

Volumen 10 XXVI Verano de la Ciencia ISSN 2395-9797 www.jovenesenlaciencia.ugto.mx

Análisis de las rutas de síntesis de pared celular en los miembros del clado patogénico del género *Sporothrix*

Ximena Esquivias-Varela¹, Naomi De la Cruz-García², Juan Mauricio Ibarra-Chavira¹, Ana Paulina Vargas-Macías¹, Manuela Gómez-Gaviria¹, Laura C. García-Carnero¹, Héctor Manuel Mora-Montes¹

¹Departamento de Biología, División de Ciencias Naturales y Exactas, Universidad de Guanajuato

Resumen

La esporotricosis es una infección micótica que afecta la piel humana y tejidos subcutáneos y es causada por algunas especies del género Sporothrix. La pared celular es el elemento más externo en la célula fúngica, representando el primer punto de contacto entre el hongo y el hospedero, por lo que el conocimiento de su estructura puede contribuir a la comprensión de la respuesta inmune. La comparación de proteínas que participan en la síntesis de la pared celular de especies del género Sporothrix, principalmente Sporothrix schenckii, con Candida albicans, uno de los hongos patógenos más estudiados, permite conocer posibles factores de virulencia relacionados con la pared celular. En este estudio, mediante el uso de herramientas bioinformáticas, se realizó la búsqueda comparativa de 33 genes que codifican para proteínas involucradas en la síntesis de quitina, β-glucanos y N-/O- glicosilación. Entre C. albicans y S. schenckii, 27 de las 33 proteínas mostraron similitudes significativas (16 exhibiendo más de un 60% de similitud) y únicamente 4 proteínas, Kre1, Kre6, Skn1 y Kre9/Knh1 no presentaron ortólogos, principalmente aquellas relacionadas con la síntesis de β-glucanos. El mayor porcentaje de identidad y similitud fue encontrado en una GTPasa, codificada por el gen Rho1. Las proteínas ortólogas encontradas en S. schenckii se buscaron posteriormente en Sporothrix brasiliensis y Sporothrix globosa. En S. brasiliensis, la especie más virulenta del clado clínico, se encontraron nueve proteínas con un porcentaje de similitud de 99 y cuatro de 100 (siendo estas últimas las codificadas por SPBR_01612, SPBR_02532, con una doble ocurrencia, y SPBR_08521) mientras que en S. globosa pudieron ser encontradas una y tres secuencias del genoma, con porcentajes de similitud de 99 y 100, respectivamente (LVYW01000004.1, con una doble ocurrencia, y LVYW01000005.1, para el porcentaje de 100). Como conclusión, los resultados obtenidos mediante este análisis pueden apoyar en la predicción de un modelo completo de la pared celular de S. schenckii, S. brasiliensis y de S. globosa.

Palabras clave: Sporothrix; pared celular; factores de virulencia; patógenos; bioinformática; sistema inmune.

Introducción

El clado patogénico del género Sporothrix y la esporotricosis

Sporothrix es un género de hongos saprófitos ubicuos del medio ambiente, dividido, según sus características ecológicas, en dos clados: el ambiental y el clínico/patogénico. El clado patogénico de Sporothrix abarca diversas especies, entre las que se encuentran Sporothrix brasiliensis, Sporothrix globosa, Sporothrix albicans, Sporothrix luriei y, como mayor representante, Sporothrix schenckii. (Zurabian & Hernández-Hernández, 2019). Estos organismos se encuentran creciendo principalmente en plantas, madera, así como en restos vegetales. S. schenckii, el principal agente etiológico de la enfermedad denominada esporotricosis, es un hongo termo-dimórfico, es decir, que crece de forma filamentosa a 25° C y en forma de levadura a 37° C en medios enriquecidos y en tejidos parasitados, cuyas condiciones de crecimiento óptimas se encuentran en un rango de pH de 3.5-9.4 y en una temperatura de 25-37° C (de Lima-Barros et al., 2011).

La esporotricosis es una infección micótica, distribuida principalmente en zonas tropicales y subtropicales, donde la temperatura y la humedad favorecen el crecimiento del agente causal. En humanos afecta la piel y tejidos subcutáneos, contrayéndose mediante inoculación traumática por contacto con plantas, madera o materia orgánica contaminada por el hongo. Únicamente en 1947 se registraron hasta 3000 casos en África, asociados al contacto de personas con madera contaminada. A finales de 1990 se vinculó la transmisión de esporotricosis con los gatos, llegando a ser considerada como zoonosis. (Naranjo-Bustamante & Cardona-Castro, 2021; De Lima-Barros *et al.*, 2011). Como enfermedad, la esporotricosis es altamente polimórfica y presenta manifestaciones que pueden ir desde la aparición de lesiones subcutáneas en solitario, hasta formas de afección sistémicas en huesos y diversos órganos, en los casos más graves. El polimorfismo de esta infección está relacionado con la virulencia de la especie o cepa, el tamaño del inóculo y con la diversidad en la respuesta inmune del hospedero (Amado & Bonifaz, 2011).

²Escuela de Nivel Medio Superior de Guanajuato, Colegio de Nivel Medio Superior, Universidad de Guanajuato

00000000000000000000000

Volumen 10 **XXVI Verano de la Ciencia** ISSN 2395-9797 www.jovenesenlaciencia.ugto.mx

Composición, biosíntesis y papel de la pared celular en la virulencia

La pared celular es el elemento más externo en la célula fúngica, por lo que representa el primer punto de contacto entre el hongo y el hospedero. En los hongos patógenos más estudiados, como es el caso de *Candida albicans*, la pared está compuesta principalmente por quitina, β -glucanos y manoproteínas, por lo que representa una de las fuentes más importantes de moléculas conocidas como Patrones Moleculares Asociados a Patógenos (PAMPS), que son necesarios para la virulencia del hongo y para desencadenar la respuesta inmune. Sin embargo, de *S. schenckii* poco se sabe acerca de la pared celular, en comparación con otros hongos, conociéndose que está constituida también por quitina, β -glucanos (con enlaces 1–3, 1–6, y 1–4) y péptido-ramnomananas (Lopes-Bezerra *et al.*, 2018; Martínez-Álvarez *et al.*, 2014). De igual forma se conoce que las proteínas que conforman la pared tienen un papel como agentes inmunoprotectores, ya que pueden inducir respuestas de inmunidad celular, al igual que humoral, por lo que son candidatas potenciales tanto para objetivos diagnósticos como para la generación de vacunas en la prevención de las infecciones fúngicas (Alba-Fierro *et al.*, 2014).

Otro aspecto importante que considerar para la evaluación de la respuesta inmune es la virulencia. En los hongos, esta última está compuesta por múltiples elementos: los factores de virulencia, que se definen como moléculas características del patógeno capaces de causar daño al hospedero, y cuya ausencia desencadena una reducción de la virulencia. La identificación de tales factores está estrechamente relacionada con la búsqueda de genes y proteínas involucrados en la síntesis de la pared. La estrategia que se ha usado hasta el momento para la predicción de factores de virulencia en algunos hongos es la comparación de posibles genes ortólogos de especies ya descritas (Tamez-Castrellón *et al.*, 2020). En *C. albicans*, un hongo dimórfico, se tienen bien caracterizados los factores de virulencia, que van desde la morfogénesis levadura-hifa, la formación de biopelículas, hidrolasas secretadas, hasta adhesinas asociadas a la superficie celular (Yeh *et al.*, 2020). La pared participa en los procesos de adhesión y filamentación en esta levadura, por lo que dicha estructura contribuye considerablemente a la virulencia (Pardini *et al.*, 2006). El conocimiento de los genes involucrados en la síntesis de la pared celular de *C. albicans* hace plausible la búsqueda comparativa entre esta especie y *S. schenckii*, mediante el uso de herramientas bioinformáticas. El objetivo del presente trabajo consiste en realizar una predicción de posibles factores de virulencia involucrados en la síntesis de la pared celular de las principales especies del clado patogénico de *Sporothrix* para el análisis posterior, también predictivo, de la respuesta inmune a la infección por las especies *S. schenckii*, *S. brasiliensis* y *S. globosa*.

Materiales y Métodos

Bases de datos

Para la realización de la búsqueda comparativa, se empleó principalmente la base de datos del National Center for Biotechnology Information (NCBI) (https://www.ncbi.nlm.nih.gov) y la herramienta Basic Local Alignment Search Tool (BLAST) (https://blast.ncbi.nlm.nih.gov/Blast.cgi). Como auxiliares en la obtención de datos complementarios se recurrió a las bases EnsemblFungi (https://fungi.ensembl.org/index.html) y Candida Genome Database (http://www.candidagenome.org).

Búsqueda comparativa de proteínas de Candida albicans en Sporothrix spp.

En la base de datos del NCBI se recopilaron las secuencias FASTA de 33 proteínas codificadas por genes involucrados en la síntesis de quitina, β-glucanos y *N-/O*- glicosilación ya referidos en *C. albicans*, generando un BLAST (blastp) con *S. schenckii*. A partir de estos resultados, se realizó un segundo BLAST con *S. brasiliensis* y *S. globosa*, a fin de determinar la similitud entre las especies del género *Sporothrix*. Para la búsqueda en *S. globosa*, al tener un genoma no anotado, la herramienta empleada fue un BLAST tblastn realizado directamente desde el genoma ensamblado, donde se buscó la secuencia de nucleótidos que pudiera coincidir con la de aminoácidos introducida, en este caso, de *S. schenckii*. En la selección de las proteínas similares se consideró como principal criterio el E. Value, tomándose en cuenta únicamente a aquellas proteínas que exhibieran el menor valor en dicho parámetro, cercano a cero.

Valores considerados

De los BLAST *C. albicans* à *S. schenckii* y *S. schenckii* à *S. brasiliensis* y *S. globosa* se recuperaron el E. value, % similitud (positivos), % cobertura y % identidad. Para cada proteína de *S. schenckii* y *S. brasiliensis* se reportan además los Nº de acceso, junto con el respectivo locus tag del gen. En *S. globosa* se reporta el sequence ID y el rango de nucleótidos.

Volumen 10 XXVI Verano de la Ciencia ISSN 2395-9797 www.jovenesenlaciencia.ugto.mx

Resultados

Proteínas involucradas en la síntesis de la pared celular de *C. albicans* presentes en *S. schenckii*

De las 33 proteínas de C. albicans sometidas al análisis comparativo, 27 de ellas presentaron ortólogos en S. schenckii, mientras que 4 no mostraron similitudes significativas. De las 27 proteínas ortólogas, 16 exhibieron más del 60% de identidad y similitud entre ambas especies. De los tres grupos analizados, síntesis de quitina, síntesis de β -glucanos y N-/O- glicosilación, 4 proteínas corresponden al primero, 2 al segundo y 10 al último. La mayor identidad y similitud entre ambas especies fue encontrada en una GTPasa, codificada por el gen Rho1, con un valor de 80/87%, respectivamente.

Los valores arrojados por la herramienta BLAST para las 32 proteínas comparadas están desglosados para su consulta en **Anexos, tabla 1**.

Tabla 1. Proteínas implicadas en la síntesis de la pared celular de *C. albicans* y sus posibles ortólogos en *S. schenckii* (NCBI). Las proteínas enlistadas exhiben un porcentaje de similitud mayor o igual a 60.

Protein/Gene	Description	Best Hit (Locus Tag)	% Similarity	% Identity	E. value
	Chiti	n synthesis			
Chs2	Chitin synthase	SPSK_08492	68	51.1	0
Chs8	Chitin synthase	SPSK_08492	65	46.92	0
Chs1	Chitin synthase	SPSK_06891	67	52.52	0
Chs3	Chitin synthase	SPSK_04841	66	51.86	0
		can synthesis			
Kre6	Beta-glucan synthesis-associated protein		significant sim	•	
Skn1	Beta-glucan synthesis-associated protein SKN1		significant sim	•	
Kre9/Knh1	Cell wall synthesis protein KRE9	No:	significant sim	ilarity found	
Kre1	Beta-glucan synthase	No:	significant sim	ilarity found	
Rho1	Regulates beta-1,3-glucan synthesis activity and binds Gsc1p.	SPSK_09084	87	80	4E-113
Meq_00226	1,3-beta-glucan synthase [Sporothrix schenckii 1099-18]	SPSK_01365	75	63.25	0
	<i>N</i> -and <i>C</i>	7- glycosylation			
Van1	Member of Mnn9 family of mannosyltransferases	SPSK_07218	64	51.38	7E-121
Anp1	Putative mannosyltransferase of Golgi	SPSK_07218	79	67.91	1E-178
Mnn9	Mannosyltransferase complex subunit	SPSK_09403	73	51.51	1E-113
Mnn10	Alpha-1,6-mannosyltransferase	SPSK_08675	64	46.35	2E-118
Kre2	Alpha-1,2-mannosyltransferase KRE2	SPSK_09069	75	57.22	2E-160
Pmt2	Protein mannosyltransferase (PMT) with roles in hyphal growth and drug sensitivity	SPSK_08548	65	47.63	0
Pmt4	Protein mannosyltransferase	SPSK_08628	63	45.78	0
Mnt1/Ktr1	Alpha-1,2-mannosyl transferase	SPSK_09069	75	57.22	2E-160
Mnt2k	Alpha-1,2-mannosyl transferase	SPSK_09069	79	57.8	4E-149
Mnt3	Mannosyltransferase	SPSK_09069	68	48.72	2E-108

Análisis comparativo de S. schenckii con las especies S. brasiliensis y S. globosa

Las mejores coincidencias entre especies del complejo *Sporothrix* se obtuvieron con *S. brasiliensis*. De las 32 proteínas predichas para *S. schenckii* a partir del BLAST *C. albicans* à *S. schenckii*, en la comparación con *S. brasiliensis*, 9 presentaron un porcentaje de similitud de 99 y 4 de 100. Para el caso de *S. globosa*, las similitudes cercanas a 99 y 100 fueron menores, correspondiendo a 1 y 3 proteínas, respectivamente. La información desglosada de las 32 proteínas comparadas se encuentra en **Anexos**, **tabla 2**.

00000000000000000000000

Volumen 10 XXVI Verano de la Ciencia ISSN 2395-9797 www.jovenesenlaciencia.ugto.mx

Tabla 2. Mejores coincidencias de las proteínas predichas de S. schenckii en S. brasiliensis y S. globosa (NCBI). Las proteínas presentadas exhiben porcentajes de similitud de 99/100.

Protein/Gene	В	est Hit	% Simil		% Ider	ntity	E. valu	ie
S. schenckii	S. brasiliensis	S. globosa	S. brasiliensis	S. globosa	S. brasiliensis	S. globosa	S. brasiliensis	<i>S.</i>
)		_		globosa
SPSK_08492	SPBR_08106	LVYW01000005.1	99	96	98.58	96	0	0
SPSK_08492	SPBR_08106	LVYW01000005.1	99	96	98.58	96	0	0
SPSK_06891	SPBR_02298	LVYW01000004.1	99	95	98.98	84.34	0	0
SPSK_04841	SPBR_06424	LVYW01000001.1	99	95.61	99	99	0	0
SPSK_00374	SPBR_06358	LVYW01000001.1	99	98	98.66	97.12	0	0
SPSK_08459	SPBR_01291	LVYW01000005.1	99	98	98.94	94.27	0	0
Kre6		No significant similarity found						
Skn1	No significant similarity found							
Kre9/Knh1				nificant simila				
Kre1			No sigi	nificant simila	rity found			
SPSK_09084	SPBR_01612	LVYW01000002.1	100	84	100	77.95	0	0
SPSK_05833	SPBR_04558	LVYW01000006.1	99	98	99.21	87.15	0	0
SPSK_07218	SPBR_02532	LVYW01000004.1	100	92	100	84.04	0	0
SPSK_07218	SPBR_02532	LVYW01000004.1	100	92	100	92	0	0
SPSK_09403	SPBR_08521							
SPSK_08675	SPBR_08405	LVYW01000005.1	99	100	98.86	99.09	0	0
SPSK_08548	SPBR_01344	LVYW01000002.1	97	100	97.1	99.36	0	0
SPSK_08628	SPBR_08186	LVYW01000005.1	99	99	99.74	99.71	0	0
SPSK_08548	SPBR_01344	LVYW01000002.1	97	100	97.1	99.36	0	0

Discusión

Diferencias y similitudes significativas entre C. albicans y S. schenckii

Se ha demostrado, mediante microscopía electrónica, que la pared celular de *C. albicans* está constituida por dos capas: una interna electrodensa más cercana a la membrana, compuesta de quitina y β-1,3 glucanos, y una capa externa fibrilar de glicoproteínas. La quitina únicamente representa entre 1-2% de la masa celular, y el 5% de esta corresponde a quitosana (Mora-Montes *et al.*, 2011). La quitina es un homopolisacárido de *N*-acetilglucosamina con enlaces β-1,4, que en el caso de *C. albicans* es sintetizado por las quitina sintasas Chs1, Chs2, Chs3 y Chs8 (Pérez-García *et al.*, 2016; Tamez-Castrellón *et al.*, 2020). Debido a su importancia en la viabilidad de la célula, en la virulencia del hongo y en la síntesis de quitina, estos genes fueron seleccionados para realizar un BLAST blastp *C. albicans* à *S. schenckii*. El análisis bioinformático arrojó que los 4 genes se encuentran en un rango de 65-68 respecto al porcentaje de similitud entre estas dos especies (Tabla 1), siendo *Chs2* el gen con mayor grado de similitud, 1% por encima de *Chs1*, a pesar de que se ha demostrado que los mutantes en *C. albicans* que carecen de *Chs2* o *Chs3* son viables pero con niveles reducidos de quitina. (Tamez-Castrellón *et al.*, 2020). Cabe mencionar que, de lo estudiado en *C. albicans*, Chs3 es la proteína encargada de sintetizar el 80% de la quitina, por lo que se esperaría que exhibiera el mayor por centaje de similitud, sin embargo, resultó ser el segundo más bajo. Además, las mutantes nulas de *Chs8* en *C. albicans* no mostraron diferencias morfológicas o cambios en el contenido de quitina tanto en las células de levadura como de las hifas (Tamez-Castrellón *et al.*, 2020) por lo que, como se esperaba, este gen corresponde al de menor grado de similitud entre especies.

Para los genes *Kre6, Skn1, Kre9/Knh1y Kre1*, también involucrados en la síntesis de β-glucanos, la ausencia de ortólogos en *S. schenckii* puede deberse, principalmente, a dos factores importantes: la divergencia evolutiva entre ambos géneros y la posible presencia de otros genes que cumplen funciones similares. Ambas especies se encuentran separadas taxonómicamente desde el nivel de clase. *C. albicans* pertenece a la clase Hemiascomycetes/Saccharomycetes, mientras que *S. schenckii* se encuentra en los Euascomycetes, en la clase Sordariomycetes. En adición a esto, se sabe que *C. albicans* contiene, como azúcares de la pared, únicamente glucosa y manosa, en una proporción de 55 y 45% respectivamente, siendo que *S. schenckii* posee glucosa, manosa, galactosa

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Volumen 10 XXVI Verano de la Ciencia ISSN 2395-9797 www.jovenesenlaciencia.ugto.mx

y ramnosa, con 58, 34, 2 y 6% respectivamente (Schweigkofler *et al.,* 2002). Con estos datos se puede formular la hipótesis de que, dada la diversidad de azúcares en la pared de *S. schenckii* con relación a *C. albicans*, estas enzimas no son requeridas en *S. schenckii* para el ensamblaje de β-glucanos. Sin embargo, esto aún necesita ser estudiado y comprobado. Por otra parte la presencia de otros genes en *S. schenckii* que lleven a cabo una función similar puede estar relacionada a la ausencia de estos genes. Para el caso de *Kre6* y su parálogo *Skn1*, se ha reportado que ambos genes son necesarios para el correcto crecimiento de *Saccharomyces cerevisiae*, pues las cepas mutantes nulas de los dos genes exhiben defectos de crecimiento al no poder sintetizar paredes celulares normales (Uchiyama *et al.,* 2018). En *C. albicans* la deleción de *Kre6* puede conducir a una reducción considerable de la virulencia, presentándose también los defectos de crecimiento mostrados en *S. cerevisiae* (Han *et al.,* 2019). Sin embargo, *S. schenckii* no presenta defectos de crecimiento a pesar de la posible ausencia de dichos genes, según la predicción bioinformática, por lo que *Kre6* y *Skn1* probablemente no son fundamentales para la síntesis de la pared celular en esta especie, o posee una proteína que cumple una función similar. Estas mismas explicaciones pueden ser aplicadas para *Kre1* y *Kre9*, cuyas mutantes nulas en *S. cerevisiae* muestran una reducción de hasta el 80% de la cantidad de β-glucanos en la pared (Pan *et al.,* 2017).

Con un 40%, las glicoproteínas representan uno de los principales componentes de la capa más externa de la pared celular, y los oligosacáridos unidos covalentemente son actores fundamentales en la interacción hospedero-patógeno, la respuesta a factores de estrés, adhesión y funciones relacionadas con la virulencia (Tamez-Castrellón *et al.*, 2020; Mora-Montes *et al.*, 2009). Durante la elaboración de *O*-glucanos, la proteína manosiltransferasa (Pmt) es la encargada de transferir el primer residuo de manosa de dolicol fosfato manosa a un residuo de serina o treonina. En *C. albicans* esta actividad es llevada a cabo por esta familia de proteínas (Pmt), agrupada en tres subfamilias: Pmt1 (que comprende Pmt1 y Pmt5), Pmt2 (que comprende Pmt2 y Pmt6) y Pmt4. Estudios realizados demuestran que la pérdida de cualquiera de estas proteínas afecta la morfogénesis, la adherencia al hospedero y la virulencia, además, miembros de cada una de las subfamilias han sido ya identificados en *S. schenckii*, entre ellos Pmt4 y Pmt2, que tras la realización del BLAST obtuvieron un porcentaje de similitud de 63 y 65% respectivamente, en comparación con *C. albicans*. Así pues, también se encontraron genes de estas subfamilias, como *Pmt1y Pmt6*, que no arrojaron resultados relevantes. Los genes mutantes de *Mnt1y Mnt2*, encargadas de alargar los *O*-glucanos en *C. albicans*, han mostrado disminución en la adherencia a las células epiteliales bucales del humano y una virulencia atenuada, enmarcando la importancia de esta ruta de biosintética de la pared celular y la interacción con el hospedero. (Munro *et al.*, 2005; Tamez-Castrellón *et al.*, 2020). Se han identificado únicamnete tres α-1,2-manosiltransferasas en *S. schenckii*, entre ellas se encuentra SPSK_09069 (Mnt1/Ktr1, Mnt2k y Mnt3), que en los análisis bioinformáticos, Mnt2k fue la que mostró mayor grado de simitud con *C. albicans*, de 79%, no obstante los otros dos también mostraron valores de similud significativos (tomando en cuenta que son especies distintas). La

A pesar de que la α-1,6 manosiltransferasa Och1 en *C. albicans* es la primera enzima involucrada en la elaboración de la cadena exterior de *N*-glucanos, y que las mutantes de con este gen nulo han mostrado defectos en la pared celular y virulencia atenuada (Tamez-Castrellón *et al.*, 2020), no se encontró similitud significativa con *S. schenckii.* También se ha demostrado que las mutantes de *C. albicans* que carecen de Mnn9, encargada de elongar más la cadena exterior de *N*-glucanos, presentaron severos defectos en la pared celular y mala adherencia a las células epiteliales, por lo que Mnn9, junto con su ortólogo identificado con anterioridad en *S. schenckii,* SPSK_07218, sí mostraron similitudes significativas con *S. schenckii,* a diferencia de Och1.

Diferencias y similitudes significativas entre especies de Sporothrix

Según señalan Rodrigues *et al.* (2018), dentro del clado patogénico de *Sporothrix, S. brasiliensis* presenta una clara divergencia evolutiva con *S. schenckii,* siendo este último de carácter ancestral en comparación con el primero, que además presenta una mayor patogenicidad para los mamíferos. Ambas especies divergieron hace alrededor de 3.8–4.9 millones de años. Así mismo, presentan una diferencia de genes putativos considerable (10,293 en *S. schenckii* y 9,091 en *S. brasiliensis*) (Martínez-Álvarez *et al.*, 2017). *S. globosa*, por el contrario, se encuentra ligeramente alejada de *S. schenckii* y *S. brasiliensis* evolutivamente, teniendo carácter ancestral para ambos, también de acuerdo con Rodrigues *et al.* (2018), siendo la menos patógena de las tres especies analizadas y la que presenta menores porcentajes de similitud dentro de las comparaciones llevadas a cabo con *S. schenckii,* encontrándose únicamente 3 secuencias nucleotídicas de posibles proteínas ortólogas con un porcentaje de similitud de 99 o 100. Es necesario recordar que, respecto a las proteínas relacionadas con la síntesis de la pared, se estima que la cantidad de estas varía entre especies, así como de acuerdo con las condiciones ambientales, que van desde el pH y temperatura, hasta el estrés biótico o abiótico. Las condiciones o estadíos de crecimiento (levadura, hifa, conidio) son otro factor que contribuyen a dicha variación (Pontón, 2008). Este señalamiento explica, en buena medida, las ligeras diferencias entre *S. schenckii* y *S. brasiliensis/S. globosa.*

Conclusión

Los resultados arrojados por este estudio permiten abrir un panorama en la comprensión de las composiciones estructurales de las paredes celulares de las especies del género *Sporothrix* pertenecientes al clado patogénico. Con ayuda de herramientas bioinformáticas, como el análisis mediante BLAST con organismos ya bien caracterizados, el

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Volumen 10 XXVI Verano de la Ciencia

ISSN 2395-9797

www.jovenesenlaciencia.ugto.mx

objetivo de crear un modelo predictivo completo de la pared celular tanto de S. schenckii y S. brasiliensis como de S. globosa, se encuentra más cercano. Además, la información arrojada puede contribuir al análisis, también predictivo, de la respuesta inmune del hospedero ante *S. globosa*, basado en la información disponible para *S. schenckii* y *S. brasiliensis*, pues las diferencias de similitud e identidad entre las proteínas asociadas a la síntesis de la pared celular que pueden ser factores de virulencia de las tres especies son reducidas. A pesar de esto, aún se requieren más datos experimentales que corroboren las predicciones bioinformáticas presentadas en este trabajo.

Referencias

- Alba-Fierro, C. A., Pérez-Torres, A., López-Romero, E., Cuéllar-Cruz, M., & Ruiz-Baca, E. (2014). Cell wall proteins of Sporothrix schenckii asimmunoprotective agents. Revista Iberoamericana de Micología, 31(1), 86-89. doi:https://doi.org/10.1016/j.riam.2013.09.017
- Amado, S., & Bonifaz, A. (2011). Clasificación de la esporotricosis. Una propuesta con base en el comportamiento inmunológico. Dermatología Rev Mex, 55(4), 200-208. Obtenido de
- https://www.medigraphic.com/pdfs/derrevmex/rmd-2011/rmd114g.pdf
 Ayats-Ardite, J. (s.f.). *Sporothrix schenckii*. Barcelona: Control Calidad SEIMC. Obtenido de https://www.seimc.org/contenidos/ccs/revisionestematicas/micologia/esporo.pdf
- de Lima-Barros, M. B., de Almeida-Paes, R., & Oliveira-Schubach, A. (2011). Sporothrix schenckii and Sporotrichosis.
- Clinical Microbiology Reviews, 24(4), 633–654. doi:10.1128/CMR.00007–11

 Díaz-Jimenez, D., Pérez-García, L., Martínez-Álvarez, J., & Mora-Montes, H. (2012). Role of the Fungal Cell Wall in Pathogenesis. 6, 275–282. doi:DOI 10.1007/s12281–012–0109–7
- Han, Q., Wang, N., Yao, G., Mu, C., Wang, Y., & Sang, J. (2019). Blocking β-1,6-glucan synthesis by deleting KRE6 and SKN1 attenuates the virulence of *Candida albicans*. *Molecular Microbiology*, *111*(3), 604-620. doi:https://doi.org/10.1111/mmi.14176
- Lopes-Bezerra, L. M., Walker, L. A., Niño-Vega, G., Mora-Montes, H. M., Neves, G. W., Villalobos-Duno, H., . . . Gow, N. A. (2018). Cell walls of the dimorphic fungal pathogens *Sporothrix schenckii* and *Sporothrix brasiliensis* exhibit bilaminate structures and sloughing of extensive and intact layers. *PLOS Neglected Tropical* Diseases, 12(3), e0006169. doi:https://doi.org/10.1371/journal.pntd.0006169
- Lozoya-Pérez, N., Casas-Flores, S., de Almeida, J., Martínez-Álvarez, J., López-Ramírez, L., Jannuzzi, G., . . . Mora-Montes, H. (2018). Silencing of OCH1 unveils the role of *Sporothrix schenckii* N-linked glycans during the host-fungus interaction. *Infect. Drug Resist., 12*, 67–85. doi:http://dx.doi.org/10.2147/IDR.S185037
- Martínez-Álvarez, J. A., Pérez-García, L. A., Flores-Carreón, A., & Mora-Montes, H. M. (2014). The immune response against *Candida* spp. and *Sporothrix schenckii. Revista Iberoamericana de Micología, 31*(1), 60–62. doi:https://doi.org/10.1016/j.riam.2013.09.015

 Martínez-Álvarez, J. A., Pérez-García, L. A., Mellado-Mojica, E., López, M. G., Martínez-Duncker, I., Lópes-Bezerra, L. M., & Mora-Montes, H. M. (2017). *Sporothrix schenckii sensu stricto* and *Sporothrix brasiliensis* Are
- Differentially Recognized by Human Perpherial Blood Mononuclear Cells. *Frontiers in Microbiology, 8*(843). doi:https://doi.org/10.3389/fmicb.2017.00843
 Mora-Montes, H. M., Netea, M. G., Ferweda, G., Lenardon, M. D., Brown, G. D., Mistry, A. R., . . . Gow, N. A. (2011).
- Recognition and Blocking of Innate Immunity Cells by Candida albicans Chitin. Infection and Immunity, 79(5).
- doi:https://doi.org/10.1128/IAI.01282-10

 Mora-Montes, H. M., Ponce-Noyola, P., Villagómez-Castro, J. C., Gow, N. A., Flores-Carreón, A., & López-Romero, E. (2009). Protein Glycosylation in *Candida. Future Medicine, 4*(9), 1167-1183. doi:https://doi.org/10.2217/fmb.09.88
- Munro, C., Bates, S., Buurmnan, E., Hughes, H., Maccallum, D., Bertram, G., . . . Gow, N. (2005). Mnt1p and Mnt12p of *Candida albicans* are partially redundant alpha–1,2–mannosyltransferases that participate in O-link mannosylation and are required for adhesion and virulencie. *J. Biol. Chem, 280*(2), 1051–1060. doi:http://dx.doi.org/10.1074/jbc.M411413200
- Naranjo-Bustamante, N., & Cardona-Castro, N. (2021). Sporotrichosis. Clinical spectrum in immunocompetent and immunosuppressed patients. *Piel, 36*(6), 383–388. doi:https://doi.org/10.1016/j.piel.2020.05.025
- Pan, H.-P., Wang, N., Tachikawa, H., Nakaninshi, H., & Gao, X.-D. (2017). β-1,6-glucan synthesis-associated genes are required for proper spore wall formation in *Saccharomyces cerevisiae. Yeast, 34*(11), 431-446. doi: https://doi.org/10.1002/yea.3244
 Pardini, G., De Groot, P. W., Coste, A. T., Karababa, M., Klis, F. M., de Koster, C. G., & Sanglard, D. (2006).
- Glycosylphosphatidylinositol Proteins with a Predicted Transglycosidase Domain Affects Cell Wall Organization and Virulence of *Candida albicans. Journal of Biological Chemistry, 281*(52), 40399–40411. doi:https://doi.org/10.1074/jbc.M606361200

 Pérez-García, L. A., Csonka, K., Flores-Carreón, A., Estrada-Mata, E., Mellado-Mojica, E., Németh, T., ... Mora-Montes, H. M. (2016). Role of Protein Glycosylation in *Candida parapsilosis* Cell Wall Integrity and Host Interaction.
- Frontiers in Microbiology, 7(306). doi:http://dx.doi.org/10.3389/fmicb.2016.00306

 Pontón, J. (2008). La Pared Celular de los Hongos y el Mecanismo de Acción de la Anidulafungina. Revista Iberoamericana de Micología, 25, 78–82. doi:1130-1406/01/10.00

 Rodrigues A.M., d. H. (2018). Feline Sporotrichosis. En S. Seyedmos, de Hoog, J. Guillot, & V. P., Emerging and
- Epizootic Fungal Infections in Animals (págs. 199-231). Springer. doi: https://doi.org/10.1007/978-3-319-72093-7_10
- Schweigkofler, W., Lopandic, K., Molnár, O., & Prillinger, H. (2002). Analysis of phylogenetic relationships among Ascomycota with yeast phases using ribosomal DNA sequences and cell wall sugars. *Organisms Diversity and Evolution*, 2(1), 1-17. doi:https://doi.org/10.1078/1439-6092-00029

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Volumen 10 XXVI Verano de la Ciencia

ISSN 2395-9797 www.jovenesenlaciencia.ugto.mx

Tamez-Castrellón, A. K., Romeo, O., García-Carnero, L. C., Lozoya-Pérez, N. E., & Mora-Montes, H. M. (2020). Virulence Factors in *Sporothrix schenckii*, One of the Causative Agents of Sporotrichosis. *Current Protein and Peptide Science*, *21*, 295–312. doi:10.2174/1389203720666191007103004

Uchiyama, H., Iwai, A., Dohra, H., Ohnishi, T., Kato, T., & Park, E. Y. (2018). The effects of gene disruption of Kre6-like

proteins on the phenotype of β-glucan-producing Aureobasidium pullulans. Applied Microbiology and Biotechnology, 102, 4467–4475. doi:https://doi.org/10.1007/s00253–018–8947–z

Yeh, Y.-C., Wang, H.-Y., & Lan, C.-Y. (2020). Candida albicans Aro1 affects cell wall integrity, biofilm formation and virulence. Journal of Microbiology, Immunology and Infection, 53(1), 115–124. doi:https://doi.org/10.1016/j.jmii.2018.04.002

Zurabian, R., & Hernández-Hernández, F. (2019). Esporotricosis: la micosis subcutánea más frecuente en México. Revista de la Facultad de Medicina (México), 62(5), 48–55.

doi:https://doi.org/10.22201/fm.24484865e.2019.62.5.09

ANEXOS

Los presentes anexos contienen la totalidad de los datos obtenidos durante los BLAST blastp y tblastn realizados en el estudio.

Tabla 1. Proteínas implicadas en la síntesis de la pared celular de C. albicans y sus posibles ortólogos en S. schenckii (NCBI). Las proteínas sombreadas en rosado corresponden a aquellas que presentan un porcentaje de similitud igual o mayor a 60. Las proteínas sombreadas en rojo no presentaron similitudes significativas.

Protein/Gene	Description	Best Hit (Locus	%	%	Ę.
		Tag)	Similarity	Identity	Value
	Chitin Synthesis				
Chs2	Chitin synthase	SPSK_08492	68	51.1	0
Chs8	Chitin synthase	SPSK_08492	65	46.92	0
Chs1	Chitin synthase	SPSK_06891	67	52.52	0
Chs3	Chitin synthase	SPSK_04841	66	51.86	0
	β-glucan Synthesis				
Kre5	UDP-glucose:glycoprotein glucosyltransferase	SPSK_00374	57	38.98	2E- 128
Cwh41	Processing alpha glucosidase I	SPSK_05967	58	39.85	0
Rot2	Alpha-glucosidase II	SPSK_08459	59	43.71	0
Cne1	Calnexin	SPSK_03189	57	44.02	5E- 100
Kre6	Beta-glucan synthesis-associated protein	No sign	ificant simila	rity found.	
Skn1	Beta-glucan synthesis-associated protein SKN1	No sign	ificant simila	rity found.	
Kre9/Knh1	Cell wall synthesis protein KRE9	No sign	ificant simila	rity found.	
Kre1	Beta-glucan synthase	No sign	ificant simila	rity found.	
Rho1	Regulates beta-1,3-glucan synthesis activity and binds Gsc1p.	SPSK_09084	87	80	4E-113
Meq_00226	1,3-beta-glucan synthase [Sporothrix schenckii 1099-18]	SPSK_01365	75	63.25	0
Rom2	Putative GDP/GTP exchange factor	SPSK_05833	58	37.05	2E- 167
	N- and O - Glycosylation				
Och1	Alpha 1,6-Mannosyltransferase	SPSK_09242	49	31.53	5E-30
Van1	Member of Mnn9 family of mannosyltransferases	SPSK_07218	64	51.38	7E-121
Anp1	Putative mannosyltransferase of Golgi	SPSK_07218	79	67.91	1E-178
Mnn9	Mannosyltransferase complex subunit	SPSK_09403	73	51.51	1E-113
Mnn10	Alpha-1,6-mannosyltransferase	SPSK_08675	64	46.35	2E-118
Mnn11	Alpha-1,6-mannosyltransferase	SPSK_01796	52	33.99	1E-41
Mnn2	Alpha 1,2-mannosyltransferase	SPSK_04129	50	29.24	1E-40
Kre2	Alpha-1,2-mannosyltransferase KRE2	SPSK_09069	75	57.22	2E- 160
Mnn6	Alpha 1,2-mannosyltransferase	SPSK_04129	42	26.62	4E-51
Mnn1	Alpha 1,2-mannosyltransferase	SPSK_04129	37	21.97	2E-06

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Volumen 10 XXVI Verano de la Ciencia

ISSN 2395-9797 www.jovenesenlaciencia.ugto.mx

Pmt1	Dolichyl-phosphate-mannose-protein mannosyltransferase	SPSK_05892	58	43.44	0
Pmt2	Protein mannosyltransferase (PMT) with roles in hyphal growth and drug sensitivity	SPSK_08548	65	47.63	0
Pmt4	Protein mannosyltransferase	SPSK_08628	63	45.78	0
Pmt6	Protein mannosyltransferase	SPSK_08548	56	42	0
Mnt1/Ktr1	Alpha-1,2-mannosyl transferase	SPSK_09069	75	57.22	2E- 160
Mnt2	Alpha-1,2-mannosyl transferase	SPSK_09069	79	57.8	4E- 149
Mnt3	Mannosyltransferase	SPSK_09069	68	48.72	2E- 108

Tabla 2. Mejores coincidencias de las proteínas predichas en *S. schenckii con S. brasiliensis* y *S. globosa.* Las proteínas marcadas en verde oscuro corresponden a aquellas que presentan un porcentaje de similitud de 99/100. Las proteínas marcadas en verde claro son aquellas que no presentaron similitudes significativas.

Protein/Gene	E	Best Hit		% Similarity		% Identity		E. Value	
S. schenckii	S. brasiliensis	S. globosa	5.	5.	5.	5.	<i>S.</i>	5.	
		_	brasiliensis	globosa	brasiliensis	globosa	brasiliensis	globosa	
SPSK_08492	SPBR_08106	LVYW01000005.1	99	96	98.58	96	0	0	
SPSK_08492	SPBR_08106	LVYW01000005.1	99	96	98.58	96	0	0	
SPSK_06891	SPBR_02298	LVYW01000004.1	99	95	98.98	84.34	0	0	
SPSK_04841	SPBR_06424	LVYW01000001.1	99	95.61	99	99	0	0	
SPSK_00374	SPBR_06358	LVYW01000001.1	99	98	98.66	97.12	0	0	
SPSK_05967	SPBR_04701	LVYW01000006.1	97	96	96.75	88.66	0	0	
SPSK_08459	SPBR_01291	LVYW01000005.1	99	98	98.94	94.27	0	0	
SPSK_03189	SPBR_00375	LVYW01000003.1	95	97	94.6	89.93	0	0	
Kre6			No signif	icant similari	ty found.				
Skn1				icant similari					
Kre9/Knh1			No signif	icant similari	ty found.				
Kre1		No significant similarity found.							
SPSK_09084	SPBR_01612	LVYW01000002.1	100	84	100	77.95	0	0	
SPSK_01365	SPBR_04029	LVYW01000002.1	98	97	97.99	89.46	0	0	
SPSK_05833	SPBR_04558	LVYW01000006.1	99	98	99.21	87.15	0	0	
SPSK_09242	SPBR_08457	LVYW01000005.1	96	90	96.1	82.58	0	0	
SPSK_07218	SPBR_02532	LVYW01000004.1	100	92	100	84.04	0	0	
SPSK_07218	SPBR_02532	LVYW01000004.1	100	92	100	92	81	77	
SPSK_09403	SPBR_08521	LVYW01000005.1	100	95	100	89.03	0	0	
SPSK_08675	SPBR_08405	LVYW01000005.1	99	100	98.86	99.09	0	0	
SPSK_01796	SPBR_03779	LVYW01000002.1	98	97	98.36	96.90	0	0	
SPSK_04129	SPBR_05737	LVYW01000007.1	90	88	88.30	80.96	0	0	
SPSK_09069	SPBR_08384	LVYW01000005	98	90	97.58	81.72	0	0	
SPSK_04129	SPBR_05737	LVYW01000007.1	90	88	88.30	80.96	0	0	
SPSK_04129	SPBR_05737	LVYW01000007.1	90	88	88.30	80.96	0	0	
SPSK_05892	SPBR_04624	LVYW01000006.1	98	97	97.72	88.71	0	0	
SPSK_08548	SPBR_01344	LVYW01000002.1	97	100	97.1	99.36	0	0	
SPSK_08628	SPBR_08186	LVYW01000005.1	99	99	99.74	99.71	0	0	
SPSK_08548	SPBR_01344	LVYW01000002.1	97	100	97.1	99.36	0	0	
SPSK_09069	SPBR_08384	LVYW01000005.1	98	90	97.58	81.72	0	0	
SPSK_09069	SPBR_08384	LVYW01000005.1	98	90	97.58	81.72	0	0	
SPSK_09069	SPBR_08384	LVYW01000005.1	98	90	97.58	81.72	0	0	