(

∂a1
∂λx

)

[

∑

j

xs,jΛ
2
ij − Λ2

x

]

+N
∂

∂Ni

(

∂a1
∂λx

)

Λ2
x (A.109)

where

N
∂

∂Ni

(

∂a1
∂λx

)

=N
∂

∂Ni

{

−ρs
[(

∂αVDW
x

∂λx

)

gHS
o (σx; ζ

eff
x ) +αVDW

x

(

∂gHS
o (σx; ζ

eff
x )

∂λx

)]}

=− ρmi

[

αVDW
x

(

∂gHS
o

∂λx

)

+ gHS
o (σx; ζ

eff
x )

(

∂αVDW
x

∂λx

)]

− ρs

[

αVDW
x N

∂

∂Ni

(

∂gHS
o

∂λx

)

+

(

∂gHS
o

∂λx

)

N

(

∂αVDW
x

∂Ni

)

(A.110)

+

(

∂αVDW
x

∂λx

)

N

(

∂gHS
o

∂Ni

)

+ gHS
o (σx; ζ

eff
x )N

∂

∂Ni

(

∂αVDW
x

∂λx

)]
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with

N
∂

∂Ni

(

∂αVDW
x

∂λx

)

= 2πλx

[

λxN

(

∂σ3
2x

∂Ni

)

+ 2σ3
2xN

(

∂λx
∂Ni

)]

(A.111)

and

N
∂

∂Ni

(

∂gHS
o (σx; ζ

eff
x )

∂λx

)

=

(

∂ζeffx
∂λx

)

N
∂

∂Ni

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)

+

(

∂gHS
o (σx; ζ

eff
x )

∂ζeffx

)

N
∂

∂Ni

(

∂ζeffx
∂λx

)

(A.112)

Combining rules: In this work, we use the standard Lorentz-Berthelot8 in three

cases: i) diameter of the molecules σij, and ii) depth enregy parameter ǫij and iii) the

de Boer’s parameter, as follows

σij =
σii + σjj

2
, ǫij = (ǫiiǫjj)

1/2 (A.113)

Λij =
Λiiσii + Λjjσjj

2σij
(A.114)

The cross parameter of variable range λij was derived from the van der Waals energy

constant according to the Berthelot rule.5

λ3ij = 1 +
1

σ3
ij

[

(λ3ii − 1)(λ3jj − 1)σ3
iiσ

3
jj

]1/2
(A.115)

Other useful differential expression from the Eq. A.115, is given by

(

∂λij
∂λkl

)

=
σ
3/2
ii σ

3/2
jj λ

2
kkδil(λ

3
jj − 1)

σ3
ijλ

2
ij

[

(λ3ii − 1)(λ3jj − 1)
]1/2

(A.116)

where δil is the Kronecker delta. As can be observed in Eq. A.116, when the subscripts

have the following form i = j = k = l, the expression (∂λij/∂λkl) = (∂λii/∂λkk) = 1.
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APPENDIX B

APPENDIX B

Expression for the chemical potentials

We discuss the chemical potential terms from the corresponding Helmholtz free energy

terms. The expressions are as follows

µ2D
i

kT
=
µideal
i

kT
+
µmono
i

kT
+
µchain
i

kT
(B.1)

where µi is the chemical potential of the i-component, T is the temperature and

k is the Boltzmann constant. There is no need to include the association term since

we are dealing with a nonassociating system.

1. Ideal Contribution: The ideal contribution to the chemical potential, µideal
i ,

can be expressed as

µideal
i

kT
= aideal +N

(

∂aideal

∂Ni

)

T,V,Ni 6=j

= ln
(

ρ2Di λ2Bi

)

(B.2)

with

aideal =
n
∑

i=1

xiln
(

ρ2Di λ2Bi

)

− 1 (B.3)

where xi = Ni/N is the mole fraction, ρ2Di = Ni/A the molecular number of density,

Ni the number of molecules, λBi the thermal Broglie wavelength of species i.
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2. Monomer contribution: The monomer contribution to the chemical poten-

tial, µmono
i , can be expressed as

µmono
i

kT
= amono +N

(

∂amono

∂Ni

)

T,V,Ni 6=j

(B.4)

where

µmono
i

kT
= S

[

aM +N

(

∂aM

∂Ni

)]

+ aM(mi − S)

= S

[

µHD
i

kT
+ β

µ1i

kT
+ β2µ2i

kT

]

+ aM(mi − S) (B.5)

where amono is the monomer Helmholtz free energy, given by

amono =

(

∑

k

xkmk

)

aM = SaM = S
[

aHD + βa1 + β2a2
]

(B.6)

where mk is the number of spherical segments of chain i, S is the average of mi,

(S =
∑

k xkmk), β = 1/kT .

2.1 Hard-Disk contribution: The hard-disk contribution to the chemical potential,

µHD, is given by
µHD
i

NkT
= aHD +N

(

∂aHD

∂Ni

)

T,V,Ni 6=j

(B.7)

In this work the hard-disk propeties were obtained by using the equation of state

proposed by Santos et al. (1999)1

aHD = −w + ln(1− γ) ((B3 − 3)w − 1) +
w (1 + (B3 − 3)γ)

(1− γ)
(B.8)

where B3 is the third virial coefficient of the system (B3 = (16/3) − (4/π)
√
3) and

diameter average w = (
∑

k xs,kσk)
2/
∑

k xs,kσ
2
k. The packing fraction for a hard-disk

mixture γ is given by

γ =
π

4
ρ2Ds

[

n
∑

i=1

xs,iσ
2
i

]

(B.9)

where σi is diameter of segments of type i and xs,i is the mole fraction of segments in

the mixtures (xs,i = mixi/S). In Eq. (B.7), the differential expression can be written
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as

N

(

∂aHD

∂Ni

)

T,V,Ni 6=j

= −(B3 − 1)w − 1

(1− γ)
N

(

∂γ

∂Ni

)

−N

(

∂w

∂Ni

)

+
1

(1− γ)

[

(1 + (B3 − 3)γ)N

(

∂w

∂Ni

)

+ w(B3 − 3)N

(

∂γ

∂Ni

)]

+ ln(1− γ)(B3 − 3)N

(

∂w

∂Ni

)

+
w(1 + (B3 − 3)γ)

(1− γ)2
N

(

∂γ

∂Ni

)

(B.10)

where

N

(

∂γ

∂Ni

)

=
π

4
ρ2Dmiσ

2
i (B.11)

and

N

(

∂w

∂Ni

)

=

(

w1

w2

)[

2N

(

∂w1

∂Ni

)

−
(

w1

w2

)

N

(

∂w2

∂Ni

)]

(B.12)

with

wl =
∑

k

xs,kσ
l
k (B.13)

N

(

∂wl

∂Ni

)

= mi(σ
l
i − wl)/S (B.14)

where l = 1, 2.

2.2 First-order perturbation term: The first-order perturbation term contri-

bution to the chemical potential, µ1i, is expressed as

µ1i

kT
= a1 +N

(

∂a1
∂Ni

)

T,V,Ni 6=j

(B.15)

Using the mean value theorem,4,5 we obtain an expression for a1 in terms of the

contact value of gHD
kj

a1 = −ρ2Ds
∑

k

∑

j

xs,kxs,jα
VDW
kj gHD

kj (σkj; γ) (B.16)

where

αVDW
kj = πǫkjσ

2
kj(λ

2
kj − 1)/2 (B.17)

In the van der Waals one-fluid theory (VDW-1) gHD
kj is approximated by the radial
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distribution function for a single fluid such as

a1 = −ρ2Ds
∑

k

∑

j

xs,kxs,jα
VDW
kj gHD

o (σx; γ
eff
x )

= −ρ2Ds αVDW
x gHD

o (σx; γ
eff
x ) (B.18)

where

αVDW
x =

∑

k

∑

j

xs,kxs,jα
VDW
kj (B.19)

where gHD
o is the contact value of the hard-sphere pair radial distribution function

obtained from the Henderson equation,6

gHD
o (σx; γ

eff
x ) =

1− 7γeffx /16

(1− γeffx )2
(B.20)

where γeffx is the effective packing fraction obtained within the VDW-1 from the

corresponding packing fraction of the mixture γx given by,

γeffx (γx, λx) = d1(λx)γx + d2(λx)γ
2
x (B.21)

where

γx =
π

4
ρ2Ds

∑

k

∑

j

xs,kxs,jσ
2
kj =

π

4
ρ2Ds σ2

x (B.22)

with

σ2
x =

∑

k

∑

j

xs,kxs,jσ
2
kj (B.23)

The coefficients d1 and d2 are approximated by those of the pure fluid,

(

d1

d2

)

=

(

1.4215 −0.405625 −0.0386998

1.5582 −1.89768 0.405215

)







1

λx

λ2x






(B.24)

In the case of 2D-fluid the unlike range parameter is obtained from the weighted mean

of the pure components values used in a previous works7

λ2x =

∑

k

∑

j xs,kxs,jǫkjλ
2
kjσ

2
kj

∑

k

∑

j xs,kxs,jǫkjσ
2
kj

(B.25)
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The differential expression in the Eq. (B.15) can be calculated as

N

(

∂a1
∂Ni

)

T,V,Ni 6=j

=− αVDW
x gHD

o (σx; γ
eff
x )N

(

∂ρ2Ds
∂Ni

)

− ρ2Ds gHD
o (σx; γ

eff
x )N

(

∂αVDW
x

∂Ni

)

− ρ2Ds αVDW
x N

(

∂gHD
o (σx; γ

eff
x )

∂Ni

)

(B.26)

where

N

(

∂ρ2Ds
∂Ni

)

= ρ2Dmi (B.27)

end

N

(

∂αVDW
x

∂Ni

)

=
2

S

∑

k

∑

j

mixs,jα
VDW
kj (δik − xs,k) (B.28)

The last differential expression in Eq.(B.26), can be development as

N

(

∂gHD
o (σx; γ

eff
x )

∂Ni

)

=

(

∂gHD
o (σx; γ

eff
x )

∂γeffx

)

N

(

∂γeffx
∂Ni

)

(B.29)

where
(

∂gHD
o (σx; γ

eff
x )

∂γeffx

)

=
(25− 7γeffx )/16

(1− γeffx )3
(B.30)

N

(

∂γeffx
∂Ni

)

=

(

∂γeffx
∂γx

)

N

(

∂γx
∂Ni

)

+

(

∂γeffx
∂λx

)

N

(

∂λx
∂Ni

)

(B.31)

The differential terms in Eq. (B.31) are given by

(

∂γeffx
∂γx

)

= d1 + 2d2γx (B.32)

N

(

∂γx
∂Ni

)

=
π

4
ρ2D

∑

k

∑

j

mixs,jσ
2
kj(2δki − xs,k) (B.33)

where δki is the Kronecker’s delta.

(

∂γeffx
∂λx

)

= γx

(

∂d1
∂λx

)

+ γ2x

(

∂d2
∂λx

)

(B.34)

N

(

∂λx
∂Ni

)

=
1

Sλx

(

D1σ
2
2x − E1λ

2
2x

(σ2
2x)

2

)

(B.35)
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with

D1 =
∑

j

mixs,jǫijλ
2
ijσ

2
ij (B.36)

E1 =
∑

j

mixs,jǫijσ
2
ij (B.37)

σ2
2x =

∑

k

∑

j

xs,kxs,jǫkjσ
2
kj (B.38)

λ22x =
∑

k

∑

j

xs,kxs,jǫkjλ
2
kjσ

2
kj (B.39)

2.3 Second-order perturbation term: The second-order perturbation term con-

tribution to the chemical potential, µ2i, is given by

µ2i

kT
= a2 +N

(

∂a2
∂Ni

)

T,V,Ni 6=j

(B.40)

The second-order perturbation term for the monomer excess free energy a2, is obtained

through the local compresibility approximation as

a2 =
1

2
ρ2Ds

∑

k

∑

j

xs,kxs,jǫkjK
HD

(

∂akj1
∂ρ2Ds

)

(B.41)

with
(

∂akj1
∂ρ2Ds

)

= −αV DW
kj

[

gHD
o (σx; γ

eff
x ) + ρ2Ds

(

∂gHD
o (σx; γ

eff
x )

∂ρ2Ds

)]

(B.42)

According with the Eqs. (B.41-B.42), the second-order perturbation term a2 can be

reorganized as follows

a2 = −1

2
ρ2Ds KHDαVDW

2x gHD
ox (B.43)

where gHD
ox is given by

gHD
ox = gHD

o (σx; γ
eff
x ) + ρ2Ds

(

∂gHD
o (σx; γ

eff
x )

∂ρ2Ds

)

(B.44)
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with

ρ2Ds

(

∂gHD
o (σx; γ

eff
x )

∂ρ2Ds

)

=

(

∂gHD
o (σx; γ

eff
x )

∂γeffx

)(

∂γeffx
∂γx

)

γx (B.45)

and

αVDW
2x =

∑

k

∑

j

xs,kxs,jǫkjα
VDW
kj (B.46)

where KHD is the expression for the hard-disk isothermal compresibility,

KHD =
(1− γ)3

1 + (2w − 1)γ + 3w(B3 − 3)γ2 − w(B3 − 3)γ3
(B.47)

For the particular case of xi → 1, Eq. B.47 is reduced to

lim
xi→1

KHD =
(1− γ)3

1 + γ + 3
8
γ2 + 1

8
γ3

(B.48)

Here the KHD of mixtures is reduced to the expression of pure components, with

w = 1 and (B3 − 3) ≈ 1/8. In order to calculate the contribution to the chemical

potential, µ2i, the partial derivative expression for a2 can be written as

N

(

∂a2
∂Ni

)

T,V,Ni 6=j

=− 1

2
ρ2Ds gHD

ox

[

αVDW
2x N

(

∂KHD

∂Ni

)

+KHDN

(

∂αVDW
2x

∂Ni

)]

− 1

2
KHDαVDW

2x

[

gHD
ox ρ

2Dmi + ρ2Ds N

(

∂gHD
ox

∂Ni

)]

(B.49)

The three partial derivative expressions are now

N

(

∂KHD

∂Ni

)

=

(

1− γ

ψγ

)2 [

−3N

(

∂γ

∂Ni

)

ψγ − (1− γ)N

(

∂ψγ

∂Ni

)]

(B.50)

with

ψγ = 1− (2w − 1)γ + 3w(B3 − 3)γ2 − w(B3 − 3)γ3 (B.51)

N

(

∂ψγ

∂Ni

)

=
[

2γ + (3− γ)(B3 − 3)γ2
]

N

(

∂w

∂Ni

)

+ [(2w − 1) + 3w(3− γ)(B3 − 3)γ]N

(

∂γ

∂Ni

)

(B.52)

159



The last two derivative expressions in Eq. (B.49) can be written as

N

(

∂αVDW
2x

∂Ni

)

=
2

S

∑

k

∑

j

mixs,jǫkjα
VDW
kj (δik − xs,k) (B.53)

and

N

(

∂gHD
ox

∂Ni

)

=

(

∂gHD
o (σx; γ

eff
x )

∂γeffx

)[

γxN
∂

∂Ni

(

∂γeffx
∂γx

)

+

(

∂γeffx
∂γx

)

N

(

∂γx
∂Ni

)]

+N

(

∂gHD
o (σx; γ

eff
x )

∂Ni

)

+ γx

(

∂γeffx
∂γx

)

N
∂

∂Ni

(

∂gHD
o (σx; γ

eff
x )

∂γeffx

)

(B.54)

In Eq. (B.54) the first order differential terms were calculated using the Eqs. (B.29-

B.39). We only need calculate the following expressions

N
∂

∂Ni

(

∂gHD
o (σx; γ

eff
x )

∂γeffx

)

=

[

(34− 7γeffx )/8

(1− γeffx )4

]

N

(

∂γeffx
∂Ni

)

(B.55)

and

N
∂

∂Ni

(

∂γeffx
∂γx

)

= 2d2N

(

∂γx
∂Ni

)

+N

(

∂d1
∂Ni

)

+ 2γxN

(

∂d2
∂Ni

)

(B.56)

with

N

(

∂dl
∂Ni

)

=

(

∂dl
∂λx

)

N

(

∂λx
∂Ni

)

(B.57)

where l = 1, 2.

3. Chain Contribution: The chain contribution to the chemical potential, µchain
i ,

is expressed as
µchain
i

kT
= achain +N

(

∂achain

∂Ni

)

T,V,Ni 6=j

(B.58)

The contribution to the free energy due to chain formation is expressed in terms of

the contact value of the background correlation function4,5

achain = −
∑

k

xk(mk − 1)ln(ySWkk (σkk)) (B.59)

where ySWkk (σkk) = gSWkk (σkk)exp(−βǫkk). According with the Eq. (B.59) the chemical
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potential of chains, µchain
i , can be rewritten

µchain
i

kT
= −(mi − 1)ln(ySWii )−

∑

k

xk(mk − 1)

(

1

gSWkk

)

N

(

∂gSWkk
∂Ni

)

(B.60)

where the gSWkk (σkk) can be expressed as a expansion at high temperature, as

gSWkk (σkk) = gHD
kk (σkk) + βǫkkg1(σkk) (B.61)

where gHD
kk is the contact value of the Hard-Disk radial distribution function given by

gHD
kj (γ) =

1

2(1− γ)
+

(1 + (B3 − 3)γ)σkσj
2w2(1− γ)2

(B.62)

Using the VdW-1 fluid approximation we have

g1(λkj) = gHD
o (σx; γ

eff
x ) + (λ2kj − 1)

∂gHD
o (σx; γ

eff
x )

∂γeffx

(

λkj
2

∂γeffx
∂λkj

− γ
∂γeffx
∂γ

)

(B.63)

In the above equation the partial differential expressions of γeffx are given by

(

∂γeffx
∂λkj

)

=

[

γx

(

∂d1
∂λx

)

+ γ2x

(

∂d2
∂λx

)](

∂λx
∂λkj

)

(B.64)

where the last derivative expression can be writtten as

(

∂λx
∂λkj

)

=

(

xs,jσjjλkk
λxσ2

2x(λ
2
jj − 1)1/2

)

∑

l

xs,lǫjlσll(λ
2
ll − 1)1/2 (B.65)

with
(

∂γeffx
∂γ

)

=

(

∂γeffx
∂γx

)(

∂γx
∂γ

)

(B.66)

and
(

∂γx
∂γ

)

= σ2
x/

(

∑

k

xs,kσ
2
kk

)

(B.67)

where σ2
x is given by Eq. (B.23). In order to calculate the chemical potentials of

chains, µchain
i , from the Eq. (B.60), we need to calculate the following expression

N

(

∂gSWkk
∂Ni

)

= N

(

∂gHD
kk

∂Ni

)

+ (βǫkk)N

(

∂g1(σkk)

∂Ni

)

(B.68)

161



where the first differential expression is given by

N

(

∂gHD
kj

∂Ni

)

=
ζiσkkσjj

2(1− γ)3w2
2

+
1

2(1− γ)2
N

(

∂γ

∂Ni

)

(B.69)

with

ζi =w2(1− γ)(B3 − 3)N

(

∂γ

∂Ni

)

− (1 + (B3 − 3)γ)

[

(1− γ)N

(

∂w2

∂Ni

)

−2w2N

(

∂γ

∂Ni

)]

(B.70)

The differential expressions for γ and w2 are given in Eqs. (B.11)-(B.14). In the Eq.

(B.68) the second differential expression is given by

N

(

∂g1(σkj)

∂Ni

)

=N

(

∂gHD
o (σx; γ

eff
x )

∂Ni

)

+ (λ2kj − 1)

[

N
∂

∂Ni

(

∂gHD
o (σx; γ

eff
x )

∂γeffx

)

ϕkj

+

(

∂gHD
o (σx; γ

eff
x )

∂γeffx

)

N

(

∂ϕkj

∂Ni

)]

(B.71)

where

ϕkj =
λkj
2

(

∂γeffx
∂λkj

)

− γ

(

∂γeffx
∂γ

)

(B.72)

In Eq. (B.72) the two differential expressions for γeffx are calculated using Eqs. (B.64)-

(B.66). In Eq. (B.71) the first differential expressions for gHD
o are calculated using

Eqs. (B.29)-(B.30) and (B.55). On the other hand, the remaining expression for ϕkk

are given by

N

(

∂ϕkj

∂Ni

)

=
λkj
2
N

∂

∂Ni

(

∂γeffx
∂λkj

)

− γN
∂

∂Ni

(

∂γeffx
∂γ

)

−N

(

∂γ

∂Ni

)(

∂γeffx
∂γ

)

(B.73)

where the first order derivative expressions of γ and γeffx are obtained from the Eqs.

(B.11) and (B.66). The second derivative expressions are given by

N
∂

∂Ni

(

∂γeffx
∂γ

)

=

(

∂γx
∂γ

)

N
∂

∂Ni

(

∂γeffx
∂γx

)

+

(

∂γeffx
∂γx

)

N
∂

∂Ni

(

∂γx
∂γ

)

(B.74)

where first order derivative expresions are given by Eqs. (B.32) and (B.67). The
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second order derivative expresions on the above equation, can written as

N
∂

∂Ni

(

∂γx
∂γ

)

= − 1

S2
σx

Sσ2
xN

(

∂Sσx

∂Ni

)

+
1

Sσx

[

σ2
xN

(

∂S

∂Ni

)

+ SN

(

∂σ2
x

∂Ni

)]

(B.75)

with the following derivative expresions

Sσx
=
∑

k

xkmkσ
2
kk (B.76)

N

(

∂Sσx

∂Ni

)

= miσ
2
ii − Sσx

(B.77)

N

(

∂S

∂Ni

)

= mi − S (B.78)

N

(

∂σ2
x

∂Ni

)

=
2

S

∑

k

∑

j

mixs,jσ
2
kj(δik − xs,k) (B.79)

and the remaining second order expresion is given by

N
∂

∂Ni

(

∂γeffx
∂λkj

)

= N
∂

∂Ni

{[

γx

(

∂d1
∂λx

)

+ γ2x

(

∂d2
∂λx

)](

∂λx
∂λkj

)}

(B.80)

with

N
∂

∂Ni

(

∂λx
∂λkj

)

=
1

λxσ2
2x

[

χjN

(

∂ψkj

∂Ni

)

+ ψkjN

(

∂χj

∂Ni

)]

− χjψkj

(λxσ2
2x)

2

[

σ2
2xN

(

∂λx
∂Ni

)

+ λxN

(

∂σ2
2x

∂Ni

)]

(B.81)

where σ3
2x is given by the Eq. (B.38). The other derivative expressions in Eq. (B.81)

are

χj =
∑

j

xs,lǫjlσll(λ
2
ll − 1)1/2 (B.82)

and

ψkj = xs,jσjjλkk/(λ
2
jj − 1)1/2 (B.83)

The first order derivative expressions in Eq. (B.81) are given by

N

(

∂ψkj

∂Ni

)

=
(mi

S

)

[

σjjλkkδij/(λ
2
jj − 1)1/2 − ψkj

]

(B.84)
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where δik is the kronecker’s delta.

N

(

∂χj

∂Ni

)

=
(mi

S

)

[

ǫjiσii(λ
2
ii − 1)1/2 − χj

]

(B.85)

and

N

(

∂σ2
2x

∂Ni

)

=

(

2mi

S

)

[

∑

j

xs,jǫijσ
2
ij − σ2

2x

]

(B.86)

The others derivative expressions are easy to calculate.

3. Quantum Contribution: The quantum contribution to the chemical poten-

tial, µQ
i , is expressed as

µQ
i

kT
= aQ1 +N

(

∂aQ1
∂Ni

)

T,V,Ni 6=j

(B.87)

The contribution to the Helmholtz free energy due to the quatum corrections, aQ1 , is

given as

aQ1 = γx

(

βǫx
π

)1/2

Γx (B.88)

Γx = gSWx (σx;λx)Λx = gSWx (σx;λx)
∑

k

∑

j

xs,kxs,jΛkj (B.89)

where

ǫx =
∑

k

∑

j

xs,kxs,jǫkj (B.90)

where γx is given by the Eq. B.22. The partial differential equation in Eq. B.87 can

be calculated as

N

(

∂aQ1
∂Ni

)

= aQ1

[

1

γx
N

(

∂γx
∂Ni

)

+
1

2ǫx
N

(

∂ǫx
∂Ni

)

+
1

Γx

N

(

∂Γx

∂Ni

)]

(B.91)

The differential expresion for γx with respect to Ni is given by Eq. (B.33). The thers

correponding differential expresions are given by

N

(

∂ǫx
∂Ni

)

=
2mi

S

[

∑

j

xs,jǫij − ǫx

]

(B.92)
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N

(

∂Γx

∂Ni

)

=

(

2mi

S

)

gSWx (σx;λx)

[

∑

j

xs,jΛij − Λx

]

+ ΛxN

(

∂gSWx (σx;λx)

∂Ni

)

(B.93)

In the last equation, the first differential expresion can be writtten as

gSWx (σx;λx) = gHD
x (σx; γx) + (βǫx)g1(λx) (B.94)

and

N

(

gSWx (σx;λx)

∂Ni

)

= N

(

gHD
x (σx; γ

eff
x )

∂Ni

)

+ g1(λx)βN

(

∂ǫx
∂Ni

)

+ (βǫx)N

(

∂g1(λx)

∂Ni

)

(B.95)

where

g1(λx) = gHD
o (σx; γ

eff
x ) + (λ2x − 1)

∂gHD
o (σx; γ

eff
x )

∂γeffx

(

λx
2

∂γeffx
∂λx

− γ
∂γeffx
∂γ

)

(B.96)

The differential expression N(∂g1(λx)/∂Ni) only need the following expresion

N
∂

∂Ni

(

∂γeffx
∂λx

)

= N
∂

∂Ni

{

γx

(

∂d1
∂λx

)

+ γ2x

(

∂d2
∂λx

)}

(B.97)

Combining rules: In this work, we use the standard Lorentz-Berthelot8 in two

cases: i) diameter of the molecules σij, and ii) depth enregy parameter ǫij and iii) the

de Boer’s parameter, as follows

σij =
σii + σjj

2
, ǫij = (ǫiiǫjj)

1/2 (B.98)

Λij =
Λiiσii + Λjjσjj

2σij
(B.99)

The cross parameter of variable range λij was derived from the van der Waals energy

constant according to the Berthelot rule.5

λ2ij = 1 +
σiiσjj
σ2
ij

[

(λ2ii − 1)(λ2jj − 1)
]1/2

(B.100)
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Other useful differential expression from the Eq. B.100, is given by

(

∂λij
∂λkl

)

=
σiiσjjλkkδil(λ

2
jj − 1)

σ2
ijλij

[

(λ2ii − 1)(λ2jj − 1)
]1/2

(B.101)

where δil is the Kronecker delta. As can be observed in Eq. B.101, when the subscripts

have the following form i = j = k = l, the expression (∂λij/∂λkl) = (∂λii/∂λkk) = 1.

166



BIBLIOGRAPHY

[1] A. Santos, S. B. Yuste, M. L. Haro, Mol. Phys., 96, 1 (1999).

[2] T. J. Boublik, J. Chem. Phys. 53, 471 (1971).

[3] G. A. Mansoori, N. F. Carnahan, K. E. Starling, T. W. Leland, 54, 1523 (1971).

[4] A. Gil-Villegas, A. Galindo, P. J. Whitehead, S. J. Mills, G. Jackson, A. N. Burgess, J. Chem. Phys. 106, 4168
(1997).

[5] A. Galindo, L. A. Davies, A. Gil-Villegas, Mol. Phys. 93, 241 (1998).

[6] D. Henderson, Mol. Phys. 30, 971 (1975).

[7] M. Castro, A. Mart́ınez, A. Gil-Villegas, Ads. Sc. and Tech. 29, 59 (2011).

[8] L. L. Lee, Molecular Thermodynamics of Nonideal Fluids, Butherworths, United States of America (1988).

167



168



AGRADECIMIENTOS

Concluyendo mi trabajo de tesis doctoral, me gustaŕıa agradecer de la manera
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Quiero también agradecer a aquellos profesores e investigadores que siempre estu-

vieron a mi lado para apoyarme y brindarme su amistad a lo largo de este proceso,
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por mencionar algunos: el Tachi, Selim, Leonel Toledo, el Efra, el “señor enojado”

don Alexis, el Lenin, el Nes, Salomón, Wichin, Selene, Susanita, Xóchilt Judith,
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