UNIVERSITY OF GUANAJUATO

NATURAL AND EXACT SCIENCES DIVISION
MATHEMATICS DEPARTMENT
CAMPUS GUANAJUATO

PARALLELIZATION OF COMMIT USING CUDA

Acceleration with GPU of a large-scale problem for

microstructure informed tractography

PROFESSIONAL THESIS

A THESIS PRESENTED FOR THE DEGREE OF:
LICENCIATURA EN COMPUTACION

BY:
ERICK HERNANDEZ GUTIERREZ

CO-ADVISORS:
DR. ALONSO RAMIREZ MANZANARES
DR. JOSE LUIS MARROQUIN ZALETA

EXTERNAL ADVISOR:
DR. ALESSANDRO DADUCCI

GUANAJUATO, GUANAJUATO. SEPTEMBER 2018

ABSTRACT

This document presents an optimization of the COMMIT framework developed by the Dr. Alessan-
dro Daducci and his collaborators. COMMIT framework has been used to filter tractograms which
are useful to study the connections in the human brain.

We parallelized with the CUDA language the algebraic operations Az and Ay in order to accelerate
the optimization procedure necessary to filter a tractogram with COMMIT. The results of our
parallel implementation of the operations were validated by comparing the results with the current
version of COMMIT. This work shows experiments with real human brain data which demostrate
that the parallel versions of the operations Az and Aly significantly reduced the computational
time required to filter a tractogram.

This thesis contribute with a faster version of the COMMIT framework which uses a NVIDIA
GPU to accelerate the operations Az and Aty along with backward compatibility with the previous
COMMIT scripts.

1

2

Introduction

1.1 Diffusion MRI.
1.2 Tractogram L.
1.3 TissueModels
1.4 COMMIT Framework
1.5 Motivation e
The CUDA Programming Model

2.1 General Background
2.1.1 Branch Predictor
2.1.2 Memory RAM DDR/GDDR

2.2 Program Structure,

23 Kernels o

2.4 Thread Hierarchy
241 CUDAGrid
242 CUDABlock

ii

CONTENTS

CONTENTS

CONTENTS

24.3 CUDA Wrapot n .
244 CUDA Thread
2.5 Device Memoryo Lo
2.5.1 Registerso
2.5.2 Local Memory
2.5.3 Shared Memory e
2.5.4 Global Memory e
2.5.5 Constant Memory o

2.6 Measuring Performance

3 COMMIT and Problem Statement

3.1 Candidate Tracts v v v i e e e e
3.2 Response Functions
3.3 Formulation

34 FItHDg . . o oo

4 Methods and Development

4.1 Look-up Table with the Precomputed DW-MR Signals

4.2 Sparse Structure e e
4.2.1 Block Matrix IC
422 Block Matrix EC
4.2.3 Block Matrix ISO oo o

4.3 Preprocessingl

4.4 Operation Ax
441 Algorithm IC o

442 Algorithm EC.

iii

iv

CONTENTS CONTENTS
4.4.3 Algorithm ISO e 32

4.5 Operation Aly e e e 32
4.5.1 Algorithm IC e 33

4.5.2 Algorithm EC o e 38

4.5.3 Algorithm ISO o 40

4.6 Improving the Speed of the Az operation 41
4.7 Integration with COMMIT 43

5 Experiments and Results 49
51 Operation Az 0 0 e e e 49
5.2 Operation Aly e 52
5.3 Model Fitting L e 53

6 Conclusions and Future Work 55
6.1 Conclusions o o e e e e 35
6.2 Areas of Improvement and Future Work L. 56

A Compartment Models 58
A1 Intra-cellular Models o e 58

LIST OF FIGURES

1.1

1.2

1.3

14

1.5

1.6

1.7

21

2.2

3.1

2D visualization of a dMRI image. Image taken from www.valleyradiologync.com. . 2

Structure of an axon. Image taken from https://gbi.uq.edu.au/brain/brain-anatomy /axons-

cable-transmission-NEUTONS. . . . v v v v v v v e v e e e e e e e e e e 2

Diffusion MRI image paired with a 2D visualization of its DTI tractography. Image
taken from MGH Martinos Center. 3

Left: Two-dimensional image I with nine voxels and three intra-cellular compart-
ments (fibers). Right: The same image I with fibers modeled with the cylinder

model, see appendix. L. Lo 4

Block diagram of top-down strategies to combine tractography reconstructions with

local properties of the tissue. Image taken from [3.1]. 4
The COMMIT model. Image taken from [3.1]. 5

Top: Ground-truth image from the FiberCup data showing a tractogram obtained
with the global tractography algorithm GIBBS. Bottom: Filtered tractogram ob-

tained with COMMIT. Image taken from [3.1]. 5
Simple CUDA Grid. o . e 11
Small example of a full CUDA programming model and memory hierarchy. 12

2D image with 4 voxels. Green color is used to indicate which voxels are intersected
by the fiber. The fiber is modeled by using the cylinder model and 4 response

functions. e e e 18

LIST OF FIGURES LIST OF FIGURES

3.2

3.3

4.1

4.2

4.3

4.4

4.5

4.6

4.7

5.1

5.2

9.3

6.1

6.2

Cylinder response function transformed with the operators Tf and Ef.. 18

Example of extra-cellular compartments in a voxel v. 19

Example of a matrix A’¢. Blank spaces are zero signals. Cylinder response functions

are used. e e e e 23
Example of the COO format for the storage of sparse matrices. 23
Distribution of the threads in the algorithm for A%z, 29
Distribution of CUDA blocks and CUDA threads in the computation of A¥¢. 34

Steps of a parallel reduction. Each orange circle indicates an operation performed
by a thread. This image is property of NVIDIA Corporation. 35

Diagram of a simple fitting process using COMMIT framework. Curly brackets show

some of the process inside blocks. 0. 44

Block diagram showing a fitting using the modified COMMIT. Curly brackets show
some of the process inside each block. 46

The computational time required by the operation Az using 1, 2, 4, 8, 16 and 32
CPU threads. Horizontal axis represents the number of CPU threads and vertical
axis represents the average time in seconds of the 50 experiments. The blue vertical
lines represent the variance in the 50 experiments. The red line shows the time of
the GPU version. Green line shows the GPU version with the modified IC algorithm
introduced in the Section 4.6. L 51

Required computational time to compute the operation Ax in CPU by varying the
sparsity index of the vector x. 52

The computational time required by the operation Afy using 1, 2, 4, 8, 16 and 32
CPU threads. Horizontal axis represents the number of CPU threads and vertical
axis represents the average time of 50 experiments in seconds. The blue vertical lines
represent, the variance of the 50 experiments. The green line shows the time of our
GPU implementation in CUDA.. 53

Threads accessing near addresses in a 2D texture memory. This image is property
of NVIDIA Corporation. ittt st e e 56

Histogram of the number of fiber segments per voxel. 57

vi

21

5.1

5.2

9.3

5.4

CUDA functions qualifiers.

Average times of the experiments. L Lo oo

Relative error between vectors ygp, and ycp,. The vector y4p, represents the output
vector obtained with the GPU version of the operation Az and .y, represents the

output vector obtained with CPU version of Az.

Relative error between vectors gy, and z.,,. The vector x4, represents the output
vector obtained with the GPU version of the operation A’y and ., represents the

output vector obtained with CPU version of Aly.

Computational time required to perform the model fitting with 1 CPU thread versus
our implementations in GPU with CUDA.

vii

LIST OF TABLES

CHAPTER 1

INTRODUCTION

1.1 Diffusion MRI

Diffusion Magnetic Resonance Imaging (Diffusion MRI or dMRI) [1.4] is a radiologic method in
medical image processing and neuroscience. It provides information of the internal connections
in a brain and it is a non-invasive way. In diffusion MRI, image contrast is determined by the
random microscopic motion of water [1.3] produced by the thermal motion on the water molecules.
Diffusion MRI data can be presented by using 2D and 3D visualizations [1.5], see Figure 1.1.

A pizel is the smallest unit when dividing a 2D space into discrete [1.10] regions. It is very common
that all the pixels of one image have the same size, i.e. the same width and height. Each pixel can
be accessed by using two integer values, one for each space component of the image. This concept
of pixel can be extended to 3D spaces. In the case of 3D spaces pixels become voxels. So, a voxel

is the smallest unit of volume when dividing a 3D space into discrete regions [1.10].

Let I € R"=>X"yxn=X"s bhe a dMRI image where n,, n, and n, are the number of voxels per
dimension in the image. Our image I is composed of n, samples acquired over the n, = nynyn.
voxels. In this document, we will not discuss the science behind the measured dMRI signal because

it goes beyond this document. We just restrict ourselves to receive I as input.

1.2. TRACTOGRAM CHAPTER 1. INTRODUCTION

Figure 1.1: 2D visualization of a dMRI image. Image taken from www.valleyradiologync.com.

1.2 Tractogram

An azon, or nerve fiber, is a long slender projection of a nerve cell (neuron), that conducts electrical
impulses away from the neurons’s cell body or soma [1.11], see Figure 1.2. Axons are the principal

line transmission for the nervous system as they work as “cables” and they are grouped in bundles.

Mitochondrion

S - Nucleus
: Axon
Cell 3 Myelin ternry\inal
body / +sheath
Node of Synapse |

Dendrite AN _~ ranvier Schwann

cell
oy
~
Axon

Figure 1.2: Structure of an axon. Image taken from https://qbi.uq.edu.au/brain/brain-
anatomy /axons-cable-transmission-neurons.

Diffusion MRI data allows to aproximate the main paths of large sets of axons with polylines called
streamlines or fibers [1.1]. The set containing all the fibers is commonly called tractogram and it
represents the essence of the conections inside the brain. Tractograms can be visualized as two- or

three-dimensional images, see Figure 1.3.

Let F be a tractogram calculated from our dMRI image I. There are plenty of tractography
algorithms to calculate F and some of them can be combined to get a better estimation of the
fibers in F, for instance [1.7, 1.8, 1.2]. However, this document will not focus in the estimation of

the fibers in F. Instead, we will assume that F is given as input.

1.3. TISSUE MODELS CHAPTER 1. INTRODUCTION

Figure 1.3: Diffusion MRI image paired with a 2D visualization of its DTT tractography. Image
taken from MGH Martinos Center.

1.3 Tissue Models

We shall see in the next chapters that the dMRI signal have to be proceeded in order to compute
brain structure features at each voxel in I. To do that we need a tissue model. COMMIT models

the brain tissue with a model based on [3.2] which combines three different compartments:

1. Intra-cellular (IC): This compartment refers to the signal coming from water inside the axons.

2. Extra-cellular (EC): This compatment refers to the signal coming from water outside the

axons.

3. Isotropic (ISO): This compartmen refers to the signal coming from compartments without

cellular structures

The models used for each compartment are described in the appendix A of this document. The
contribution signals obtained from these models are called response functions. Figure 1.4 shows
a visual modeling example of the intra-cellular compartments (fibers) by using cylinder response

functions, see [3.1].

1.4. COMMIT FRAMEWORK CHAPTER 1. INTRODUCTION

O] o<
e T
1 I

Figure 1.4: Left: Two-dimensional image I with nine voxels and three intra-cellular compartments
(fibers). Right: The same image I with fibers modeled with the cylinder model, see appendix.

1.4 COMMIT Framework

Even with the best tractography algorithms, you will never get a perfect tractogram F, i.e. there will
be artefactual tracts in F that do not represent an anatomical reality (false positives) [1.9]. This
becomes a big challenge because tractograms are central to the study of human brain connectivity.
In contrast to the large number of tractography algorithms, there has been just a few algorithms

on false positives detection [1.6].

Convex Optimization Modeling for Micro-structure Informed Tracttography (COMMIT) is a frame-
work originally developed in MATLAB, which detects and removes false positives in a tractogram.
Nowadays, COMMIT is implemented as a python module and it is available in [4.2]. Taking as
inputs the tractogram F, dMRI image I and local brain tissue models, COMMIT performs a global
convex optimization procedure to calculate a filtered tractogram FCF by removing potential false
positives fibers from F, see Figure 1.5.

@ 51 o~

Tractogram Diffusion MRI Local
signal modeling

) 4 . A 4

Optimization procedure

D

Filtered
tractogram

Figure 1.5: Block diagram of top-down strategies to combine tractography reconstructions with
local properties of the tissue. Image taken from [3.1].

COMMIT builds a dictionary A by using F and the brain tissue model and flattens the image I

4

1.5. MOTIVATION CHAPTER 1. INTRODUCTION

into a signal vector y. Then, it formulates and solves for x the equation showed in Figure 1.6. We

shall introduce a deeper explanation of this formula in chapter 3.

_/y=Ag\+_n\‘

contributions of
fibers in A

Figure 1.6: The COMMIT model. Image taken from [3.1].

COMMIT has demonstrated its effectiveness as it is shown in the experiments in [3.1] and in the
Figure 1.7. It has a low memory usage due to optimized sparse structures, see Chapter 4. COMMIT

can run in a mid-range laptop even with real full-brain tractograms.

=
=
=
(]
o

Figure 1.7: Top: Ground-truth image from the FiberCup data showing a tractogram obtained with
the global tractography algorithm GIBBS. Bottom: Filtered tractogram obtained with COMMIT.
Image taken from [3.1].

1.5 Motivation

For big data sets, the optimization process of COMMIT can take days of intense computational
time even with a super computer [3.1]. The bottleneck lies in the computation of the operations
Az and Aty several times during the optimization procedure. Even though these are implemented
by using the programming language C, the required time for a simple operation Az and A’y is still
a lot because of the large size of the dictionary A. In this thesis we introduce a parallelized version
of the operations Az and A’y by using CUDA programming language. Our target is to reduce
the amount of time necessary to filter the tractogram F keeping the flexibility of the COMMIT

framework.

CHAPTER 2

THE CUDA PROGRAMMING MODEL

The main target of this document is to speed up the COMMIT framework by using a NVIDIA
Graphics Processor Unit (NVIDIA GPU) with the CUDA computing platform. In this chapter we
are going to discuss some general GPU facts along with CUDA structure, thread hierarchy and

device memory.

2.1 General Background

2.1.1 Branch Predictor

When you design a parallel algorithm for GPUs, it is very important to be sure that all threads are
executing the same instruction at the same time, otherwise, there will be a dramatically reduction
of performance in the program. This happens because GPUs, unlike CPUs, do not have branch
predictor. This predictor predicts at each conditional check like if, else, for and while and it
speculates which path the thread is going to take, then the predictor loads the corresponding
instructions. If the thread goes in a different way, the predictor just flushes all the preloaded

instructions and the process starts again [2.9].

The modern x86 CPUs include complex branch predictor hardware architecture just to take care of
a few amount of threads. So, it would be impossible to fit brach predictor hardware to monitor the
large number of threads inside the GPU. Moreover, GPUs do not have branch predictor because

most efficient threads in the GPU programs do not have branches.

2.2. PROGRAM STRUCTURE CHAPTER 2. THE CUDA PROGRAMMING MODEL

2.1.2 Memory RAM DDR/GDDR

Another, significant aspect of designing algorithms for GPUs is the memory access. The RAM
memory for GPU is designed different from the CPU one. Both Double Data Rate (DDR) and
Graphic Double Data Rate (GDDR) memories are based on SDRAM (Synchronous Dynamic Ran-
dom Access Memory) chips [2.8]. But the first one (used in CPUs) focuses on quickly providing
small data blocks, while the second one (used in GPUs) slowly provides large data blocks. DDR
memory type is more useful for CPUs because CPUs have a few amount of fast threads that can
process small data blocks quickly. However, GPUs have a large amount of slow threads, so it is
better to get large data blocks from memory and to process them in parallel. Consequently, this

changes how we design algorithms for GPUs.

2.2 Program Structure

CUDA is a general-purpose parallel computing platform and programming model. Using CUDA,
you can access to NVIDIA GPUs for parallel computation in a very similar way that CPUs. The
CUDA platform is composed of CUDA-accelerated libraries, compiler directives, application pro-
gramming interfaces and extensions to standard programming languages like C, C++, Fortran and
Python. This document uses only CUDA C/C++ programming. CUDA C/C-++ is an extension
of standard ANSI C/C++ with some language extensions to manage threads, memory and others
tasks. CUDA is also scalable to several devices.

CUDA programs are compoosed of two parts: host code and device code. Host code runs on the
CPU and device code runs on GPU. CUDA has its own compiler called nvce which is based on the
widely LLVM open source compiler infrastructure [2.6]. CUDA nvce compiler separates the device
and the host code during compilation process. Host code is sent to a traditional C/C++ compiler
like gee/g++ or Microsoft Visual C/C++ and device code is further compiled by nvce and mapped
to the GPU.

2.3 Kernels

An important component of the CUDA programming model is the kernel. Functions that are
executed on a NVIDIA GPU are called kernels. As we saw in a previous sub-section, all CUDA
programs are composed of GPU and CPU code. So, there is a mechanism to differentiate be-
tween CPU and GPU functions. NVIDIA extended C/C++ by adding qualifiers _ global
__device_ _and __host__ in order to support mixed code. A simple explanation of the func-

tionality of these qualifiers is showed in Table 2.1.

2.4. THREAD HIERARCHY CHAPTER 2. THE CUDA PROGRAMMING MODEL

’ \ Called from the \ Executed on the ‘

__global CPU GPU
__device GPU GPU
__host_ CPU CPU

Table 2.1: CUDA functions qualifiers.

There is nothing special about _ device and __host . In fact, qualifier ___host _ can be

omitted most of the time unless you want to combine _ device and __ host __ to instruct

compiler to generate one version of the same function for GPU and another for CPU.

Calling a function with _ global _ requires to add extra information. When a _ global
function is called from CPU, it is necessary to include angle brackets syntax <<<...>>> and a
numeric tuple. These two numbers influence how the runtime will launch device code. This couple
of numbers tells compiler how many CUDA blocks and how many CUDA threads per block will be
used to launch that kernel. In the next sub-section we will explain more about CUDA blocks and
threads.

2.4 Thread Hierarchy

2.4.1 CUDA Grid

At the top level of the hierarchy, a CUDA grid is organized as an array of CUDA blocks. This array
can be single or two dimensional. The number of dimensions and the number of CUDA blocks in
each dimension is specified by the programmer at the kernel launch, with a limit of 26 CUDA
blocks per dimension. When we launch a kernel, a CUDA grid is assigned to the kernel. There is
only one single CUDA grid per kernel and dimensions of the CUDA grid cannot be changed during

execution.

2.4.2 CUDA Block

Each CUDA block is organized into an array of CUDA threads. As well as CUDA grids, program-
mers can control the block dimension and the number of threads per block. All blocks of a grid
have the same dimension. The total number of threads is limited at 1024 threads. For example, a
block with dimensions (512, 1, 1), (32, 32) and (100) are allowed, but (512, 512) will not be allowed
because it exceeds the 1024 threads limit.

2.4. THREAD HIERARCHY CHAPTER 2. THE CUDA PROGRAMMING MODEL

2.4.3 CUDA Wrap

Inside each block its threads are grouped in groups of 32 threads called wrap. Wrap size is fixed
and programmers do not have directly control of the wraps. The GPU loads one instruction for
every wrap and all the threads in that wrap should execute the same instruction. If one or more
threads in a wrap execute different instructions. The GPU first loads one instruction for some of
the threads in that wrap, then it loads another instruction for the rest of the threads in that wrap.
This phenomenon is called thread divergence and it damages performance because some threads

in a wrap wait for others.

2.4.4 CUDA Thread

A thread is the smallest sequence of programmed instruction that can be managed indepently by
the GPU. So, if we launch a kernel, each line in the kernel is going to be independently executed by
all threads in the grid. As an example, let us suppose that we want to launch a kernel example()
with a (2, 3) grid where each block is (3, 4) size. The code showed down below shows the complete
code in CUDA.

2.4. THREAD HIERARCHY CHAPTER 2. THE CUDA PROGRAMMING MODEL

3
4
5}
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

1 #include <stdio.h>
2 #include <cuda.h>

__global_

int

{

}

_ void example (){

unsigned int bidx = blockIdx.x;
unsigned int bidy = blockIdx.y;
unsigned int tidx = threadIldx.x;

unsigned int tidy = threadIdx.y;

// each thread prints its own td inside its block
printf ("block,id,=,(%d, %d)\n", bidx, bidy);
printf ("threadid =, (%d,, %d)\n", tidx, tidy);

main ()

// define the size of the grid
dim3 gridsize(2, 3);

// define the size of each block
dim3 blocksize (3, 4);

// launch kernel in the GPU from the CPU
example<<<gridsize, blocksize>>>();

return O;

We can note that we are using 2 * 3 = 6 blocks each one with 3 x4 = 12 threads. So, we have 72

threads running in parallel the function example(). You can also see that inside the function each
thread uses global variables blockIdx and threadldz to print its own id and the block id. In this
case, we have 2D dimensional ids because we are using 2D grids and 2D blocks. An illustrative

explanation of the structure inside CUDA of this example is showed in the Figure 2.1.

10

2.5. DEVICE MEMORY CHAPTER 2. THE CUDA PROGRAMMING MODEL

Grid

Block (0, 0) | Block (1,0) Block (2, 0)

Block (0, 1) Block (1,1) “Block (2, 1)

Block (1, 1)

Figure 2.1: Simple CUDA Grid.

2.5 Device Memory

In contrast to CPU, CUDA programming model has several types of memory. Correct memory

access and managment has an important impact on performance. The CUDA memory model can

be visualized in Figure 2.2.

11

2.5. DEVICE MEMORY CHAPTER 2. THE CUDA PROGRAMMING MODEL

GPU Grid

Block (0, 0) Block (1, 0)

|

Thread (0,0) Thread (1,0)| Thread (0,0) Thread (1, 0)

CPU

-~

-~

-~

Figure 2.2: Small example of a full CUDA programming model and memory hierarchy.

Each type of memory will be described in the following sub-sections.

2.5.1 Registers

Registers are the fastest type of memory in CUDA. Small arrays and automatic variables are also
stored in registers. Each thread has its own registers and these registers cannot be accessed by
other threads. There is a limit of 255 registers per thread on lastest NVIDIA GPU architectures
like Kepler, Maxwell and Pascal.

2.5.2 Local Memory

Every thread in a block has its own local memory space. However, The name “Local Memory”
is confusing because variables stored in local memory are in the same physical location as global
memory. So, if you access to local memory you achieve high latency and low bandwidth accesses.
When a variable in a kernel does not fit into the register memory, it is allocated into local memory
which is slower than the registers. Structures and arrays that use a lot of memory are also spilled

to local memory.

12

2.5. DEVICE MEMORY CHAPTER 2. THE CUDA PROGRAMMING MODEL

2.5.3 Shared Memory

This type of memory is similar to CPU L1 cache, moreover, shared memory is also configurable.
Shared memory has lower latency and higher bandwidth than global memory because it is on-chip.
However, each block has a limited amount of shared memory. Each block has its own shared memory
space and that memory is visible and shared between threads inside the same block. In fact, this
memory is the main tool for thread cooperation between threads in the same block. Limit of shared
memory per block depends on the GPU. As an example, the NVIDIA Quadro P6000, which is used
later in experiments, has 49152 bytes per block. Variables that are going to be allocated in shared

memory must use __ shared___ identificator and they must be declared in kernel code.

2.5.4 Global Memory

We had already heard about global memory in the last paragraphs. This is the largest, but also
the slower, type of memory available in CUDA. This memory physically resides in the GDDR, chips
around the GPU chipset. Every thread in the GPU can write to or read from the global memory.
That is why this type of memory is the most used.

Global memory must be managed, released and transferred by the CPU. To allocate static global
memory, you need to add the _ device__ identifier before declaration. Dynamic allocation and
release can be performed through the functions cudaMalloc() and cudaFree(), which are very
similar to the standard CPU malloc() and free() functions. Finally, to transfer global memory we

have to use the cudaMemepy() function. An example of memory managment is showed below.

13

2.5. DEVICE MEMORY

1
2
3
4
5}
6
7
8
9

10
11
12

13
14
15
16
17
18

19
20
21
22
23
24
25

void main ()

{

}

//allocate dynamic array in CPU
int* cpu_array;

cpu_array = (int*)malloc(SIZEx*sizeof (int));

//allocate dynamic array in GPU
int* gpu_array;

cudaMalloc ((void**)&gpu_array, SIZExsizeof (int));

//transfer data from CPU to GPU
cudaMemcpy (gpu_array, cpu_array, SIZE*sizeof (int),

cudaMemcpyHostToDevice) ;

//launch kernel to process data
kernel <<<NUM_BLOCKS, NUM_THREADS>>>(gpu_array) ;

//transfer processed data back to CPU
cudaMemcpy (cpu_array, gpu_array, SIZE*sizeof (int),

cudaMemcpyDeviceToHost) ;

//release dynamic array

cudaFree (gpu_array) ;

//release dynamic array

free(cpu_array) ;

CHAPTER 2. THE CUDA PROGRAMMING MODEL

There is not distinction between pointers for CPU and pointers for GPU. CUDA devices can share
a unified address space with the CPU [2.4]. So, you do not have to add any identifier to the
pointers. But pointers pointing to memory allocated in GPU can only be accessed from kernels

by passing pointers as parameters in the function arguments. There are more functions to manage

this memory, for a deep understanding of all these concepts we refer the reader to the following

manuscripts [2.5, 2.6, 2.7].

2.5.5 Constant Memory

Constant memory resides in device memory and it is cached in a particular constant cache [2.6]. If

all threads in a wrap read a variable from the same memory address of constant memory, that data

will be read as fast as if they were read from registers. However, If some threads access different

14

2.6. MEASURING PERFORMANCE CHAPTER 2. THE CUDA PROGRAMMING MODEL

addresses the data is serialized, so performance is affected. Threads cannot write data to constant
memory. So, CPU must initialize constant memory using cudaMemcpyToSymbol(). Variables that
are going to be allocated in constant memory must be in a global scope and they must use the

__constant __ identifier. Constant variables do not need to be passed as parameters. For example:

1 //constant wariable in GPU

2 __constant__ int GPU_M;

3

4 //constant wariable in CPU

5 const int M;

6

7 void main ()

8 {

9 //initialize in CPU

10 M = 10;

11

12 //initialize in GPU

13 cudaMemcpyToSymbol (GPU_M, &M, sizeof (int));
14

15 //launch kernel

16 kernel <<<NUM_BLOCKS, NUM_THREADS>>>();
17 %

2.6 Measuring Performance

Time comparison is a very important part of this work. There are several ways to measure kernel
performance. The easier way is to use a CPU timer to measure kernel execution from the host side.
But it is not as precise as CUDA-specific timing routines. The CUDA API provides functions and
structures that allow to insert events at any point in a stream. This CUDA events can be used for

more things than just measuring time. But we will use events just for performance measurement.

To measure time we are going to need two events. One will be set at the beginning of the kernel
launch and the second one at the end of the kernel launch. Events have to be declared and created

from host side. You can see an example code down below:

15

2.6. MEASURING PERFORMANCE CHAPTER 2. THE CUDA PROGRAMMING MODEL

1 int main ()

2 A

3 // declare events

4 cudaEvent_t start;

5 cudaEvent_t stop;

6

7 // create and initialize events

8 cudaEventCreate (&start) ;

9 cudaEventCreate (&stop) ;

10

11 // set one event before and after lauching
12 cudaEventRecord (start) ;

13 kernel <<<NUM_BLOCKS, NUM_THREADS>>>(arguments) ;
14 cudaEventRecord (stop);

15

16 // calculate elapsed time

17 float elapsed;

18 cudaEventSynchronize (stop) ;

19 cudaEventElapsedTime (&4elapsed, start, stop);
20

21 //print elapsed time

22 print("elapsed,time,=_%f ms/n", elapsed);
23 }

16

CHAPTER 3

COMMIT AND PROBLEM STATEMENT

3.1 Candidate Tracts

COMMIT is a very flexible framework because it accepts and works with every tractogram [4.2, 3.1].
Hence, the tractogram F can be calculated from I by using any tractography algorithm. However,
COMMIT does not add fibers to F. For this reason, the only requisite is that F contains fibers
that connect pairs of actually connected brain regions by following the right brain pathways. These

fibers are called true positives.

3.2 Response Functions

Before considering the formulation of COMMIT it is important to talk about the response functions.
These functions are used to map the dMRI signal contribution of each tract in F at every voxel
of the image I [3.1]. In the COMMIT framework, the magnetic resonance signal is acquired along
ns 3D orientations. The number n, of direction samples is important because one response func-
tion R € R™s carries the response signal of one compartment across the ng directions samples.
Usually, we use more than one response function per comparment [3.1]. Let n,, n, and n. be
the number of response functions for the IC, EC and ISO comparments respectively. Figure 3.1
ilustrate an example of an image with a fiber intersecting two voxels. This fiber is modeled by using
four different response functions. Each one of these response functions represents the intra-cellular

microstructure with cylinders with a different diameter, see Apendix A.

17

3.2. RESPONSE FUNCTIONS CHAPTER 3. COMMIT AND PROBLEM STATEMENT

image I image [

fiber

|
|
i

image I image [

_ L Joaxc

Figure 3.1: 2D image with 4 voxels. Green color is used to indicate which voxels are intersected by
the fiber. The fiber is modeled by using the cylinder model and 4 response functions.

We shall introduce the operators T/ : R"s — R and EJ : R™ — R". Operator T rotates a re-
sponse function R to match the local orientation of the fiber f € F in the voxel v € {0, ..., n, — 1}
and E; scales R by the actual length in mm of f in the voxel v, see Figure 3.2.

7! E
o)

Response Function R Response Function E'(T',(R))
Figure 3.2: Cylinder response function transformed with the operators 7}/ and EJ.

On the other hand, let S, € R™ be the predicted signal carrying the total contribution of the
tracts in F to the voxel v. We normally need very expensive computational nonlinear procedures
to calculate these signals. Fortunately, there are linear approaches that can estimate these com-
partments quickly [3.7, 3.8]. Thus, given a voxel v in I, we can write S, as a linear combination

with the following formula:

Ng—1 np—1 ne—1
Sy =SI4+8EC+8150 =3 N " GBS (0] (RIO)+) > &ITf (RFO)+ Y 2bRISC. (3.1)
feF j=0 feF j=0 j=0

We should also consider that in a voxel v there are always a lot of fibers with the same orientation.
So, we do not need to calculate the extra-cellular signal for all those fibers. We can replace a fiber

bundle by an extra-cellular compartment with the same orientation, see Figure 3.3.

18

3.3. FORMULATION CHAPTER 3. COMMIT AND PROBLEM STATEMENT

&

M~

—

voxel v voxel v

Figure 3.3: Example of extra-cellular compartments in a voxel v.

Thus, equation 3.1 can be simplified by calculating the sets O, for every voxel v € {0, ..., n, — 1}.
The set O, represents the set of all main orientations in the voxel v. The total number of extra-

cellular compartments is denoted with n., so we have

Noy—1
U o, (3.2)
v=0
Therefore, equation 3.1 can be written as:
Ng—1 np—1 ne—1
Sy = SpC48FC+SI50 =" N 2l EL (T (RI)+ >0 D aSTe (REC)+ Y 2t RIS (3.3)
feF j=0 ecO, j=0 3=0

where R][C € R"s, R]EC € R™s and R]ISO € R"s are the jth intra-cellular, extra-celluar and isotropic

response functions respectively and coefficients xf ,

z§ and z§ represents the global contribution of
the MR signal from each compartment within the voxel. We will denote these compartmental

signals as base functions.

3.3 Formulation

The dMRI image I and the tractogram F can be modeled with an operator £ : F — I such that

I=L(F)+n. (3.4)

Then £ models the signal contribution of each fiber in all acquired voxels and 7 is the acquisition
noise [3.1]. Now, the mapping £ : F — I can be implemented as a linear operator by rewriting
equation 3.1 as a matrix by using all the signals 5,,. Let A be the n,ns; x m matrix of the operator
L where m = nyng +neny +nyne. Let y € R*™ be the vectorized (flattened) version of the dMRI
image I. Let x € R" be the vector standing for the contributions of the m basis functions in A.

Then equation 3.4 can be written as:

y = Ax + . (3.5)

19

3.4. FITTING CHAPTER 3. COMMIT AND PROBLEM STATEMENT

The matrix A is a block matrix in the form:

A= [AIC|AEC|AISO] (36)

where A1C ¢ RIW"7 MM AEC ¢ Rpme XMy gnd ATSO ¢ R7eoX™w™e - ALl matrices encapsulate,
respectively, intra-cellular, extra-cellular and isotropic contributions to the image. In the next
chapter, we will explain in depth the structure of these matrices. Note that if we calculate S, for
all the voxels v € {0, ..., n, — 1} in the image I, we will have calculated the mapping £ previously
described at the beginning of this section.

3.4 Fitting

The main goal of COMMIT is to solve the inverse formulation of equation 3.4. This means that
COMMIT finds the best set F C F of fibers that best describes the input image I. Our problem
appears to be trivial because we only need to invert the matrix A. But for big data sets the matrix
A can reach hundreads of gigabytes. So, the size of the matrix A prevents to use classic solutions
like pseudo-inverse computation or Cholesky decomposition to estimate the vector x in equation the
3.5. However, in [3.9, 3.10] there were developed iterative least-squares solutions for such large-scale

problems. Thus, we have to solve the non-negative least-squares problem
argmin || Az — |3, (3.7)
x>0

where |- ||, is the usual I norm in R™s [3.1].

Note that A is not a square matrix. In fact, we usually have a lot more rows than colums. So, the
linear system 3.5 does not have a unique solution. But if it is known that the vector x is sparse,

we can use a [j-regularization [3.1]. That changes our problem to

. 2
argmin | Az — yI} + |z, (3.5)
z>0

where ||-||; is the usual /; norm in R™. This new formulation promotes sparsity in the solution x.

COMMIT uses the FISTA [3.11] itearative optimization algorithm to solve these problems. FISTA
uses the algebraic operations Az and Ay during the optimization procedure. If the matrix A is very
large, the FISTA algorithm becomes slow. This marks a bottleneck in the COMMIT framework
because the matrix A used in COMMIT is very large. That is why we implemented Az and Aty by

using CUDA because CUDA allows to accelerate the required time to compute these operations.

20

CHAPTER 4

METHODS AND DEVELOPMENT

Having seen some CUDA tools and the formulation of COMMIT, we can start to talk about the
implementation in CUDA. In this chapter, we are going to explain our implementation in CUDA
of the algebraic operations Az and A'y and the integration of our implementation in the current

computational implementation in python of the COMMIT framework.

4.1 Look-up Table with the Precomputed DW-MR Signals

Here we introduce the concept of look — up table. Look-up tables store all the pre-rotated response
functions of all compartments, so we have 3 look-up tables because we have 3 different compartments
(IC, EC and ISO). These tables are very important in the implementation because we can avoid to
calculate the transformation T/ on-the-fly. Instead, we only have to keep an orientation index and
go to the look-up table to get the rotated response functions. Of course, it is impossible to store
an infinite potential number of orientations for every response function. So, we use a discretization
of the half of the sphere shell by using 181 azimuthal and 181 elevation directions. This gives us
ne = 1812 = 32,761 total orientations.

More importantly, look-up tables help to reduce memory usage of the matrix A. When we replace
all the response functions of the compartments by an orientation index, we reduce the size of A

from nyns X (ngng + nenpy + nyne) to Ny X (nf + ne + ny).

The intra-cellular look-up table (lutIC) should be a three-dimensional float matrix with dimensions
ng X Ny X ng. But memory latency is pretty high on GPUs. So, we cannot store [ut/C as matrix
because we will damage performance by accessing too many pointers. Instead, we have to vectorize
(to flatten) this matrix to a ng * n, * ns array and to access by using an offset value. This code

ilustrates the change:

21

4.2. SPARSE STRUCTURE CHAPTER 4. METHODS AND DEVELOPMENT

1 // matriz version ---------------------
2

3 //declaration

4 float 1lutIC[na][no][ns];

5

6 //accessing element 4,7,k

7 lutIC[il[j][k]

8

9 // array version ---------------------
10

11 //declaration

12 float lutIC[na*no*ns];

13

14 //accessing element 4,7,k

15 1lutIC[i*no*ns + j*ns + k]

This technique is the same for lut EC and lutISO. In this way, lut EC' is changed from a ny X n, X ng
float matrix to a np * n, * ng float array and [utI SO from a n. x ns float matrix to a n. x n, float

array.

4.2 Sparse Structure

Even if we use look-up tables, we will not be able to store the matrix A in the GPU memory. For
example, our data set used in the next chapter for experiments has n, = 64,309, ny = 399,758,

ne = 188,151. Then, our matrix would reach
Ny X (Nf 4+ ne +ny) x4 B = 64,309 * (399, 758 + 188,151 + 64, 309) x4 B = 168 GB

because we represent each entry of the response functions by using 4 bytes single-precision floating-
point format. Evidently, there is not a GPU with that amount of memory. Fortunately, our matrix
A is a sparse matrix. Moreover, sparsity index [4.5] in the matrix A is usually very high. This

property allow us to store the matrix A by using an sparse matrix format.

4.2.1 Block Matrix IC

The matrix A’ has n, columns for each fiber f € F and n, rows for each voxel v € {0, ..., n, — 1}
[3.1]. The ns rows associated with a voxel v correspond to the restricted signal contribution of all
fibers f traversing voxel v. Every restricted contribution of a fiber f traversing voxel v is modeled by

transforming the n, response functions with the operators 7} and EJ. If a fiber f is not traversing

22

4.2. SPARSE STRUCTURE

CHAPTER 4. METHODS AND DEVELOPMENT

voxel v, the restricted contribution will be a zero signal. You can see a hypothetical 2D image with

its AT associated matrix in the Figure 4.1.

voxely

voxel.

voxel,

voxels)

voxely

voxel,

voxel)

voxels

Responseq Response;
A A
4 Y N
fibery fiber, fiber, fibery fiber fiber,
— ~
[\—’W

AIC

Figure 4.1: Example of a matrix A’C. Blank spaces are zero signals. Cylinder response functions

are used.

Even for a very small matrix we have a huge amount of zero values. So, if we use a sparse matrix

format, we will reduce the amount of memory needed to store this matrix. In this case, we use a

modified version of the coordinate (COO) format. COO stores a tuple of several arrays (row, col

and val) [4.1]. The arrays: row, col and val store the row indices, column indices and non-zero

values respectively, see Figure 4.2. The total number of non-zero values determinates the size of

each array.

OO OO N
o O o oo

OO O Wwo

[N ool o)
Nelievjienllen Ben)

Figure 4.2: Example of the COO format for the storage of sparse matrices.

Intra-cellular part of the matrix A depends from the fiber segments passing through the voxels. So,
we modified the tuple to (voxelIC, fiberIC, contrIC and orienIC):

1. woxellC: This array stores the voxel index of each fiber segment. The voxel index of one

fiber segment determinates the row index in the matrix A.

2. fiberIC': This array stores the fiber index of each fiber segment. The fiber index determinates

the column index in the matrix A.

23

4.3. PREPROCESSING CHAPTER 4. METHODS AND DEVELOPMENT

3. contrIC: This array stores the length of each fiber segment. This length value is used to
apply the operator EJ introduced in Chapter 3.

4. orienIC: This array stores the orientation index of each fiber segment. As we previously
saw, this orientation index is used to take the right response functions from the intra-cellular
look-up table. This orientation index is used to avoid the computation of the operator T/

on-the-fly.

The number of non-zero values in the matrix A is equal to the total number of fiber segments in
the tractography. Our data set used for experiments has 47,082,501 fiber segments and it was
designed to be big enough to be considered a good upper bound. We also use 4 bytes unsigned
integers for vorellIC and fiberIC arrays, 4 bytes floats for contrIC array and 2 bytes unsigned
integers for orienIC array. Therefore, memory usage would be 47,082,501 14 B = 754 M B, which

is affortable on a modern GPU.

4.2.2 Block Matrix EC

Extra-cellular part of the matrix A is independent of the fibers and fiber segments. It entirely
depends of the total number of extra-cellular compartments. Then, we only store two arrays
(voxel EC, orienEC):

1. voxel EC: This array stores the voxel index of each extra-cellular compartment.

2. orienEC: This array stores the orientation index of each extra-celluar compartment.

In this case, the total number of extra-cellular compartments determinates the size of the arrays.
For our test data set, we have n, = 188,151. If we use 4 bytes unsigned integers for vozrel EC' and
2 bytes unsigned integers for orien EC, the memory usage would be 188,151 x6 B = 1.2 M B.

4.2.3 Block Matrix ISO

This matrix is even simpler than the previous one. There is only one isotropic compartment per
voxel, so we do not need to store voxel indexes. Each compartment is also an isotropic diffusivity
model (sphere), so we do not need to store any orientation index. In brief, we do not need to store

this matrix in memory. The only thing we need to store is the isotropic look-up table (lutISO).

4.3 Preprocessing

At this point, we have stored our matrix A by using the arrays:

24

4.3. PREPROCESSING CHAPTER 4. METHODS AND DEVELOPMENT

e Intra-cellular part (A’C): voxelIC, fiberIC, contrIC, orienIC and lutlC.
e Extra-cellular part (AFC): vorel EC, orienEC and lutEC.

e Isotropic part (A799): lutlSO.

We have all the components to perform the operations Az and A’y in the GPU. But in order to
take advantage of CUDA and NVIDIA GPUs, we have to preprocess the data for the GPU.

First, we have to sort the intra-cellular and extra-cellular data by using voxel and orientation
indexes in order to group fiber segments within the same voxel and with the same orientation. We
cannot, sort each array independently because the entries of the arrays represent a fiber segment or
an extra-cellular compartment. So, we define a segment C structure and functions to sort these
arrays. The following C code only shows the structure and functions for the intra-cellular part, but
the code for extra-cellular part is similar.

25

4.3. PREPROCESSING CHAPTER 4. METHODS AND DEVELOPMENT

1 struct segmentdq

2 uint voxel;

3 uint fiber;

4 ushort orien;

5 float contr;

6 I;

7

8 bool vcomp(const segment& a, const segment& b){

9 if (a.voxel !'= b.voxel) return a.voxel < b.voxel;

10 else return a.orien < b.orien;

11 }

12

13 void vsort(uintx* voxelIC, //IC data

14 uint* fiberIC,

15 ushort* orienlIC,

16 float* contrIC,

17 int num_segments){

18

19 segment* data = (segment*)malloc(num_segmentsx*sizeof (
segment)) ;

20

21 for(int i = 0; i < num_segments; i++){

22 datal[i].voxel = voxelIC[i];

23 data[i].fiber = fiberIC[i];

24 datali].orien = orienICI[il];

25 datal[i].contr = contrIC[i];

26 }

27

28 sort (data, data + num_segments, vcomp);

29

30 for(int 1 = 0; i < num_segments; i++){

31 voxelIC[i] = datal[i].voxel;

32 fiberIC[i] = datal[il].fiber;

33 orienIC[i] = data[i].orien;

34 contrIC[i] = datal[i].contr;

35 }

36

37 free(data) ;

38 }

We will also calculate a couple of auxiliar arrays for the intra-cellular and extra-cellular compart-

26

4.3. PREPROCESSING CHAPTER 4. METHODS AND DEVELOPMENT

ments. These arrays will make sense later in the next chapter when we introduce the algorithm to

perform direct and transposed operations. For now, we will just check what we store in each array:

1. vsizelIC: This array has size n,. The vth entry in this array stores the number of fiber

segments in the voxel with id v.

2. vstepIC: This array also has size n, and it stores the all-prefix-sums [4.4] from the array

vsizel C. This all-prefix-sums are commonly known as scan.

3. vstepIC:The length of this array is n, and it is the exclusive all-prefix-sums [4.4] array
calculated from the array vsizelIC. The ith entry of this array stores the sum of the previous
i — 1 elements in the array. For example, if vsizeIC' = [1, 9, 2], then we have vstepIC =
[0, 1, 10].

The others two arrays (vsize EC' and vstepEC') store the same things, but they are calculated from
the extra-cellular data. As the isotropic part is explicitly not stored in memory, it does not need
these auxiliar arrays. In the code showed down below you can see the preprocessing function we

use for IC compartment, but EC function is analogous.

27

4.4. OPERATION AX CHAPTER 4. METHODS AND DEVELOPMENT

1 void preprocessIC(uint* voxelIC, //wozel indexzes

2 uint* vsizeIC, //output

3 uint* vstepIC, //output

4 int nv, //number of vozels
5 int n){ //number of fiber segments
6 //calculate number of fiber segments per wvozel
7 uint count = 0;

8 uint current = voxelIC[O0];

9 uint pos = 0;

10 for(int i = 0; i < n; i++){

11 uint aux = voxelICI[i];

12 if (aux != current){

13 vsizeIC[pos] = count;

14 count = 1;

15 pos++;

16 current = aux;

17 }

18 elseq

19 count ++;

20 }

21 }

22 vsizeIC[pos] = count;

23

24 // calculate all-prefiz-sums from vsizelC

25 vstepIC[0] = 0;

26 for(int i = 1; i < nv; i++)

27 vstepIC[i] = vstepIC[i-1] + vsizeIC[i-1];
28 %

4.4 Operation Az

The intra-cellular, extra-cellular and isotropic parts are independent and they can be calculated
separately. Using equation 3.3 we can rewrite equation 3.5 as

Sl S{c —|—SIEC —l—S{SO S{C SIEC S{SO

Y= = Ax € R™™.

Il
Il
+
+

e EC 1S5S0 IC EC 15O
SIC 4 SEC 4 SIS S SE Sl

28

4.4. OPERATION AX CHAPTER 4. METHODS AND DEVELOPMENT

Therefore, we have to calculate SI¢ € R, SFC € R™s and SI5C € R" for every v € {0, ..., n, — 1}.
As compartments have different structures each other, we will develop a specific algorithm for each

compartment.

4.4.1 Algorithm IC

To calculate intra-cellular part, we launch a kernel with n, CUDA blocks and ny CUDA threads.
Every block is associated with a voxel. This means the CUDA block with identifier v calculates
the signal SI¢ € R™s. As all CUDA blocks run in parallel, we are calculating all signals S in
parallel. Inside each CUDA block, the n, entries of the signal S!¢ are computed in parallel by the
ng threads in that CUDA block. Therefore, the thread with identifier k£ inside the CUDA block

with identifier v calculates the value S}9 and writes it in y, see Figure 4.3.

IC,. — /(e Ic — /(e C e IC
AlCx = [SI6, ... 81 | = [[S5Gs s SEG] o es [S2 00 o S, 1]
thready thread,, thread, thread,, -y
block block,,

Figure 4.3: Distribution of the threads in the algorithm for A7%z.

There is not memory collision because all threads are working on different values 5561; Remembering

equation 3.3, we see that every thread is performing this operation

Ng—1

SI9=>" Y 2Bl (1] (R]S)) e ®. (4.1)

feF j=0

At this point, arrays vsizel C and vstepl C' become important. It is not necessary to traverse across
all elements in F because there are a lot of fibers in F that do not touch the voxel v. So, these
fibers have zero contribution in v, and we can avoid those operations. By instead traversing all
fibers in F, we use the elements vsize [v] and vstep [v]. The first one gives us the number of fiber
segments voxel v has to process. The second one gives us the position in the intra-cellular data
where fiber segments in the voxel v start to appear. Our implementation of the kernel executed
by all the threads is showed down below. Note that the kth value of the signal T} (RJI»C) is not
calculated on-the-fly. Instead, we take the value from the IC look-up table.

29

4.4. OPERATION AX

CHAPTER 4. METHODS AND DEVELOPMENT

1 __global__ void

2 multiplyIC_direct (uint=* voxellIC,

3 uint* fiberIC,

4 ushort* orienIC,

5 float* contrIC,

6 uint* vsizelC,

7 uint* vstepIC,

8 float* 1lutIC,

9 doublex x,

10 doublex y){

11 uint v = blockIdx.x;

12 uint k = threadldx.x;

13 uint start = vstepIC[v];

14 uint finish = vstepIC[v] + vsizeIC[v];

15

16 double Svk = 0.0;

17 for(int f = start; f < finish; f++){ //loop first sum
18 for(int j = 0; j < gpu_na; j++){ //loop second sum
19 //look-up table offset

20 int offset = j*gpu_no*gpu_ns + orienIC[f]l*gpu_ns + k;
21

22 Svk += (double) (lutIC[offset])* //T(R)

23 (double) (contrIC[£f])* //E(T(R))

24 x[fiberIC[f] + j*gpu_nfl; //z+*E(T(R))

25 1}

26

27 //write Svk

28 y[voxelIC[start]l*gpu_ns + k] += Svk;

29 %

The values gpu_na, gpu_no, gpu_ns are the values ny, n, and ng stored in constant GPU memory.

We have to set these values before to launch this kernel. These values do not have to be passed by

argument to the kernel because variables in constant memory are global.

4.4.2 Algorithm EC

The extra-cellular part is analogous to the intra-cellular part. Moreover, this part is simpler than

the intra-cellular part. In this algorithm, CUDA blocks and threads are assigned in the same way

as the previous algorithm. So, each thread is computing the following operation taken from the

equation 3.3

30

4.4. OPERATION AX CHAPTER 4. METHODS AND DEVELOPMENT

nbl

SEC =" atTs (RPY) €R.

eecO j=0

In this case, we do not have to apply operator EJ. We also have to calculate the pointer 2EC

which points to the extra-cellular part of the vector x. Implementation of this part is shown below.

© 00 ~J O Ot =~ W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30

__global__ void
multiplyEC_direct (uint* voxelEC,

ushort* orienEC,
uint * vsizeEC,
uint* vstepEC,
float* 1utEC,
doublex*x x,
doublex y){
blockIdx.x;
threadIdx.x;

uint

uint

uint start vstepEC[v];

vstepEC[v] + vsizeEC[v];

uint finish

//pointer to the EC part of array =
double* xEC = x + gpu_nf*gpu_na + start;

double Svk = 0.0;

for(int e = start; e < finish; e++){ //loop first sum
for(int j = 0; j < gpu_nb; j++){ //loop second sum
//look-up table offset
int offset = j*xgpu_no*gpu_ns + orienEC[el*gpu_ns + k;

Svk += (double) (lutEC[offsetl)* //T(R)
xEC[e + j*gpu_nel; //z*T(R)
3}

//write Svk
y[voxelEC[start]*gpu_ns + k] += Svk;

31

4.5. OPERATION ATY CHAPTER 4. METHODS AND DEVELOPMENT

4.4.3 Algorithm ISO

Assignment of CUDA blocks and threads are exactly the same as the previous one. So, each thread

is computing this operation

ne—1

SIS0 = a'RIF°€R (4.2)
j=0

which is also part of the equation 3.3. Isotropic part is the simplest one. In this case, we do not
even have to apply any operator because isotropic response functions are rotationally invariant and
there is only one isotropic contribution per voxel. We also calculate the pointer I, SO which point

to the isotropic part of the vector x. The code is showed below:

1 __global__ void

2 multiplyISO_direct(float* 1lutISO,

3 doublex* x,

4 doublex y){

5 uint v = blockIdx.x;

6 uint k = threadldx.x;

7

8 //pointer to the IS0 part of the wvector =
9 double* xISO0 = x + gpu_nf*gpu_na + gpu_ne*gpu_gpu_nb + k;
10

11 double Svk = 0.0;

12 for(int j = 0; j < gpu_nc; j++){

13 //look-up table offset

14 int offset = j*gpu_ns + k;

15

16 Svk += (double) (lut[offset])x* //R
17 xIS0[j*gpu_nv]; //z*R
18 }

19

20 //write Svk

21 y[vxgpu_ns + k] += Svk;

22 %

4.5 Operation Aly

The structure of the transposed version of the operator A is irrelevant for COMMIT model. For

this reason, we will not spend time explaining the structure of A*. But to be able to understand

32

4.5. OPERATION ATY CHAPTER 4. METHODS AND DEVELOPMENT

the implementation of this operation, it is important to talk about some formulations.

We have seen that A € R™™*™ is a block matrix composed of column matrices A’¢, AFC and
ATSO_ In this case, A € R™*™"s ig also a block matrix, but it is composed of row matrices
AHC g Rsnaxnons - AtEC ¢ RrensXnons gnd AHSO ¢ Rrvnexnons Thys, we have

AtIC

At = | atec
At?SO

As the operation Az, we will present three different algorithms for each IC, EC and ISO compart-

ments.

4.5.1 Algorithm IC

Having seen the structure and implementation of A’Cz, we know that we had to compute all the
signals SI¢ for every v € {0, ..., n, — 1}. For this case, after some large algebraic manipulations

using the definition of the transpose of a matrix, we get that

z5¢
ATCy = : € R, (4.3)
Zy

where we have to compute all the signals Z fc € R" for every fiber f € F to fill the following

vectors
ic]
Z00+Zf01+ +Zf0n71
Zf?o+Zf11 +Zf1nq_1
Z;¢ = : € R™, (4.4)
c c c
Z 20t L, aat LIS an
| ZiG 0t ZiG, it 20
with

My—1

75, = Z yEl (T (RIQ)) e R. (4.5)

33

4.5. OPERATION ATY

CHAPTER 4. METHODS AND DEVELOPMENT

To launch the kernel of this part, we use ny CUDA blocks and n, CUDA threads. The block with
identifier f computes the signal Z{“. Inside each CUDA block, the n, values Z{, of the jth row

are computed by the n, threads in parallel, see Figure 4.4.

z{¢
AtICy —

1C
an—l

blocky

=P

L

Zy,,

Zy,,

thread,

@ﬂ

ZOIO

thread, thread,,

Z

Zo,

n,—20 T Z

n—10 T Z

11T +Zom—1

01T +ZOOnS—1

gt +ZOna 2n,—1

1t +Zom, Ln—1 |

Figure 4.4: Distribution of CUDA blocks and CUDA threads in the computation of A*/C.

Since threads 0 through ny — 1 compute, for a given j € {0, ...,

ne — 1} and f € F, signals

Z ;570 through Z]{g,ns—l respectively, we need to use shared memory to sum all these signals before

writting the final value. There are two ways to sum these values:

1. To use the thread with identifier 0. This thread loads all the values from shared memory,

sequentially sums all of them and writes the result.

But this approach is very inefficient

because the ns; — 1 remaining threads have to wait doing nothing until this thread finishes.

2. To use the parallel reduction [2.6, 4.4]. In short, this approach takes advantage of the multiple

threads to compute the result. Every thread is assigned to two elements in the array (if it

is possible). Then, each thread loads those two elements and writes back to shared memory.

This process is repeated until we have a single value which is the final result. Figure 4.5 shows

a graphical example of this process.

34

4.5. OPERATION ATY CHAPTER 4. METHODS AND DEVELOPMENT

Values (shared memory)[10| 1 [8 [-1]0 |23 |5 |

Step 1 Thread
Stride 1 IDs

Values [11| 1|7 |1 |-2| 2|85 |
Step 2 Thread@/ @/ é/ @/
Stride 2 IDs

Values (18 1|7 |1 |6 |28 |5|a|3][0]7|13]11]2]2]

Step 3 Thread
Str?§e4 IE)esa @/
Values (24| 1 |7 |1 |6 |28 |5 [17| 3]0 |7 [13][11]2]2]

Step 4 Thread
Stride 8 IDs

Values (41| 1|7 |1 |6 |28 |5 |17]3][0]7|13][11]2]2]

0)

Figure 4.5: Steps of a parallel reduction. Each orange circle indicates an operation performed by a
thread. This image is property of NVIDIA Corporation.

Before seeing the code for this part, it is important to say that the arrays voxellC, fiberIC,
orienIC and contrIC composing the sparse structure of A have to be re-sorted by using the fiber
index. This helps to improve performance in the multiplication. So, we have a new tuple (vozeltIC,
fibertIC, orientIC and contrtIC) forming the sparse structure of A”C. The code to sort these
arrays is the same we saw in the last section. We only have to change the comparison function for

the following one:

1 bool fcomp(const segment& a, const segment& b){

2 if (a.fiber !'= b.fiber) return a.fiber < b.fiber;
3 else return a.orien < b.orien;
4 }

Moreover, the equation 4.5 can be optimized. This equation considers that every fiber f is traversing
all the n, voxels. For real data this is not true. In fact, fibers just traverse a few amount of voxels.
If a fiber f does not intersect a voxel v, this voxel contributes with a zero-signal. So, like the direct
multiplication we can precalculate two extra auxiliar arrays (fsizetIC and fsteptIC).

1. fsizetIC: The length of this array is ny. The fth entry in this array stores the number of
voxels intersected by the fiber f.

2. fsteptIC: The length of this array is ny and it is the exclusive all-prefix-sums [4.4] array
calculated from the array fsizetIC. The ith entry of this array stores the sum of the previous
i — 1 elements in the array. For example, if fsizetIC = [1, 9, 2|, then we have fsteptIC =
[0, 1, 10].

35

4.5. OPERATION ATY CHAPTER 4. METHODS AND DEVELOPMENT

Subsequently, these arrays are analogous to the arrays vsizelC and vstepIC. Moreover, the code
to calculate them is almost the same because you only have to swap voxellC for fiberIC and n,
for ny in the function preprocessIC(...) showed at the beginning of this chapter. Finally, below is

the code for the operation A*Cy:

36

4.5. OPERATION ATY CHAPTER 4. METHODS AND DEVELOPMENT

© 00 N O Ot s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

__global__ void
multiplyIC_transp (uint* voxeltIC,

__shared__ double shsum[512];
uint £ = blockIdx.x;
uint k = threadlIdx.x;

uint

uint

for(

13

uint* fibertIC,
ushort* orientIC,
float* contrtIC,
uint* fsizetlIC,
uint* fsteptIC,
float*x 1lutIC,
doublex*x x,

doublex* y)A{

start fsteptIC[£f];

fsteptIC[f] + fsizetIC[f];

finish

int j = 0; j < gpu_na; j++){
double Zfjk = 0.0;
for(int v = start; v < finish; v++){
//look-up table offset
int offset = j*xgpu_no*gpu_ns + orientIC[v]*gpu_ns + k;
Zfjk += (double) (lutIC[offset])* //T(R)
(double) (contrtIC[v])* //E(T(R))

y[voxeltIC[vl*gpu_ns + kl; //y*E(T(R))
}
//each thread write its Zfjk wvalue
shsum[k] = Zfjk; __syncthreads();
if (k<256) shsum[k] += shsum[k+256];
if (k<128) shsum[k] += shsum[k+128];
if (k< 64) shsum[k] += shsum[k+ 64]; __
if (k< 32) shsum[k] += shsum[k+ 32]; __syncthreads();
if (k< 16) shsum[k] += shsum[k+ 16];
if (k< 8) shsum[k] += shsuml[k+ 8];
if (k< 4) shsum[k] += shsuml[k+ 4];
if (k< 2) shsum[k] += shsum[k+ 2];

syncthreads () ;

syncthreads () ;

syncthreads () ;

syncthreads () ;
syncthreads () ;

syncthreads () ;

syncthreads () ;

if(k==0) x[j*gpu_nf + fibertIC[start]] = shsum[0]+shsum[1];

37

4.5. OPERATION ATY CHAPTER 4. METHODS AND DEVELOPMENT

4.5.2 Algorithm EC

In contrast to the fibers (intra-cellular compartments), each extra-cellular compartment is only
associated with a single voxel. In this manner, we do not need to re-sort the sparse structure of
AFC (arrays voxel EC and orienEC). Thus, we can compute A*¥“y by using a very similar kernel
to the direct multiplication. Due to we are working with the transposed version, we have to change
AtEC

the order in the indexes as well as we use the parallel reduction. The code to compute y is in

the box below:

38

4.5. OPERATION ATY

CHAPTER 4. METHODS AND DEVELOPMENT

© 00 N O Ot s W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

__global__ void
multiplyEC_transp (uint* voxelEC,
ushort* orienEC,
uint * vsizeEC,
uint* vstepEC,
float* 1utEC,
doublex*x x,
doublex y){
__shared__ double shsum[512];
uint = blockIdx.x;
uint k = threadIdx.x;
uint start = vsteplv];
uint finish = vstepl[v] + vsizelv];

doublex*x xEC

for (
for (

1

x + gpu_nf*xgpu_na;

int j = 0; j < gpu_nb; j++){
int e = start; e < finish; e++){
//look-up table offset

int offset = j*gpu_nox*gpu_ns + orienEC[el*gpu_ns + k;

//compute Svk and write

shsum[k] = (double) (lutEC[offset]) *
y[voxelEC[start]*gpu_ns + k];

1t to shared memory
//T(R)
//y*T(R)
syncthreads () ;

if (k<256) shsum[k] += shsum[k+256]; __syncthreads();
if (k<128) shsum[k] += shsum[k+128]; __syncthreads();
if (k< 64) shsum[k] += shsum[k+ 64]; __syncthreads();
if (k< 32) shsum[k] += shsum[k+ 32]; __syncthreads();
if (k< 16) shsum[k] += shsum[k+ 16]; __syncthreads();
if (k< 8) shsum[k] += shsum[k+ 8]; __syncthreads();
if (k< 4) shsum[k] += shsum[k+ 4]; __syncthreads();
if (k< 2) shsum[k] += shsum[k+ 2]; __syncthreads();

if (k==0) xEC[j*gpu_ne + e] += shsum[0]+shsum[1];

39

4.5. OPERATION ATY

CHAPTER 4. METHODS AND DEVELOPMENT

4.5.3 Algorithm ISO

Undoubtedly, the isotropic part is even simpler because there is only one isotropic compartment

per voxel. Indeed, we have to change the indexes because of the transposed version and we use the

parallel reduction as in the previous algorithms.

© 00 N O Ot = W N

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

__global

multiplyISO_transp(float* 1lut,

__shared__ double shsum[512];
uint v = blockIdx.x;
uint k = threadIdx.x;

//pointer to the IS0 part of the wvector =

doub

for (

__ void
doublex*x x,

doublex* y)A{

lex xISO0 = x + gpu_nf*gpu_na + gpu_ne*xgpu_nb;

int j = 0; j < gpu_nc; j++){

//look-up table offset

int offset = j*gpu_ns + k;

//compute Svk and write %t shared memory

shsum[k] = (double) (lut[offset])* //R
y[bid*gpu_ns + k]; //y*R

syncthreads () ;

if (k<256) shsum[k] += shsum[k+256]; __syncthreads();
if (k<128) shsum[k] += shsum[k+128]; __syncthreads();
if (k< 64) shsum[k] += shsum[k+ 64]; __syncthreads();
if (k< 32) shsum[k] += shsum[k+ 32]; __syncthreads();
if (k< 16) shsum[k] += shsum[k+ 16]; __syncthreads () ;
if (k< 8) shsum[k] += shsum[k+ 8]; __syncthreads();
if (k< 4) shsum[k] += shsum[k+ 4]; __syncthreads();
if (k< 2) shsum[k] += shsum[k+ 2]; __syncthreads();

if (k==0) xISO[j*gpu_nv + v] += shsum[0]+shsum[1];

40

4.6. IMPROVING THE SPEED OF THE AXHAPHERTIOMETHODS AND DEVELOPMENT

4.6 Improving the Speed of the Ax operation

The algorithm introduced to compute A’z (the IC part of the operation Azx) has a bottleneck.
In that algorithm, each block computes the signal contribution of every fiber segment inside its
assigned voxel. But the number of fiber segments in each voxel is different. Moreover, the number
of fiber segments per voxel is very unbalanced. For example, there are voxels with less than 10 fiber
segments compared with others having more than 12,000 fiber segments. So, we will have CUDA
blocks finishing quickly and waiting for the others. This is a bottleneck because the kernel only
finishes when all CUDA blocks finish their operations. Thus, the kernel execution time for A€z is
determined by the slower CUDA block which is the CUDA block with the highest number of fiber

segments.

In this section, we will introduce a new algorithm to calculate A’“z which attempts to reduce the
number of operations performed by every CUDA block. The kernel presented in section 4.4.1 is
launched with n, CUDA blocks and ny CUDA threads. Now, this new kernel will be launched
with n, CUDA blocks and 2ns CUDA threads. We divide the fiber segments in each voxel into two
groups. Then, in every CUDA block with identifier v the first n, CUDA threads compute S.§, for
the first half of the fiber segments in the voxel v and the second n, CUDA threads compute Sgck
for the second half. We need to use shared memory to store these two preliminar values before to

write them in the resulting vector y. The code box below shows the code for this new approach.

41

4.6. IMPROVING THE SPEED OF THE AXHAPHERTIOMETHODS AND DEVELOPMENT

1 __global__ void

2 multiplyIC_direct (uint=* voxellIC,

3 uint* fiberIC,

4 ushort* orienIC,

5 float* contrIC,

6 uint* vsizelC,

7 uint* vstepIC,

8 float* 1lutIC,

9 doublex x,

10 doublex y){

11 __shared__ double shmem[1024];

12

13 uint v = blockIdx.x;

14 uint k = threadIdx.x;

15 uint gid = threadIdx.x / gpu_ns; //group id (0 or 1)
16 uint sid = threadldx.x - gpu_ns*gid; //sample id

17 uint start = vstepIC[v] + (vsizeIC[v]/2)=*gid;

18 uint finish = start + vsizeIC[v]/2 + (vsizeIC[v]%2)*gid;
19

20 double Svk = 0.0;

21 for(int f = start; f < finish; f++){ //loop first sum
22 for(int j = 0; j < gpu_na; j++){ //loop second sum
23 //look-up table offset

24 int offset = j*gpu_no*gpu_ns + orienIC[f]l*gpu_ns + sid;
25

26 Svk += (double) (lutICl[offsetl)* // T(R)

27 (double) (contrIC[£f])* // E(T(R))

28 x[fiber[f] + j*xgpu_nfl; // z*E(T(R))

29 1}

30

31 //every thread load Svk to shared memory

32 shmem[k] = Svk;

33 __syncthreads () ;

34

35 //only the first group write the final wvalue

36 if (gid == 0)

37 y[voxel[start]*gpu_ns + sid] = Svk + shmem[k+gpu_ns];
38 }

This new algorithm decreases the required time to calculate A’“z because the amount of fiber
segments per CUDA blocks are reduced in half. In particular, the CUDA block with the highest

42

4.7. INTEGRATION WITH COMMIT CHAPTER 4. METHODS AND DEVELOPMENT

number of fiber segments which determines the required time to calculate A/“z.

We could extend the previous idea to support more than two groups of CUDA threads. However,
we observe that the use of more than two groups will not be supported by the current available
NVIDIA hardware. For example, the largest data set available right now has ny, = 512. So, if
we use more than two groups of CUDA threads, we will overflow the maximum number of CUDA
threads permitted in a CUDA block which is 1024.

4.7 Integration with COMMIT

We could implement the operations Az and A’y in some python cuda module like PyCUDA. But in
order to gain as much performance as possible, we will keep our implementation written in CUDA
C++ and we will use the ctypes python module to launch CUDA C++ code from python. ctypes
allows to call foreign functions in DLLs or shared libraries and it provides C compatible data types
[4.3]. In ctype there is not CUDA specific data types. But we can use the fact that CUDA and C
pointers are very similar as we saw in the Chapter 2 of this document. So, we developed a custom
CUDA module by using ctypes. We called this module cudac. This module includes functions
to allocate and track CUDA memory pointers from python. The kernels for multiplication and

preprocessing functions are also packed in this cudac module.

We are not going to discuss the implementation of COMMIT in CPU. But it is important to show
how COMMIT works in order to talk about which parts of COMMIT we modified. Figure 4.6 shows
a common diagram of a model fitting using COMMIT. It does not involve all the necessary steps

to run the fitting, but it provides an idea of the fitting process performed by COMMIT framework.

43

4.7. INTEGRATION WITH COMMIT CHAPTER 4. METHODS AND DEVELOPMENT

import commit

(]

load data

v

setup model

(]

generate look-up
tables

(]

set threads setup cpu threads

(]

build operator A

compute Ax in

input : vectors xy and y, operator A and optimization params Yes—p| the cpu

perform
run fitting optimization
process

< vec compute A'y in
output : vector x No—p»|
G the cpu
save results _>

Figure 4.6: Diagram of a simple fitting process using COMMIT framework. Curly brackets show
some of the process inside blocks.

compute Ax and
A'y several times

adjoint == 0

The first change was to add a “cuda flag”. If this flag is set to 1, COMMIT will use our implemen-
tation in CUDA to compute the algebraic operations Az and A'y. On the other hand, if this flag
is equal to 0, COMMIT will normally continue with the CPU version. The use of this cuda flag
keeps compatibility with previous COMMIT python scripts.

Another important change was made in the block “set threads”. In this block, we initialize and copy
all the necessary variables to the constant GPU memory, see the code box below. Please note that
the function is wrapped by extern ”C” which is required to execute this function from Python by

using ctypes.

44

4.7. INTEGRATION WITH COMMIT

CHAPTER 4. METHODS AND DEVELOPMENT

© 00 N O Ot s W NN

W Lo W W O W W L NN NN N NN NN DN R e e e e e
T ST R DR R O © 00 ORI RO © 0N LR W~ O

extern

void set_globals(int

}3

HCH {

int num_voxels
int num_fibers
int num_excomp
int num_orient
int
int num_resfun
int
int num_resfun
int num_rows,

int num_cols){

num_segments,

2

>

B

2

num_samples,

ic,

num_resfunec,

is,

//inttialize vartables in CPU
n = num_segments; //number of
nv = num_voxels; //number of
nf = num_fibers; //number of
ne = num_excomp; //number of
no = num_orient; //number of
ns = num_samples; //number of
na = num_resfunic; //number of
nb = num_resfunec; //number of
nc = num_resfunis; //number of
nrows = num_rows; //number of
ncols = num_cols; //number of

//inttialize wvartables
cudaMemcpyToSymbol (gpu_n,
cudaMemcpyToSymbol (gpu_nv,
cudaMemcpyToSymbol (gpu_nf,
cudaMemcpyToSymbol (gpu_ne,
cudaMemcpyToSymbol (gpu_no,
cudaMemcpyToSymbol (gpu_ns,
cudaMemcpyToSymbol (gpu_na,
cudaMemcpyToSymbol (gpu_nb,
cudaMemcpyToSymbol (gpu_nc,

&n,
&nv ,
&nf ,
&ne,
&no,
&ns ,
&na,
&nb ,

&nc,

fiber segments
vozels

fibers

EC compartments
ortentations
direction samples
IC
EC

IS0 response func.

response func.

response func.

rows of the operator A4

cols of the operator 4

in the GPU constant memory

sizeof (int));
sizeof (int));
sizeof (int));
sizeof (int));
sizeof (int));
sizeof (int));
sizeof (int));
sizeof (int));

sizeof (int));

In the same block we preprocess the data of the blocks matrices A7¢, AFC and A’SC and we create

all the auxiliar arrays using the function that we introduced earlier in this chapter. Then, we have
to transfer this data to the GPU. Keeping pointers to the location of this data in the GPU is

45

4.7. INTEGRATION WITH COMMIT CHAPTER 4. METHODS AND DEVELOPMENT

essential to get a good performance because we prevent to copy all this data in every computation
of the algebraic operations Az and A'y. Our cudac module has an object called DeviceMemory.
This object stores, tracks and keeps together all the pointers to the sparse structures, look-up tables
and auxiliar vectors. After this modifications, the diagram of the new process is showed in Figure
4.7.

import commit

load data

setup model

(]

generate look-up
tables

* No—| setup cpu threads

set threads

allocate memory create
(—| forxandyinthe |—p DeviceMemory
gpu object

initialize gpu copy look-up copy operators A

Yes—p»| |
* constant memory tables to the gpu and A' to the gpu

build operator A

compute Ax with copy result back to

Yes-p| copy X to the gpu the gpu the cpu
input : vectors xy and y, operator A and optimization params Yes—p
A ol compute Ax in
the cpu
perform
" A compute Ax and S
run fitting op:rrg(l:zez?son Al several times adjoint == 0
compute A'y with copy result back to
Yes—| copy Yy to the gpu the gpu the cpu
output . vector x

y -
compute Ay in
NO-p|
the cpu
save results —»

Figure 4.7: Block diagram showing a fitting using the modified COMMIT. Curly brackets show
some of the process inside each block.

The object DeviceMemory also stores two aditional pointers. These pointers point to two functions
written in C which launch the operations Az and A’y in the GPU. Evidently, both functions use
the kernels introduced in the previous sections and the code for these functions is showed in the

box below:

46

4.7. INTEGRATION WITH COMMIT

CHAPTER 4. METHODS AND DEVELOPMENT

1 extern "C" {

2 void operationAX(

3 uint* gpu_voxelIC, //IC data

4 uint* gpu_fiberIC,

5} ushort* gpu_orienIC,

6 float* gpu_contrIC,

7 uint * gpu_vsizelIC,

8 uint* gpu_vstepIC,

9 float* gpu_lutIC,

10 uint* gpu_voxelEC, //EC data

11 ushort* gpu_orienEC,

12 uint * gpu_vsizeEC,

13 uint * gpu_vstepEC,

14 float* gpu_lutEC,

15 float* gpu_lutISO0, //IS0 data

16 doublex* gpu_x, //vector z in gpu

17 double* gpu_.y, //wector y in gpu

18 doublex* x, //vector = in cpu

19 doublex y){ //vector y in cpu

20

21 //copy wvector = to gpu

22 cudaMemcpy (gpu_x, x, ncols*sizeof (double),
cudaMemcpyHostToDevice) ;

23

24 //perform y += A~IC*xz in the gpu

25 multiplyIC_direct<<<nv, ns>>>(gpu_voxelIC, gpu_fiberIC,
gpu_orienIC, gpu_contrIC, gpu_vsizeIC, gpu_vstepIC,
gpu_lutIC, gpu_x, gpu_y);

26

27 //perform y += A"EC*z in the gpu

28 multiplyEC_direct <<<nv, ns>>>(gpu_voxelEC, gpu_orienEC,
gpu_vsizeEC, gpu_vstepEC, gpu_lutEC, gpu_x, gpu_y);

29

30 //perform y += A"ISO*z in the gpu

31 multiplyISO_direct<<<nv, ns>>>(gpu_lutISO0, gpu_x, gpu_y);

32

33 //copy back result to cpu

34 cudaMemcpy (y, gpu_y, nrowsx*sizeof (double),
cudaMemcpyDeviceToHost) ;

35 1}

47

4.7. INTEGRATION WITH COMMIT

1
2
3
4
5}
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22

23
24
25

26
27
28

29
30
31
32
33
34

35 1}

extern "C" {

void operationATX (

uint* gpu_voxeltIC, //IC data
uint* gpu_fibertIC,

ushort* gpu_orientIC,

float* gpu_contrtIC,

uint* gpu_fsizetIC,

uint* gpu_fsteptIC,

float* gpu_lutIC,

uint* gpu_voxelEC, //EC data
ushort* gpu_orienEC,

uint* gpu_vsizeEC,

uint* gpu_vstepEC,

float* gpu_lutEC,

float* gpu_lutIS0, //IS0 data
doublex* gpu_x, //vector z in gpu
doublex gpu_y, //vector y in gpu
doublex x, //vector = in cpu

doublex y){ //vector y in cpu

//copy wvector y to gpu
cudaMemcpy (gpu_y, y, nrows*sizeof (double),

cudaMemcpyHostToDevice) ;

//perform © += A~tIC*y in the gpu

IC_multiply_transp<<<nf, ns>>>(gpu_voxeltIC, gpu_fibertIC,
gpu_orientIC, gpu_contrtIC, gpu_fsizetIC, gpu_fsteptIC,
gpu_lutIC, gpu_x, gpu_y);

//perform © += A"tEC*y in the gpu
EC_multiply_transp<<<nv, ns>>>(gpu_voxelEC, gpu_orienEC,
gpu_vsizeEC, gpu_vstepEC, gpu_lutEC, gpu_x, gpu_y);

//perform © += A"tIS0*y in the gpu
ISO_multiply_transp<<<nv, ns>>>(gpu_lutISO0, gpu_x, gpu_y);

//copy back result to cpu
cudaMemcpy (x, gpu_x, ncolsxsizeof (double),

cudaMemcpyDeviceToHost) ;

48

CHAPTER 4. METHODS AND DEVELOPMENT

CHAPTER D

EXPERIMENTS AND RESULTS

In this chapter we will describe the experiments that were run to compare the performance between
the CPU version and our GPU implementation in CUDA. The experiments are divided in two parts:
The performance of the operations Az and A’y and the performance during the fitting process.
For the operations Az and A'y we used random vectors z and y. For the model fitting we use
real human brain data provided by the Dr. Alessandro Daducci and acquired at his laboratory
in the University of Verona. The workstation used for the experiments is equiped with an AMD
Threadripper 1950x with 32GB DDR4 memory along with a NVIDIA Quadro P6000 with 24GB
GDDR5X memory.

5.1 Operation Ax

As explained in the Chapter 4, the integration of our code into the COMMIT framework allows
for compatibility with previous COMMIT python scripts. Thus, to test operation Axr we execute
the same script for both CPU and GPU versions. The only difference is the argument N in the
member set threads(N) located in line 22 of the code box below. This N value indicates how
many CPU threads COMMIT will use to compute the operation Az. If 0 < N < 255 COMMIT
will use (if it is possible) N threads to compute operation Ax. If set threads() receives a null
argument, COMMIT will use all the available CPU threads to compute Az. But, if we set N =0,
it means that COMMIT will use 0 CPU threads, i.e. it will only use our CUDA implementation
of the operation Az. When we set N = 0, COMMIT set the “cuda flag” to 1, see Figure 4.7. In
addition, to test performance of the operation Ax we use random vectors = generated with the

random python module and each vector has float values between 0 and 1.

49

5.1. OPERATION AX CHAPTER 5. EXPERIMENTS AND RESULTS

1 import commit

2 import numpy as np

3

4 commit.core.setup ()

5 mit = commit.Evaluation(’.’, ’.7)

6 mit.set_config(’doMergeB0O’, False)

7 mit.set_config(’doNormalizeKernels’, True)

8 mit.set_config(’doNormalizeSignal’, True)

9 mit.load_data(’empty.nii.gz’, ’dwi.scheme’)

10

11 # set model

12 mit.set_model(’CylinderZeppelinBall’)

13 mit.model.set(1.7E-3, np.linspace(1,5.0,9)*1E-6, np.arange
(0.4,0.8,0.1), np.array([3.0E-3, 7.0E-3]))

14

15 # generate and load look-up tables

16 mit.generate_kernels (regenerate=False)
17 mit.load_kernels ()

18

19 mit.load_dictionary(’CommitOutput’)

20

21 # setting 0 threads means we are using gpu
22 mit.set_threads (0)

23

24 # build operator 4

25 mit.build_operator ()

26

27 # number of tests

28 num_tests = 50

29 for i in xrange(0, num_tests):

30 x = np.random.rand (A.shape[1]) .astype(’float64’)
31 start = time.time ()

32 y = A.dot(x)

33 finish = time.time ()

34 print ’Operation Ax,time:,’, (finish - start)

The AMD Threadripper 1950x has 32 threads running at 3.4GHz. This allows to compare the
performance of our CUDA version versus the CPU version by using 1, 2, 4, 8, 16 and 32 CPU
threads, see Figure 5.1. In the Table 5.1 the average times of 50 experiments are showed.

30

5.1. OPERATION AX CHAPTER 5. EXPERIMENTS AND RESULTS

90
80
70
£60
C
S
250
£ a0
£
= 30
20
10

12 4 8 16 32
number of CPU threads

Figure 5.1: The computational time required by the operation Ax using 1, 2, 4, 8, 16 and 32 CPU
threads. Horizontal axis represents the number of CPU threads and vertical axis represents the
average time in seconds of the 50 experiments. The blue vertical lines represent the variance in
the 50 experiments. The red line shows the time of the GPU version. Green line shows the GPU
version with the modified IC algorithm introduced in the Section 4.6.

[N.Threads | 1 [2 [4 | 8 [16 | 32 | CUDA | Improved CUDA |
[Time (seconds) | 86.3 [62.97 [39.67 | 41.63 [50.23 | 45.44 | 3.62 | 2.35 \

Table 5.1: Average times of the experiments.

In order to corrobate that the parallel computed operation Az is correct, we set the same seed
for the CPU and GPU, and we compared the output vector y obtained with the GPU version
versus the output vector y obtained with the CPU version. Figure 5.2 shows the relative error
1Wgpu — Yepull / |ygpull. For the operation Az, the value ||ygpu — Yepull / |Ygpull is virutally zero

which means that our implementation of the operation Az in CUDA gives accurate results.

’ Relative error: ”ycf’“_iy””“

[Ygpull
1 thread 2.06 % 10~1°
2 threads 2.06 10~ 15
4 threads 2.06 1015
8 threads 2.06 10~1°
16 threads 2.06 %10~
32 threads 2.06 % 10~

Table 5.2: Relative error between vectors ygp, and ycp,. The vector yg,, represents the output
vector obtained with the GPU version of the operation Az and ¥, represents the output vector
obtained with CPU version of Azx.

As we mentioned in the Section 3.4, during the fitting procedure COMMIT promotes the sparsity

in the vector z. This aspect was considered in the CPU implementation of the operation Ax. So,

o1

5.2. OPERATION ATY CHAPTER 5. EXPERIMENTS AND RESULTS

the CPU version of COMMIT checks for zero values in the vector z. When a zero value is detected,
COMMIT skips an entire block in the matrix A. This little consideration reduces the time in the
CPU version. Results showed in the Figure 5.1 were performed by using random vectors with

non-zero values. Hence, Figure 5.1 shows the performance of the CPU version in the worst case.

To give a more realistic comparison between our GPU implementation and the CPU implemen-
tation, we made a serie of experiments by using 1 CPU thread. This time we varied the sparsity
index of the vector z, see Figure 5.2. The sparsity index of x is the number of zero-valued elements
in x divided by the size of z. For example, if the sparsity index of x is 0.1, we know that the 10%

of the entries in x are zero.

(1] 10 20 30 40 50 60 70
sparsity index of x (%)

Figure 5.2: Required computational time to compute the operation Az in CPU by varying the
sparsity index of the vector x.

5.2 Operation Aly

The python script used to run the experiments for the operation Ay is essentially the script we
used for the operation Axz. We have to change the code from line 28 to 34 for the code below. The
rest of the code remains the same. Random vectors were also used in this case.

1 num_tests = 50

2 for i in xrange(0, num_tests):

3 y = np.random.rand (A.shape[0]).astype(’float64’)
4 start = time.time ()

5 x = A.T.dot(y)

6 finish = time.time ()

7 print ’Operation Atx,time:’, (finish - start)

92

5.3. MODEL FITTING CHAPTER 5. EXPERIMENTS AND RESULTS

Measuring the time for this operation is easier because the vector y does not become sparse. We
ran the CPU version by using 1, 2, 4, 8, 16 and 32 CPU threads as well. We plotted the results

along with the results obtained with our GPU version in the Figures 5.3 and 5.3.

time in seconds
H N W A U O N O ©
© © © 06 0o © © © ©o

w

12 4 8 16 32
number of CPU threads

Figure 5.3: The computational time required by the operation Aly using 1, 2, 4, 8, 16 and 32 CPU
threads. Horizontal axis represents the number of CPU threads and vertical axis represents the
average time of 50 experiments in seconds. The blue vertical lines represent the variance of the 50
experiments. The green line shows the time of our GPU implementation in CUDA.

[#cpu—Tgpull

Relative error:

ngpu“
1 thread 3.06 % 1011
2 thread 3.06 1011
4 thread 3.06 x 10~ 11
8 thread 3.06 x 10~ 11
16 thread 3.06 x 10~ 11
32 thread 3.06 % 10~ 11

Table 5.3: Relative error between vectors x4y, and Z.p,. The vector x4y, represents the output
vector obtained with the GPU version of the operation A’y and z,, represents the output vector
obtained with CPU version of Aly.

5.3 Model Fitting

For the model fitting performance comparisons we use real human brain data. The script to execute
the model fitting is also a variation of the script presented for the operation Az. Replacing from
line 28 to the line 34 in the script for the operation Az with the code in the box below, the model
fitting can be launched.

33

5.3. MODEL FITTING CHAPTER 5. EXPERIMENTS AND RESULTS

1 file = open(’Y’, ’rb?)
2 object_file = pickle.load(file)
3 Y = object_file[O0]
4
5 start = time.time ()
6 mit.x = commit.solvers.solve(Y, mit.A, mit.A.T, tol_fun = le-5,
tol_x = l1le-6, max_iter = 10000, verbose = 1, x0 = None,
regularisation = None)
end = time.time ()
print "Fitting,time,=,%f hours" % (end-start)/3600.0
10
11 mit.save_results ()
12 mit.gpumem.free()

Finally, the results for the model fitting procedure are summarized in the Table 5.4. The fitting
procedure took 2136 iterations in GPU and CPU, and the stopping criterion was the relative

tolerance on the objective.

] | CPU Version (1 thread) | GPU Version (CUDA) | Improved GPU Version (CUDA) |
| Time (hours) | 65.5 \ 7.1 \ 5.5 ‘

Table 5.4: Computational time required to perform the model fitting with 1 CPU thread versus
our implementations in GPU with CUDA.

o4

CHAPTER O

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

In this thesis we have introduced a brief formulation of the COMMIT model along with some
NVIDIA CUDA concepts which allow to understand the algorithms we developed. The elaboration

of this thesis made the following important and remarkable contributions:

e Development of a python module which allows to manage the GPU memory from python:
This python module is independent from the COMMIT framework and it provides easy tools
to allocate, copy and track GPU memory. So, future users will not need CUDA programming

knowledge to manage GPU memory from python.

e Homogeneous integration with the previous version: Our GPU implementation does not
interfere with the already existing scripts for the COMMIT framework. People with a NVIDIA
GPU can take advantage of the new GPU support, but users without NVIDIA GPUs do not

have to worry about compatibility.

e Stability in the calculations: From Figure 5.1 and Figure 5.2 it can be seen that our GPU

version in very stable and it is not affected by the sparsity of the vector x.

e Improved performance: Our implementation in the GPU with CUDA platform outperforms
the current CPU version. We improved the fitting performance around 12 times; now the
fitting procedure takes a few hours instead of some days. Operations Az and A’y are now
faster than the CPU version. This could be useful in future modifications of the COMMIT

framework.

35

6.2. AREAS OF IMPROVEMENT ANOHARTRE 6VARKNCLUSIONS AND FUTURE WORK

6.2 Areas of Improvement and Future Work

This thesis work had time limitations. Naturally, we have many remaining features to implement
that we were not able to do because of the time limits. We have a list with the future work to do:

To UseTexture Memory: In the implementations of the operations Az and A'y, CUDA threads
access to the look-up tables several times. As we saw, these look-up tables are allocated in global
memory. However, you should note that we never modify the values in the look-up tables. So, we
can take advantage of the texture memory. Similar to constant memory, texture memory is cached
on chip [6.1]. The texture memory is read-only, thus it is faster compared to global memory and it
provides higher bandwidth in special cases. Specifically, texture cache is designed for cases where

threads read 2D data addresses near to each other, see Figure 6.1.

Thread O

Thread 1 \’
Thread 2 ><—>
Thread 3 e, — ——

Figure 6.1: Threads accessing near addresses in a 2D texture memory. This image is property of
NVIDIA Corporation.

Avoiding Bottleneck Associated with the Number of Fiber Segments per Voxel: In the
section 4.6 of this document we mentioned the main bottleneck of our implementation. Voxels with
the highest number of fiber segments determinate the required time to perform Az. Figure 6.2
shows that there are just a few voxels with high amount of fiber segments and a lot of voxels with
a low count of fiber segments. As a consequence, the performance of our implementation receives
high impact on performance. But we could take advantage of that to design new specific kernels

for the voxels with a lot of fiber segments.

96

6.2. AREAS OF IMPROVEMENT ANOHARTRE 6VARKNCLUSIONS AND FUTURE WORK

le7

0.1 0.2 03 04 05 06 07 08 09 1.0 1.1 1.2 1.3
number of fiber segments per voxel led

amount of voxels with that number of fiber segments

Figure 6.2: Histogram of the number of fiber segments per voxel.

Multi — GPU Support: The implementation introduced in the Section 4.4.1 calculates the signals
SIC for every v € {0, ..., n, — 1} in parallel. These signals are independent each other, so we can
distribute them into many NVIDIA GPUs to accelerate the computation of the operation Azx.

Sample Depending Kernels: In the Section 4.6 we introduced an idea which divides, in every
voxel, the number of fiber segments in groups. This idea was restricted to two groups because the
maximum value of ng is 512 and we cannot launch kernels with more than 1024 threads. But with
a data set where ny, = 128, we can create eight groups of CUDA threads in every CUDA block
because 128 * 8 = 1024 which does not exceed the threads limit. Therefore, we can design a kernel

which decides how many threads groups to use by using the value of ng.

a7

APPENDIX A

COMPARTMENT MODELS

A.1 Intra-cellular Models

There are several models for the MRI signal associated with intra-cellular compartments. Any of
these models can be used on the COMMIT framework because COMMIT is very flexible. These

models are shortly explained down below:

1. The Behrens “stick” model [A.1] is a very common and computational lightweight model. This
model describes diffusion in an idealised cylinder with zero radius using the sample direction
n; € R? with 1 < i < n, and diffusivity coeficient d € R, as parameters. So, the entries of
the signal R € R™ for the model are

R, = exp (—bd (n; - G)Q) ,1<i<mng (A1)

where b = (A — §/3) (v |G||)*. The time between the onsets of the two pulses is represented
by A, § is the pulse gradient duration, 7 is the gyromagnetic ratio and G is the gradient

vector.

2. The “cylinder” model [A.2, A.3] describes diffusion in a non-zero radius cylinder. This model
is like an expantion of the previous model because it uses all of the parameters as well as an
extra parameter p, representing a single axon radius. Each entry R; of the signal R € R™s for
the model can be expressed as the product of the signals parallel and perpendicular to the
cylinder axis n; [3.5], so

R; = Sllst (A.2)

a8

A.1. INTRA-CELLULAR MODELS APPENDIX A. COMPARTMENT MODELS

where Sy represents the parallel signal and S;- represents the perpendicular signal. Now, we
shall assume that in the direction parallel to the cylinder water particules move freely. Then

Sy is the same signal as A.1. For the signal S;- we can consider this generalized form

St = exp (L (G G- (G- ni)Z)) (A.3)

where

L

_ o i 2dﬂ,2n($+2Y(6)+2Y(A)—Y(A—é)—Y(AqLé)—Q' (A1)

ongr} 426, ((a/2)2 2 1)

The value 3, is the mth root of the equation % (Ba/2) = 0 where g—é is the first order
derivate of the Bessel function and Y (z) = exp (df2,z).

3. The third model is called “GDRCylinders” and it is basically the same cylinder model. But this
model uses a gamma-distributed radius according to [3.2]. So, instead of the single parameter
p € R, we have a random variable p ~ Gamma («, 8). As parameters for this distribution we
have the shape parameter « and the scale parameter 8. Therefore, the density function of p

is given by

"‘_lexp(—r/ﬂ)'

o 0 B) = —f o (A.5)

Please note that a3 is the mean and /32 is the variance.

39

BIBLIOGRAPHY

[1.1]

[1.2]

[1.3]

[1.4]

[1.5]

[1.6]

[1.7]

[1.8]

[1.9]
[1.10]
[1.11]

[2.1]

Emanuele Olivetti; Nusrat Sharmin; Paolo Avesani. Alignment of Tractograms As Graph

Matching. Frontiers in Neuroscience: Brain Imaging Methods. 2016.

Jun Zhang; Hao Ji; Ning Kang; Ning Cao. Fiber Tractography in Diffusion Tensor Magnetic
Resonance Imaging: A Survey and Beyond. Department of Computer Science, University of
Kentucky. 2005.

Roland Bammer. Basic Principles of Diffusion -Weighted Imaging. European Journal of Ra-
diology. 2002.

Peter J. Basser; James Mattiello; Denis LeBihan. MR Diffusion Tensor Spectroscopy and
Imaging. Biophysical Journal Volume 66. 1994.

Christopher R. Madan. Creating 3D visualizations of MRI data: A brief guide. US National
Library of Medicine; National Institutes of Health. 2015.

Y. Rathi; J Malcolm; S. Bouix; C-F. Westin; M. E. Shenton. False Positive Detection using
Filtered Tractography. Proc. Intl. Soc. Mag. Reson. Med. 18. 2010.

Peter J. Basser; Sinisa Pajevic; Carlo Pierpaoli; Jeffrey Duda; Akram Aldroubi. In Vivo Fiber
Tractography Using DT-MRI Data. Magnetic Resonance in Medicine 44:625-632. 2000.

Ben Jeurissen; Maxime Descoteaux; Susumu Mori; Alexander Leemans. Diffusion MRI Fiber
Tractography of the Brain. NMR in Biomedicine. 2017.

Hugues Duffau. Diffuse Low-grade Gliomas in Adults. Page 393. Springer. 2017.
https://medium.com/retronator-magazine/pixels-and-voxels-the-long-answer-5889ecc18190
https://www.sciencedaily.com /terms/axon.htm

https://blogs.nvidia.com /blog/2009/12/16 /whats-the-difference-between-a-cpu-and-a-gpu/

60

BIBLIOGRAPHY BIBLIOGRAPHY

[2.2]
[2.3]
[2.4]

[2.5]

[2.6]

[2.7]
[2.8]
[2.9]

[3.1]

3.2]

[3.3]

[3.4]

[3.5]

[3.6]

[3.7]

[3.8]

[3.9]

https://www.quora.com/What-is-GPU-and-CPU-differences-and-similarities
https://hardzone.es/2018/04 /22 /memoria-ram-ddr-vs-gddr-diferencias/
https://docs.nvidia.com /cuda/cuda-runtime-api/group_ _ CUDART _ _ UNIFIED.html

Jason Sanders; Edward Kandrot. CUDA By Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley. NVIDIA Corporation. 2011.

John Cheng; Max Grossman; Ty McKercher. Professional CUDA C Programming. Wrox;
NVIDIA Corporation. 2014.

https://docs.nvidia.com /cuda/cuda-runtime-api/group_ _ CUDART __ MEMORY .html
https://www.quora.com/What-is-the-difference-between-GDDR-and-DDR-memory
https://www.quora.com/Why-dont-GPUs-have-branch-predictors

Alessandro Daducci; Alessandro Dal Palu; Alia Lemkaddem; Jean-Philippe Thiran. COM-
MIT: Convex Optimization Modeling for Micro-structure Informed Tractography. IEEE
Transactions on Medical Imaging, 2013.

Eleftheria Panagiotaki; Torben Schneider; Bernard Siow; Matt G. Hall; Mark F. Lythgoe;
Daniel C. Alexander. Compartment models of the diffusion MR signal in brain white matter:

A taxonomy and comparison. Elsevier Inc., 2011.

C. H. Neuman. Spin echo of spins diffusing in a bounded medium. Chevron Oil Field Research
Company, 1973.

Behrens; T.E.J.;Woolrich; M.W.; Jenkinson; M.; Johansen; H. Characterization and propa-
gation of uncertainty in diffusion-weighted MR imaging. Magn. Reson. Med., 2003.

C. H. Neuman. Spin-echo of Spins Diffusing in a Bounded Medium. Chevron Oil Field Re-
search Company. 1973.

Assaf; Y.; Freidlin; R.Z.; Rohde; G.K.; Basser; P.J. New modeling and experimental frame-
work to characterize hindered and rectricted water diffusion in brain white matter. Magn.
Reson. Med., 2004.

J.-D. Tournier; F. Calamante; A. Connelly. Robust Determination of the Fibre Orientation
Distribution in Diffusion MRI: Non-negativity Constrained Super-resolved Spherical Decon-
volution. NeuroImage, Vol. 35. 2007.

N. S. White; T. B. Leergaard; H. D’Arceuil; J. G. Bjaalie; A. M. Dale. Probing Tissue
Microstructure with Restriction Spectrum Imaging: Histological and Theorical Validation.
Hum Brain Mapp, Vol 34, No. 2. 2013.

C. L. Lawson; R. J. Hanson. Solving Least Squares Problems. Society for Industrial and
Applied Mathematics Vol. 161. 1974.

61

BIBLIOGRAPHY BIBLIOGRAPHY

[3.10]

3.11]

[4.1]

[4.2]
|4.3]
[4.4]
[4.5]

[6.1]

[A.1]

[A.2]

[A.3]

[A.4]

Y. Saad. Iterative Methods for Sparse Linear Systems. Society for Industrial and Applied
Mathematics. 2013.

Amir Beck; Marc Teboulle. A Fast Iterative Shrinkage-Thresholding Algorithm for Linear
Inverse Problems. Society for Industrial and Applied Mathematics. 2009.

Nathan Bell; Michael Garland. Efficient Sparse Matrix-Vector Multiplication on CUDA.
NVIDIA Corporation. 2008.

https://github.com/daducci/ COMMIT

https://docs.python.org/3/library/ctypes.html

Mark Harris. Optimizing Parallel Reduction in CUDA. NVIDIA Developer Technology
https://en.wikipedia.org/wiki/Sparse matrix

http://cuda-programming.blogspot.com/2013/02/texture-memory-in-cuda-what-is-
texture.html

Behrens T.E.J.; Woolrich M.W.; Jenkinson M.; Johansen H. Characterization and Prop-
agation of Uncertainty in Diffusion-weighted MR Imaging. Magn. Reson. Med. 1077-1088.
2003.

Alexander D.C. A General Framework for Experiment Design in Diffusion MRI and its
Application in Measuring Direct Tissue-microstructure Features. Magn. Reson. Med. 439-
448. 2008.

Alexander D.C.; Hubbard P.L.; Hall M.G.; Moore E.A.; Ptito M.; Parker G.J.M.; Dyrby
T.B. Orientationally Ivariant Indices of Axon Diameter and Density from Diffusion MRI.
Neuroimage 52, 1374-1389. 2010.

C. H. Neuman. Spin-echo of Spins Diffusing in a Bounded Medium. Chevron Oil Field Re-
search Company. 1973.

62

	Introduction
	Diffusion MRI
	Tractogram
	Tissue Models
	COMMIT Framework
	Motivation
	The CUDA Programming Model
	General Background
	Branch Predictor
	Memory RAM DDR/GDDR

	Program Structure
	Kernels
	Thread Hierarchy
	CUDA Grid
	CUDA Block
	CUDA Wrap
	CUDA Thread

	Device Memory
	Registers
	Local Memory
	Shared Memory
	Global Memory
	Constant Memory

	Measuring Performance

	COMMIT and Problem Statement
	Candidate Tracts
	Response Functions
	Formulation
	Fitting

	Methods and Development
	Look-up Table with the Precomputed DW-MR Signals
	Sparse Structure
	Block Matrix IC
	Block Matrix EC
	Block Matrix ISO

	Preprocessing
	Operation Ax
	Algorithm IC
	Algorithm EC
	Algorithm ISO

	Operation Aty
	Algorithm IC
	Algorithm EC
	Algorithm ISO

	Improving the Speed of the Ax operation
	Integration with COMMIT

	Experiments and Results
	Operation Ax
	Operation Aty
	Model Fitting

	Conclusions and Future Work
	Conclusions
	Areas of Improvement and Future Work

	Compartment Models
	Intra-cellular Models

