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Abstract

In this work we propose an alternative explanation to the nature of dark matter which

consists of an unconventional space-time structure of fields transforming in the (1, 0)⊕
(0, 1) representation of the Homogeneous Lorentz Group (HLG), conventionally de-

scribed using an equivalent antisymmetric tensor with two indices, thus we name it

Tensor Dark Matter (TDM).

We review the spinor-like formalism for these fields and use it to describe free dark mat-

ter fields establishing the corresponding effective field theory for interactions with stan-

dard model fields. In this framework, we calculate the decay widths of Z0 and Higgs

bosons into TDM, compare the results with the invisible width limits for these bosons

and find a relation between the mass of the TDM field and the values of the coupling

constants. Then, we describe the calculation of the relic abundance and obtain bounds

on the mass and the couplings of TDM from the observed value of the dark matter relic

density. Considering these results, we test our hypothesis against experimental data.

From the direct detection bounds set by XENON1T data we find that the spin-portal

coupling is severely constrained. In regards to indirect detection limits, we find that the

Gamma-Ray Excess that exists in the center of our Galaxy can be explained with a scalar

coupling to the Higgs of gs ∈ [0.98, 1.01] × 10−3 and M ∈ [62.470, 62.505] GeV. This

sharp result is found to be consistent with other indirect detection bounds, such as an-

nihilation into µ+µ−, τ+τ−, γγ and b̄b. We show that including TDM annihilation into

the antiproton production from cosmic rays improves the fit to the Antiproton-Proton

ratio from the AMS-02 data.

Our prediction that these observables can be explained by a TDM field with M ≈ MH/2,

along with the fact that the leading terms in the interaction Lagrangian are dimension-

four, motivates the exploration of the possibility of dark matter interactions coming

from a dark gauge structure. This is done by including a dark gauge group that involves

a factor U(1)d subgroup that mixes kinetically with the U(1)Y of the standard model.

We work out the consequences of this proposal.
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Chapter 1

Introduction

In humanity’s search for the comprehension of the world around us, not frequently

have we witnessed such successful endeavor as the development of particle physics.

The Standard Model (SM) is the theory put together for the purpose of describing the

phenomena regarding three of the four fundamental forces that we know exist in the

universe, so called the electromagnetic, weak and strong forces. Such a theory beats

the myth of the lone genius, since it is a team effort of hundreds of brilliant minds

that worked from different perspectives and approaches, taking as basis the particle

physics paradigm with a history spawning since the beginning of the 20th century with

experiments regarding the atomic theory, and formally starting with the idea of a quan-

tization of the electron field by Paul Dirac in the late 1920s. With the union between

non-relativistic quantum mechanics and the special theory of relativity and electrody-

namics, Dirac would lay the foundation of modern high-energy physics with a theory

that emphasized elegance over practicality.

For Dirac, the beauty of a concept was more important than the consistency with an

experiment, something that was not much of a problem at the moment since, as he wrote

in 1927, "hardly anything has been done up to the present on quantum electrodynamics" [1]. In

time, Dirac would be convinced of the contrary, that a theory no matter how elegant or

beautiful, is only complete when it agrees with the experiment. Thankfully, not too long

after, his theory began to reproduce results, when the observation of the positron by

Carl Anderson in 1932 [2], gave clearance to the idea of antimatter predicted by Dirac,

in what he called a sea of particles with negative energy. This was only the beginning for

the important breakthrough presented by the particle physics paradigm.

Throughout the second half of the 20th century, great efforts and the collaboration of

hundreds of scientist and institutions from all over the world culminated with the dis-

covery of the Higgs boson in 2012, the last piece of the Standard Model puzzle and the

set of fundamental particles that conform the known matter content of our universe
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(see Fig. 1.1). This Quantum Field Theory encompasses the interactions of electromag-

netic, weak and strong forces by the exchange of the corresponding spin-one gauge

fields in what is known as a non-abelian gauge theory where the symmetry group is

SU(3)C × SU(2)L × U(1)Y, a theory which is theoretically self-consistent, that is, free

of anomalies. With the experimentally found mass value of MH = 125 GeV and the

mass of the heaviest quark, Mt = 175 GeV, the Standard Model is also recognized as a

consistent perturbative scheme for the calculation of properties of systems at very high

energies compared to the currently accessible by particle accelerators (the Large Hadron

Collider, for example, has set the record for total collision energy of 13 TeV).

FIGURE 1.1: Elementary particles of the Standard Model (for a complete
review of their properties see Ref. [3]). The first three columns, quarks
and leptons, are called fermions and are divided in three generations (I, II,
III). The first generation constitutes the ingredients of the ordinary matter

we observe in our day-to-day life.

The SM is successful at predicting properties and phenomena for the interactions it was

set up to describe, for example, the anomalous magnetic dipole moment of the elec-

tron predicted by quantum electrodynamics is the most accurately verified prediction

in physics, agreeing with the experimental measurement to more than 10 significant fig-

ures. While also measured precisely, the same level of precision is not achieved for the

muon [4], which exceeds the SM prediction by 4.2σ, and its one of the discrepancies that

have yet to be deciphered. There are also many other unanswered questions that as par-

ticle physicists we aspire to address. For starters, gravitational interactions have yet to

be included and we have not yet arrived to a full realization of quantum mechanics and

general relativity as a consistent (quantum field) theory. There is also a visible excess of

matter against antimatter, also known as baryon asymmetry [5], that we would like to

attempt to explain. Additionally, the SM scheme works with the assumption that neu-

trinos are massless, but this is in fact not the case as seen from neutrino experiments. If

we were to modify the theory to accommodate neutrino masses [6], there is still no elu-

cidation as to their nature, whether it is a Majorana or a Dirac neutrino. Some attempts
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to solve these obscure aspects of physics involve some extension or modification of the

SM theory, which is often referred to as physics beyond the standard model.

Another fundamental problem that physicists face is the failure to account for as much

as 95% of the energy content of our universe today. From the observation of the relic ra-

diation from the Big Bang, what we know as the Cosmic Microwave Background (CMB)

[7], and assuming the ΛCDM cosmological model as correct, we know that the conven-

tional matter described by the Standard Model represents only 4.9% of the mass/energy

density of the universe, while 26.0% is formed by what is known as dark matter and the

remaining 68.9% corresponds to an unknown form of energy called dark energy that

would be behind the accelerated expansion of the universe. The last two are not in-

cluded or even elucidated by the successful theory mentioned above. The focus of this

work is the first of these two crucial ingredients of the cosmos, dark matter. What is it

and how do we know it exists?

First, let us understand the signs that indicate the presence of this mysterious phenom-

ena.

1.1 Observational evidence of dark matter

Throughout history, the creation of knowledge involves two fundamental principles.

One, that the Universe contains something that, until perceived, remains unknown to

us, and two, that as new things are discovered, the development of new technology

helps us reveal new phenomena that was previously undiscovered. In short, new dis-

coveries foster the creation of technology which boosts further discoveries. This spe-

cially occurs when it comes to astronomy. For centuries, the wonder caused by the

presence of the celestial bodies motivated the search and description of their composi-

tion and movement. Johannes Kepler, in the early 17th century, would formulate what

is known today as the laws of planetary motion, where he explains the way in which

the bodies of the solar system move through elliptical orbits. Isaac Newton would use

these notions to formulate the first physical law of universal gravitation [8].

Over the years, several observations indicated a deviation from Newton’s law of uni-

versal gravitation. When we attempt to solve such inconsistencies, one can choose to

completely discard the theory or propose the existence of forces or bodies that act as

causes of these deviations. For example, the existence of the planet Neptune was pro-

posed precisely to account for deviations in planetary orbits, and was finally discovered

in 1846 [9]. In a similar way, the existence of a planet between the Sun and Mercury was

proposed in 1840, but after Einstein’s theory of general relativity solved the problem,

the existence of this planet was disproved. Astronomical discrepancies fall into one



4 Chapter 1. Introduction

of these two categories, where problems derived from observations that cannot be ex-

plained with known laws imply either the existence of an object or entity that we have

not seen, or that the theory which predicts the non-observed result has to be reviewed.

In 1933, Fritz Zwicky, a Swiss-American astronomer, studied the redshifts of various

galaxy clusters and noticed differences in the apparent velocities of eight galaxies in the

Coma Cluster [10]. He then applied the virial theorem to estimate its mass. This theo-

rem relates the averaged total kinetic energy of a stable discrete particle system with its

potential energy, widely used in astronomy to quantify the mass and size of galaxies.

Zwicky found that for a galaxy cluster of the size of the Coma Cluster, the velocity dis-

persion of its galaxies should be around 80 km/s, in contrast with the observed average

velocity dispersion of 1000 km/s. He concluded that there was a presence of "dunkle

Materie" (or dark matter) in much greater amounts than that of the luminous matter

of the cluster. This is often quoted as the first observation (and usage of the term) of

dark matter, but in fact such idea was formed as earlier as 1906, when Lord Kelvin at-

tempted to estimate the amount of non-luminous matter in the Milky Way, where he

stated that many stars within the galaxy might have been extinct or not bright enough

to be observed, but still present as to affect the velocities of the stars. Henri Poincaré,

in discussions with Lord Kelvin about this novel idea, explicitly called this phenomena

"matiere obscure" [11].

Despite there being multiple accounts of discrepancies between observable matter and

the apparent matter content from velocity distributions of galaxies after Zwicky’s state-

ment, the problem did not present an immediate concern in the field of astrophysics un-

til the 1970s[12]. This is when the observations of the M31 rotation curve were published

by Vera Rubin and Kent Ford [13], and the optical data presented became a clearer and

explicit argument for the need to understand the discrepancy in rotation curves, which

peaked at larger radii than predicted. More observations on this regard began to appear

during this decade. Taking the Newtonian dynamics that describe the orbits of stellar

objects, the rotational velocity of an object that orbits at a distance r from the center of

a galaxy is v(r) =
√

GM(r)/r, where M(r) is the mass enclosed within r. Thus, one

expects that the velocity distribution scales as 1/
√

r. However, the observations indi-

cated that rotation curves became flat as one goes far from the center of the galaxy, as

obtained by Rogstad and Shostak in 1972 [14] (see Fig. 1.2).

Soon, more similar observations would appear, and the argument emerged, that in order

to have a rotation curve such as registered by the data, there had to be an object with

the density profile of a halo within the galaxy that absorbed and emitted no light (see

an example in Fig. 1.3). By looking that the mass-to-light ratio indicated by rotation

curves of various galaxies and clusters, it was found that the masses of these objects was
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FIGURE 1.2: Rotation curves (right) for five galaxies as opposed to the
hydrogen surface density profile (left) obtained by Rogstad and Shostak
in 1972 [14]. R80 is the radius containing 80% of the observed hydrogen.

underestimated by a factor of about ten [15, 16]. This occurrence was the first convincing

piece of evidence that a form of matter unobserved by current instruments exists.

FIGURE 1.3: Rotation curve for the galaxy NGC6503 [17]. It is shown that
the measurements indicate the presence of an object with a halo distribu-

tion in addition to the luminous mass profile of the galaxy.

Evidence for dark matter in galaxies and galaxy cluster spiked interest in astronomers
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and astrophysicists who began to question the nature of this invisible material, consid-

ering first the possibility that said missing mass could consist of compact objects, much

less luminous than ordinary stars, known as "MACHOs" (massive astrophysical com-

pact halo objects)[12]. A proposal by Bohdan Paczynski envisioned a way to search for

these compact objects within the dark halo of the Milky Way using the phenomena of

gravitational microlensing [18]. Gravitational lensing is a phenomenon predicted by

Einstein’s theory of general relativity, in which light is deflected by gravity. In this case,

monitoring the stars of a nearby galaxy, detecting variations in their brightness could

indicate the presence of massive objects. For a dark halo to consist entirely of MA-

CHOs, the microlensing optical depth, that is, the ratio of stars that would be magnified

is one in two million. With this purpose, over a period of almost six years, the MACHO

Collaboration reported the light curves of 40 million stars, where 14 to 17 possible mi-

crolensing events were identified, which was about the expected background rate [19].

Later, the EROS Collaboration added another seven years of data, only one microlens-

ing event was identified, which placed an upper limit of 8% on the halo mass fraction

from MACHOs [20, 21], which indicated that the missing mass in the Milky Way’s halo

could not be produced in its entirety by these compact objects.

An even stronger case against the MACHOs alternative in explaining the missing mass

of the galaxies comes from the cosmic baryon density as a result from measurements

of primordial light element abundances and the cosmic microwave background. The

observation of the energy composition of the universe presents a compelling argument

for the existence of this strange type of matter, which will be described in the following

section.

1.2 Energy content of the universe

There is an epoch in the history of the universe, around 378,000 years after the Big Bang,

where free electrons were bounded to protons forming hydrogen, known as the recom-

bination period. This combination of electrons and protons generally occur in a high

energy state, so the transition to the low energy state emits photons. The photons that

are not captured by other hydrogen atoms are said to decouple, that is, are able to travel

longer distances. This electromagnetic radiation can be detected today as radio waves

in what is known as the cosmic microwave background (CMB). Observation of the CMB

(CMB) points to an important idea, that the universe appears to be homogeneous and

isotropic on large scales, pointing to the fact that all positions in the universe are essen-

tially comparable (see Fig. 1.4). Around the 1940s, George Gamow, Ralph Alpher, and

Robert Herman began to formulate what is now known as the Big-Bang model [22]. This

model proposes that the early universe began as extremely dense and hot, and that with
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FIGURE 1.4: Internal Linear Combination Map (ILC), which is a linear
combination of the WMAP (Wilkinson Microwave Anisotropy Probe)
maps, at five different frequencies. This map shows the anisotropy of

the CMB [23].

the passage of time it expanded and cooled, resulting in the presence of a "relic" radia-

tion at the background of the universe, with a temperature of the order of a few Kelvin.

The cosmic microwave background, and the observation of a temperature around 3 K,

distinguish the Big Bang model as the most likely to describe the universe.

The geometry of the universe can be described by the curvature parameter k (k = 1

indicates a closed curvature, k = 0 is for a flat universe and k = −1 stands for an

open curvature). In the late 1920s, after the derivation of the Friendman equations by

including the metric of a homogeneous and isotropic universe into Einstein’s field equa-

tions [24], it was discovered that the universe is expanding at a calculable rate [25, 26],

that is, that the structures immerse in the universe are moving away from each other.

This expansion can be measured using the parameter R(t). The metric that describes

this geometry is known as the Friedmann-Lemaître-Robertson-Walker (FLRW) metric,

described by

ds2 = gµνdxµdxν = −dt2 + R2(t)
[ dr2

1− kr2 + r2(dθ2 + sin2θdφ2)
]

, (1.1)

where we are considering c = 1. The equations of motion are derived from the Einstein

equations,

Rµν −
1
2

gµνR = 8πGNTµν + Λgµν, (1.2)

where gµν is the metric in Eq. (1.1), Rµν is the Ricci tensor that depends on the metric

and its derivatives, with R ≡ gµνRµν being the Ricci scalar. GN is the Newton constant

and Tµν is the energy-momentum tensor. Rµν and Tµν are defined as follows for a perfect
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fluid [3, 27],

Rµν = ∂αΓα
µν − ∂νΓα

µα + Γα
βαΓ

β
µν − Γα

βνΓ
β
µα, (1.3)

Tµν = −pgµν + (p + ρ)uµuν,

where p stands for the isotropic pressure, ρ is the energy density, u = (1, 0, 0, 0) is the

velocity of the isotropic fluid and Γσ
λδ is called the Christoffel symbol, defined as [28],

Γσ
λδ =

1
2

gση
(∂gηδ

∂xσ
+

∂gση

∂xδ
− ∂gσδ

∂xη

)

. (1.4)

From the Einstein equations one can derive the Friedmann equation. For µ = ν = 0, the

trace of R in Eq. (1.2) is

( Ṙ
R

)2
≡ H2 =

8πGNρ

3
− k

R2 +
Λ

3
. (1.5)

We define as critical density as that which renders k = 0 when Λ = 0,

ρc =
3H2

8πGN
. (1.6)

The value of the critical density today is ρc,0 =
3H2

0
8πGN

= 1.05371× 10−5h2GeVcm−3 =

2.77536× 1011h2M⊙Mpc−3 [3] where h is a dimensionless number that parametrizes H0,

which is called the Hubble constant, or the value of H today. It should not be mistaken

for the Planck constant, which we set as h̄ = h/2π = 1 within this work. The parameter

h is defined as

H0 ≡ 100 h km s−1 Mpc, (1.7)

and its value was estimated h = 0.677± 0.004 by recent Planck measurements of the

CMB [7]. However, higher values (h = 0.732± 0.013) have been derived from distance-

ladder estimates [29].

We can rewrite Eq. (1.5) in terms of the critical density

H2
( ρ

ρc
+

ρΛ

ρc
− 1
)

=
k

R2 , (1.8)

where ρΛ = Λ
3H2 ρc. The density parameter Ωi = ρi/ρc is the energy density of a species

"i" relative to the critical density. With this, the Friedmann equation can be written as

∑
i

Ωi + ΩΛ − 1 =
k

R2H2 . (1.9)
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The parameters we just described track the history of the Universe, and the strongest

probes we have to describe them come from the evolution of perturbations, that is,

deviations from the homogeneity of the Universe. The density perturbation field which

describes these density fluctiations is defined as

θ(x) ≡ ρ(x)− 〈ρ〉
〈ρ〉 . (1.10)

We can construct a Fourier-space representation of this function,

θ(x) =
∫

d3k
(2π)3/2 θ(k)e−ik·x. (1.11)

One can employ periodic boundary conditions in a cube of large volume V to simplify

the calculation due to an infinite Universe, and computing the variance in the field turns

into a sum over modes of the power spectrum. Let us define

〈θ(k)θ(k′)〉 = |θ(k)|2δ(k− k′) ≡ P(k)δ(k− k′), (1.12)

where we write P(k) instead of P(k) due to the isotropic nature of the fluctuations. We

can see that, since θ(x) is dimensionless, P(k) has the same dimension as k−3. Addition-

ally, it is easy to see that

〈θ(x)θ(x)〉 =
∫ 〈θ(k)θ(k′)〉

(2π)3 e−i(k−k′)·x =
∫

k2dk
2π2 P(k) =

∫

d(lnk)
k3P(k)

2π2 . (1.13)

From here, we define the dimensionless power spectrum, ∆2 (or P), as

∆2(k) ≡ d〈θ2〉
dlnk

=
k3P(k)

2π2 . (1.14)

This function contains the statistical description of the perturbations, and is the most

powerful probe for the parameters of a cosmological model. Finding a fit to the di-

mensional power spectrum to the date gives us the values of the parameters that best

describe the history of the Universe. If the density perturbations obey Gaussian statis-

tics, the power spectum then provides all the properties of the perturbations [3].

It is observed that the CMB has a dipole anisotropy of the order of 10−3, while higher-

order multipole moments are much smaller (10−5) and decaying rapidly for larger mo-

ments, which means fluctuations of temperature in the CMB are only important at large

angular sclaes, and there are only tiny perturbations for small scales. This indicates that

our Universe was very homogeneous at the beginning, and evolved first linearly and
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then non-linearly to form the present structure. The fact that small-scale perturbations

are small is a direct evidence that the matter of the Universe is formed primarily by

non-baryonic (non-interacting with radiation) collisionless matter.

A useful and broadly accepted hypothesis is that the sole mechanism for generating

these perturbations is the cosmic inflation, in which the density fluctuations are gener-

ated during a period of accelerated expansion of the early Universe by the amplification

of quantum fluctuations [30]. For small perturbations, one can calculate their evolution

through available numerical codes such as CAMB or CLASS [31, 32].

The Planck satellite offers important observations on CMB anisotropies which can be

compared with the power spectrum obtained with the numerical codes to fix the param-

eters described above. The first parameter that can be obtained is Ωγ, and is actually

directly measured from the energy of the CMB. By determining its temperature to be

T = 2.7255± 0.0006 K from observations by the Far Infrared Absolute Spectrophotome-

ter (FIRAS) of the CoBE satellite [33], the corresponding value is Ωγ = 2.473× 10−5h−2.

With the data from the primary CMB, and adding the Planck lensing measurements,

while assuming that the dark energy is a cosmological constant, tields a 68% confidence

constraint on Ωtot [3],

Ωtot ≡∑
i

Ωi + ΩΛ = 1.011± 0.006. (1.15)

And adding experimental data of distance measurements of the baryon acoustic oscil-

lations (BAO), yields the value Ωtot = 0.9993± 0.0019 [7]. We can then justify k = 0,

which corresponds to a flat universe. This restriction allow us to relate the density pa-

rameters between each other. Ωb describes the baryonic density, Ωγ the photon density

and Ων the neutrino content. In the Cold Dark Matter (CDM) scheme, where we assume

that interactions of dark matter (whose relative energy density is denoted as Ωc) with

the rest of the species is very small and that the species is non-relativistic, we can predict

the structure formation in the early stages of the universe. With both the assumption of

a cosmological constant, we refer to this scheme as ΛCDM.

With this assumption, a fit of the parameters Ωb and Ωc can be performed with data

from the CMB, combined with measurements from gravitational lensing and baryon

density from big-bang nucleosynthesis (BBN)[7]. The rest of the parameters are ob-

tained from various experimental data such as distance measurements of the baryon

acoustic oscillations (BAO) [3]. Finally, the energy content of the universe is described
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by the following values

Ωγh2 = 2.473× 10−5, (1.16)

Ωνh2 = (∑ mν)/93.04eV ≤ 0.0013,

Ωbh2 = 0.02242± 0.00014,

Ωch2 = 0.1193± 0.0009,

ΩΛ = 0.689± 0.006,

where h = 0.677± 0.004. It is from these values that we state that the ordinary matter,

that is, the elements described by the standard model, conforms only 4.9% of the energy

in the universe, while dark matter constitutes 26.0%, and the remaining 68.9% is what

is known as dark energy. In fact, although galaxy rotation curves were perhaps the

first crucial observations in regards to dark matter, as we mentioned it in the previous

section, in reality the CMB data is the strongest argument for the existance of DM and it

gives a precise measurement of its abundance.

Now that we know for certain that there is a phenomenon that has yet to be explained,

as we mentioned before, the next step to solve the mystery is to propose a solution.

One possibility is to think of the problem of the missing mass in galaxies and clusters

not as a sign of an additional species, but as a problem with the Newtonian gravita-

tional theory. In this regard, the MOND (Modified Newtonian Dynamics) scheme is a

proposal designed to account for the shapes of rotational curves of galaxies and other

extragalactic phenomenology [34], and it has been proven successful at fitting these ob-

servables [35, 36] as well as the baryonic Tully-Fisher relation [37, 38], which empirically

relates the luminosity and the emission line width of a galaxy. However, MOND cannot

completely get rid of the need for dark matter in astrophysical systems such as galaxy

clusters, which comes in contrast with the original idea of MOND solving the missing

mass problem without dark matter. The MOND scheme also has difficulty explaining

structure formation[39], as well as the observed anisotropies in the CMB[40].

We can also consider the solution to the dark matter problem to be a new particle

derivated from an extension of the standard model. First, we must list the requirements

that such particle must accomplish in order to be considered a good candidate for dark

matter.

1.3 Candidates for dark matter

It is said that a proposal is considered a good dark matter candidate when it meets the

following criteria.
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• It must account for the relic density observed by the CMB (see Eq. (1.16)). For

some time, standard model neutrinos were considered possible DM candidates,

however it is easy to calculate the total relic density derived from these species

and realize that it cannot account for the observed abundance, thus they were

discarded [41].

• It must be "cold", that is, non-relativistic before the matter dominated era and can

clump and form the cosmological structures we see today. Hot dark matter is

found to be not sufficient to account for the dark matter content of the Universe

[41], but it can be included in addition to a cold dark matter candidate. Alter-

natively, warm dark matter is also a possibility, in which this form of DM exhibits

properties of both cold and hot DM. In these models, the non-vanishing velocity

of the dark matter particle supresses the power spectrum on small scales, which is

consistent with the observations [42–44].

• It must be effectively neutral, that is, it must interact very weakly with electro-

magnetic radiation to the point that it explains its dark nature. In standard model

terms, it must effectively be a singlet of the SU(3)c × SU(2)L ×U(1)Y group, and

many stringent constraints exist in this regard [45].

• It must leave stellar evolution and Big Bang Nucleosynthesis predictions unchanged

[46]. Additionally, another cosmological signature that puts strong constraints on

galaxy formation models is the Tully-Fisher relation [47], which correlates the ro-

tation velocity of disk galaxies with its baryonic mass, which can be used to test

cosmological models such as ΛCDM [37, 48–50].

• It must be consistent with current experimental bounds. For instance, bounds on

the DM-nucleon scattering cross section set by direct detection experiments such

as XENON1T [51]. There are also bounds on dark matter annihilation into SM

particles from indirect detection experiments, that involve the measurement of the

surplus of gamma ray flux coming from satellite galaxies [52] and the center of the

Milky Way [53]. Additionally, there are also limits for the dark matter production

at high energy colliders [54, 55].

One of the currently proposed dark matter candidates proposed that must give solution

to the mentioned issues are the sterile neutrinos. These are hypothetical particles sim-

ilar to the SM neutrinos, but without weak interactions (aside from mixing) [56]. Light

sterile neutrinos are ruled out from the CMB experiment (although they can be com-

patible if by some mechanism their presence in the early universe is supressed) [57, 58],

so the stringent cosmological and astrophysical constraints on these candidates come

mainly from the dark matter cosmological abundance and the decay products.
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Dark matter candidates could also come from proposals that targeted other problems

of the standard model, such as axions. These are particles introduced as an attempt to

resolve the strong CP problem [59]. The solution involves the postulation of a global

U(1)PQ quasi-symmetry [60], which after being broken spontaneously gives rise to a

quasi-Nambu-Goldstone boson, which is the axion. Although the calculation of the ax-

ion relic density is uncertain and depends on assumptions of its production mechanism,

there are acceptable ranges where axions are able to satisfy experimental constraints on

dark matter, and thus remain a possible candidate [61].

Some dark matter candidates are chosen from popular extensions of the Standard Model.

For instance, candidates from supersymmetry include neutralinos, sneutrinos, graviti-

nos and axinos. For a review of the theoretical, phenomenological and experimental

aspects of some of these candidates, see Ref. [62].

In fact, supersymmetric extensions of the Standard Model predict particles with certain

characteristics that can account for the dark matter relic density, and such coincidence is

known as the WIMP paradigm. This paradigm, which has been by far the most studied

and promising approach to dark matter in the last decades, arose from the observation

that for typical weak-scale pair annihilation cross sections (σ ∼ G2
FT2, where GF is the

Fermi constant), for typical freeze-out temperatures (T ∼ M/20) and electroweak-scale

masses of the order of 100 GeVs, the thermal relic density is consistent with the observed

cosmological density. This paradigm is understood only as a coincidence in terms of the

values of the cross sections, and not unique to weak interactions. Usually, candidates

of this regime fall into the structure of existing SM particles, such as fermion, scalar or

vector fields. However, a recent study concluded that from experimental bounds and

searches, WIMPs with these space time structures have not much room left in terms of

mass-cross section range [63].

1.4 Our hypothesis: tensor dark matter

In this work we propose an alternative explanation to the nature of dark matter. We

consider the possibility that dark matter fields have an unconventional space-time struc-

ture. The standard model is a gauge quantum field theory and basic principles (causal-

ity, cluster decomposition, etcetera) require that fields describing matter and energy

transform in the irreducible representations (irreps) of the Homogeneous Lorentz Group

(HLG).

The Lorentz group is defined as the set of transformations that leave the inner product

of four-vectors invariant, that is, they preserve the quadratic form t2− x2− y2− z2. Such
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transformations include boosts, rotations and time and space translations. The Homo-

geneous Lorentz Group (HLG) is the group that includes these transformations but leav-

ing out the space-time translations. This is not a connected group, as it is formed by four

disjointed components: the isometry which contains time-reversal transformations, one

for spatial reflections, another that includes both time-reversal and spatial reflections,

and one that preserves the direction of time and spatial parity. The latter, SO(3, 1),

which is the subset containing the identity, is also referred as the proper isochronous

HLG.

The proper isochronous HLG transformations are isomorphic to SU(2)× SU(2), that is,

its finite-dimensional irreps are characterized by two SU(2) quantum numbers (a, b).

The subsets of the HLG are mapped one into each other by discrete symmetries and

the symmetries of a free particle include parity. Since the free particle description is

the starting point for the usage of the gauge principle in the standard model, and par-

ity maps the irreps (a, b) ↔ (b, a), we actually need the free fields to transform in the

representations (a, b) ⊕ (b, a), except in the case a = b where the space (a, a) is also

an irrep of parity. The standard model uses only a few of the irreps of the HLG: the

(1/2, 0)⊕ (0, 1/2) for quarks and leptons, the (1/2, 1/2) for gauge bosons and the (0, 0)

for the Higgs boson. Proposals for physics beyond the standard model mentioned above

use the very same representations (except for a few of them like supersymmetric the-

ories which include spin 3/2 particles in the Rarita-Schwinger formalism such as the

gravitino [64, 65]), thus most of the existing candidates for dark matter have conven-

tional space-time structures.

We explore here the possibility that dark matter particles are described by fields trans-

forming in the (1, 0)⊕ (0, 1) representation of the HLG. A field transforming in this rep-

resentation is conventionally described using an equivalent antisymmetric tensor with

two indices, thus we follow the conventional notation and name it Tensor Dark Matter.

This work is organized as follows: In Chapter 2, we review the spinor-like formalism

for fields transforming in the (1, 0)⊕ (0, 1) representation of the Homogeneous Lorentz

Group, use it to describe free dark matter and construct the corresponding effective field

theory for interactions with standard model fields in a hidden scenario.

This effective field theory gives rise to interactions between dark matter and standard

model particles inducing transitions such as the decay of the Z0 and the Higgs bosons

into a dark matter particle-antiparticle pairs for light dark matter. In Chapter 3 we calcu-

late the corresponding decay widths. The calculation of these transitions are straightfor-

ward and train us in the trace techniques for the matrices in the covariant basis. These

transitions should contribute to the invisible widths of the Z0 and H and we obtain the



1.4. Our hypothesis: tensor dark matter 15

first constraints on the mass and couplings of tensor dark matter from the measured

invisible decay widths in this chapter.

With these results in mind, we go forward to the calculation of the most stringent cri-

teria for a dark matter candidate: relic density. In Chapter 4, we describe in detail the

calculation of the relic abundance and obtain bounds on the mass and the couplings of

tensor dark matter from the observation mentioned in Eq. (1.16).

Once we make sure that tensor dark matter can account for the observed relic abun-

dance, we further test our hypothesis against experimental data, such as the bounds set

by direct detection experiments. The principle behind direct detection experiments is

the notion that, if the galaxy contains dark matter particles, they have to pass through

Earth, and we can search for possible signs of interactions between dark matter and

standard model particles. The products of such interaction could appear as recoil en-

ergy of nuclei from, for example, dark matter-nucleon scattering. We give a thorough

explanation of this type of dark matter probe in Chapter 5, where we compare the re-

sults of tensor dark matter-nucleon scattering with current bounds from the XENON1T

experiment [51].

Another source of experimental bounds comes from what are known as indirect dark

matter searches. Indirect detection is a technique that involves the observation of the

products of dark matter annihilations (or decays). Typically, the products that we ob-

serve in this regard come in the form of radiation, of which telescopes and detectors ob-

tain a flux that is proportional to the annihilation (or decay) rate of dark matter. There-

fore, it is natural to assume that if we find an excess of radiation flux coming from the

cosmos, either from the Center of the Galaxy or other astronomical sources, we can set

limits on the annihilation or decay rate for our candidate. In this case, we work with

three main sources. First, the gamma rays coming from the Galactic Center, of which we

describe the flux and its calculation from the tensor dark matter approach in Chapter 6.

In this chapter, we also look into gamma rays coming from a type of stellar object that is

believed to have large amounts of dark matter, called dwarf spheroidal satellite galax-

ies. We go into the details of this signal and arrive to bounds to the mass and couplings

of tensor dark matter.

An additional signal from indirect detection is the cosmic ray antiproton excess, which

is a surplus of antimatter observed in our galaxy and that could be described with the

products of dark matter annihilation. We explain this phenomena and propose tensor

dark matter as a possible explanation in Chapter 7.

As we will see in the course of this work, the main conclusion from the phenomenolog-

ical study of the proposal of a (1, 0) ⊕ (0, 1) space-time structure as a possible frame-

work for a dark matter candidate is that several observables are successfully explained
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with a tensor dark matter particle with a mass M ≈ MH/2, specifically within the

[62.470, 62.505] GeV window and with a scalar coupling to Higgs boson of the value

of gs ∈ [0.98, 1.01] × 10−3. These observables include bounds from Z and H bosons

invisible decay widths, dark matter relic density, direct and indirect detection limits, in-

cluding cosmic ray antiproton excess. This sharp prediction along with the fact that the

leading terms in the interaction Lagrangian are dimension-four, motivated us to explore

a more general construction. In this regard, we introduce the possibility of dark matter

interactions coming from a dark gauge structure, a dark gauge group that includes a

factor U(1)d subgroup that mixes kinetically with the U(1)Y of the standard model. We

work out the consequences of this idea in Chapter 8.

Finally, the conclusions and perspectives concerning this work are presented in Chapter

9. Additionally, the Appendix includes the traceology of the covariant basis for fields

transforming in the (1, 0)⊕ (0, 1) representation, which is used for the calculations per-

taining this proposition.
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Chapter 2

Tensor Dark Matter

The Standard Model (SM) uses only a few representations of the HLG. The Higgs field

transforms in the (0, 0) representation, the gauge fields in the (1/2, 1/2) representation,

while the matter fields, quarks and leptons, use the (1/2, 0) ⊕ (0, 1/2) representation.

Proposals for physics beyond the standard model consider higher spin representations

involving gauge fields such as a spinor-vector in the [(1/2, 0) ⊕ (0, 1/2)] ⊗ (1/2, 1/2)

representation, used in supersymmetry. However, elementary systems with high spin

(or j > 1) have been difficult to describe in the realm of quantum field theory (QFT).

There are many problems in the construction of a QFT for high spin fields which in the

widely used Rarita-Schwinger (RS) formalism can be traced to the constraints on the RS

field necessary to describe single spin states. In the interacting theory these constraints

are modified in such a way that the theory is inconsistent [66–72].

Aiming to construct a consistent QFT for interacting high spin fields, a covariant basis

for the single spin (j, 0)⊕ (0, j) representation was worked out in Ref. [73], where the

cases of j = 1/2, 1 and 3/2 are explicitly derived. The j = 1/2 case correctly reproduces

the conventional basis for the Dirac representation. The j = 1 case corresponds to a

space-time structure that we will employ later in this work for the description of dark

matter, which we will refer to as Tensor Dark Matter. We will describe the formalism

for this representation in this chapter.

2.1 Representations of the Homogeneous Lorentz Group

A Lorentz transformation is a coordinate transformation between two inertial frames

such that xµ → x′µ = Λ
µ
ν xν + aµ, with aµ and arbitrary constant. Such transformation,

by Einstein’s principle of relativity, must satisfy the invariance of a spacetime interval,

in other words

gµνdx′µdx′ν = gµνdxµdxν. (2.1)
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Since aµ is a constant, satisfying the invariance implies that

gµνΛ
µ
αΛν

β = gαβ. (2.2)

Taking the determinant of Eq. 2.2, we arrive at the conclusion that Det(Λ)2 = 1. The full

set of transformations Λ
µ
ν xν + aµ forms a group generally known as the inhomogeneous

Lorentz group or Poincaré group [74]. If we take only transformations with aµ = 0, we

obtain a subgroup called homogeneous Lorentz group. From Eq. 2.2 we can also see that

gµνΛ
µ
0 Λν

0 = g00(Λ
0
0)

2 +
3

∑
µ,ν=1

gµνΛ
µ
0 Λν

0

= −(Λ0
0)

2 +
3

∑
ν=1

(Λν
0)

2 = g00 = −1, (2.3)

which implies that either Λ0
0 ≤ 1 or Λ0

0 ≥ 1. With this, it is easy to see that the Homoge-

neous Lorentz Group (HLG) is formed of four components: with Det(Λ) = ±1 and with

Λ0
0 ≤ 1 or Λ0

0 ≥ 1. This means that the HLG is a disjoint group since, using the transfor-

mations of space inversion (P), time inversion (T) and space-time inversion (PT), we can

chose the proper orthochronous Lorentz group L↑+, which is the one with Det(Λ) = +1 and

Λ0
0 ≥ 1, and the other components would be discrete transformations of P, T or PT of

this subgroup. Therefore, any Lorentz transformation can be written as the product of

an element of the proper orthochronous Lorentz group with one of the aforementioned

discrete transformations [74].

Any representation of the group is defined by the infinitesimal Lorentz transformations,

of the form

Λ
µ
ν = δ

µ
ν + ω

µ
ν , (2.4)

From Eq. 2.2, taking into account ω
µ
ν is an infinitesimal term, we find out that it must

be antisymmetric, e.g. ω
µ
ν = −ων

µ. The corresponding unitary operators are of the form

[75]

U(1 + ω) = 1 +
i
2

ωαβ Jαβ + ... . (2.5)

Since ω
µ
ν is an antisymmetric 4× 4 tensor, we have (4× 3)/2 = 6 independent param-

eters, that is, we have six operators Jµν that describe the Lorentz transformation. We

typically denote them as two Hermitian three-vectors J, which generates rotations and

K, which generates boosts, which can be written as

Ji =
1
2

ǫijk Jjk, Ki = Ji0 = J0i. (2.6)
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From here, we find that these operators have the following properties

[Ji, Jj] = iǫijk Jk, (2.7)

[Ji, Kj] = iǫijkKk, (2.8)

[Ki, Kj] = −iǫijk Jk. (2.9)

This does not form a subalgebra, but we can decouple these commutation relations by

defining two generators

A =
1
2
(J + iK), B =

1
2
(J − iK), (2.10)

which have the commutation relations

[Ai, Aj] = iǫijk Jk, (2.11)

[Bi, Bj] = iǫijkKk, (2.12)

[Ai, Bj] = 0. (2.13)

We can see these form two independent SU(2) algebras with quantum numbers j1 and

j2, each with 2j + 1 degrees of freedom. In conclusion, the HLG is isomorphic to SU(2)⊗
SU(2), and its irreducible representations are described by two SU(2) numbers. For

example, (0, 0) is the trivial representation, which is used to describe scalar fields. We

also have the Weyl representations, (1/2, 0) and (0, 1/2) which are the typical Weyl

spinors or chiral spinors.

Let us work with the case (1/2, 0)⊕ (0, 1/2), which is used to describe the Dirac fermions.

For the j = 1/2 case, the generators J and K have the form [74]

J =

(

τ 0

0 τ

)

, K =

(

iτ 0

0 −iτ

)

, (2.14)

where τ = 1
2 σ, and σ are the Pauli matrices. The matrix form of a rotation and a boost

in this case are

D(θ) = e−iJ·θ = cos
θ

2
− i(σ · n)sin

θ

2
, (2.15)

BR/L(φ) = eiJ·φ = cosh
φ

2
± (σ · n)sinh

φ

2
. (2.16)
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Here the tag R/L refers to the (1/2, 0) representation (right, R) and for (0, 1/2) (left, L).

We introduce parity transformation Π such that the generators transform as

ΠJΠ−1 = J, ΠKΠ−1 = −K. (2.17)

This means that the operators of the subalgebra, A and B transform as

ΠAΠ−1 = B, ΠBΠ−1 = A. (2.18)

This implies that the parity transformation maps from (a, b) to (b, a). If we want our

fields to be invariant under parity, we can only have two forms of representation: same

quantum numbers (j, j) or a combination (j, 0)⊕ (0, j). For the Dirac case, with j = 1/2,

the transformations and the corresponding spinor are

Λ(θ, φ) =

(

ΛR(θ, φ 0

0 ΛL(θ, φ

)

, Ψ(p, λ) =

(

φR(p, λ)

φL(p, λ)

)

, (2.19)

where φR/L(p, λ) are the corresponding states of (1/2, 0) and (0, 1/2), respectively. Par-

ity is defined as

Π =

(

0 1

1 0

)

, (2.20)

and in the rest-frame, Ψ(0) is an eigenstate under parity with eigenvalues π = ±1,

satisfying the following rest-frame parity projection equation

1
2
(1±Π)Ψ(0) = Ψ(0). (2.21)

If we perform a boost on both sides of the equation, we arrive at

(

−π
E+σ·p

m
E−σ·p

m −π

)

Ψ(p, λ) = 0. (2.22)

It is easy to identify that after some work, we arrive at the well-known Dirac equation,

(γµ∂µ ∓m)Ψ(x) = 0, (2.23)

where γµ are the Dirac (gamma) matrices.

One could in principle perform the same analysis for any (j, 0)⊕ (0, j) representation,
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however it results quite complicated for higher spins. Instead, it is more practical in-

stead to work in a covariant formulation where we build a covariant basis for the oper-

ators acting on the (j, 0) ⊕ (0, j) representation, which simplifies the work for higher

spins. Such method is studied in Ref. [73], where the the explicit construction for

j = 1/2 and 3/2 is worked out.

Let us display, as an example, the same (1/2, 0) ⊕ (0, 1/2) representation under this

approach. First, we want to build a basis of covariant operators that act on the (1/2, 0)⊕
(0, 1/2) space. We obtain the explicit form of the operators by performing the exterior

product of the states in the {|j, m〉R, |j, m〉L} basis, which provides a basis for the most

general bilinear in the fields with HLG properties. The decomposition of the external

product of states in this basis gives us the representation of the operators of the basis:

[(1/2, 0)⊕ (0, 1/2)]⊗ [(1/2, 0)⊕ (0, 1/2)] = (0, 0)2 ⊕ (1, 0)⊕ (0, 1)⊕ (1/2, 1/2)2.

(2.24)

From this, we identify that the covariant basis for this representation contains

• Two Lorentz scalar operators in the (0, 0) representation: the identity operator 1

and the chirality operator γ5.

• Six operators transforming in the (1, 0)⊕ (0, 1) representation, which are the group

generators σµν = i
2 [γµ, γν].

• Two traceless symmetric tensors transforming in the (1/2, 1/2) representation,

identified as γµ and γ5γµ.

Steven Weinberg, in 1963 [75], studied the general case for any spin j and the generalized

forms of the γ matrices and all the necessary ingredients to construct the Feynman rules

of the (j, 0) ⊕ (0, j) representation. There he noted that the general form of 2(2j + 1)-

dimensional matrix notation of the equation of motion for the fields, after boosting the

rest-frame parity equation, has the form

[γµ1,µ2,...,µ2j∂µ1∂µ2 · · · ∂µ2j + m2j]Ψ(x) = 0, (2.25)

where in the j = 1/2 case we arrive at the familiar Dirac equation.

With the complete covariant basis, one can easily find all the possible interaction terms

for the fields in this representation, for any value of j. In this regard, we will use this

method to find the corresponding basis for the (1, 0)⊕ (0, 1) representation of the HLG

in the following section.
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2.2 Formalism of the (1, 0)⊕ (0, 1) representation

Fields in this representation are conventionally described by an antisymmetric tensor

with two indices and although we will use an equivalent six-component "spinor" ψ(x),

we call it the Tensor Dark Matter field.

It is important to note that, when one studies the various HLG representations, the

(1, 0)⊕ (0, 1) is associated to the antisymmetric Lorentz tensor of second rank that de-

scribes the electromagnetic field, Fµν. Indeed, one can take this approach and instead

work in a tensorial formulation, as can be seen in Ref. [76]. However it turns out to be

much easier to instead think of the field as a 2× (2j + 1) component spinor, and work

in the same approach as the Dirac fields that were mentioned in the past section. One

can, of course, choose to work this way or with the covariant representation of the fields

and operators such as is convenient. For example, we employ the covariant form when

calculating the traces of the products of the operators in the Appendix.

The QFT for a field transforming in the (1, 0) ⊕ (0, 1) representation including U(1)

gauge interactions was developed in Ref. [77]. We include here the necessary elements

and refer the reader to that work for further details. The starting point is the construc-

tion of the parity-based covariant basis for the (1, 0)⊕ (0, 1) representation space which

is obtained as follows.

Any operator in the (1, 0)⊕ (0, 1) representation space can be obtained from the external

product of the basis of (1, 0)⊕ (0, 1), thus operators transform in the product represen-

tation with the following Lorentz decomposition

[(1, 0)⊕ (0, 1)]⊗ [(1, 0)⊕ (0, 1)] = (0, 0)2 ⊕ (1, 1)2 ⊕ (1, 0)⊕ (0, 1)⊕ (2, 0)⊕ (0, 2).

(2.26)

From this relation we can see that the covariant basis is a set of 6× 6 matrices containing:

• Two Lorentz scalar operators in the (0, 0) representation: the identity operator 1

and the chirality operator χ.

• Six operators transforming in the (1, 0) ⊕ (0, 1) representation, described by an

antisymmetric tensor of rank 2 denoted by Mµν, which are the group generators.

• Two traceless symmetric tensors transforming in the (1, 1) representation, Sµν and

χSµν.

• A four-index tensor with ten independent components transforming in the (2, 0)⊕
(0, 2) representation, Cαβµν.
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Summarizing, the covariant basis for the (1, 0)⊕ (0, 1) representation of the HLG is

{1, χ, Sµν, χSµν, Mµν, Cµναβ}. (2.27)

The explicit construction of these operators goes as follows. First, the group generators

Mµν can be obtained from first principles from the representations of the rotations and

boost generators for (1, 0) and (0, 1) as

M0i = Ki Mij = ǫijk Jk, (2.28)

where J and K are obtained from a straightforward calculation of the (1, 0)⊕ (0, 1) rep-

resentation of the HLG as

J =

(

τ 0

0 τ

)

K =

(

iτ 0

0 −iτ

)

. (2.29)

Here, τ are 3× 3 representation matrices of the generators of the rotation subgroup in

the basis of well defined angular momentum {|1, m〉R} (for the "right" representation

(1, 0)) and {|1, m〉L} (for the "left" representation (0, 1)).

Next, we can also construct the parity operator 1, which makes the switch between the

chiral subspaces (1, 0) and (0, 1) and has the following representation,

Π =

(

0 I3×3

I3×3 0

)

. (2.30)

As it was studied in [73], this parity operator transforms in the (1, 1) representation of

the HLG and is the time component (Π = S00) of the traceless symmetric tensor Sµν.

Therefore, we can write this tensor as

Sµν = Π(gµν − i(g0µ M0ν + g0ν M0µ)− {M0µ, M0ν}). (2.31)

It satisfies Sµ
µ = 0 which leaves only nine independent matrices. This is the conven-

tional tensor used in the literature, where in the j = 1/2 case we would have a rank

2j = 1 operator Sµ = γµ and the chirality operator χ = γ5.

Next we have the chirality operator χ which takes the following form

χ =

(

I3×3 0

0 −I3×3

)

. (2.32)

1Strictly speaking this is the parity operator in the rest frame, in other frames parity operation requires
also to change p → −p. In the following we will also call parity to this rest-frame parity operation for
simplicity.
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It is important to note that parity and chirality anticommute

{Π, χ} = 0, (2.33)

and this is a covariant relation i.e. in general,

{Sµν, χ} = 0. (2.34)

For these representantions, the Lorentz generators satisfy

K = iχJ, (2.35)

so, with the parity operator, we have the following relations

[Π, J] = 0 (2.36)

[Π, K] = 2ΠK. (2.37)

The tensor transforming in the (2, 0)⊕ (0, 2) representation, Cµναβ, is given by

Cµναβ = 4{Mµν, Mαβ}+ 2{Mµα, Mνβ} − 2{Mµβ, Mνα} − 8(gµαgνβ − gµβgνα). (2.38)

It satisfies the following symmetries,

Cµναβ = Cαβµν = −Cνµαβ = −Cµνβα. (2.39)

Additionally, it satisfies the Bianchi identity,

Cµναβ + Cµαβν + Cµβνα = 0. (2.40)

By contracting any pair of indices the tensor vanishes and these symmetries leave only

ten independent components for Cµναβ.
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The operators in the covariant basis satisfy the following algebraic relations

[Mµν, Mαβ] = −i
(

gµα Mνβ − gνα Mµβ − gµβ Mνα + gνβ Mµα
)

(2.41)

[Mµν, Sαβ] = −i
(

gµαSνβ − gναSµβ + gµβSνα − gνβSµα
)

, (2.42)
{

Mµν, Sαβ
}

= εµνσβχSα
σ + εµνσαχSβ

σ, (2.43)

[Sµν, Sαβ] = −i
(

gµα Mνβ + gνα Mµβ + gνβ Mµα + gµβ Mνα
)

, (2.44)
{

Sµν, Sαβ
}

=
4
3

(

gµαgνβ + gναgµβ − 1
2

gµνgαβ

)

− 1
6

(

Cµανβ + Cµβνα
)

, (2.45)

{χ, Sµν} = [χ, Mµν] = [χ, Cµναβ] = 0. (2.46)

The calculation of cross sections below can be reduced to traces of products of matri-

ces in the covariant basis. First, in the construction of the covariant basis the internal

product 〈A|B〉 = Tr(AB) is used and from the orthogonality in the product space we

get

Tr (χ) = Tr (S) = Tr (M) = Tr (χS) = Tr (C) = Tr (χM) = Tr (χC)

= Tr (MS) = Tr (MχS) = Tr (MC) = Tr (SχS) = Tr (SC) = Tr (χSC) = 0. (2.47)

Secondly, the chirality operator satisfies χ2 = 1, anti-commutes with S and commutes

with M and C tensors which can be used to obtain trace results in a simple way. It can

be shown e.g. that the trace of an odd product of S matrices vanishes. For the purposes

of this work, we will need the traces of the following matrices

Tr (SMM) = Tr
(

χ2SMM
)

= −Tr (χSχMM) (2.48)

= −Tr (χSMMχ) = −Tr (SMM)⇒ Tr (SMM) = 0.

The trace of the product of Sµν and Mµν can be obtained making use of Eqs. (2.28) and

(2.31),

Tr
(

Mµν Mαβ
)

= 4(gµαgνβ − gµβgνα) ≡ 4Gµναβ, (2.49)

Tr
(

SµνSαβ
)

= 4
(

gµαgνβ + gµβgνα − 1
2

gµνgαβ

)

≡ 4Tµναβ.
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The trace of products with more terms can be obtained using the algebraic relations

above. As an example, we calculate explicitly,

Tr
(

SµνSαβ Mρσ
)

= Tr
({

Sµν, Sαβ
}

Mρσ
)

− Tr
(

SαβSµν Mρσ
)

= Tr
({

Sµν, Sαβ
}

Mρσ
)

− Tr
(

Sαβ [Sµν, Mρσ]
)

− Tr
(

Sαβ MρσSµν
)

,

Adding a term Tr
(

Sαβ MρσSµν
)

to both sides of the equation and multiplying by 1
2 , we

have

Tr
(

SµνSαβ Mρσ
)

=
1
2

(

Tr
({

Sµν, Sαβ
}

Mρσ
)

− Tr
(

Sαβ [Sµν, Mρσ]
))

(2.50)

= −1
2

Tr
(

Sαβ [Sµν, Mρσ]
)

=
−i
2

Tr
(

Sαβ (gρµSσν − gσµSρν + gρνSσµ − gσνSρµ)
)

= −2i
(

gρµTαβσν − gσµTαβρν + gρνTαβσµ − gσνTαβρµ
)

.

The explicit form of other traces needed in our calculations in this work can be found in

the Appendix.

From Eqs. (2.36) it is clear that parity under rotations is a Lorentz scalar, but not under

boosts. From these relations it follows that performing a boost B(p) = Exp(−iK · p) to

the parity operator yields [73]

B(p)ΠB−1(p) =
Sµν pµ pν

m2 ≡ S(p)
m2 . (2.51)

Performing the same boost to the rest-frame parity projection equation

1
2
(1±Π)ψ(0) = ψ(0), (2.52)

yields the following condition

(Sµν∂µ∂ν + m2)ψ(x) = 0. (2.53)

This is the equation that was proposed by S. Weinberg long ago [75], and has the main

drawback that it contains unphysical solutions. Let us note that (Sµν∂µ∂ν)2 ≡ (S(∂))2 =

∂4. Then, multiplying Eq. (2.53) on the left by Sµν∂µ∂ν −m2 gives

(∂4 −m4)ψ(x) = 0, (2.54)
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which includes the tachyonic solutions, corresponding to the p2 = −m2 Poincarè orbit.

To avoid this, we can use the simultaneous mass and parity projector

p2

m2 P±(p) =
1

2m2 (p2 ± S(p)). (2.55)

Doing this projection to Eq. (2.52) permits to construct a consistent QFT for tensor dark

matter. Performing a boost yields the new equation of motion

[

Σµν∂µ∂ν −M2]ψ(x) = 0, (2.56)

where Σµν = 1
2 (gµν + Sµν).

A suitable Lagrangian can be constructed for this equation of motion given by

L = ∂µψ̄(x)Σµν∂νψ(x)−M2ψ̄(x)ψ(x), (2.57)

where ψ̄(x) ≡ (ψ(x))†Π.

The field ψ(x) has a mass dimension one, so we could consider self-interactions that are

naively renormalizable, adding to the Lagrangian terms such as (ψ̄ψ)2. Other terms are

listed in Ref. [77]. We leave this discussion on hold, as for the purposes of this work

we do not employ or calculate observables concerning self-interactions, however it is an

important aspect of the theory that needs to be addressed in the future.

The field and its adjoint are written in the conventional Fourier series form as

ψ(x) = ∑
λ

∫

d3 p
√

(2π)32E
[aλ(p)U(p, λ)e−ip.x + b†

λ(p)V(p, λ)eip.x]

ψ̄(x) = ∑
λ

∫

d3 p
√

(2π)32E
[a†

λ(p)Ū(p, λ)eip.x + bλ(p)V̄(p, λ)e−ip.x] (2.58)

where U(p, λ) (V(p, λ)) is the particle (antiparticle) solutions to the equation of mo-

tion with polarization λ, with creation (annihilation) operators, aλ(p) (a†
λ(p)) and bλ(p)

(b†
λ(p)), respectively. These operators satisfy the commutation relations

[aλ(p), a†
γ(p′)] = δλγδpp′ , [bλ(p), b†

γ(p′)] = δλγδpp′ . (2.59)
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The conjugated momenta ξ for the fields ψ are calculated by the usual procedure, given

by

ξ̄d =
∂L

∂0ψ̄d
= Σ

0µ
da (∂µψ)a

ξd =
∂L

∂0ψd
= (∂µψ̄)aΣ

µ0
ad . (2.60)

The details of the calculation can be found in Ref. [77], where the final result of the

canonical quantization of the field gives the following commutators between the fields

and their conjugated momenta, for equal time (x0
1 = x0

2)

[ξd(x1), ψb(x2)]x0
1,2=0 = [ξ̄d(x1), ψ̄b(x2)]x0

1,2=0 = −i
(

Σ00 − (J · ∇)2

2m2 S00
)

bd
δ(x1 − x2).

(2.61)

This is the expected result after a classical analysis performed in Ref. [77], where one

finds that the theory only has second-class constraints which can be solved following

the procedure outlined by Paul Dirac in his ancient Lectures on Quantum Mechanics [78].

Additionally, the total energy and total momentum of the field are

H =
(2π)3

V
Σp,λ p0[a

†
r (p)ar(p) + b†

r (p)br(p)], (2.62)

Pi =
(2π)3

V
Σp,λ pi[a

†
r (p)ar(p) + b†

r (p)br(p)]. (2.63)

The charge associated to the U(1) invariance turns out to be

Q =
(2π)3

V
qΣp,λ(−a†

r (p)ar(p) + b†
r (p)br(p)). (2.64)

Contrary to the Dirac theory, for this representation the charge conjugation operator

commutes with the rest frame parity operator, thus the particle and antiparticle have

the same parity. These solutions satisfy the completeness relations

∑
λ

U (p, λ) Ū (p, λ) =
S (p) + M2

2M2 , ∑
λ

V (p, λ) V̄ (p, λ) =
S (p) + M2

2M2 , (2.65)

where S (p) ≡ Sµν pµ pν.

Following the usual procedure, we find the propagator by obtaining the Green’s fuction

(G̃(p)) of the wave equation in Eq. (2.56), so that

(Σµν∂µ∂ν −M2)G̃(p) = I. (2.66)
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The solution is

G̃(p) =
∆(p)

p2 −M2 + iε
, (2.67)

where

∆(p) =
S(p)− p2 + 2M2

2M2 . (2.68)

Thus, the propagator for particles in this representation is given by

iπ(p) = i
S(p)− p2 + 2M2

2M2(p2 −M2 + iε)
. (2.69)

A crucial result of this formalism is that the free field Lagrangian can be decomposed

in terms of the chiral components. First, we use the chiral operator to construct chiral

proyectors that will identify the fields that transform in the (1, 0) representation ("right")

and (0, 1) ("left").

PR =
1
2
(1 + χ), PL =

1
2
(1− χ),

ψR = PRψ, ψL = PLψ. (2.70)

As proyectors, PR and PL have the following properties

PR + PL = I, PRPL = 0, P2
R,L = PR,L. (2.71)

The Lagrangian in Eq. (2.57) can then be decomposed in terms of the chiral fields as

follows

L =
1
2

∂µψR∂µψL +
1
2

∂µψRSµν∂νψR −M2ψRψL + R↔ L. (2.72)

In the massless case of Eq. (2.72), the kinetic term couples the left and right component,

which means it is not invariant under chiral transformations. This implies that (1, 0)⊕
(0, 1) fields cannot have chiral gauge interactions, however vector-gauge are allowed.

In the case of interactions with the SM, these fields can either be SM singlets or only

interact with U(1)Y or SU(3)C gauge fields; SU(2)L interactions are not allowed. This

is the main motivation for us to consider this type of fields to describe dark matter.

2.3 Effective field theory of tensor dark matter

Let us consider the simplest possibility and describe tensor dark matter (TDM) particle

as a field transforming in the (1, 0)⊕ (0, 1) of the HLG. In order to contemplate the con-

sequences of this choice, we must consider the interactions of TDM with the standard

model fields.
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The simplest possibility is for the TDM fields to transform as SM singlets, which means

they do not have standard model charges. This is the most likely case because if the

dark matter fields had U(1)Y or SU(3)C charges, effects of observables regarding this

property would have already been measured by the numerous experiments available

today. However, if there is more than one TDM field, it can have vector-like gauge

interactions with its own dark gauge group. We will assume a U(1)D structure as the

dark gauge group from now on. The purpose of including this dark gauge structure is

to make it possible to distinguish TDM particles from its anti-particles by providing a

dark charge, preventing their direct decay into SM particles.

We do not know how standard model and dark sectors couple at high energies, but we

can understand the effects at low energy by doing an expansion in derivatives of the

fields. The significance of each term will depend on the dimension of the associated

operator, with the most relevant effects corresponding to the lowest dimension. Since

the dark matter fields are standard model singlets, and in turn all standard model fields

are dark sector singlets, for the interacting Lagrangian to be a complete scalar operator

it must be composed of products of singlet dark and SM operators. The general form of

the interaction between dark and SM fields can be written as follows

Lint = ∑
n

1
Λn−4OSMODM (2.73)

where Λ is an energy scale compensating the dimension n of the product of the SM

singlet operators OSM, composed of SM fields and ODM, constructed with TDM fields.

From the standard model side, one of the singlet operators we can use is the U(1)Y stress

tensor, Bµν = cosθW Fµν + sinθW Zµν, where θW is the Weinberg angle, and Fµν and Zµν is

the electromagnetic and Z0 stress tensors, respectively. This operator is of dimension 2

and under any SU(N) transformation U (x), it transforms as

Bµν → U (x)BµνU−1(x). (2.74)

Because it is a U(1) operator, it is invariant after such transformation, thus making it a

singlet. Another singlet operator to include is φ†φ, where φ is the SU(2)L complex Higgs

doublet. This dimension-2 product is the singlet of the 2⊗ 2 = 3⊕ 1 decomposition of

the SU(2)L group, and it is also a singlet under SU(3)c and U(1)Y.

We can form other combinations for SM singlets, such as operators of the form L̄OL,

where L is a left fermion and O = {I, γµ, γ5, γµγ5, σµν}. However, these operators are

dimension 3. This and every other combination will have a higher dimension.

In the case of the tensor dark matter fields, with a dark gauge group U(1)D , the low-

est dimension operators we can form that are singlets of the standard model and dark
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gauge groups have the form ψ̄Oψ, where the operator is one of the 36 matrices of the

TDM covariant basis, O = {1, χ, Sµν, χSµν, Mµν, Cµναβ}. Such terms are of dimension 2,

and taking into account their symmetry properties, we can construct a set of combina-

tions to form the following interaction Lagrangian

Lint = ψ̄(gs1 + igpχ)ψφ̃φ + gtψ̄MµνψBµν, (2.75)

where gs, gp and gt are low energy coupling constants. We will refer to gs (gp) as the

scalar (parity-violating) Higgs portal constant, and gt as the spin portal constant. The

spin portal term is an effective interaction that couples the dark matter field with the

photon and the Z boson, however, notice that it does not involve the weak charges

because the involved operators are singlets, but the coupling occurs through the higher

multipoles (magnetic dipole and electric quadrupole moments) of the dark matter field.

A (1, 0)⊕ (0, 1) field has a magnetic moment that depends on its mass, µ ≈ gt/M, and

its electric quadrupole moment is proportional to QE ≈ gt/M2 [76], therefore the spin

portal interaction between TDM and SM particles will be suppressed at least as k/M,

where k is the photon or Z0 momentum. We also have dimension-4 self-interactions,

which are described in [77]. However, as it was mentioned in the previous section, we

do not calculate observables concerning self-interactions in this work, so we will set

them aside, reiterating that this remains an important aspect of the theory that needs to

be addressed in the future.

After spontaneous symmetry breaking and diagonalizing the gauge sector, we arrive at

the following expression for the interaction Lagrangian

Lint =
1
2

ψ̄(gs1 + igpχ)ψ (H + v)2 + gt cos θW ψ̄MµνψFµν − gt sin θW ψ̄MµνψZµν, (2.76)

where H is the Higgs field, v stands for the Higgs vacuum expectation value and Fµν,

Zµν are the electromagnetic and Z boson stress tensors. The Lagrangian in Eq. (2.76)

gives a set of Feynman rules that are shown in Fig. 2.1. These rules induce transitions

between the tensor dark matter particles and standard model particles.

We can calculate some of these processes and compare our results with existing exper-

imental measurements in order to set constraints on the constants that characterize the

tensor dark matter effective field theory described above. This proposal was published

in Ref. [79], and the results of following three chapters can be found there. Addition-

ally, the continuation of the work followed with the publication of Ref. [80], where we

present some of the final results of Chapter 4 and the results of Chapter 6.
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= i(gs + igpχ) = i(gs + igpχ)v

k, µ

γ
= 2gt cos θWMµνkν

k, µ

Z
= −2gt sin θWMµνkν

FIGURE 2.1: Feynman rules from the leading terms in the effective theory.
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Chapter 3

Constraints from Z and H invisible
widths

The Lagrangian in Eq. (2.76) indicates the possibility of annihilation of tensor dark mat-

ter into standard model particles such as D̄D → f̄ f , γγ, W+W−, Z0Z0, HH, Z0γ, Hγ,

Z0H, under appropriate kinematical conditions. The decays Z0 → D̄D and H → D̄D

are kinematically allowed for light dark matter (M < MZ/2 and M < MH/2, respec-

tively), which could contribute to the invisible Z0 and H decay widths, respectively.

The invariant amplitude for the Z0(k, ǫ)→ D(p1)D̄(p2) decay is calculated as follows

− iM = 2gtSWŪ(p1, λ1)MµνkνV(p2, λ2))ǫµ(k), (3.1)

where SW = sin θW . The averaged squared amplitude, using the completeness relation

in Eq. (2.65), is obtained as follows

∑
λ,λ1,λ2

|MZ→D̄D|2 =|M̄Z|2 =
1
3
(2gtSW)2

(

− gµα +
kµkα

M2
Z

)

× Tr
[(S(p2) + M2

2M2

)

Mµν(p1 + p2)
ν
(S(p1) + M2

2M2

)

Mαβ(p1 + p2)
β
]

=
4
3

g2
t S2

W Tr

[

S(p1) + M2

2M2 Mµν S(p2) + M2

2M2 Mαβ

]

kνkβ(−gµα +
kµkα

M2
Z

).

(3.2)

Using the results of the traceology of matrices in the (1, 0) ⊕ (0, 1) space (see the ap-

pendix), yields the following decay width

Γ(Z0 → D̄D) =
g2

t S2
W

24πM4 (M2
Z − 4M2)3/2(M2

Z + 2M2). (3.3)
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The invisible width of the Z0 boson, that is, the width of the decay into undetected

modes is Γinv
exp(Z) = 499.0 ± 1.5 MeV, reported by the Particle Data Group [3]. This

value includes the decay to νν̄, which can be calculated as follows

Γ(Z0 → ν̄ν) ≡∑
i

Γ(Z0 → ν̄iνi) = ∑
i,α

U2
iα

M2
Z

24πv2

√

M2
Z − 4m2

νi
=

M3
Z

8πv2 =

√
2GF M3

Z

8π
,

(3.4)

where we have neglected the neutrino masses and used the unitarity of the Pontecorvo-

Maki-Nakagawa-Sakata (PMNS) matrix (or neutrino mixing matrix) elements. The Par-

ticle Data Group value for the Z boson mass is MZ = 91.1876 ± 0.0021 GeV and the

most precise measurement of the Fermi constant (reported by the µ − Lan collabora-

tion) is GF = 1.1663788(6)× 10−5 GeV−2 [81]. Using these values, we obtain

Γ(Z0 → ν̄ν) = 497.64± 0.03 MeV. (3.5)

We subtract this quantity from the reported value for the invisible width to get the con-

straint Γ(Z → D̄D) < Γinv
Z ≡ Γinv

exp(Z) − Γ(Z → ν̄ν) = 1.4± 1.5 MeV. The Z boson

decay width into TDM depends on the coupling gt and the dark matter mass M, thus

we can constrain these parameters to the region shown in Fig. 3.1. Explicitly, the upper

limit for the value of gt is written as

gt ≤
[ (1.4)24πM4

S2
W

(

(M2
Z − 4M2)3/2(M2

Z + 2M2)
)−1]1/2

(3.6)

In a similar way, the decay H → D̄D yields the following invariant amplitude

iMH→DD̄ = ivV(p2)(gsI + igpχ)U (p1). (3.7)

Then, the average squared amplitude is

∑
λ,λ1,λ2

|MH→D̄D|2 =
1
3

v2Tr
[(S(p2) + M2

2M2

)

(gSI + igPχ)
(S(p1) + M2

2M2

)

(gSI + igPχ)
]

(3.8)

=
v2

6M4

(

g2
S(6M4 − 4M2M2

H + M4
H) + g2

P M2
H(M2

H − 4M2)
)

.

Which gives the following decay width,

Γ(H → D̄D) =
v2

32πM2
H M4

√

M2
H − 4M2

[

g2
s

(

M2
H

(

M2
H − 4M2)+ 6M4

)

+ g2
p M2

H

(

M2
H − 4M2)

]

.

(3.9)
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The Higgs decay width into TDM depends on the mass M and the coupling constants

gs and gp. The invisible Higgs width has a reported value of Γinv
H = 1.14± 0.04 MeV

[82, 83], for which the contribution of the νν̄ channel is negligible. Fig. 3.1 shows the

constraints on gs, gp arising from the contribution of the Higgs decay into TDM to the

invisible Higgs decay width. The solid lines are the central values and the shadowed

regions correspond to one sigma regions. We can see from a broad review of the results

that the coupling of the spin portal gt can be larger than the Higgs portal constants

gs or gp, by at least one order of magnitude. As a first approximation, for illustrative

purposes, if we assume that gs ≈ gp, the constraint is given by

gs ≈ gp ≤
[ (1.14)16πM2

H M4

v2

(
√

M2
H − 4M2(3M4 − 4M2M2

H + M4
H)
)−1]1/2

. (3.10)

gt consistent with Γ(Z→DD)<ΓZ
inv

gs with gp=0 consistent with Γ(H→DD)<ΓH
inv

gp with gs=0 consistent with Γ(H→DD)<ΓH
inv

gs=gp consistent with Γ(H→DD)<ΓH
inv
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FIGURE 3.1: Parameter space for gt, gs and gp consistent Γ(Z → D̄D) <

Γinv
Z = 1.4± 1.5 MeV and Γ(H → D̄D) < Γinv

H = 1.14± 0.04 MeV for
M < MZ/2. Solid lines correspond to the central values of the invisible

decay widths, and the shadowed region stands for the 1σ value.
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Chapter 4

Tensor Dark Matter Relic Density

The early universe was hot, dense and radiation-dominated, a condition in which the

rate of interactions between the particles was much larger than the rate of the expansion

of the universe, and this energy exchange between the particles caused them to have a

common average temperature, something that is known as thermal equilibrium.

As the universe expands, the average temperature decreases and the interactions be-

tween particles do not occur fast enough, which makes the different species cool down

and the conditions for thermal equilibrium are no longer achieved. It is said that the

species decouple when their rate of interaction is not large enough to compete with the

expansion rate of the universe. This is a crucial step in the formation of new elements.

For example, the formation of hydrogen due to the recombination of electrons and pro-

tons that have decoupled. The information of when and how this step occurs is given

by the evolution of the comoving number density of the species. The species that de-

coupled continue travelling through the universe, its rate of interactions getting lower

as the universe expands and cools down further, and the density of said species that

remains today is called relic density.

As we have mentioned in Chapter 1, the dark matter relic density is measured from the

data of the CMB and is one of the most stringent properties that dark matter candidates

need to account for. In this sense, we want to calculate the relic density for Tensor Dark

Matter to then compare it with the measured value. To obtain it, we must solve the

Boltzmann equation for this species.

4.1 Boltzmann equation

The Boltzmann equation relates the time evolution of the number density with a func-

tion that is related to the interaction rate of the species. We can write this equation in

operator form,

L[ f ] = C[ f ], (4.1)
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where f is the distribution function of the species, L is called the Liouville operator and

C is the collision operator, which is related to the interaction rate. We will proceed to

describe each operator.

The Liouville operator is the time derivative that includes the phase space evolution,

which can be written in covariant form as

L = pα ∂

∂xα
− Γα

βγ pβ pγ ∂

∂pα
, (4.2)

where p is the momentum and Γα
βγ is the second kind Christoffel symbol, and the metric

used to describe our universe, which is isotropic, homogeneous and expanding, is the

Friedmann-Lemaître-Robertson-Walker (FLRW) metric (we refer to Chapter 1 for the

expressions of Γα
βγ and the metric).

Employing the FLRW metric, the Liouville operator acting on f (E, t) is

L[ f (E, t)] = E
∂

∂t
f (E, t)− Ṙ

R
|~p|2 ∂

∂E
f (E, t). (4.3)

Integrating the Eq. (4.1) over the phase space, and dividing by the energy of the system

E, we obtain

g
∫

d3 p
E(2π)3 L[ f (E, t)] = g

∫

d3 p
E(2π)3 C[ f (E, t)]

g
∫

d3 p
(2π)3

[ ∂

∂t
f (E, t)− Ṙ

ER
|~p|2 ∂

∂E
f (E, t)

]

= g
∫

d3 p
E(2π)3 C[ f (E, t)]. (4.4)

Working on the left side of Eq. (4.4), using the fact that the number density in terms of

the distribution function f (E, t) is

n(t) = g
∫

d3 p
(2π)3 f (E, t), (4.5)
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we get

g
∫

d3 p
(2π)3

[ ∂

∂t
f (E, t)− Ṙ

ER
|~p|2 ∂

∂E
f (E, t)

]

= g
[ ∂

∂t

∫

d3 p
(2π)3 f (E, t)− Ṙ

R

∫

d3 p
E(2π)3 |~p|

2 ∂

∂E
f (E, t)

]

=
∂

∂t
n(t)− g

Ṙ
R

∫ dEdΩp

(2π)3 (E2 −m2)3/2 ∂

∂E
f (E, t)

=
∂

∂t
n(t) + 3

Ṙ
R

g
∫ EdEdΩp

(2π)3 (E2 −m2)1/2 f (E, t)

=
∂

∂t
n(t) + 3

Ṙ
R

g
∫

d3 p
(2π)3 f (E, t)

= ṅ(t) + 3
Ṙ
R

n(t)

= R−3 d(R3n)
dt

.

Therefore, Eq. (4.1) can be written as

R−3 d(R3n)
dt

= g
∫

d3 p
E(2π)3 C[ f (E, t)]. (4.6)

We can assume that the only process that is involved in the evolution of the abundance

of a species is the annihilation with its antiparticle, and the inverse process, which can be

expressed as 1+ 2←→ 3+ 4, where we are interested in the production and annihilation

of the species 1 and 2. The right side of Eq. (4.4) can be written as

g
∫

d3 p
E(2π)3 C[ f (E, t)] = −

∫

dΠ1dΠ2dΠ3dΠ4(2π)4δ4(P1 + P2 − P3 − P4)

×
[

|M|21+2→3+4 f1 f2(1± f3)(1± f4)− |M|23+4→1+2 f3 f4(1± f1)(1± f2)
]

, (4.7)

where the ± sign corresponds to a boson/fermion, respectively, and dΠi = d3 p
2Ei(2π)3 .

Pi, fi stand for the momentum and distribution function of particle "i", and |M|2 is the

invariant amplitude of the process. We can consider that the process is time reversal

invariant, in a way that

|M|21+2→3+4 = |M|23+4→1+2 = |M|2. (4.8)
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Rewriting Eq. (4.7), we have

g
∫

d3 p
E(2π)3 C[ f (E, t)] = −

∫

dΠ1dΠ2dΠ3dΠ4(2π)4δ4(P1 + P2 − P3 − P4)

× |M|2
[

f1 f2(1± f3)(1± f4)− f3 f4(1± f1)(1± f2)
]

. (4.9)

In absence of Bose-Einstein condensation or Fermi degeneracy, the term (1± fi) ≃ 1.

Thus, we write,

g
∫

d3 p
E(2π)3 C[ f (E, t)] = −

∫

dΠ1dΠ2dΠ3dΠ4(2π)4δ4(P1 + P2 − P3 − P4)

× |M|2
[

f1 f2 − f3 f4

]

. (4.10)

It is a good approximation to consider thermal equilibrium for the product species (3

and 4) [30], so we can write f3 and f4 as Maxwell-Boltzmann distributions. The delta in

Eq. (4.10) indicates energy conservation, i.e. E1 + E2 = E3 + E4, thus

f3 f4 = (e(µ3−E3)/T)(e(µ4−E4)/T)
δ−→ (e−(E1+E2)/T)(e(µ3+µ4)/T). (4.11)

The number density in equilibrium for any species is written as

n(0)
i ≡ gi

∫

d3 p
(2π)3 e−Ei/T. (4.12)

We can then rewrite the term f1 f2 − f3 f4 in Eq. (4.10) as follows

f1 f2 − f3 f4
δ−→ e−(E1+E2)/T

[ n1n2

n(0)
1 n(0)

2

− n3n4

n(0)
3 n(0)

4

]

. (4.13)

We can replace this term in the right side of Eq. (4.10), which yields

[ n1n2

n(0)
1 n(0)

2

− n3n4

n(0)
3 n(0)

4

]

∫

dΠ1dΠ2dΠ3dΠ4(2π)4δ4(P1 + P2 − P3 − P4)e
−(E1+E2)/T|M|2.

(4.14)

Recall that the cross section has a similar form to the one above. It is written as

σ =
1

Flux

∫

dΠ3

∫

dΠ4(2π)4δ4(p1 + p2 − p3 − p4)|M|2, (4.15)
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where the flux is defined as follows

Flux ≡ n1n2

E1E2

√

(P1 · P2)2 −M4 = 4
√

(P1 · P2)2 −M4 = 2
√

s(s− 4M2). (4.16)

The relative velocity is defined as [84]

vrel =

√

(P1 · P2)2 −M4

(p1 · p2)
=

√

|v1 − v2|2 − |v1 × v2|2
1− v1 · v2

. (4.17)

We can write this velocity in terms of the flux,

vrel =

√

(p1 · p2)2 −M4

(p1 · p2)
=

√

s(s− 4M2)

s− 2M2 =
Flux

2(s− 2M2)
. (4.18)

In the non-relativistic limit, 1− v1 · v2 ≈ 1 and p1 · p2 ≈ E1E2. This way, vrel ≈ vr =

|~v1 − ~v2|, thus we can rewrite the flux in terms of the velocity

Flux ≡ n1n2

E1E2

√

(P1 · P2)2 −M4 = 4
√

(P1 · P2)2 −M4 = 4E1E2vr (4.19)

At the time of decoupling, the dark matter is non-relativistic [27]. This is consistent with

data on dark matter relic density extracted from precision measurements of the cosmic

background radiation [3, 85]. Since we are interested in the decoupling of dark matter,

we can work in this limit to write

σv =
1

2(s− 2M2)

∫

dΠ3

∫

dΠ4(2π)4δ4(p1 + p2 − p3 − p4)|M|2 (4.20)

≈ 1
4E1E2

∫

dΠ3

∫

dΠ4(2π)4δ4(p1 + p2 − p3 − p4)|M|2.

Additionally, we can perform the average of σv over the initial states, which yields

〈σv〉 = 1

n(0)
1 n(0)

2

∫

g1d3 p1

(2π)2 f (E1)
∫

g2d3 p2

(2π)2 f (E2)σv. (4.21)

Replacing Eq. (4.20) in Eq. (4.21), we obtain

〈σv〉 = g1g2

n(0)
1 n(0)

2

∫

dΠ1dΠ2dΠ3dΠ4(2π)4δ4(P1 + P2 − P3 − P4)e
−(E1+E2)/T|M|2, (4.22)

which evidently is the right side of Eq. (4.10).
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Using the expression in Eq. (4.22) in Eq. (4.6), we have

R−3 d(R3n)
dt

= −(n(0)
1 n(0)

2 )〈σv〉
[ n1n2

n(0)
1 n(0)

2

− n3n4

n(0)
3 n(0)

4

]

(4.23)

The temperature is inversely proportional to the scale factor, T ∝ R−1, so if we define a

new quantity

Y ≡ n
T3 , (4.24)

and we consider that particle and antiparticle are found in the same proportion, that is,

n1 = n2, Eq. (4.23) becomes an equation of Y. Since we are assuming that the species 3

and 4 are in equilibrium, i.e. n3 = n4 = nEQ, we can write Eq. (4.23) as

dY
dt

= −T3〈σv〉
[

Y2 −Y2
EQ

]

, (4.25)

where YEQ = T−3n(0), and n(0) is the number density of the species in thermal equilib-

rium. It is convenient to use the variable x = M/T, which defines an approximate scale

of the temperature. Progressively, the universe cools down and the value of x increases.

We can then express the time derivative as

dY
dt

= −dY
dx

dx
dt

= xH
dY
dx

=
H(M)

x
dY
dx

, (4.26)

where H(M) comes from the definition of the Hubble parameter H,

H =

√

8πGNρ

3
=

√

8π3GN g∗
90

T2 =

√

8π3GN g∗
90

M2x−2 = H(M)x−2. (4.27)

Here, GN = 6.70861× 10−39GeV−2 [3] is Newton’s gravitational constant [3], and g∗ =

g∗(T) stands for the relativistic effective degrees of freedom, which are dependent on

the contents of the universe and the temperature,

g∗ = ∑
i=bosons,mi≪T

gi

(Ti

T

)4
+

7
8 ∑

i= f ermions,mi≪T

gi

(Ti

T

)4
. (4.28)

Finally, we can write Eq. (4.25) as

dY
dx

= −λ(x)
x2 (Y2 −Y2

eq), (4.29)

where we define λ(x) as

λ(x) ≡ M3〈σvr〉
H(M)

. (4.30)
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This is a complicated equation but we can solve it numerically, by matching the solu-

tion Y(x) with Yeq(x) at high temperatures (i.e. x << 1) as the initial condition. In

order to solve it, we need to calculate 〈σvr〉. It is a good approximation to perform a

non-relativistic expansion of 〈σvr〉 keeping only the leading terms in the expansion in

powers of vr << 1. This expansion requires the calculation of the flux for dark matter

particles in the thermal bath, which can be written as [86, 87]

F = 4
√

(p1 · p2)2 −M4 = 2(s−M2)vr, (4.31)

where the Mandelstam variable s = (p1 + p2)2 is related to vr as

s = 2M2

(

1 +
1

√

1− v2
r

)

= 4M2 + M2v2
r + .... (4.32)

The cross section σ is a function of s, which means we can expand this function in terms

of vr as

σvr = a + bv2
r . (4.33)

We can perform the thermal average, which yields

〈σvr〉 = a +
6b
x

. (4.34)

With this approximation in mind, in the next section we will calculate the coefficients

a and b of the annihilation cross-section of Tensor Dark Matter. Once we find these

coefficients for all involved channels, we can then use it to calculate the dark matter

relic density.

4.2 Annihilation of tensor dark matter into a fermion-antifermion

pair.

As a first case, for non-relativistic and light tensor dark matter, the channels that are

kinematically allowed are D̄D → f̄ f for fermions with m f < M and D̄D → γγ.

The contributions to the process D(p1)D̄(p2)→ f (p3) f̄ (p4) are shown in Fig. 4.1.
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D

D̄

H

f

f̄

D

D̄

Z, γ

f

f̄

FIGURE 4.1: Feynman diagrams for D̄D → f̄ f .

The corresponding amplitudes for each contribution, derived from the rules shown in

Fig. 2.1, are given by

−iMH = i
m f

s−M2
H

ū (p3) v (p4) V̄ (p2)
(

gs I + igpχ
)

U (p1) ,

−iMγ = −4Q f gt MWSWCW

vs
ū (p3) γµv (p4) V̄ (p2) Mµβ (p1 + p2)

β U (p1) , (4.35)

−iMZ =
gt MZSW

v(s−M2
Z)

ū (p3) γµ
(

A f + B f γ5
)

v (p4) V̄ (p2) Mµβ (p1 + p2) βU (p1) .

Here, CW = cos θW , Q f is the fermion charge in units of the proton charge e, and A f , B f

are factors related to the corresponding fermion weak isospin T f
3 , defined as

A f = 2T f
3 − 4Q f S2

W , B f = −2T f
3 . (4.36)

For illustration purposes, the average squared amplitude for the Higgs portal contribu-

tion is

|MH |2 =
1
9 ∑

λ

MH M†
H =

m2
f

9(s−m2
H)

2
tr[(/q2 −m f )(/q1 + m f )]×

Tr[(
S(p2) + M2

2M2 )(gsI + igPχ)(
S(p1) + M2

2M2 )(gsI + igPχ)]. (4.37)

We can calculate this quantity making use of the traceology that can be found in the
Appendix, and similarly for the rest of the contributions. For the complete process, the
calculation yields the following average squared amplitude in terms of the Mandelstam
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variables

|M f̄ f |2 =− g2
t M2

ZS2
W

9M4v2(s−M2
Z)

2
[4M2(A2

f + B2
f )m

4
f (4M2 − s) + 4m2

f .(4M2 − s)(A2
f M2(2M2 + s− t− u).

+ B2
f (2M4 −M2(s + t + u)− s2)) + .(A2

f + B2
f )(16M8 − 4M6(s + 4(t + u)).

+ 4M4(t + u)(s + t + u) + M2(4s3 − 2s(t2 + u2)) + s2((t− u)2 − s2))]

+
8A f CW Q f g2

t MW MZS2
W

9M4sv2(s−M2
Z)

[4M2m2
f (4M2 − s)(2M2 + s− t− u) + 4m4

f (4M4 −M2s) + 16M8.

.− 4M6(s + 4(t + u)) + 4M4(t + u)(s + t + u) + M2(4s3 − 2s(t2 + u2)) + s2((t− u)2 − s2)]

+
4A f m2

f gsgt MZSW

9M4v(s−M2
H)(s−M2

Z)
s(2M2 − s)(t− u)−

16CWm2
f Q f gsgt MWSW

9M4v(s−m2
H)

(2M2 − s)(t− u)

−
16C2

W Q2
f g2

t M2
WS2

W

9M4s2v2 [4M2m2
f (4M2 − s)(2M2 + s− t− u) + 4m4

f (4M4 −M2s).

. + 16M8 − 4M6(s + 4(t + u)) + 4M4(t + u)(s + t + u) + M2(4s3 − 2s(t2 + u2)) + s2((t− u)2 − s2)]

+
m2

f

9M4(s−M2
H)

2
(s− 4m2

f )[g
2
ps(s− 4M2) + g2

s (6M4 − 4M2s + s2)]. (4.38)

We obtain the cross section for D̄D → f̄ f by integrating the final state phase space of

the average squared amplitude. It is easy to identify the individual contributions from

the Higgs and Z bosons and γ exchange, as well as the Z0 − γ interference:

σ f̄ f (s) =
1

72πM4
√

s

√

s− 4m2
f

F





m2
f

(

s− 4m2
f

) (

g2
ps
(

s− 4M2
)

+ g2
s

(

6M4 − 4M2s + s2
)

)

(

s−M2
H

)2

+
2g2

t M2
ZS2

Ws
(

s− 4M2
) (

2M2 + s
)

(

2
(

A2
f − 2B2

f

)

m2
f + s

(

A2
f + B2

f

))

3v2
(

s−M2
Z

)

2

+
32C2

W Q2
f g2

t M2
WS2

W

(

s− 4M2
) (

2M2 + s
)

(

2m2
f + s

)

3v2s

−
16A f CW Q f g2

t MW MZS2
W

(

s− 4M2
) (

2M2 + s
)

(

2m2
f + s

)

3v2
(

s−M2
Z

)



 . (4.39)

The H − Z and H − γ interferences vanish after solving the integration of phase space.
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4.3 Tensor dark matter annihilation into two photons

This process is induced by the dark matter exchange in the t and u channels, shown in

Fig. 4.2. The corresponding amplitudes are given by

−iMt = i
2g2

t C2
W

M2 V̄(p2, λ2)Mαβ
S(p1 − p3)− t + 2M2

t−M2 MµνU(p1, λ1)pα
4ηβ(p4)pµ

3 ǫν(p3),

(4.40)

−iMu = i
2g2

t C2
W

M2 V̄(p2, λ2)Mµν
S(p1 − p4)− u + 2M2

u−M2 MαβU(p1, λ1)pα
4ηβ(p4)pµ

3 ǫν(p3).

(4.41)

The average squared amplitude is given by

|Mγγ|2 =

(

2g2
t C2

W

3M2

)2

Tr

[

S(p2) + M2

2M2 Tαβµν
S(p1) + M2

2M2 T̄ β ν
σ ρ

]

pµ
3 pρ

3 pα
4 pσ

4 , (4.42)

where

Tαβµν = Mαβ
S(p1 − p3)− t + 2M2

t−M2 Mµν + Mµν
S(p1 − p4)− u + 2M2

u−M2 Mαβ, (4.43)

T̄αβµν = Mµν
S(p1 − p3)− t + 2M2

t−M2 Mαβ + Mαβ
S(p1 − p4)− u + 2M2

u−M2 Mµν. (4.44)

D

D̄

γ

γ

D

D̄

γ

γ

FIGURE 4.2: Feynman diagrams for D̄D → γγ.

Performing the calculation using the traceology relations in the appendix yields

|Mγγ|2 =
2C4

W g4
t

9M8 (t−M2)2 (u−M2)2

[

6 (tu)4 + 2 (tu)3
(

−13M4 + 11M2s + 2s2
)

+ (tu)2
(

42M8 − 76M6s + 33M4s2 + 4M2s3 + 2s4
)

+ 2M2tu
(

−15M10 + 43M8s− 44M6s2 + 17M4s3 − 6M2s4 + 2s5
)

+ M4
(

8M12 − 32M10s + 51M8s2 − 40M6s3 + 25M4s4 − 12M2s5 + 2s6
)]

,

(4.45)
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which results in the following cross section

σγγ(s) =
1

F
√

1− 4M2

s

C4
W g4

t

540πM8

[

120M4
(

4M4 − 3M2s− 2s2
)

tanh−1

√

1− 4M2

s

+s

√

1− 4M2

s

(

−10M6 + 228M4s− 99M2s2 + 43s3
)

]

. (4.46)

4.4 Tensor dark matter relic density

4.4.1 Non-relativistic expansion

Performing and expansion of the D̄D → f̄ f and D̄D → γγ cross sections in terms of vr,

as mentioned in Section 4.1, we get

σvr ≡ σγγvr + ∑
f

σ f̄ f vr = a + bv2
r , (4.47)

where the sum runs over all the fermion states that are kinematically allowed, i.e. for

m f < M. As seen in the previous sections, the coefficients a and b turn out to be

a =
29C4

W g4
t

18πM2 + ∑
f

N f g2
s m2

f

(

M2 −m2
f

) 3
2

12πM3
(

M2
H − 4M2

)

2
,

b =
365C4

W g4
t

216πM2 + ∑
f

N f

√

M2 −m2
f

864πM5





96M4g2
t M2

ZS2
W

((

A2
f − 2B2

f

)

m2
f + 2M2

(

A2
f + B2

f

))

v2
(

M2
Z − 4M2

)

2

(4.48)

+
192A f M2CW Q f g2

t MW MZS2
W

(

m2
f + 2M2

)

v2
(

M2
Z − 4M2

) +
96C2

W Q2
f g2

t M2
WS2

W

(

m2
f + 2M2

)

v2

−
6M2m2

f

(

8g2
p

(

4M2 −M2
H

)

(

M2 −m2
f

)

+ g2
s

(

−8m2
f

(

M2 −M2
H

)

− 11M2M2
H + 20M4

))

(

M2
H − 4M2

)3

−
9M2m2

f g2
s

(

4M2 − 5m2
f

)

(

M2
H − 4M2

)

2



 ,

with N f = 3 for quarks to account for each color and N f = 1 for leptons.

The Higgs and spin portal contributions to 〈σvr〉 = a + 6b
x are shown in Fig. 4.3 where

we show the Higgs and spin portal, as a function of the couplings for M = 10 and 45 GeV

and x = 20.
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FIGURE 4.3: Individual contributions of the spin portal (gt = g, gs =
gp = 0) and the Higgs portal (gt = 0, gs = gp = g) to 〈σvr〉. Similar
results are obtained in the second case when varying independently gs or

gp.

Using Eqs. (4.34) and (4.48), we can solve the Boltzman equation (4.29) numerically

for different values of gt, gs and gp. The solutions are shown in Fig. 4.4. We can see

that, at some value x = x f , the solution Y(x) departs from the equilibrium solution

Yeq(x), which is when it is said that dark matter decouples from the cosmic plasma in

the non-relativistic regime, i.e. x >> 1.

 

FIGURE 4.4: Solution of the Boltzman equation for the spin portal (left)
and Higgs portal (right). Similar results are obtained in the later case
when varying independently gs and gp. The solid line corresponds to

Yeq(x).

The dark matter relic density is given by

ΩDM = ρDM/ρc = M(2 ∗Y(T0))T
3
0 /ρc, (4.49)



4.4. Tensor dark matter relic density 49

where ρc = 3H2

8πGN
= 1.05371(5) × 10−5h2 GeV/cm3 = 8.09619(38) × 10−47h2 GeV4

is the critical density, where h is the renormalized Hubble parameter such that H ≡
100 h km s−1 Mpc, and T0 = 2.7255(6) K = 2.34865(52)× 10−13 GeV is the temperature

of the cosmic background at the present [3].

In order to obtain the dark matter relic density we need to solve the Boltzmann equation

(4.29) and evaluate Y(x0 = M/T0). This can be done using the numerical solution and

evaluating for specific values of the couplings and M, scanning the parameter space

consistent with the measured relic density. This can be complicated due to the form of

〈σvr〉, and it is more illustrative to follow a semi-analytic procedure, taking into account

the freeze out mechanism. For x > x f , we have that Y(x) >> Yeq(x) and we can find an

approximate solution by neglecting Yeq(x) in the right hand side of Eq.(4.29). Integrating

from Tf to T0, we get

1
Y(x0)

=
1

Y(x f )
+

√

90
8π3GN

M
∫ x0

x f

〈σvr〉
√

g∗(x)x2
dx. (4.50)

We can neglect the term Y(x f )
−1 in Eq. (4.50) which is very small compared with the

second term in the left hand side of Eq. (4.50), to obtain the relic density

ΩDMh2 =
2T3

0 h2

ρc

√

8π3GN

90

(

∫ x0

x f

〈σvr〉
√

g∗(x)x2
dx

)−1

= 4.337× 10−11 GeV−2

(

∫ x0

x f

〈σvr〉
√

g∗(x)x2
dx

)−1

.

(4.51)

Notice that the relic density depends on the couplings (gt, gs, gp) and M. We may use

the complete function g∗(x) but our results are quite similar if we use the average over

the range of energies considered, ḡ∗ = 33.

We only need the value of x f . For that we need to understand when freeze out happens.

Rearranging Eq. (4.29) in the following form

x
Yeq(x)

dY
dx

= −λ(x)Yeq(x)

x

[( Y(x)
Yeq(x)

)2
− 1
]

, (4.52)

we can see that the factor λ(x)Yeq(x)
x decreases as x increases. Eventually, the value of this

factor is small enough that Y(x) becomes a constant. We can consider that this change

happens when said factor λ(x)Yeq(x)
x ≈ 1, in other words, when

neq(x f )〈σvr〉(x f ) = H(x f ). (4.53)
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Using the non-relativistic form for neq(x) and Eq. (4.34) leads to

(

a +
6b
x f

)

√

x f e−x f =
(2π)3

3M

√

GN g∗(x f )

90
. (4.54)

The value of x f depends on the coupling constants and M, which means that we can ob-

tain a set of values of g and M that, after numerically solving the dark matter relic den-

sity, are consistent with the observed value Ω
exp
DMh2 = 0.1193± 0.0009 [3]. We checked

that these solutions are consistent with the approximations used, i.e., that decoupling

occurs when dark matter is non-relativistic. In the case of the spin portal contribution,

the values of x f lie in the range 23.8 < x f < 27.9, thus x f >> 1 is consistent with the

non-relativistic approach. The set of values gt(M) obtained is shown in Fig. 4.5. We also

directly calculated Y(x) from the numeric general solution of the Boltzman equation for

the set of values gt(M), using Y(x) = Yeq(x) for x << x f as initial condition, finding

that 1/Y(x f ) is small compared to 1/Y(x0) in Eq. (4.50). A similar procedure is used for

the two couplings of the Higgs portal.

 

FIGURE 4.5: Values of the couplings consistent with the measured dark
matter relic density, Ω

exp
DMh2 = 0.1193± 0.0009 (solid line), as a function

of M. The shadowed region in the left panel corresponds to the values
consistent with the Z0 invisible width, Γ(Z0 → D̄D) < Γinv

Z = 1.4 ±
1.5 MeV, for the spin portal. These constraints exclude masses below
43 GeV for the spin portal. In the right panel, the shadowed region are
the values consistent with the constraint Γ(H → D̄D) < Γinv

H = 1.14±
0.04 MeV for the Higgs portal, where masses below 62 GeV are excluded.

For the Higgs portal, we obtained results for gp = 0 varying gs and gs = 0 varying gp,

and similar results are obtained varying both couplings simultaneously. We conclude

from Fig. 4.5 that, for the spin portal, consistency of the measured relic density with the

constraints from data on the Z0 invisible width (see Section 3), requires that the TDM
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mass M ≥ 43 GeV. In a similar way, for the Higgs portal, consistency between the relic

density and H0 invisible width constraints requires a TDM mass M ≥ 62 GeV.

4.4.2 Complete calculation

Although the non-relativistic expansion of the cross-section used previously is a good

approximation for the calculation of relic density, this procedure can fail in the presence

of resonances [88]. The extent of this discrepancy depends on the mass and width of the

resonance. As we will see in the following chapters, for the purposes of our work it is

important to take a deep look into the region containing the Higgs resonance. As such,

we need to perform the complete calculation of relic density for the mass range around

this point, that is, in the vicinity of M ≈ MH/2.

In this case, we are interested in the case of gt = 0, gp = 0, since the resonance is present

in the terms of the cross section with gs. We can also perform a similar analysis with the

Z0 resonance, but as we will discover in subsequent chapters, the value of gt turns out

to be heavily limited by direct detection experiments, so we will skip this calculation in

this work.

The complete calculation of the dark matter relic density involves the full thermal aver-

age cross-section 〈σvr〉(x) for the annihilation of TDM into SM states. For M ≈ MH/2,

dark matter annihilates only into f̄ f , γγ and Z0γ. The annihilation of TDM into the

last two final states vanishes when gt = 0 at tree level, however in the presence of the

M ≈ MH/2, the additional one-loop transitions offer sizable contributions (see diagram

in Fig. 4.6). The Hγγ and HγZ three-point functions have been previously studied in

the literature (see Refs. [89–91]). In this case, we need to take into account the following

effective interactions

Le f f = H[GγγFµνFµν + GZγFµνZµν], (4.55)

where Gγγ, GZγ are the respective form factors. We can normalize these factors from a

phenomenological approach, by doing Gγγ =
gγγ

MH
, GZγ =

gZγ

MH
. We use the measured

branching rations BR[H → γγ] = 2.27 × 10−3, BR[H → Zγ] = 1.53 × 10−3 [92], to

obtain the couplings gγγ = 1.91× 10−3, gZγ = 3.30× 10−3, which correspond to the

on-shell momentum form factors. This approximation is justified since we are working

in the resonant case.
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FIGURE 4.6: One loop contributions induced by the scalar Higgs portal
to tensor dark matter annihilation into γγ and Z0γ.

The D̄D → γγ, Z0γ process via the scalar Higgs portal produces the following cross-

sections:

(σvr)γγ =
g2

γγg2
s v2s2(6M4 − 4M2s + s2)

288πM4M2
H(s− 2M2)[(s−M2

H)
2 + M2

HΓ2
H ]

, (4.56)

(σvr)Zγ =
g2

Zγg2
s v2(s−M2

Z)
3(6M4 − 4M2s + s2)

144πM4M2
H(s− 2M2)s[(s−M2

H)
2 + M2

HΓ2
H ]

. (4.57)

We include these in addition to the D̄D → f̄ f transition discussed previously to calcu-

late the complete thermal average cross-section numerically. Our results are shown in

Fig. 4.7, where we can see that even for values of M far from the resonance there are

clear differences. Near the resonance, the deviation from the non-relativistic expansion

goes far enough that it extends to the non-relativistic regime (x >> 1), so it is clear that

we need to use the complete calculation in order to obtain the relic density.

FIGURE 4.7: Thermal average cross-section (solid) and comparison with
the non-relativistic expansion (dashed), for different values of the TDM

mass.

The complete function 〈σvr〉(x) was used to solve the freezing condition and the Boltz-

mann equation in a similar way to what was performed in the previous section, where
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we use the program Wolfram Mathematica to find the freezing temperature x f from the

condition in Eq. 4.54 and solve the integral in Eq. 4.51 numerically. The freezing temper-

ature obtained is around x f ≈ 25, similar to the non-relativistic expansion calculation.

The obtained values of the coupling gs and the dark matter mass M that are consistent

with the measured relic density are plotted in Fig. 4.8. We then compare these values

with the constraint from the invisible width of the Higgs boson found in Chapter 3, and

the results are shown in Fig. 4.9. In this case, the lower limit is reduced when using

the full calculation of the relic density, excluding masses below 58.9 GeV for the scalar

Higgs portal.

FIGURE 4.8: Values of the coupling gs and TDM mass M consistent with
the measured relic density near the Higgs resonance obtained without
the v2

r expansion (continuous line). The dashed line corresponds to the
conventional calculation via the non-relativistic expansion of the cross-

section.
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FIGURE 4.9: Values of the scalar Higgs portal coupling gs consistent with
the measured dark matter relic density, Ω

exp
DMh2 = 0.1193 ± 0.0009, us-

ing the non-relativistic expansion (dashed red line) and the complete
calculation of 〈σvr〉 (solid black line), as a function of M. The shad-
owed region represents the values of gs consistent with the constraint
Γ(H → D̄D) < Γinv

H = 1.14 ± 0.04 MeV for the Higgs portal. Masses
below 58.9 GeV are excluded considering the full consistency with relic

density and the invisible width limit.
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Chapter 5

Direct Detection Limits for Tensor
Dark Matter

Let us part from the idea that the galaxy may contain a dark matter halo. We can then

assume that, in the case of WIMPs, the flux of these particles arriving on Earth, as-

suming they have a velocity around ∼ 300km/s and with a standard density ρDM =

0.3GeVcm−3, is of the order of φ ≈ ρDM × 〈v〉/M ∼ 105(100GeV/MDM)cm−2s−1 [93].

This is potentially a large enough flux that, even if the interactions with SM particles are

feable (e.g. smaller in order than the weak scale 〈σv〉 ∼ 10−26cm−3s−1), the scattering

off nuclei found in its way may produce a measurable signal [94]. The elastic scattering

of nuclei will cause nuclear recoils, which then can be measured by low background

detectors. This is the basic principle behind dark matter direct detection experiments. A

great number of experiments have been put forth during the past few years using dif-

ferent techniques for the detection of the corresponding nuclei recoil kinetic energy T

(for a recent review see [95]).

In this chapter we will discuss the calculation of the signal typically measured in direct

detection experiments, the dark matter-nucleon scattering cross section, which we will

calculate for Tensor Dark Matter and then compare our results with one of the most

stringent direct detection limits, set by the XENON1T experiment [51].

5.1 General formalism for direct detection of dark matter

In order to discuss the signal given by direct detection experiments, we must under-

stand and measure the rate of interactions (counts per day per kilogram in the nuclear

kinetic energy recoil range dT) of a DM particle. First assume that the target nucleus of

mass MN moves with a velocity v relative to the DM particle of mass M. The nucleus

interacts within a given time dt with any particle inside a volume dV = σvdt, where σ

is the DM-nucleus cross section. Then, the number of DM particles that the nucleus can
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interact with is

dN = nDM f (v)σvdt =
ρ

M
f (v)σvdt, (5.1)

where nDM = ρ/M is the DM number density, with ρ being the local mass density of

the DM particle, and f (v) is the local velocity distribution of dark matter on Earth.

The local mass density of dark matter (that is, the average over a volume of a few hun-

dred parsecs around the Sun) carries great weight when it comes to the dynamical in-

formation of the Galaxy, and is relevant in direct and indirect detection experiments.

There are different methods to determine the magnitude of the local mass density from

observations (see Ref. [96]), and depending of them and the stellar objects of study, the

value falls in the range of ρ ∈ [0.2, 1.5]GeV/cm3. The specific form of rho, however,

also called density profile, is another point of study in cosmology, and there are many

proposals based on observations. We get into this topic and mention some of these pro-

files in Chapter 6. For now, in the case of direct detection, we do not have to consider a

specific mass density for the purposes of comparison with XENON1T data, as we will

see later on.

While we are not yet able to measure local velocity distribution of dark matter particles

directly, we can assume that this distribution follows the Maxwellian distribution:

f (v) =
1
k

e
− (v−vE)2

v2
o , (5.2)

with k being a normalization constant, vE is the Earth velocity around the sun and v0

stands for the average DM velocity in the galactic halo, which is typically taken as

v0 = 220 km/s, although methods involving the measurement of the Sun’s velocity

with respect to an object at rest with the Galactic center and methods that measure the

local radial force allow for this velocity to be within v0 = (218− 246) km/s [3]. The

rate of interactions is then the rate of DM particles that interact with the nuclei times the

number of nuclei per kilogram of material, N0
A , and integrated over the velocity space,

dR =
N0

A

∫

dN
dt

d3v =
N0

A

∫

ρ

M
f (v)σvd3v. (5.3)

Thus, the differential interaction rate is

dR
dT

=
ρ

MMA

∫

|v| f (v) dσ

dT
(T, v)d3v, (5.4)

where T is the nuclei recoil energy and dσ
dT (T, v) describes the dark matter-nucleus differ-

ential cross section. We must integrate from vmin(T), the minimal velocity of an incom-

ing dark matter required to produce a nuclear recoil of energy T, to vesc = 557 km/sec,
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which is the escape velocity of a dark matter particle in our galaxy (the maximum veloc-

ity that a dark matter particle is allowed to have to continue being bound by the galactic

halo).

This is measured in the laboratory reference system (LAB), and we will now calculate

all relevant quatities in this frame of reference. The differential cross section for the dark

matter-nuclei interaction, D(p1)NA(p2)→ D(p3)NA(p4), is

dσ

dT
(T, v) =

|M(s, t, u)|2
32πMA p2

1
, (5.5)

where p1 = (E1, p1) = (E1, Mv), p2 = (MA, 0), p3 = (E3, p3), p4 = (MA + T, pA), and

the Mandelstam variables are written as

s = (E1 + MA)
2 − p2

1 = (M + MA)
2 + MMAv2 +O(v4), (5.6)

t = T2 − |pA|2 = −2MAT, (5.7)

u = 2M2 + 2M2
A − s− t = (M−MA)

2 + 2MAT −MMAv2 +O(v4). (5.8)

We can see that the averaged squared amplitude, |M(s, t, u)|2, only depends on the nu-

clear recoil energy and the incoming dark matter velocity. For the incoming momentum

p1, the nuclear recoil energy is given by

T =
2MA M2v2 cos2 θ

(E1 + MA)2 −M2v2 cos2 θ
=

2MA M2v2 cos2 θ

(M + MA)2 +O(v4), (5.9)

where θ is the angle of the nuclear recoil measured with respect to the direction of the

incoming dark matter particle. When the DM particle transfers the maximum momen-

tum to the nucleus ( θ = 0), we obtain the minimal velocity required to produce an

energy recoil T, and it is given by

v2
min(T) =

(M + MA)
2

2MA M2 T =
MA

2µ2
A

T, (5.10)

where µA = MA M/(M + MA) is the DM-nucleus reduced mass.

In order to calculate the invariant amplitude M, we must proceed from the effective

field theory approach of the dark matter-nucleus interactions. We begin with the fun-

damental interactions of DM with standard model particles and from there, an effective

theory for the DM-nucleons interaction can be built. After this, we can construct an

effective theory for interactions with nuclei. It is important to note that for low momen-

tum transfer processes, the finite size of the nucleus must be taken into account. We can
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write the amplitude as follows

M =M0F(q2), (5.11)

whereM0 is the invariant amplitude calculated with the effective theory at the nuclear

level and F(q2) is the nucleus form factor. The differential cross section using this ter-

minology yields
dσ

dT
(T, v) =

|M̄0(s, t, u)|2
32πMA M2v2 F2(T). (5.12)

This is the differential cross section in terms of the nuclear recoil energy T. Our purpose

is to use this to compare with experimental results, however, since the scattering takes

place at low momentum transfer (low T in the LAB frame), it is usual to see the results

reported in terms of the total D − NA cross section at zero momentum transfer. In the

XENON1T experiment, the detector is sensitive to T ∈ [3, 50] KeV. Additionally, dark

matter particles on Earth have a velocity in the range of |v| ∈ [0, vesc] with vesc/c =

1.85× 10−3, and have an average velocity v0/c = 0.73× 10−3.

Interactions between standard model and dark matter particles can be assumed to ap-

pear in two forms: exchanging a massive particle (in our case, H and Z0), or via a

massless mediator (like the photon). In the massive mediator case, in the effective

theory, the leading term is a four-point interaction that has an effective coupling sup-

pressed by the mass of the exchanged particle. Therefore, the average squared ampli-

tude |M̄0(s, t, u)|2 ≡ g(T, v2) is a regular function of T that we can expand as

g(T, v2) = g0(v2) + g1(v2)T + ... (5.13)

Since the process takes place at low T, we can keep only the leading term in the expan-

sion, taking the following form

dσ

dT
(T, v) ≈ g0(v2)

32πMA M2v2 F2(0). (5.14)

This is the differential cross section at zero momentum transfer. We can relate this ex-

pression with the total cross section if we integrate on T from 0 to the maximum nuclear

recoil Tmax = 2µ2
Av2/MA. We obtain

σ(v) ≈ g0(v2)

32πMA M2v2

2µ2
Av2

MA
F2(0) ≈ µ2

Ag0(v2)

16πM2
A M2

F2(0) ≡ σSI F2
SI(0), (5.15)

where we have expanded g0(v2) around v2 ≃ 0 and kept the leading terms. We choose

the notation σSI since at this stage we are only considering point interactions of dark
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matter with the nucleus, which is spin-independent (SI). We can generalize this expres-

sion to consider spin-dependent interactions, which arise from the couplings from the

dark matter field to the quark axial current. In the case of supersymmetric models, for

example, the neutralino-nucleon scattering occurs via the exchange of a Z boson or a

squark [97]. In our case, we will see later on that the spin-independent interactions are

dominant, so we will focus on them from now on. We can write the actual differential

cross section in Eq. (5.12) to leading order in T (in the dynamics) as

dσ

dT
(T, v) =

MA

2µ2
Av2

σSI F2
SI(T), (5.16)

where σSI is the D − NA total cross section at zero momentum transfer. In the general

case, if spin-dependent contributions are more prominent, there would be an additional

term with σSDF2
SD(T).

The XENON1T experiment has one of the most stringent limits on direct detection of

dark matter at the WIMP mass scale (∼ 100GeV). Its most recent data [51] assumes

isospin conserving dark matter-nucleus interactions and report the following observ-

able [98]

σp =
µ2

p

A2µ2
A

σSI , (5.17)

where µp stands for the dark matter-proton reduced mass. In our case, tensor dark

matter-nucleus interactions are mediated by H, Z0 and γ and are not isospin conserv-

ing. When massive particles, such as H and Z, are exchanged they produce four-point

dark matter-nucleus interactions for small momentum transfer and its treatment is the

same as it was stated above, but when we have exchange of photons, the propagator

has a pole at q2 = 0, so we have to modify relations given previously to properly ob-

tain the observable reported by XENON1T, which does not correspond with the zero-

momentum dark matter-proton cross section when interactions are isospin conserving.

The D− NA differential cross section in Eq. (5.12) can be written as

dσ

dT
(T, v) =

ξ

v2 g(T, v2)F2
SI(T), (5.18)

where ξ = (32πMA M2)−1. The function g(T, v2) is no longer a regular function of T

due to the poles of the exchanged massless particle. It is not possible to perform an

expansion around T = 0, however we can use the fact that experiments start detecting

nuclear recoil at a given T = Tmin. Doing an expansion around this value we get

dσ

dT
(T, v) =

ξ

v2

[

g(Tmin, v2) + g′(Tmin, v2)(T − Tmin)
] [

F2(Tmin) + (F2)′(Tmin)(T − Tmin)
]

=
ξ

v2 g(Tmin, v2)F2
SI(Tmin) +O(T − Tmin). (5.19)



60 Chapter 5. Direct Detection Limits for Tensor Dark Matter

Integrating now from Tmin to Tmax = 2µ2
Av2/MA and keeping only the leading term

gives

σA =
ξ

v2 g(Tmin, v2)F2
SI(Tmin)(Tmax − Tmin). (5.20)

This is the total dark matter-nucleus cross section at the fixed momentum transfer q2 =

−2MATmin. Rewriting the differential cross section in terms of this quantity has the

same form as Eq.(5.16), but with

σSI =
σA

F2
SI(Tmin)

Tmax

Tmax − Tmin
=

µ2
A

16πM2
A M2

g(Tmin, v2). (5.21)

We will later show that for TDM, the average squared amplitude takes the following

form

g(T, v2) = a0 +

(

b0

T
+ c0

)

v2 +O(T, v4). (5.22)

The observable σp reported by XENON1T is, then,

σp =
1

16πA4(M + Mp)2

[

a0 +

(

b0

Tmin
+ c0

)

v2 +O(T, v4)

]

. (5.23)

For small values of v2, the leading contribution would be given by a0, but the contribu-

tion from the photon coupling (O(v2)) is b0v2/T, which is enhanced by small values of

T and could also give sizable contributions. The term with c0 is, however, neglectable.

Up to only the sizable contributing terms, we have

σp =
1

16πA4(M + Mp)2

[

a0 +
b0v2

Tmin

]

. (5.24)

5.2 Nucleon scattering from tensor dark matter

The tensor dark matter - nucleon differential cross section involves the effective interac-

tions of H, γ and Z0 with nuclei, which require the calculation of the nucleon interac-

tions from effective theory. At the nucleon level, the corresponding effective Lagrangian

is given by [99]

LN
e f f = ∑

N=p,n

(

gHNN HN̄N − eN̄QNγµNAµ −
MZ

2v
N̄γµ(AN + BNγ5)NZµ

)

, (5.25)
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where Qp = 1, Qn = 0 and

gHNN = −
(

7 ∑
u,d,s

f (N)
Tq + 2

)

mN

9v
, (5.26)

Ap = 2Au + Ad = 1− 4 sin2 θW , (5.27)

An = Au + 2Ad = −1, (5.28)

and

BN = −∆
(N)
u + ∆

(N)
d + ∆

(N)
s , (5.29)

Bp = −∆
(p)
u + ∆

(p)
d + ∆

(p)
s , (5.30)

Bn = −∆
(p)
d + ∆

(p)
u + ∆

(p)
s . (5.31)

The specific parameters for each quark are given in Table 5.1 .

f (p)
Tq f (n)Tq ∆

(p)
q

u 0.023 0.019 0.77
d 0.034 0.041 −0.40
s 0.140 0.140 −0.12

.

TABLE 5.1: Values for the coefficients f (p)
Tq , f (n)Tq and ∆

(p)
q extracted from

Ref. [100].

At nuclear level, the Lagrangian takes a similar form,

LA
e f f = gHNA NA HN̄ANA − ZeN̄AγµNA Aµ −

MZ

2v
N̄Aγµ(AA + BAγ5)NAZµ, (5.32)

with

gHNA NA = ZgHpp + (A− Z)gHnn,

AA = ZAp + (A− Z)An,

BA = ZBp + (A− Z)Bn, (5.33)

where Z is the atomic number and A stands for the total number of nucleons inside the

nucleus.
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The invariant amplitude for D(p1)NA(p2)→ D(p3)NA(p4) is the exchange of H, γ and

Z0 in the t channel. The contributions are given by

−iMH = i
gDNA H

t−m2
H

U (p3)
(

gs I + igpχ
)

U (p1) N̄A (p4) NA (p2) , (5.34)

−iMγ = − gDNAγ

t
U (p3) Mαβ (p1 − p3)

β U (p1) N̄A (p4) γαNA (p2) , (5.35)

−iMZ =
gDNAZ

t−M2
Z

U (p3) Mαβ (p1 − p3)
β U (p1) N̄A (p4) γα (AA + BAγ5) NA (p2) ,

(5.36)

where

gDNA H = −vgHNA NA , (5.37)

gDNAγ = 2Zegt cos θW , (5.38)

gDNAZ =
MZgt sin θW

v
. (5.39)

The spin-independent contributions come mainly from the Higgs and photon interac-

tions with TDM and the weak vector current in the Z0 exchange. For the spin-dependent

case, the leading contributions come from the axial current. A covariant calculation of

the squared amplitude gives

∣

∣M̄
∣

∣

2
=

g2
DNA H

6M4
(

t−m2
H

)2

(

4M2
A − t

)

((

g2
p + g2

s

)

t
(

t− 4M2)+ 6g2
s M4

)

+
g2

DNAγ

3M4t

[

−2M4
A

(

M2 − t
)

+ M2
A

(

4M4 + 4M2 (s + t)− 2t (2s + t)
)

− 2M6

+ 2M4 (2s + 3t)−M2 (2s2 + 6st + t2)+ 2st (s + t)
]

+
g2

DNAZ

3M4
(

t−M2
Z

)2

[

(

A2
A + B2

A

)

(

2M4
A

(

t−M2)− 2M6 + 2M4 (2s + 3t) (5.40)

− M2 (2s2 + 6st + t2)+ 2st (s + t)
)

+ M2
A

(

A2
A

(

4M4 + 4M2 (s + t)− 2t (2s + t)
)

− 4B2
A

(

3M4 −M2s + st
))]

t

−
(

gDNA H gDNAγ

t−m2
H

)(

2gs MA

3M4

)

(

2M2 − t
)

(s− u)

+
gDNA H gDNAZ

(

t−m2
H

) (

t−M2
Z

)

(

2AAgs MA

3M4

)

(

2M2 − t
)

(s− u) t

− 2AA

3M4

gDNAγgDNAZ
(

t−M2
Z

)

[

−2M4
A

(

M2 − t
)

+ M2
A

(

4M4 + 4M2 (s + t)− 2t (2s + t)
)

− 2M6

+ 2M4 (2s + 3t)−M2 (2s2 + 6st + t2)+ 2st (s + t)
]

.
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Expanding the average squared amplitude and keeping the leading terms in v2 and T

we get

∣

∣M̄
∣

∣

2
=

4g2
s g2

DNA H M2
A

m4
H

+
2g2

DNAγ

3M2

(

M2 − 2MMA + 3M2
A

)

+
16gsgDNAγgDNA H M2

A

3Mm2
H

+

(

4g2
DNAγ MA

3T
− 16AAgDNAγgDNAZ M2

A

3M2
Z

+
8gsgDNAγgDNA H M2

A

3Mm2
H

−
2g2

DNAγ MA

3M2 (M− 4MA)

)

v2.

(5.41)

We can see that the leading contributions come from the spin-independent interactions.

The spin-dependent contributions, those from the axial current, appear with the coeffi-

cient
4M2

Ag2
DNAZ

3A2MM4
Z

T(MMA + 4O(v4)). (5.42)

Since it is proportional to T v4 this contribution is heavily suppressed. Additionally, the

gp coupling does not contribute as highly as gt or gs to the TDM-nucleon cross section.

This comes from the fact that the coupling to the Z0 is done through the higher multi-

poles of the tensor dark matter field and not from weak charges (since they are standard

model singlets). The coefficients in Eq. (5.22) are identified as

a0 =
4g2

s g2
DNA H M2

A

m4
H

+
2g2

DNAγ

3M2

(

M2 − 2MMA + 3M2
A

)

+
16gsgDNAγgDNA H M2

A

3Mm2
H

, (5.43)

b0 =
4g2

DNAγ MA

3
, (5.44)

c0 = −16AAgDNAγgDNAZ M2
A

3M2
Z

+
8gsgDNAγgDNA H M2

A

3Mm2
H

−
2g2

DNAγ MA

3M2 (M− 4MA) .

(5.45)

We plot σp as a function of the TDM mass M for different values of the couplings gt

and gs, as shown in Fig. 5.1. Here, we are considering A = 131, Z = 54 and Tmin =

3 KeV, appropriate for XENON1T experiment and compare with the recently published

XENON1T results [51]. The leading spin portal contributions (gs = 0) are due to the

photon exchange and dominated by the photon pole. We can see that, in comparison to

the Higgs portal coupling, the spin portal coupling is quite restricted by the XENON1T

data (gt ≈ 10−4) for tensor dark matter with a mass of the order of a few hundreds GeV.

We can correlate the values of gs and M that are consistent with this limit and compare

the result with the relic density bounds obtained in Chapter 4. We show the comparison

in Fig. 5.2, where we can see that full consistency for these two observables is obtained

for M ∈ [60.056, 62.554] GeV.
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FIGURE 5.1: Observable σp as a function of the dark matter mass M for
the Higgs (gt = 0, left panel) and spin (gs = 0, right panel) portals, com-

pared with the XENON1T upper bounds [51].

FIGURE 5.2: Values of gs and M that are consistent with the Xenon1T
direct detection limits (dotted red line), consistent with relic density us-
ing the non-relativistic expansion of 〈σv〉 (dashed blue line), and con-
sistent with the complete calculation of the relic density (solid black
line). Full consistency for these two observables is obtained for M ∈

[60.056, 62.554] GeV.
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Chapter 6

Indirect Detection Limits for Tensor
Dark Matter

A big convenience presented by dark matter indirect searches is that we are taking ad-

vantage of interactions that are already potentially happening all around the cosmos,

with data that we can collect with the numerous probes and telescopes already present

and available. These searches involve looking for Standard Model particles produced

by decay or annihilation of dark matter, or secondary effects from these processes. Be-

cause they happen at cosmological scales, it is possible to probe higher energies, weaker

particle couplings and longer decay lengths. Not to mention that, primarily, all the ev-

idence for dark matter comes from astrophysics and cosmological observations. With

this in mind, indirect detection experiments are a promising tool for dark matter dis-

covery and, as will be presented in this chapter, bounds for dark matter models.

The principle of indirect dark matter searches is to observe the products of DM annihi-

lations (or decays). If some of those products are SM particles, most of them will decay

on short timescales and, at the end of those decay chains, there could be stable particles

that we can detect. We can try to scan the sky in search for any excess of these parti-

cles, e.g. electrons, positrons, protons, antiprotons, photons, neutrinos. In this chapter

we will look at the bounds projected by the photon flux coming from two particular

sources: the galactic center and a group of galaxies considered to have a large amount

of dark matter content, know as dwarf spheroidal satellite galaxies (or dSphs). In this

work, we also look into antiproton signals as indirect detection of tensor dark matter,

but we dedicate a separate chapter for this purpose.
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6.1 Gamma Rays from the Galactic Center

Among the particles that we can detect, the most sought out for are the gamma rays,

coming from the Sun, the center of our galaxy, other galaxies and even from extragalac-

tic sources. Since these are neutral to astrophysical magnetic fields, they propagate

in straight lines directly from the source provided they are not absorbed in the way.

Dark matter annihilation produces gamma rays directly, or by hadronization of the fi-

nal states.

There has been reports from several groups that an excess over the expected gamma

ray flux from known sources in the Milky Way galactic center exists in the observations

provided by the Fermi Large Area Telescope (FermiLAT) data, at around 3 GeV [101–

111]. There are, however, large uncertainties involved in the interpretation of FermiLAT

data, which have been previously analyzed by the FermiLAT collaboration [112]. The

conclusion is that a gamma-ray excess (GRE) in a region around 3 GeV indeed exists,

but the signal may exist within a broad band of possible values for the differential flux

as a function of the photon energy. This excess could be explained by little known

astrophysical sources [101, 113–117], however the annihilation of dark matter into final

states containing photons remains as an attractive possibility [107, 118–127].

In general, a detector has a two-dimensional view of the sky and observations involve

the number of photons arriving within a certain solid angle in a certain time. Let A be

the area on the detector, measuring a signal coming from a volume dV at the coordinates

(r, θ, φ), with Earth at r = 0. Since we are working with tensor dark matter, we will

consider products from annihilation. Suppose that dNγ
i

dE is the photon spectrum from an

annihilation channel i, and assuming that the energy of the photons does not change

through its way to the detector (by redshifting, absorption, etc.), then the spectrum of

gamma rays received at Earth per volume per time is [128]

dNγ

dωdtdV
=
(1

2

)

∑
i

(dNγ
i

dω

) A
8πr2 〈σvr〉in(~r)2, (6.1)

where 〈σvr〉i stands for the non-radiative cross section for the i-channel and ω is the

energy of the photon. The first factor 1
2 is included for non-self-conjugated dark matter,

which is the case of TDM. n(~r) = ρ(~r)/M is the DM number density. We can inte-

grate over the line of sight, s, that relates to r (distance from the Galactic Center) by the

following expression

r(s, θ) = (r2
⊙ + s2 − 2r⊙s cosθ)1/2, (6.2)

where r⊙ = 8.33 kpc [129] is the distance between the Sun and the Galactic Center and

θ is the angle between the direction of the line of sight and the line connecting the Earth
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to the Galactic Center. Integrating Eq. (6.1) over s, we get

dNγ

dωdtdΩ
=
( A

16π

)

∑
i

(dNγ
i

dω

) 〈σvr〉i
M2

∫ ∞

0
ρ(r(s, θ))2ds. (6.3)

If the source is localized, we can integrate over the solid angle subtended by the object

to obtain
dNγ

dωdt
=
( A

16π

)

∑
i

(dNγ
i

dω

) 〈σvr〉i
M2

∫ ∞

0
ρ(r(s, θ))2dsdΩ. (6.4)

The photon spectrum dNγ
i

dE can also be written as

dNγ
i

dω
≡ Bi

〈σvr〉i
d〈σvr〉iγ

dω
, (6.5)

where Bi is the number of photons produced by the process in channel i. It is conven-

tionally assumed that this non-radiative cross section contains the details on the annihi-

lation of dark matter entering the radiative process, and it is considered that the spec-

trum includes the information of the photon production from standard model i-states

which can be calculated and is well-known. In this construction, model independent fits

to data can be done with 〈σvr〉i and M as free parameters. In summary, since the flux is

defined as the number of photons received per area per interval of time, the differential

photon flux is given by

dΦ

dω
=

(

∑
i

Bi

16πM2

d〈σvr〉γi
dω

)

∫

∆Ω

∫

l.o.s
ρ2(r(s, θ))dsdΩ. (6.6)

The term in the parentheses in Eq.(6.6) contains all the information regarding the dark

matter interactions that pertain the model, whereas the integral contains the details of

the dark matter content of the area of interest for the observation window defined by

the solid angle ∆Ω, also known as J-factor

J(∆Ω) =
∫

∆Ω

∫

l.o.s
ρ2(r(s, θ))dsdΩ. (6.7)

The dark matter distribution in the Milky Way, described by the density ρ(r), has not

yet been determined, so multiple propositions have been made in order to describe the

cosmological observations. There are different functions that are usually employed, the

most traditional being the Navarro-Frenk-White (NFW) profile [130], with a functional

form motivated by cosmological N-body simulations. Among other frequently used

functions are the Einasto profile [131], considered a better fit to recent numerical simu-

lations [132, 133], and proposals motivated by galactic rotation curve observations such
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as the Burkert [134] and Isothermal [135] profiles, which in turn are inconsistent with

numerical simulations[136]. In addition, the NFW profile can be considered a specific

case of a general family of profile models in a function that introduces an additional

parameter γ [137], referred to as generalized NFW profile. It is important to note that

here we are not accounting for galactic substructures in DM halos, which have been de-

mostrated to contain great amounts of subhalos by high-resolution N-body simulations

[138]. The substructure problem is an active field of research, and by not adding this

into our calculations we are making strong assumptions. However, for the purposes of

simplifying the calculation, we take the dark matter profiles mentioned as good approx-

imation. The profiles mentioned above can be written as

NFW : ρNFW = ρs
rs

r

(

1 +
r
rs

)−2
(6.8)

Einasto : ρEin = ρsExp
{

− 2
α

[( r
rs

)α
− 1
]}

Burkert : ρBur =
ρs

(1 + r/rs)(1 + (r/rs)2)

Isothermal : ρIso =
ρs

1 + (r/rs)2

Generalized NFW : ρgNFW = ρs
r3

s

rγ(r + rs)3−γ
,

where α and γ are free parameters, the scale radius rs = 20kpc and ρs is determined

in such a way that the dark matter density at the location of the Sun (r = r⊙) is ρ⊙ =

0.4 GeV/cm3 = 1.0536× 10−2M⊙(pc)−3. Our choice for rs and ρ⊙ are made to coincide

with the studies by the FermiLAT collaboration [112] for the purposes of comparison,

but they can vary for different conventions. For example, direct detection experiments

use ρ⊙ = 0.3 GeV/cm3 = 7.9020× 10−3M⊙(pc)−3.

We opt to use the generalized Navarro-Frenk-White (gNFW) dark matter profile with

γ = 1.25 for the slope of the inner part of the profile, and the corresponding scale density

to fit the value of ρ⊙ is ρs = 0.225 GeV/cm3 = 5.9265× 10−3M⊙(pc)−3. We chose this

value of γ in order to properly compare with the analysis done in Ref. [112], where this

specific value is used. The region of interest is a disk around the Galactic Center with an

aperture |l| < 10 and 2 < |b| < 10 for one quadrant, where l and b are the longitude and

latitude in the galactic coordinate system, respectively. This means we are observing a

20× 20 aperture from the center of the Galaxy with a 2 mask right in the center, which is

the region studied in Ref. [112]. The purpose of this mask is to avoid the bright sources

around a small region of the center of the galaxy. The aperture of the region of interest is

related to the angle θ by cosθ = cosb cosl. For these parameters, the J-factor in Eq. (6.7)

yields J0 = 7.118× 105GeV4/cm2seg = 6.097× 1022GeV2cm−5. This is the value we will
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use to calculate the photon flux in the galactic center.

The prompt gamma-ray flux produced in the Galactic Center by the annihilation of dark

matter into q̄q, c̄c, b̄b, e+e−, µ+µ−, τ+τ−, W+W−, ZZ, hh, gg was fitted to the FermiLAT

data in Ref. [124]. Here, q̄q refers to the sum of the contributions of light quarks (u, d

and s). In Ref. [124], the dark matter mass (M) and the cross section are treated as free

parameters. Their conclusion was that the gamma-ray excess can be explained by these

processes, except for the e+e− channel, for a dark matter mass in the range 5− 174 GeV,

depending on the specific channel, for a corresponding cross section of the order of the

thermal cross section 〈σvr〉 ≈ 10−26cm3/seg. Annihilation of dark matter into fermionic

states, D̄D → f̄ f with f = µ, τ, q, c, b, turned out to yield a good fit to the GRE data for

masses in the 9− 61 GeV range.

There is also another possibility that the GRE can be explained by production of gamma

rays as secondary product from Inverse Compton Scattering (ICS). Here, electron and

muon pairs produced in dark matter annihilation propagate over the Galactic Center

and scatter photons coming from the Cosmic Microwave Background and from starlight

[123]. For the electron channel, e+e−, a large cross section 〈σvr〉e is needed to account

for the GRE, but it turns out to be severely constrained by the positron fraction data

from the AMS Collaboration [139, 140]. However, as it was found in Ref. [124], the

muon channel can yield sizable contributions that can explain the GRE in addition to

the prompt photon production for a mass around M ≈ 61 GeV, for cross section values

of the order of the thermal cross section. Tau pairs decay too quickly for this effect to

happen.

Tensor Dark Matter can annihilate directly into γγ, γZ and γH, producing sharp line

spectra. However, in order to explain the GRE observed by FermiLAT [112], we need

to account for the broad form of the spectrum. In the following, we will present and

calculate the contributions of TDM annihilation to the photon flux in the Galactic Cen-

ter, including contributions from prompt photons and secondary emission from Inverse

Compton Scattering.

6.1.1 Prompt photon production from Tensor Dark Matter annihilation into
fermions

First we will consider TDM annihilation into final states that contain at least one pho-

ton. These can occur in three forms: initial state radiation, internal bremsstrahlung (or

internal radiation) and final state radiation. The simplest case are transitions of two-

body processes, D̄D → γR with R = γ, Z0 whose amplitudes are O(g2
t ), or with R = H

which is O(gtgs, gtgp). Additionally, considering non-perturbative QCD corrections in
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general R in these processes can convert to quarkonium states resonances Q̄Q[2S+1LJ ]

producing also γ-quarkonium final two body states.

The photons produced by these processes have energy spectra centered at ω = M(1−
M2

R
4M2 ), with a width related to the width of the resonance of R. If we then consider

the decay of R into two particles, these contributions become a three-body final state

process that produces a continuous photon spectrum when R is off-shell. We refer to

this as initial state radiation.

For three-body processes, it is also possible that the TDM annihilates into a pair of

particle-antiparticle with the subsequent emission of a photon, this is final state radi-

ation.

In addition, we can have a process where the exchanged particle R decays into another

particle emitting a photon, with a subsequent decay into a particle-antiparticle pair,

which we call internal radiation or internal bremsstrahlung. The diagrams for the pro-

cesses mentioned are shown in Fig. 6.1.
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FIGURE 6.1: Annihilation of TDM into final states containing one pho-
ton. The first two correspond to initial state radiation, followed by two
diagrams for the final state radiation, and finally the last two are for the

internal radiation or internal bremsstrahlung.

Initial state radiation

Initial state radiation is induced at tree level by the first two diagrams in Fig. 6.1. Initial

state radiation can produce spectra with shape similar to the GRE, provided there are

resonant effects involved in the process. In this case the resonant effects translates into
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wider peaks in the photon spectrum (see Ref. [141] for these effects in colliders at low

energies). The first diagram in Fig. 6.1 ( γ and Z exchange) provides contributions of

order O(v2
r ), so the initial state radiation is dominated by Higgs exchange, the second

diagram. The amplitude for this process (see the corresponding diagram in Fig. 6.2),

can be written as

M(p1, p2 ; k, p3, p4) =Mγ[D̄(p1)D(p2)→ γ(k)H∗(q)]
i

q2 −M2
H + iMHΓH

MH [H
∗(q)→ f̄ (p3) f (p4)],

(6.9)

where q = p3 + p4. The cross section is calculated as follows

dσ =
(2π)4|M|2

4
√

(p1 · p2)2 −M4
δ4(p1 + p2 − k− p3 − p4)

d3k
(2π)32ω

d3 p3

(2π)32E3

d3 p4

(2π)32E4
(6.10)

D̄(p1)

D(p2)

γ(k, ǫ)

H∗(q)
f̄ (p3)

f (p4)

FIGURE 6.2: Diagram for the initial state radiation with a Higgs boson
exchange for TDM annihilation.

.

Integrating out p4 using d3 p4
2E4

= d4 p4δ(p2
4 −m2

4)Θ(E4), we obtain

dσ =
1

(2π)5
|M|2

4
√

(p1 · p2)2 −M4
δ
(

(p1 + p2 − k− p3)
2 −m2

4

)d3k
2ω

d3 p3

2E3
. (6.11)

In the Center of Mass System (CMS), we have p1 + p2 = (
√

s, 0). The term inside the

delta is

(p1 + p2 − k− p3)
2 −m2

4 = s + m2
3 − 2

√
sω + 2k · p3 − 2

√
sE3 −m2

4 (6.12)

= s− 2
√

s(E3 + ω) + 2E3ω(1− βcosθ),

where we consider m3 = m4 = m f and k · p3 = E3ω − E3ωβcosθ. The delta term can

then be written as

δ
(

(p1 + p2 − k− p3)
2 −m2

4

)

=
1

2ω|p3|
δ
(

cosθ − s + 2E3ω− 2
√

s(E3 + ω)

2ω|p3|
)

. (6.13)
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Integrating cosθ and φγ using d3 p3
2E3

d3k
2ω = 1

4 ω|p3|dωdE3d(cosθγ)dφγd(cosθ)dφ f , we have

dσ =
1

(2π)4
|M|2

32
√

(p1 · p2)2 −M4
dωdE3dφ f d(cosθγ). (6.14)

Recall that 4
√

(p1 · p2)2 −M4 = 2(s− 2M2)v. Thus,

dσv
dω(.cosθγ)

=
1

(2π)4
|M|2

16(s− 2M2)
dE3dφ f . (6.15)

FIGURE 6.3: Scheme of the coordinates for the D̄(p1)D(p2)→ γ(k)H∗(q)
process.

We denote θ3, θγ and θ as the angles between ~p1∠~p3,~k∠~p1 and~k∠~p3, respectively. φ f is

the angle formed between the proyection of ~p1 and the proyection of ~p3 on the normal

plane of~k. From geometry we know that

cosθ3 = cosθcosθγ + sinθsinθγcosφ f . (6.16)

And from the delta function in Eq. 6.13,

cosθ =
s + 2E3ω− 2

√
s(E3 + ω)

2ω
√

E2
3 −m2

f

. (6.17)

Additionally, we have the following products

p1 · p1 = p2 · p2 = M2 ; k · k = 0 ; p3 · p3 = p4 · p4 = m2
f

p1 · p2 =
1
2
(s− 2M2) ; k · p1 =

√
s

2
ω(1− βcosθγ)

p1 · p3 =

√
s

2
(E3 − β

√

E2
3 −m2

f cosθ3) ; k · p2 =

√
s

2
ω(1 + βcosθγ)

p2 · p3 =

√
s

2
(E3 + β

√

E2
3 −m2

f cosθ3) ; k · p3 = ω(E3 −
√

E2
3 −m2

f cosθ). (6.18)
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To integrate over φ f , we need the explicit form of |M|2. However, to integrate over

E3 we need to find the minimum and maximum value allowed kinematically by Eq.

6.17. Working in the CMS of p1 + p2, we have the constraint~k + ~p3 + ~p4 = 0. Then, the

minimum value of q2 = (p3 + p4)
2 is 4m2

f , which is obtained when p3 · p4 = m2
f , which

means ~p3 = ~p4 = − 1
2
~k. Thus, the minimum happens when cosθ = −1. Similarly q2

will be at its maximum value when ~p3 = −~p4, that is to say, when cosθ = 0. We then

find the maximum and minimum values of E3 by solving the constraint in Eq. 6.17 with

θ = 0, π, which means solving the following

s− 2
√

sω− 2(
√

s−ω)E3 = ±2ω
√

E2
3 −m2

f . (6.19)

By squaring both sides of the equation, we can find the minimum (E−3 ) and maximum

(E+
3 ) values of E3.

E±3 =
1
2
(
√

s−ω)± ω

2

√

1−
4m2

f

s− 2
√

sω
. (6.20)

In the non-relativistic limit, s ≈ 4M2, and

E±3 = M− ω

2
± ω

2

√

1−
m2

f

M(M−ω)
. (6.21)

Except for the top quark, we have that M2 >> m2
f , thus

M−ω . E3 . M. (6.22)

Therefore, under these considerations, the allowed values for ω are ω < M. The

squared amplitude for this process, in the non-relativistic limit (β → 0), in terms of

the coupling constants gt, gp and gs is

|M|2 = −
4 cos2 θW g2

t m2
f

9M8 (−cθω
√

E2
3 −m2

f + E3(ω−
√

s) + 2m2
f )

×
(

g2
p(−24M6 + 2M4(s− 8

√
sω) + M2s(4

√
sω + s− 15ω2) + 6s2ω2)

+ g2
s (−8M6 + 2M4(s− 4

√
sω) + M2s(4

√
sω + s− 23ω2) + 6s2ω2)

)

/
(

4E2
3((c

2
θ + 1)ω2 − 2

√
sω + 2)− 4c2

θm2
f ω2 + M2

H(Γ
2
H − 4cθω

√

E2
3 −m2

f − 4E3
√

s + 4E3ω)

+ 8cθE3ω
√

E2
3 −m2

f (
√

s−ω) + M4
H

)

,

where cθ = cosθ, cγ = cosθγ and cW = cosθW . We use this expression to calculate
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dσv
dωdcosθγ

using Eq. 6.15, including the factor Nc to account for color number, in the non-

relativistic limit, when s ≈ 4M2 and β ≈ 0,

dσvisr

dωdcγ
=

Nccos2θW g2
t m2

f ω

9(2π)3M6 (M2 −Mω−m2
f )

√

1 +
m2

f

M(ω−M)

9g2
pω2 + g2

s (ω + 2M)2

(

4M(M−ω)−M2
H

)2
+ Γ2

H M2
H

.

The differential cross section, integrating over θγ, is

d〈σvr〉isr

dω
= ∑

f

Nc cos2 θW g2
t m2

f ω(M−ω)

(

1− m2
f

M(M−ω)

)3/2

72π3M5

×
9g2

pω2 + g2
s (2M + ω)2

(

4M(M−ω)−M2
H

)2
+ Γ2

H M2
H

, (6.23)

where the sum runs over all kinematically allowed SM fermions. As expected, for

M > MH/2 the photon spectrum has a bump at energies corresponding to di-fermion

invariant mass close to the Higgs resonance. The location of this bump depends on the

dark matter mass. For M = 64 GeV it coincides with the GRE bump at 3 GeV. However,

this is a contribution of the order O(g2
t g2

s ). Recall that in the previous section, we found

that the coupling gt is severely constrained to gt ≤ 2× 10−4 by the XENON1T results on

direct detection for a TDM mass of the order of 100 GeV, which makes the initial state

radiation very small compared with the GRE data.

Final state radiation

Prompt photons can be also emitted by the final fermions in the reaction D̄D → f̄ f γ.

These contributions are given by the next two diagrams in Fig. 6.1. The γ and Z ex-

change and the Higgs exchange with pseudoscalar coupling gp areO(v2
r ), so the leading

contributions are given by the diagrams with the Higgs exchange and scalar coupling.

The cross section is obtained in a similar way as before, with the appropriate changes in

the invariant amplitude, which is

−iMH− f =
Q f m f

s−M2
H + iΓH MH

ū (p3) i





γµ
(

/p3 + /k + m f
)

(p3 + k)2 −m2
f

−
(

/p4 + /k −m f
)

γµ

(p4 + k)2 −m2
f



 εµ (k) v (p4)

× V̄ (p2)
(

gs + igpχ
)

U (p1) . (6.24)
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Following a similar procedure, we obtain the following differential averaged cross sec-

tion

d〈σvr〉 f sr

dω
= ∑

f

NcαQ2
f g2

s m2
f

6π2M4ω
(

(

4M2 −M2
H

)2
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H M2
H

)





[
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(

ω2 − 3m2
f

)

+ 2Mm2
f ω + m4

f

]

ArcTanh

√
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m2

f

M(M−ω)

−M(M2 −m2
f )(M−ω)

√

1−
m2

f

M(M−ω)



 . (6.25)

The corresponding differential photon flux as a function of the dark matter mass is

shown in Fig.6.4 . These contributions are also resonant, and these effects occur at

FIGURE 6.4: Differential photon flux for final state radiation as a function
of ω, M for gs = 5× 10−3.

s = (p1 + p2)
2 = 4M2

(

1 +
v2

r

4
+O(v4

r )

)2

= M2
H. (6.26)

We can see from the plot in Fig. 6.4 that the results for ω2dΦ/dω of the order of the

GRE are obtained only for Higgs exchange in the resonance region. Since dark matter is

non-relativistic, this requires M ≈ MH/2.

Photons emitted directly by the fermion produced in TDM annihilation is only one of

many processes that yield prompt photons. For f = µ, τ, q, c, b there are additional

prompt photons produced by the decay products in the case of leptons or by the jet of

particles produced in the hadronization of quarks. These effects modify our results in

Eq. (6.25) substantially for all fermions except for f = e, µ, which do not have hadronic
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decays and receive only modifications from suppressed higher order electroweak radia-

tive corrections.

With the tabulated spectrum defined as provided by DARKSUSY [100] and PPC4DMID

[142], we can calculate the complete prompt photon flux for f = e, µ, τ, q, c, b including

radiative corrections [143]. We verified the consistency of results using both packages

and use the spectrum given by the direct photon emission by electrons and muons in

Eq.(6.25) to cross-check results. A comparison between this and our results is shown in

Fig. 6.5. Indeed, the spectrum suffers a substantial change for f = τ, q, c, b, while for e

and µ¸ there are no significant changes.
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FIGURE 6.5: Comparison of the tree level result in Eq. (6.25) for
dN

f
γ

dω
versus the results using PPC4DMID tabulated spectrum, for leptons and

quarks, as a function of ω for M = 62.5 GeV.

Internal Bremsstrahlung

The internal state radiation is given by the last two diagrams of Fig. 6.1. The first of

these diagrams involve the H → γγ and H → Zγ transitions which takes place at one-

loop level in the standard model, which were discussed in Chapter 4 (see Eq. (4.55), for
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example). For the sequential decay with γ and Z0 intermediate states we obtain

〈dσvr〉Z∗
dω

= ∑
f

Ncg2
Zγg2

s ω3M2
Z

√

1− m2
f

M(M−ω)

36π3M2
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×
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There is also an enhancement at the Higgs resonance in these processes and a double-

resonant effect in the case of the Z∗ intermediate state. The last diagram in Fig. 6.1

involves non-perturbative QCD effects. We calculated these contributions using the

Non-Relativistic QCD effective field theory finding them negligible even at the Higgs

resonance. There are also contributions with the sequential decays D̄D → γ∗, Z0∗ →
γH → γ f̄ f not shown in Fig. 6.1 which are not resonant and are also very small.

Our results for the internal radiation are shown in Fig. 6.6. Sizable contributions to

the differential photon flux from H → γZ∗ transition are produced mainly at the Z0

resonance i.e. for photon energies around ω = MH
2 (1− M2

H
M2

Z
) ≈ 30 GeV. The H → γγ∗

intermediate state contributes only at the upper end of the spectrum.

The most important contributions come from the b channel followed by the c and τ

which become competitive at high photon energies. Prompt photon flux from electrons

muons and light quarks turn out to be negligible.

6.1.2 Delayed emission: Inverse Compton Scattering contributions

There are at least three different contributions from the delayed photon emission by ICS

of propagating fermions produced in the annihilation of TDM.

• Propagation of electrons produced in D̄D → e+e−. Overall negligible contri-

bution. The Higgs portal part has a small coupling (gHee = me/v), and for the

spin portal case, since it is proportional to gt, is heavily constrained from direct

detection limits.
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FIGURE 6.6: Differential flux for prompt photons from the annihilation
of TDM into fermions for M = 62.49 GeV and gs = 10−3. We use MH =

125.09 GeV in the computation of these contributions.

• Propagation of muons produced in D̄D → µ+µ−. Shown in [124] to yield siz-

able contributions when the cross section of dark matter annihilation into muons,

〈σvr〉µ, is of the order of the thermal cross section.

• Propagation of electrons produced in decay of leptons or hadronization of quarks,

produced in D̄D → f̄ f with f = µ, τ, q, c, b.

The tabulated electron spectrum and models of propagation provided by the package

PPC4DMID [142, 144] allows us to obtain the ICS of photons from the CMB or starlight

by electrons produced in decays of heavy leptons and hadronization of quarks. The

photon flux from this phenomena is shown in Fig 6.7. It is important to note that these

contributions are calculated with the NFW[130] density profile since the PPC4DMID

tabulated spectrum is designed only for a number of DM profiles that do not include

the gNFW. These contributions, however, are not very sensitive to the density profile,

so our results are quite similar using the Moore [145] or Einasto B [131, 142] profiles

included in the PPC4DMID setup, profiles that are very similar to the gNFW used in

the previously shown computation of prompt photons.

As it was for prompt photons, the b channel is also dominant, with subdominant contri-

butions of the c and τ channels. Light quarks, with electrons and muons yield negligible
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contributions. We remark that for both prompt and delayed emission, these contribu-

tions increase the further we go into the resonance region, with the results being highly

sensible to the specific value of the TDM mass.

FIGURE 6.7: Differential flux of delayed photons produced in the ICS
of electrons off CMB and starlight, for secondary electrons produced in
the decay of heavier leptons or hadronization of quarks coming from the
annihilation of TDM, for M = 62.49 GeV and gs = 10−3. We use MH =

125.09 GeV in the computation of these contributions.

The contribution from propagation of muons was shown to be important in Ref. [124],

however in this case, for the TDM mass window required by the GRE data when in-

cluding all the contributions, the cross section 〈σvr〉µ is about three orders of magnitude

below the thermal cross section, thus the corresponding flux turns out to be very small.

6.1.3 Final results for the Gamma-Ray Excess in the Galactic Center

The photon flux from all the contributions mentioned above for tensor dark matter an-

nihilation in the Galactic Center is shown in Fig. 6.8. These results depend on the TDM

mass M and the interaction couplings gs, gp, gt, however we have shown that the spin

portal (gt) and pseudoscalar (gp) couplings yield contributions that are negligible for

the photon flux, and only the parity-conserving Higgs-TDM interaction is important for

this purpose.

Prompt and delayed photons are of similar importance for the overall photon flux, but

prompt photons are dominant for energies bigger than 0.3 GeV. For both cases, the
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main source of photons comes from D̄D → b̄b annihilation, followed by the τ+τ− and

c̄c channels. For prompt photons, the final state radiation dominates the photon pro-

duction, and internal radiation yields sizable contributions only at the upper end of the

spectrum.

The shadowed band shown in Fig.6.8 is a result of the study of the uncertainties of the

GRE data obtained in Ref. [112]. Considering these uncertainties, we conclude that

for gs ∈ [0.98, 1.01]× 10−3 and M ∈ [62.470, 62.505] GeV, tensor dark matter annihila-

tion yields a photon flux consistent with GRE data. These is a sharp set of values that

provides definite predictions for other observables that we must test against available

dark matter constraints. In the following sections we will work out the corresponding

observables for other limits from indirect detection experiments.

FIGURE 6.8: Differential flux as a function of ω including all the contri-
butions discussed in this paper, for M = 62.49 GeV and gs = 9.81× 10−4.
The shadowed band is a result of the study of the uncertainties of the

GRE data obtained in Ref. [112].

6.2 Annihilation into µ+µ−, τ+τ− and b̄b

High precision measurements of the cosmic ray positron fraction from the AMS (Alpha

Magnetic Spectrometer) collaboration [140] shows a rise at energies above 10 GeV which

cannot be explained with current astronomical models. This data is used in Ref. [139]

to put stringent limits on dark matter annihilation into µ pairs. The upper limit of the

cross section of this process, for M = 62.5 GeV is 〈σvr〉µ ≤ 8.96× 10−26cm3/seg, value

that remains consistent along the Higgs resonance region. For TDM, the largest values

of this cross section compatible with the values consistent with GRE data, found in the
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previous section, corresponds to a mass M = 62.505 GeV, for which the measured relic

density requires gs = 9.81× 10−4 (see Chapter 4). The TDM prediction with these val-

ues yields 〈σvr〉µ ≤ 8.30× 10−30cm3/seg, which is well below the experimental upper

bound set in [139].

Another important and well-known source of data for indirect detection of dark matter

are the dwarf spheroidal satellite galaxies of the Milky Way (dSphs). These are dark

matter-dominated objects [146–148] which are believed to be part of a subset of Galactic

DM overdensities, called subhalos, predicted by N-body cosmological simulations [149,

150]. Due to their proximity and high content of dark matter, dSphs are exceptional

targets for indirect detection experiments. The Fermi-LAT, in collaboration with the

Dark Energy Survey (DES), use data from 45 stellar systems, 28 of which are confirmed

to be dSphs, to obtain bounds on the cross sections of dark matter annihilation into b̄b

and τ+τ− [52].

For the τ channel the upper limit obtained with this data, for M = 62.5 GeV, is 〈σvr〉τ ≤
1.2 × 10−26cm3/seg, which in our formalism of the largest value compatible with the

GRE data yields 〈σvr〉τ = 2.42× 10−27 cm3/s, thus perfectly consistent with the experi-

mental upper bound.

However, in the case of the b channel we must perform a closer analysis, since our

results are closer to the upper bounds. In Fig. 6.9 we plot the expected limit and the 95%

containment region obtained in [52] in comparison to our results for 1
2 〈σvr〉b̄b (there is a 1

2

factor due to the fact that the upper bounds are obtained for self-conjugated dark matter,

unlike TDM). In a straight-forward comparison with these limits, TDM annihilation

into b̄b is consistent with the 95% containment band for the values of mass compatible

with the GRE, and below the median expected limit for a narrower mass interval M ∈
[62.470, 62.480] GeV. Regardless, it is important to analyze this compatibility in detail

in light of the results of this work, since this mass and cross-section intervals present a

promising place to look for signals of TDM. Additionally, it is important to note in this

concern that the Higss has a very narrow resonance (ΓH/MH = 3.2× 10−5), its energy

resolution is not easy and even in collider experiments it is still a pending task, so a

deeper analysis is more than justified.

The upper bounds obtained in Ref. [52] are the result of a combined analysis of the

energy flux from 45 stellar objects of which 28 are confirmed dSphs. Only 19 of these

have an experimentally derived J-factor, making use of data from stellar-kinematic data

in Ref. [151], where they also obtain the uncertainty of the corresponding J-factor taking

into account systematic errors due to finite data and uncertainties regarding the shape

of the DM density profiles. For the rest of the targets it is estimated from empirical

relations between the flux and the inverse square of the distance satisfied by the dSphs.
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FIGURE 6.9: Cross sections for the annihilation of TDM into b̄b for the
mass values compatible with the GRE data (solid line) and gs = 9.81×
10−4 GeV. The dashed line corresponds to the Median Expected limit and

the shadowed band to the 95% containment region obtained in [52].

The study done by the FermiLAT-DES collaboration performs a likelihood analysis of

the photon energy flux data, considering 24 logarithmically spaced energy bins in the

energy interval from 500 MeV to 500 GeV (the likelihood function data is provided in

the supplementary material of Ref. [52]). Then, the 95% confidence level upper bounds

for the bin-by-bin photon flux excess is calculated employing the formalism described

in Ref. [152]. The upper bounds on the photon flux excess for each target can then be

used to obtain limits on the dark matter annihilation cross section for the b channel,

〈σvr〉b̄b, for a given mass M using the standard model results for the photon spectrum

from b quarks. A combined likelihood analysis of these results yields the plot in Fig. 9

in Ref. [52].

Our aim is to make a direct comparison of our result with the experimental data for each

target. We first reproduce the bin-by-bin upper bound of the photon flux excess using

the likelihood function data at the 95% confidence level provided in the supplementary

material of [52], but keeping only the 19 targets with an experimentally determined J-

factor. The data from FermiLAT indicates a upper limit on the net flux of each target,

and the likelihood function they provide includes the considerations of the background

signals. We then make use of the package DarkSUSY 1 [100, 153] to calculate the photon

energy flux for b-quarks, produced from TDM annihilation. The package yields the

photon spectrum at a given energy from propagation and hadronization of the b-quarks,

1J. Edsjö, T. Bringmann, P. Gondolo, P. Ullio, L. Bergström, M. Schelke, E.A. Baltz and G. Duda,
http://www.darksusy.org.
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and takes as input the values of the mass M, the cross section 〈σvr〉b̄b and the J-factor

for the considered target. We extrapolate these points to obtain the photon energy flux

as a function of the photon energy. In Fig. 6.10 we show the photon energy flux for

M = 62.505 and gs = 9.81 × 10−4, which yields the highest value of 〈σvr〉b̄b that is

consistent with GRE, compared with the upper bound including the uncertainties in the

measured J-factor (white band) and the likelihood function data (color points) for each

of the 19 chosen targets. The photon energy flux from TDM annihilation into b-quark

pairs, for each target, turns out to be smaller than the limits obtained using the bin-by-

bin likelihood functions provided by FermiLAT-DES in the supplementary material of

Ref. [52]. This conclusion remains when considering the rest of the targets.

6.3 Tensor dark matter annihilation into two photons.

The FermiLAT [154] and the High Energy Stereoscopic System (H.E.S.S.) [155] have

searched for a monoenergetic spectral line from self-annihilations of DM in the cen-

tral region of the Milky Way halo in order to derive stringent upper limits on the cross

section of DM annihilating into gamma pairs, 〈σvr〉γγ. For M ≈ MH/2, the value of the

upper limit is 〈σvr〉γγ ≤ 6.75× 10−29cm3/seg.

The averaged cross section for the annihilation of TDM into two photons is given in

Eq.(4.56), which to leading order in v2
r yields

〈σvr〉γγ =
g2

γγg2
s M2v2

6πM2
H

(

(

4M2 −M2
H

)2
+ M2

HΓ2
H

) . (6.29)

The upper bounds obtained by FermiLAT [154], including the 95% containment region,

are shown in Fig. 6.11 along with our results for the TDM mass values consistent with

GRE data. The predictions of the tensor dark matter formalism are consistent with these

bounds, but in this channel we are again at the edge of the allowed values of 〈σvr〉γγ.

Lowering this bounds could put a test to the possibility that dark matter could be de-

scribed as a particle with a (1, 0)⊕ (0, 1) space-time structure.
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FIGURE 6.10: Energy flux (in units of GeV cm−2 s−1) in terms of the pho-
ton energy ω, for each of the 19 targets used in [52] with a J-factor derived
from stellar kinematics in [151]. The colored dots represent the values of
the likelihood function, where red is a higher value and blue is lower. The
black solid line is the energy flux upper limit at 95 % confidence level ob-
tained from the bin-by-bin likelihood functions. The shaded white area
represents the energy flux for TDM annihilating into b-quark pairs, us-
ing the measured J-factor to 1− σ uncertainty, for M = 62.505 GeV and

gs = 9.81× 10−4.
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FIGURE 6.11: Annihilation cross section of TDM into two photons for the
mass window consistent with GRE data, with gs = 9.81 × 10−4 (solid
line). The dashed line corresponds to the upper limits and the shadow

band to the 95% confidence level region obtained in [154].
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Chapter 7

Cosmic Ray Antiproton Excess from
Tensor Dark Matter

One of the main concerns of particle physics is the absence of antimatter in the ob-

servable Universe, and it is a problem that remains unexplained today. Any contri-

bution to the antimatter flux could be generated from exotic sources, so the observa-

tion of an excess of antimatter content is a promising mechanism for the detection of

these sources, including the prospect of dark matter annihilation. In particular, two in-

struments have been designed with increased sensitivity to the cosmic antimatter flux:

PAMELA [156] and AMS-02 [157, 158], which have measured with good precision the

antimatter cosmic-ray spectrum [159–162].

Indeed, during the past decade the AMS-02 Collaboration data has been scrutinized to

find an excess of antiprotons in the∼ 10− 20 GeV region, with many studies identifying

a possible consistency with a contribution from annihilating dark matter [53, 163–170]

(see however alternative explanations to this excess regarding secondary cosmic-rays

and systematic errors in [171, 172]).

It is an interesting occurrence that most of these studies, scanning independently the

values of the dark matter mass and the cross section for its annihilation into standard

model particles, find that dark matter with a mass of around M ∼ 60 GeV and an annihi-

lation cross-section of the order of the thermal relic cross section (〈σvr〉 ∼ 10−26cm3/seg)

is a possible explanation of this excess. These values fall into the mass and cross section

windows for TDM that we have previously shown to be consistent with the gamma ray

excess in the Galactic Center and other indirect detection bounds, in Chapter 6. This

coincidence is our motivation for looking into the antiproton excess from the AMS-02

data more carefully, in search for a possible consistency with our dark matter proposal.



88 Chapter 7. Cosmic Ray Antiproton Excess from Tensor Dark Matter

7.1 Modeling the antiproton and proton cosmic-ray spectrum

in the galaxy

The need to uncover the mistery of the observed baryon asymmetry, by collecting data

on existing antimatter in the universe, prompted the search and eventual detection of

cosmic ray (CR) antiprotons during the 1970’s [173, 174]. Several measurements and

model proposals for the production of antiparticles in the Galaxy resulted in the con-

clusion that CR antiprotons are produced after interactions between high-energy nuclei

(cosmic ray primaries, i.e. those accelerated by remnants of supernovae) and matter

(mostly hydrogen and helium [175]) within the interstellar medium (ISM). These are

the so-called secondary antiprotons. Antiprotons could be produced directly (primary

antiprotons) in regions consisting of antimatter (not yet observed) [176] or they could

also be a product of evaporation of primordial black holes [177]. The spectrum of an-

tiprotons detected at Earth, however, is in agreement with mostly that of secondary

origin [178].

The kinematics of the production of secondary antiprotons produce an energy spectrum

with a maximum near 2 GeV, which then decreases at energies around tenths of GeV

in a steeper form than that of protons [179]. Thus, the antiproton-to-proton ratio is

observed to have a steep decrease at these energies. In summary, the antiproton flux is

determined by CR propagation and interaction of nuclei with interstellar gas, and since

these processes suffer from large uncertainties, one must treat their calculation carefully

in order to predict the flux with high precision.

There are different sources for this systematic uncertainty. The first comes from the

CR propagation which involves several complicated processes such as diffusion, con-

vection, re-acceleration and loss of energy. The parameters of the model for the CR

propagation must be chosen to account for secondary-to-primary nuclei ratios, among

which are Boron-to-Carbon (B/C) and other nuclei [180]. The second source of uncer-

tainties is the effect that the solar magnetic field has on the CR spectra, that is, the solar

modulation [181]. When CR enter the Solar System, the solar magnetic field modifies

their spectra, acting primarily on the low energy part of the spectrum. It is difficult to

estimate with precision since it requires the modeling of the solar wind and its effects,

which change through time. An overview of the effects of solar modulation of the cos-

mic rays entering the heliosphere is performed in Ref. [182]. Finally, another important

source of uncertainties is the limited characterization of the cross sections for the pro-

duction, annihilation and scattering of these particles. In this section we will take this

into account and will make use of the parameter choice in the first model in Ref. [53] to

evaluate the proton and antiproton flux from cosmic rays.

In order to obtain the local flux of the primary and secondary cosmic ray species, we
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need to solve the transport equation for this particles. For this purpose, we make use of

the publicly available tool GALPROP 1 [183], which solves the transport equation using

the appropriate input parameters of a chosen model. We adopt the first model in Table

I of [53] and use the input parameters listed in Table 7.1.

Parameter Value
δ 0.40

zL (kpc) 5.6
D0 (cm2s−1) 4.85× 1028

vA (km/s) 24.0
α1 1.88

dvc/d|z| (km/s/kpc) 1.0
α2 2.38

Rbr (GV∗) 11.7

TABLE 7.1: Cosmic-ray injection and propagation model parameters
used, adopted from Ref. [53]. *The units GV are giga-volts, or GeV di-

vided by the elementary charge e.

The diffusion coefficient is defined as follows

Dxx(R) = βD0(R/4 GV)δ, (7.1)

where δ is the diffusion index and β ≡ v/c. The choice for these parameters and the

calculation of the injection, diffusion, convection and reacceleration of CR is explained

in Ref. [53].

A study of the antiproton production cross section done in Ref. [184] concluded that

there is a 10-20% uncertainty coming from the fact that equivalent results are found

through very different sets of parameters. To account for this uncertainty, we implement

the solution formulated in [185] where the antiproton flux prior to solar modulation is

fixed by an scaling factor that is energy dependent, defined as

NCS(k ISM) = a + b
[

ln
( k ISM

GeV

)]

+ c
[

ln
( k ISM

GeV

)]2
+ d
[

ln
( k ISM

GeV

)]3
, (7.2)

where k ISM is the kinetic energy of the cosmic ray in the interstellar medium, before

entering the Solar System. The fourth term of this scaling function, proportional to
[

ln
(

kISM
GeV

)]3
, can be omitted and an adequate fit can still be reached, as it will be shown

later on.

Once we have the antiproton flux, we must apply the effects of solar modulation after

the cosmic rays enter the solar system. The differential flux at Earth, dN⊕/dEkin in terms

1https://galprop.stanford.edu/,https://galprop.stanford.edu/webrun/
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of k ISM, is obtained as [181]

dN⊕

dEkin
(k ISM) =

(k ISM − |Z|eΦ(R) + m)2 −m2

(k ISM + m)2 −m2
dN ISM

dk ISM
(k ISM), (7.3)

where dN ISM/dk ISM is the differential flux prior solar modulation, Ekin, |Z|e and m are

the kinetic energy, charge and mass of the cosmic ray. Then, the flux in terms of Ekin can

be obtained using the equivalence Ekin = k ISM − |Z|eΦ(R). The modulation potential,

Φ, is a function that depends on time, the charge of the cosmic ray and its rigidity

(R =
√

k ISM(k ISM + 2mp)/e) prior entering the Solar System, and it is given in units

of GV, or GeV divided by the elementary charge e. We follow the analytic expression

constructed in Ref. [186],

Φ(R, t, q) = φ0

( |Btot(t)|
4 nT

)

+ φ1N′(q)H(−qA(t))
( |Btot(t)|

4 nT

)(1 + (R/R0)2

β(R/R0)3

)( α(t)
π/2

)4
,

(7.4)

where R0 ≡ 0.5 GV and Btot is the strength of the heliospheric magnetic field (HMF) at

Earth, with a polarity A(t), H denotes the Heaviside function and α is the tilt angle of

the heliospheric current sheet. N′(q) defines the polarity of the HMF and N′(q) 6= 1

when the HMF does not have a well-defined polarity.

We work with the values φ0 ∈ [0.32, 0.38] GV and φ1 ∈ [0, 16] GV in order to stay within

the uncertainties for the modulation potential described in Ref. [186]. The averaged

values over six-month intervals during the observation period by AMS-02 of Btot, α and

N′(q)H(−qA(t)) are found in Table II of [185]. We use these values and calculate the

potential and flux for each six-month interval, and the final result is the averaged values.

An additional parameter to take into account is the local ISM gas density, taken as an

energy-independent normalizing factor, gISM. In total, there are seven free parameters

involved in the fit: φ0, φ1, a, b, c, d and gISM. The flux ratio is defined as follows.

R p̄/p =
Φ p̄

Φp
= gISM

dN⊕p̄
dEkin

/ dN⊕p
dEkin

. (7.5)

The results for the best fit to the AMS-02 antiproton flux and antiproton-to-proton ratio

data [187] are shown in Fig. 7.1. We perform the fit for two cases, d = 0 (fit 1) and d 6= 0

(fit 2). A summary of the fitting parameters and the corresponding value of χ2 for each

case is given in Table 7.2. The residual between the antiproton-to-proton ratio and the

AMS-02 data for each fit is shown in Fig. 7.2. It can be observed that there is indeed an

excess in the residual around ∼10-20 GeV and in the higher end of the spectrum.
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FIGURE 7.1: Best fit to the AMS-02 data on the a) antiproton flux and b)
antiproton-to-proton ratio for d = 0 (solid line) and d 6= 0 (dashed line).

Fit φ0/GV φ1/GV a b c d gISM χ2

1 0.3257 16 1.1579 -0.1632 0.0216 0 1.1844 1.0561
2 0.32 16 1.1549 -0.1301 0.0038 0.0023 1.1842 0.9243

TABLE 7.2: Best-fit parameters to the AMS-02 antiproton-to-proton ratio
data considering secondary antiprotons produced in the ISM, for d = 0

(fit 1) and d 6= 0 (fit 2).

FIGURE 7.2: Antiproton-to-proton ratio residual from the AMS-02 data
from Ref. [187].

7.2 Antiproton production from annihilating tensor dark mat-

ter

We use the PPC4DMID code [142] to obtain the antiproton flux produced in the hadroniza-

tion of quarks or the hadronic decay of the τ lepton produced in the annihilation of

TDM, and its propagation in the ISM. This code, which uses Monte Carlo simulations

to calculate the differential spectra of antiprotons is especially useful since it includes

electroweak corrections.

Protons are produced by dark matter annihilation in the same proportion as aniprotons,

but their contribution to the overall proton flux is very small compared with the total

proton flux in the ISM, and can be neglected. Only the antiproton production is large

enough compared to the total antiproton flux in the ISM, so it becomes relevant in the
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calculation of the antiproton to proton flux ratio. The relevant channels that contribute

to the antiproton-proton ratio are shown in Fig. 7.3. It is easy to see that the most

contributing channel, b̄b, yields an antiproton flux with a maximum in the energy range

of the excess in the AMS-02 data.

FIGURE 7.3: Antiproton-to-proton flux ratio for antiprotons produced in
the annihilation of TDM for M = 62.488 GeV and the correlated coupling

gs(M) = 1.001× 10−3, for the b̄b, c̄c, τ+τ− and light quark channels.

The statistical relevance of this contribution can be seen when we perform a fit to the

total flux to the AMS-02 data for both cases, d = 0 and d 6= 0, for fixed value of the

mass M and obtain the value of χ2 for the fit. The results for the whole range M ∈
[62.470, 62.505] GeV are shown in Fig. 7.4 for the fit including TDM contributions and

we compare it to the value for the best fit without the addition of TDM contributions

obtained in the previous section for d = 0 and d 6= 0. We can see that the fit improves

for all values of M ∈ [62.470, 62.505] GeV in both cases. The black point in these plots

marks the minimal value of χ2 for the considered values of M, which correspond to

the best fit including TDM contributions in each case. The parameters corresponding to

these points are given in Table 7.3.

For d = 0, the best fit is obtained for M = 62.4839 GeV and the corresponding value

of the Higgs portal coupling compatible with the measured relic density is gs(M) =

1.0053× 10−3. In the d 6= 0 case the best fit corresponds to M = 62.4877 GeV and the

value of the coupling is gs(M) = 1.0009× 10−3.

Fit M/GeV φ0/GV φ1/GV a b c d gISM χ2

3 62.4839 0.32 16 1.1216 -0.1599 0.0247 0 1.1371 0.8783
4 62.4877 0.32 16 1.1225 -0.1691 0.0290 -0.00043 1.1310 0.8772

TABLE 7.3: Best-fit parameters to the AMS-02 antiproton-to-proton ratio
for d = 0 (Fit 3) and d 6= 0 (Fit 4), including antiprotons from TDM

annihilation.
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FIGURE 7.4: χ2 value as a function of M, for d = 0 (left) and d 6= 0
(right). The dashed lines are the χ2 values without the TDM annihilation
contributions in Section II. The points correspond to the minimal value in

each case.

Each contribution of the best-fit results in Table 7.3 are shown in Fig. 7.5, where data

points correspond to the AMS-02 data for the antiproton-proton residual ratio and the

continuous lines correspond to antiprotons produced in the annihilation of TDM. We

can see in these plots that TDM contributions account for the antiprotons excess ex-

tracted from the AMS-02 data and this result is not sensitive to the value of d.
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FIGURE 7.5: Antiproton-to-proton ratio pure residual (annihilation con-
tributions not included) from the AMS-02 data [187] for the parameters
in the best fit for d = 0 (top) and d 6= 0 (bottom) in Table 7.3. In both cases
we also show the contributions from TDM annihilation into b̄b and c̄c for

the corresponding value of M in Table 7.3.



95

Chapter 8

Simple Gauge Theory for Dark
Matter and Collider Constraints

In the past chapters we have described and shown that tensor dark matter, a spinor-like

field in the (1, 0)⊕ (0, 1) space-time structure, is a possible description of dark matter

that is consistent with relic density, constraints from Z0 and H invisible widths, bounds

from direct detection experiments such as XENON1T, and indirect detection limits from

observations of the photon flux in dwarf spheroidal satellite galaxies (dSphs), the cosmic

ray antiproton excess and the Galactic Center gamma ray excess. This consistency is

obtained only when the tensor dark matter has a mass M ≈ MH/2, specifically within

the [62.470, 62.505] GeV window and with a coupling to the scalar Higgs portal gs ∈
[0.98, 1.01]× 10−3.

This sharp prediction, along with the fact that the leading terms in the interaction La-

grangian are dimension-four, motivates us to explore a more general construction. In

this chapter we will work out the formalism for a Hidden Tensor Dark Matter gauge

structure, that is, the inclusion of dark matter fields with a (1, 0) ⊕ (0, 1) space-time

structure and the simplest case for an additional dark gauge group Gd = U(1)d, and its

spontaneously broken gauge symmetry. In this Hidden TDM scheme, the dark sector

does not have SM charges and, viceversa, the SM fields do not have dark sector charges.

Despite both sectors having no charges of the other, there are dark matter interactions

coming from the fact that a dark gauge group that includes a factor U(1)d subgroup

mixes kinetically with the U(1)Y of the standard model. This idea has led to the ex-

ploration of new neutral gauge bosons, that are considered the mediators of dark mat-

ter gauge interactions and the consequent existence of kinetic mixing of the SM U(1)Y

gauge boson with every abelian dark gauge boson in the dark group Gd [188–212]. We

will study the kinetic mixing that occurs in the Hidden TDM scheme in detail.
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8.1 Dark gauge group, kinetic mixing and custodial symmetry

The Lagrangian with the addition of a dark U(1)D gauge group can be written as

L = LSM + Ld + Lint, (8.1)

with LSM being the SM Lagrangian, Ld stands for the U(1)d gauge theory Lagrangian

and Lint includes the interaction terms between SM and the dark sector. The dark sector

Lagrangian is given by

Ld = (Dµ )̃
†
ψ̄ΣµνDνψ−M2ψ̄ψ + (DµΦ)∗DµΦ− µ2

dΦ∗Φ− λd(Φ
∗Φ)2 − 1

4
VµνVµν, (8.2)

where ψ is the tensor dark matter field and Σµν = 1
2 (gµν + Sµν) as it was defined in

Chapter 2. We denote the U(1)d stress tensor as Vµν and the dark Higgs field as Φ. The

covariant derivative for this sector is Dµψ = (∂µ + igd
Qd
2 Vµ)ψ.

The interaction Lagrangian is formed by all dimension four products of operators from

the SM and dark sectors, invariant under the complete gauge group SU(3)c⊗ SU(2)L⊗
U(1)Y ⊗ U(1)d. Recall that we did the same in Chapter 2, and we found that in the

case of the SM, the lowest dimension gauge singlet operators are the U(1)Y stress tensor

B̃µν and the Higgs operator φ̃†φ̃ (from now on we will use a tilde on the SM fields and

couplings to distinguish them from the extended theory fields). For the dark sector, we

have the U(1)d stress tensor Vµν and the dark Higgs term Φ†Φ as the lowest dimension

gauge singlets. There could be an additional term if we consider new elements for the

matter content of the dark sector. For example, if we include a dark neutrino νd and its

right component is a singlet of U(1)d, we can form a dimension four term ¯̃Lφ̃cνd
R, but we

will focus only in the addition of the dark gauge fields.

Therefore, the interaction Lagrangian is given by

Lint =− ψ̄(gs + igpχ)ψφ̂†φ̂ + gtψ̄MµνψB̃µν − ψ̄(g̃s + ig̃pχ)ψΦ∗Φ

− sinχ

2
B̃µνVµν − 2κφ̃†φ̃Φ∗Φ + Lψ

si, (8.3)

whereLΨ
si stands for the self-interaction Lagrangian of tensor dark matter. Self-interaction

terms for fields with this structure are discussed in Ref. [77], but for the purposes of this

work we will set them aside for now.

The kinetic terms for all the gauge bosons in the Lagrangian in Eq. (8.1) are

LK
gauge = −

1
4
(W̃aµνW̃a

µν + B̃µνB̃µν + VµνVµν + 2 sin χVµνB̃µν), (8.4)
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which contain a kinetic mixing term of the U(1)Y and U(1)d gauge bosons. To restore

the canonical form of the Lagrangian, we must perform a GL(2, R) transformation on

the gauge bosons to obtain properly normalized kinetic terms [213]

B̃µν = B̄µν − tan χV̄µν, Vµν = sec χV̄µν. (8.5)

Applying this transformation, the Lagrangian recovers the canonical form

LK
gauge = −

1
4
(W̃aµνW̃a

µν + B̄µνB̄µν + V̄µνV̄µν), (8.6)

which induces a coupling between the U(1)d gauge boson and the SM fields. The

SU(2)L ⊗U(1)Y ⊗U(1)d covariant derivative now takes the form

Dµ = ∂µ + ig̃TaW̃aµ + ig̃Y
Y
2

B̄µ + i(gd sec χ
Qd

2
− g̃Y tan χ

Y
2
)V̄µ, (8.7)

where Qd/2 is the generator of U(1)d, with gd being the corresponding coupling con-

stant. Again, the "tilde" notation for the SM electroweak gauge couplings, g̃, g̃Y, is to

associate them to the extended theory. From the last term of the covariant derivative

we notice that the new dark gauge boson acquires a non-vanishing hypercharge due to

the kinetic mixing. Effects of this mixing also appear in the mass terms generated by the

Higgs mechanism. In order to keep the U(1)em an unbroken symmetry, with the genera-

tor Q = T3 +Y/2, we identify that the B̄µ boson functions similarly to the non-extended

SM hypercharge field B̃µ, and both mix with W̃3
µ. We can perform a rotation with a weak

mixing angle θ̃ω
(

B̄

W̃3

)

=

(

cos θ̃w − sin θ̃w

sin θ̃w cos θ̃w

)(

A

Z̃

)

. (8.8)

As a result, we get the relation

g̃T3W̃3 + g̃Y
Y
2

B̄ = eQA +
g̃

c̃w
(T3 − s̃2

wQ)Z̃, (8.9)

with e = g̃s̃w = g̃Y c̃w, and where s̃w = sin θ̃w, c̃w = cos θ̃w.

The Higgs sector of the GSM ⊗U(1)d gauge theory has the following Lagrangian

LHiggs = (Dµφ̃)†Dµφ̃ + (DµΦ)∗DµΦ−V(φ̃, Φ), (8.10)

where the Higgs potential is written as

V(φ̃, Φ) = µ̃2φ̃†φ̃ + λ̃(φ̃†φ̃)2 + µ2
dΦ∗Φ + λd(Φ

∗Φ)2 + 2κΦ∗Φφ̃†φ̃. (8.11)
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The minimum conditions are obtained as follows

∂V
∂φ̃i

= 2φ̃i[µ̃
2 + 2λ̃(φ̃†φ̃) + 2κ(Φ∗Φ)] = 0, (8.12)

∂V
∂Φi

= 2Φi[µ̃
2 + 2λ̃(Φ∗Φ) + 2κ(φ̃†φ̃)] = 0, (8.13)

Using 〈0|φ̃†φ̃|0〉 = ṽ2/2 and 〈0|Φ∗Φ|0〉 = v2/2 we obtain the following relations from

the minimum conditions

µ2 + λv2 + κṽ2 = 0, µ̃2 + λ̃ṽ2 + κv2 = 0, (8.14)

where 〈0|φ†φ|0〉 = v2/2 and 〈0|Φ∗Φ|0〉 = ṽ2/2.

Here, the spontaneously broken solutions for both Higgs fields in the unitary gauge are

φ̃ =

(

0
ṽ+H̃√

2

)

, Φ =
vd + S̄√

2
, (8.15)

where the expectation values of H̃ and S̄ vanish. Spontaneous symmetry breaking gen-

erates mass terms for the Tensor Dark Matter field, however, the parity-breaking terms

with the coouplings gp, g̃p in Eq. (8.3) generate mass terms with the wrong properties

under parity, thus we will discard them. With this into consideration, we have the fol-

lowing Yukawa-like terms

LD
yuk = −gsψ̄ψφ̂†φ̂− g̃sψ̄ψΦ̂∗Φ̂. (8.16)

The mass for the TDM field after SSB turns out to be M2
ψ = M2 + 1

2 (gsv2 + g̃sṽ2). From

these terms we can also notice a dark matter-Higgs coupling, yielding a Higgs portal

interaction similar to what we have studied in the previous chapters of this work, but

now there is a additional structure from the dark Higgs producing also a combinated

coupling with the SM Higgs.

In this gauge, since φ̃ is a U(1)D singlet and Φ is a standard model singlet, Eqs.(8.7,8.10)

yield the following gauge boson mass terms

Lgauge
mass =

g̃2ṽ2

4
W̃+µW̃−µ

+
1
2

[

ṽ2 g̃2

4c̃2
w

Z̃2 +
ṽ2 g̃g̃Y tan χ

2c̃w
V̄µZ̃µ +

(

g̃2
Y ṽ2 tan2 χ

4
+ g2

d sec2 χv2
)

V̄2
]

. (8.17)
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The photon is massless and the W̃± boson maintains the same value of mass as in the

SM. We can arrange these terms in the following form

Lgauge
mass = M2

W̃W̃+µW̃−µ +
1
2

(

Z̃ V̄
)

(

M2
Z̃

∆

∆ M2
V̄

)(

Z̃

V̄

)

, (8.18)

where

M2
W̃ =

g̃2ṽ2

4
, (8.19)

M2
Z̃ =

M2
W̃

c̃2
w

, (8.20)

∆ =
M2

W̃

c̃2
w

s̃w tan χ, (8.21)

M2
V̄ = M2

W̃ tan2 θ̃w tan2 χ + g2
dv2

d sec2 χ. (8.22)

The SM field Z̃ mantains the expected mass value related to the W̃± mass, MW̃ = MZ̃ c̃w,

which is a consequence of the Higgs sector custodial symmetry. In other words, the

Higgs potential has a global SU(2)L ⊗ SU(2)R symmetry before the breaking of the

SU(2)L ⊗ U(1)Y. After the spontaneous symmetry breaking, a SU(2)V symmetry re-

mains, which is called a custodial symmetry [214–217], and protects the relation be-

tween the Z̃ and the W̃± mass.

The neutral gauge boson mass terms can be diagonalized by the following rotation

(

Z̃

V̄

)

=

(

cos θζ − sin θζ

sin θζ cos θζ

)(

Z

Z′

)

, (8.23)

in which we have the relations

M2
Z = M2

Z̃c2
ζ + M2

V̄s2
ζ + 2∆sζcζ , (8.24)

M2
Z′ = M2

Z̃s2
ζ + M2

V̄c2
ζ − 2∆sζcζ , (8.25)

tan 2θζ =
2∆

M2
Z̃
−M2

V̄

. (8.26)

It is useful to keep the converse relations

M2
Z̃ = M2

Zc2
ζ + M2

Z′s
2
ζ , (8.27)

M2
V̄ = M2

Zs2
ζ + M2

Z′c
2
ζ , (8.28)

∆ =
1
2

sin 2θζ(M2
Z −M2

Z′). (8.29)
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From Eq.(8.27) we can write the mixing angle θζ in terms of the physical Z and Z′ masses

and the non-diagonal Z̃ mass which in turn can be written in terms of measurable quan-

tities. Explicitly

s2
ζ =

M2
Z̃
−M2

Z

M2
Z′ −M2

Z

. (8.30)

After these transformations, we can find the relation between the original gauge fields

and the diagonal fields by







B̃

W̃3

V






=







c̃w, −s̃wcζ − tan χsζ , s̃wsζ − tan χcζ

s̃w c̃wcζ −c̃wsζ

0 sec χsζ sec χcζ













A

Z

Z′






. (8.31)

Finally, the covariant derivative in terms of the physical fields is

Dµ = ∂µ + i
g̃√
2
(T+W̃+

µ + T−W̃−µ ) + ieQAµ

+ i

[

g̃cζ

c̃w

(

(T3 − s̃2
wQ)− s̃w tan θζ tan χ

Y
2

)

+ gdsζ sec χ
Qd

2

]

Zµ

− i

[

g̃sζ

c̃w

(

(T3 − s̃2
wQ) +

s̃w tan χ

tan θζ

Y
2

)

− gdcζ sec χ
Qd

2

]

Z′µ. (8.32)

The neutral currents arising from this covariant derivative can be compared with ex-

perimental data to measure the effects of kinetic mixing. Such comparison would yield

bounds to the values of the kinetic mixing parameter χ, the mixing angle θζ or the pa-

rameter κ in the Higgs sector in Eq. (8.11). However, the custodial symmetry protects

the relation MW̃ = MZ̃ c̃w at tree level, so we can attempt to write the matrix elements of

Eq. (8.31) in terms of the weak angle, MW and MZ which are measured quantities, and

the unknown mass of the physical field Z′.

We can test the grounds on new physics by using the fit to the electroweak precision

data (EWPD) , but this requires analysis at a loop level.

8.2 Mass Lagrangian at the loop level

The modified minimal subtraction scheme (MS) is a renormalization scheme that is

used, along with radiative corrections, to obtain the precise values of physical constants

that are the baseline for particle physics calculations. For instance, the world average for

the electromagnetic fine structure constant at low energies, α−1 = 137.035999084(21), is

extracted from measurements of the electron anomalous magnetic moment, and the

Rydberg constant and atomic masses of 87Rb and 133Cs. The Fermi constant GF =
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1.1663787(6) × 10−5GeV−2 is measured from the muon lifetime, and the value MZ =

91.1876± 0.021 GeV comes from the Z lineshape at LEP. For details of these measure-

ments, refer to the review Electroweak Model and Constraints on New Physics in [3]. These

values use the MS, where the physical Weinberg angle at a scale µ is defined as

sin θ̂W(µ) ≡ ĝ2
Y(µ)

ĝ2(µ) + ĝ2
Y(µ)

, (8.33)

where the hatted values correspond to those of the MS scheme. The masses of the gauge

bosons in this scheme are written in terms of other observables, such as

M2
W =

πα√
2GF ŝ2

Z(1− ∆r̂W)
, M2

Z =
M2

W

ρ̂ ĉ2
Z

, (8.34)

where ŝZ ≡ sin θ̂W(MZ), ĉZ ≡ cos θ̂W(MZ). The factors ∆r̂W , ρ̂ are related to the ra-

diative corrections, which in turn are related with the observables α, α̂(MZ), GF, MW

and MZ. Top quark loops are the dominant contribution to these radiative corrections,

quantified in terms of the quadratic mass of the top quark. Including contributions from

the b quark, the radiative correction ρ̂tb is [218]

ρ̂tb =
3GF

8
√

2π2

(

m2
t + m2

b − 2
m2

t m2
b

m2
t −m2

b

ln
m2

t

m2
b

)

. (8.35)

There is also a subdominant contribution from Higgs loops, ρ̂H, which is

ρ̂H = −11GF M2
Z ŝ2

Z

24
√

2π2
ln

M2
H

M2
Z

. (8.36)

Including all bosonic loops, we obtain ρ̂ = 1 + ρ̂tb + ρ̂H = 1.01019± 0.00009 [3]. From

Eq. (8.34) we get the relation

M2
Z ŝ2

Z ĉ2
Z =

πα√
2GFρ̂(1− ∆r̂W)

. (8.37)

The global fit to the EWPD measures effects of new physics through the parameter [3]

ρ0 ≡
M2

W

ĉ2
Z M2

Zρ̂
, (8.38)

where ĉZ ≡ cos θw(MZ) is the Weinberg angle measured at the Z pole and M2
W , M2

Z

stand for the Z and W± masses, respectively. The quantity ρ̂ in Eq. (8.38) includes

the radiative corrections in the SM. Should there be no new physics contributions, we
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will have ρ0 = 1. Deviations from this value would reflect effects from physics beyond

the SM. The radiative corrections to M2
W

ĉ2
Z M2

Z
from SM particles are mainly ruled by the

top quark, while Higgs boson loops contribute to next to leading order effects. In the

minimal subtraction (MS) scheme, we have [3]

ρ̂ = 1.01019± 0.00009. (8.39)

The global fit to electroweak precision data yields [3]

ρ0 = 1.00038± 0.00020. (8.40)

That the value of ρ0 > 1 at 1.9 σ (94% confidence level) [3], although not enough to be

conclusive, could lead to contributions from new physics. We will consider from now

on that such effects could be dominated by kinetic mixing effects and we will explore

the consequences of this framework, in particular, to the possible values of the mass of

Z′.

We must work out the same observables in this framework, including radiative correc-

tions in the MS scheme in order to compare with the predictions of the extended theory.

In our formalism, the muon lifetime yields a relation similar to the first of Eqs.(8.34),

M2
W̃ =

πα√
2GF s̃2

Z(1− ∆r̃W)
, (8.41)

where now s̃Z ≡ s̃w(MZ). The value of ∆r̃W accounts for the radiative corrections in the

MS scheme for our formalism.

The mass Lagrangian for the neutral sector at the loop level is the same as in Eq.(8.18),

replacing M2
Z̃
→ M̂2

Z̃
, ∆ → ∆̂ and MV̄ → M̂V̄ . Again, the hatted terms are measured in

the MS at the scale µ = MZ. With these changes, the tree level relation in Eq.(8.20) is

M̂2
Z̃ =

M2
W̃

ρ̃ c̃2
Z

, (8.42)

with c̃Z ≡ c̃w(MZ). Here, ρ̃ incorporates the radiative corrections in the MS scheme.

Using this relation with Eq.(8.41), we obtain

M̂2
Z̃ s̃2

Z c̃2
Z =

πα√
2GFρ̃(1− ∆r̃W)

. (8.43)

The extended theory and the measured quantities can be compared from the Eqs.(8.37,8.43),

where we find

M̂2
Z̃ c̃2

Z s̃2
Zρ̃(1− ∆r̃W) = M2

Z ŝ2
Z ĉ2

Zρ̂(1− ∆r̂W). (8.44)
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Then, the observable ρ0 in Eq.(8.38) can be obtained from Eqs. (8.42,8.44),

ρ0 =
M2

W̃

ĉ2
Z M2

Zρ̂
=

M̂2
Z̃

ρ̃ c̃2
Z

M2
Zρ̂ĉ2

Z

=
ŝ2

Z(1− ∆r̂W)

s̃2
Z(1− ∆r̃W)

. (8.45)

The radiative corrections for the extended theory would come from the couplings of the

dark particles (Z′ and the dark matter fields), which are generated by the kinetic mixing

and the Higgs sector mixing in Eq. (8.3). However, these are small enough that we

can neglect them in a first approximation, keeping only the radiative corrections from

the SM particles. The dominant terms of this correction are the running of α and the

top mass, while the Higgs mass contribution is logarithmic and involves the mass of

Z, which will introduce only small differences due to the shift in the value of MZ from

kinetic mixing. Thus, we can consider as a good approximation that ∆r̃W = ∆r̂W , so

Eq.(8.45) becomes

ρ0 =
ŝ2

Z

s̃2
Z

. (8.46)

The diagonalization for the loop-level mass Lagrangian follows along the lines of the

tree-level one, similar to Eq. (8.30),

ŝ2
ζ =

M̂2
Z̃
−M2

Z

M2
Z′ −M2

Z

, (8.47)

where ŝζ ≡ sin θζ(MZ) and M̂2
Z̃

in the MS scheme at the scale µ = MZ is given in

Eq.(8.42). From Eq. (8.46) we arrive to the following expression

M̂2
Z̃ =

ρ2
0ĉ2

Z

ρ0 − ŝ2
Z

M2
Z. (8.48)

Employing this relation in Eq.(8.47) yields

ŝ2
ζ =

(ρ0 − 1)(ρ0ĉ2
Z − ŝ2

Z)M2
Z

(ρ0 − ŝ2
Z)(M2

Z′ −M2
Z)

. (8.49)

We define a new term

σ0 ≡
M2

W̃

ĉ2
Z M2

Z′ ρ̂
, (8.50)

that we can use to rewrite Eq. (8.49) as

ŝ2
ζ =

σ0(ρ0 − 1)(ρ0ĉ2
Z − ŝ2

Z)

(ρ0 − ŝ2
Z)(ρ0 − σ0)

. (8.51)
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In a similar way, from Eqs. (8.21,8.22), the kinetic mixing angle at the same scale, χ̂ =

χ(MZ), can be written in terms of the same physical quantities as

tan2 χ̂ =
(ρ0 − 1)(ρ0ĉ2

Z − ŝ2
Z)

ρ2
0σ0ŝ2

Z ĉ4
Z

[ρ0(1− σ0ĉ2
Z)− ŝ2

Z]. (8.52)

We can use the above relations to write the covariant derivative in Eq. (8.32) in terms of

the physical values of the effective couplings depending on α, GF, MW , MZ and MZ′ as

Dµ = ∂µ + i
e
√

ρ0√
2ŝZ

(T+W+
µ + T−W−µ ) + ieQAµ

+ i

[

e
ŝZ ĉZ

√

ρ0 − ŝ2
Z − ρ0σ0ĉ2

Z

ĉ2
Zρ0(ρ0 − σ0)

(

T3 − (1− ρ0ĉ2
Z)Q

)

+ gd ŝζ sec χ̂
Qd

2

]

Zµ

− i

[

e
ŝZ ĉZ

√

(ρ0 − 1)(ρ0ĉ2
Z − ŝ2

Z)

ĉ2
Zσ0(ρ0 − σ0)

(

T3 − (1− σ0ĉ2
Z)Q

)

− gd ĉζ sec χ̂
Qd

2

]

Z′µ, (8.53)

where

ĉ2
ζ =

ρ0(ρ0 − ŝ2
Z − ρ0σ0ĉ2

Z)

(ρ0 − ŝ2
Z)(ρ0 − σ0)

, (8.54)

ŝζ sec χ̂ =
1

ρ0ŝZ ĉ2
Z

[

(ρ0 − 1)(ρ0ĉ2
Z − ŝ2

Z)(ρ0(ρ0ĉ2
Z − 1)(1− σ0ĉ2

Z) + ŝ2
Z)

ρ0 − σ0

]

1
2

, (8.55)

ĉζ sec χ̂ =
1

ŝZ ĉZ

[

ρ0 − ŝ2
Z − ρ0σ0ĉ2

Z

ρ0 − σ0

(

(ρ0 − 1)
σ0

(ρ0(1− σ0)ĉ2
Z − ŝ2

Z)

ρ0ĉ2
Z

+ ρ0ŝ2
Z

)]

1
2

, (8.56)

with ĉζ = cζ(MZ).

With this, we can work out interactions between the physical neutral bosons, Z and Z′

in the extended theory, in order to compare with collider data.

8.3 Effective Z f̄ f interactions and oblique parameters

Assuming that the SM fermions do not carry U(1)d charge, the covariant derivative in

Eq.(8.53) yields the following Z f̄ f Lagrangian at the scale µ = MZ

LZ f̄ f =
e

2ŝZ ĉZ
R ∑

f

f̄ γµ
[

T3
fL
− 2(1− ρ0ĉ2

Z)Q− T3
fL

γ5
]

f Zµ, (8.57)

with

R =

√

ρ0 − ŝ2
Z − ρ0σ0ĉ2

Z

ĉ2
Zρ0(ρ0 − σ0)

. (8.58)
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On the other hand, the corrections to the SM Lagrangian coming from physics beyond

the SM can be contained in a set of expressions for electroweak observables that are

corrected by a linear combination of three parameters: S, T and U. These are the so-

called oblique parameters, and for the effective Z f̄ f interaction, we write it as [213, 219–

222]

Le f f
Z f̄ f

=
e

2sWcW

(

1 +
αT
2

)

∑
f

f̄ γµ
(

T3
fL
− 2s2

∗Q− T3
fL

γ5
)

f Zµ, (8.59)

where sW = sin θW , cW = cos θW with θW being the Weinberg angle and

s2
∗ = s2

W +
1

c2
W − s2

W

(

αS
4
− s2

Wc2
WαT

)

. (8.60)

Comparing both Lagrangians in Eqs. (8.59,8.57), we can identify

αS = 4ĉ2
Z

[

(1− ρ0)(ĉ
2
Z − ŝ2

Z) + 2ŝ2
Z(R− 1)

]

, (8.61)

αT = 2(R− 1). (8.62)

The parameters S and T are functions of the Z′ mass, but they are also related by the

expression

T =
1

4ŝ2
Z ĉ2

Z

S + (ρ0 − 1)
ĉ2

Z − ŝ2
Z

αŝ2
Z

, (8.63)

which holds for all values of MZ′ . In Ref. [3] the values of the oblique parameters are

extracted from the fit to EWPD,

S = −0.01± 0.10, T = 0.03± 0.12, U = 0.02± 0.11. (8.64)

The predicted values of S and T as functions of the Z′ mass, for the range of values for

ρ0 extracted from the fit to EWPD in Eq.(8.64), are shown in Fig. (8.1). We also show in

these plots the 1σ regions for S and T obtained in the fit. We can see that S and T reach

a saturation value for MZ′ ≈ 250 GeV and from then on they are not sensitive to the

value of MZ′ . These predicted values are consistent with results from the fit to EWPD

for MZ′ > MZ. There is a linear relation between T and S, plotted in Fig.(8.2) along

with the 1σ bands for the oblique parameters. The values of S and T for which these

bands intersect represent predictions of the present formalism in agreement with the fit

to EWPD at 1σ level.
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FIGURE 8.1: Oblique parameters S and T as functions of MZ′ . The solid
blue lines are the predictions using the central value of ρ0, while the shad-
owed band comes from the 1σ region for ρ0 in Eq. (8.40). The red bands
correspond to the 1σ region for S and T in Eq.(8.64). Solid lines stand for

the respective central values.

8.4 Z′ contribution to charged lepton pair production at hadron

colliders

Searches of charged lepton pair production at Tevatron [223] and the LHC [224, 225]

give upper bounds to the Z′ cross section into fermion pairs. This cross section in the Z′

pole region is

σ f̄ f =
∫ (MZ′+∆)q2

(MZ′−∆)2

dσ

dM2 (pp→ Z′X → f̄ f X)dM2. (8.65)

We can simplify this calculation by the narrow width approximation [226]

σ f̄ f ≈
(

1
3 ∑

q=u,d

dLq̄q

dM2
Z′

σ̂(q̄q→ Z′)

)

BR(Z′ → f̄ f ), (8.66)

where dLq̄q

dM2
Z′

are the parton luminosities. The branching ratio for the f̄ f channel is defined

as follows

BR(Z′ → f̄ f ) =
Γ(Z′ → f̄ f )

ΓZ′
, (8.67)

where ΓZ′ is the total Z′ width.

The interaction of the Z′ boson with SM fermions can be written as

LZ′ f̄ f = g′Z′µ ∑
f

f̄ γµ
[

g f
V − g f

Aγ5
]

f . (8.68)
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FIGURE 8.2: Oblique parameter S as a function of T. The green band
stands for the prediction from the 1σ region of ρ0 in Eq. (8.40). The red
and blue bands are the values of T and S respectively in Eq.(8.64) for the

1σ region. The central values are shown as solid lines.

From here we can obtain the peak cross section

σ̂(q̄q→ Z′) =
πg′2

12

[

(gq
V)

2 + (gq
A)

2] , (8.69)

while the Z′ decay width into a fermion pair yields

Γ(Z′ → f̄ f ) = Nc
g′2MZ′

48π

[

(g f
V)

2 + (g f
A)

2 +O
( m2

f

M2
Z′

)

]

, (8.70)

where Nc = 3 for quarks and Nc = 1 for leptons. We can omit the terms of the order

O
( m2

f

M2
Z′

)

, and the total width into fermions will be given by

Γ
f
Z′ =

g′2MZ′

48π

[

9
(

(gu
V)

2 + (gu
A)

2 + (gd
V)

2 + (gd
A)

2
)

+ 3
(

(gν
V)

2 + (gν
A)

2 + (ge
V)

2 + (ge
A)

2)
]

,

(8.71)

where we assume that the couplings g f
V/A are different for each generation. Since the

top quark channel starts at 2mt = 350 GeV, the width is reduced 18% below the t̄t

threshold, however for MZ′ = 500 GeV this phase space correction is of the order of 2%,

which means we can safely neglect fermion masses.

In hadron colliders, the cross section for the production of charged lepton pairs due

to Z′ from hadron collisions can be factorized in terms of hadronic structure functions

wu/d, as [227]

σl+ l− =
π

48s

[

cuwu(s, M2
Z′) + cdwd(s, M2

Z′)
]

, (8.72)

where wu,d(s, M2
Z′) depend only on the invariant Mandelstam variable s of the collision
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and on the Z′ mass. These functions contain the QCD dependence of the hadrons in-

volved in the collision and are the same for any model with a neutral gauge boson,

provided its coupling to quarks is not dependent on the generation. The explicit form

of these functions depend on the parton distribution functions of the colliding hadrons,

and are specified in Ref. [226]. The coefficients cu,d involve the Z′ couplings to fermions,

cu =
g′2

2

[

(gu
V)

2 + (gu
A)

2] BR(Z′ → l+l−), (8.73)

cd =
g′2

2

[

(gd
V)

2 + (gd
A)

2
]

BR(Z′ → l+l−). (8.74)

From here, experimental data on l+l− production in hadron colliders can be used to

find upper bounds on the Z′ contribution, via exclusion curves in the cu − cd plane,

for a given MZ′ . In our case, the couplings of Z′ to fermions are fixed by known data.

Therefore, the predicted values of cu,d depend only on MZ′ , and we can compare the

results with exclusion curves from collider data.

The Z′ f̄ f Lagrangian, assuming as before that the SM fermions do not carry the U(1)d

charges, can be obtained using the covariant derivative in Eq.(8.53),

LZ′ f̄ f = gZ′ ∑
f

f̄ γµ
[

T3
fL
− 2(1− σ0ĉ2

Z)Q− T3
fL

γ5
]

f Z′µ, (8.75)

where

gZ′ =
e

2ŝZ ĉZ

√

(ρ0 − 1)(ρ0ĉ2
Z − ŝ2

Z)

ĉ2
Zσ0(ρ0 − σ0)

. (8.76)

This coupling scales as
√

(ρ0 − 1)/σ0, being small for Z′ masses near the electroweak

scale. The factor
√

1/σ0 enhances this value for MZ′ >> MW and at some point, it

increases for large values of the Z′ mass. The values of the associated fine structure

constant, g2
Z′/4π, in terms of the Z′ mass for values within the 1σ level of ρ0 in Eq.

(8.40) are shown in Fig. 8.3. At MZ′ ∼ 30 TeV we enter in a non-perturbative regime.

The interacting Lagrangian in Eq. (8.75) can be compared to the general Lagrangian in

Eq. (8.68) to conclude that g′ = gZ′ , which depends only on known data and MZ′ , as

seen in Eq. (8.76). The vector and axial factors can be inferred from this comparison as

g f
V = T3

f − 2(1− σ0ĉ2
Z)Q f , g f

A = T3
f . (8.77)

With these we can calculate the total Z′ decay width into SM fermions

Γ
f
Z′ =

αMZ′

4ŝ2
Z ĉ2

Z

(ρ0 − 1)(ρ0ĉ2
Z − ŝ2

Z)

ĉ2
Zσ0(ρ0 − σ0)

[

1− 2(1− σ0ĉ2
Z) +

8
3
(1− σ0ĉ2

Z)
2
]

. (8.78)
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FIGURE 8.3: Fine structure constant for the coupling gZ′ induced by ki-
netic mixing as a function of the Z′ mass. The solid line corresponds to
the predictions using the central value of ρ0 and the shadow band to the

1σ region for ρ0 in Eq.(8.40).

As mentioned before, the production in hadron colliders uses the narrow width ap-

proximation [226, 227] so we need to ensure that we are in this regime for the energies

at which data is obtained. In a first approximation we will assume that the total width

of the Z′ is given by its decays to SM fermions only, with possible modifications con-

sidered afterwards. Under this assumption, Γ
f
Z′ in Eq.(8.78) is the total width. The ratio

Γ
f
Z′/MZ′ as a function of MZ′ is shown in Fig. 8.4. We can see that up to masses around

10 TeV, the narrow width approximation is viable, with the ratio at MZ′ = 6 TeV being

around Γ
f
Z′ ≈ 0.03, and reaching 0.1 when MZ′ = 10.6 TeV.

The branching ratio for the l+l− channel is

BR(Z′ → l+l−) =
1
8

1− 4(1− σ0ĉ2
Z) + 8(1− σ0ĉ2

Z)
2

3− 6(1− σ0ĉ2
Z) + 8(1− σ0ĉ2

Z)
2

. (8.79)
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FIGURE 8.4: Width to mass ratio for the Z′ boson as a function of the
Z′ mass. The solid line corresponds to the predictions using the central

value of ρ0 and the shadow band to the 1σ region for ρ0 − 1.

The coefficients cu,d can be obtained from Eqs.(8.73,8.74) with g′ = gZ′ and the vector

and axial factors in Eq. (8.77)

cu =
πα

36ŝ2
Z ĉ2

Z

(ρ0 − 1)(ρ0ĉ2
Z − ŝ2

Z)

ĉ2
Zσ0(ρ0 − σ0)

[

9− 24(1− σ0ĉ2
Z) + 32(1− σ0ĉ2

Z)
2] BR(Z′ → l+l−),

(8.80)

cd =
πα

36ŝ2
Z ĉ2

Z

(ρ0 − 1)(ρ0ĉ2
Z − ŝ2

Z)

ĉ2
Zσ0(ρ0 − σ0)

[

9− 12(1− σ0ĉ2
Z) + 8(1− σ0ĉ2

Z)
2] BR(Z′ → l+l−).

(8.81)

From here we can see that these coefficients are in fact linearly correlated, independently

of the value of BR(Z′ → l+l−), as

cu =
9− 24(1− σ0ĉ2

Z) + 32(1− σ0ĉ2
Z)

2

9− 12(1− σ0ĉ2
Z) + 8(1− σ0ĉ2

Z)
2

cd. (8.82)

This relation depends on M2
Z′ , but for large values of the Z′ mass, it reaches an asymp-

totic constant value,

cu =
17
5

cd. (8.83)
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At this point, the branching ratio in Eq.(8.79) reaches a saturation value BR(l+l−) = 1/8

and the values of the cu,d are proportional to M2
Z′

cu ≈
17
8

πα

36ŝ2
Z ĉ2

Z

(ρ0ĉ2
Z − ŝ2

Z)

ρ0

(ρ0 − 1)
ĉ2

Zσ0
= 1.67× 10−6 M2

Z′

M2
W

, (8.84)

cd ≈
5
8

πα

36ŝ2
Z ĉ2

Z

(ρ0ĉ2
Z − ŝ2

Z)

ρ0

(ρ0 − 1)
ĉ2

Zσ0
= 0.49× 10−6 M2

Z′

M2
W

. (8.85)

Note that in this context, a large Z′ mass means σ0 << 1, satisfied for MZ
′ & 500 GeV.

The experimental data on the upper bounds for Z′ production at the LHC comes in the

form of cd − cu exclusion curves for given values of MZ′ . We plot the exclusion curves

from Ref. [225] in Fig. 8.5 (solid lines) and we include the values for (cd(MZ′), cu(MZ′))

from Eqs. (8.80,8.81) as dots for each corresponding value of MZ′ , taking the central

value of ρ0 in Eq.(8.40) and adding the 1σ region as error bars. For MZ
′ < 5200 GeV the

predicted values for cu, cd, including the 1σ uncertainties of ρ0, are above the exclusion

curves, thus inconsistent with the data.

FIGURE 8.5: Exclusion curves for the cu, cd couplings extracted from Ref.
[225] and the corresponding predictions in theories for physics BSM con-
taining an extra spontaneously broken U(1)d and respecting custodial
symmetry. Each dot corresponds to the predicted value for a given Z′

boson mass from Eqs. (8.80,8.81) and is marked in the same color as the
corresponding exclusion curve. Uncertainties correspond to the 1σ region

for ρ0 in Eq. (8.40).
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There are uncertainties in cu, cd due to changes in BR(Z′ → l+l−) coming from contri-

butions of other decay channels to the total decay width, which need to be included for

a more precise calculation.

For instance, mixing with the SM fields generates couplings of the Z′ to ZZ, W+W− and

ZH, proportional to single mixing factors sz. The corresponding decay widths are pro-

portional to ρ0 − 1, which turns to be small compared to the decay widths to fermions,

which as mentioned before, are enhanced by the 1/σ0 factor, and end up being propor-

tional to (ρ0 − 1)M2
Z′/M2

W .

Additionally, decay to non-SM particles in the ultraviolet completing theory may yield

more important contributions since, from Eqs. (8.53,8.56), we can see that the corre-

sponding coupling has the same enhancement factor as the fermion case, so we need at

least a rough estimate of the decay width to these non-SM particles. Thus, it is impor-

tant to work out the possibility that dark matter couple to SM fields via kinetic mixing,

in which case, it is natural to expect dark matter particles with masses of the order of

the electroweak scale.

We can estimate the effect of including the tensor dark matter field ψ with U(1)d charge

Qψ
d = 2, which from Eq. (8.2) involves a coupling gd with the Vµ field. This in turn

creates a coupling with the Z′ field, from the covariant derivative in Eq. (8.53) we can

see that the Lagrangian of such interaction is

LZ′ψ̄ψ = −igd ĉζsecχ̂
[

ψ̄Σµν(∂νψ)− (∂νψ̄)Σµνψ
]

Z′µ. (8.86)

This yields the following squared invariant amplitude

∑
λ,λ1,λ2

|MZ′→ψ̄ψ|2 =
1
3

g2
dc2

ζsec2χ̂

4M4

(

− gµα +
kµkα

M2
Z′

)

(8.87)

× Tr
[(

S(p2) + M2
ψ

)

Σµω(p1 − p2)ω

(

S(p1) + M2
ψ

)

Σνη(p1 − p2)η

]

.

We obtain the following decay width

Γ(Z′ → ψ̄ψ) =
αd ĉ2

ζsec2χ̂M2
Z′

96M4 (M2
Z′ − 4M2

ψ)
3/2
[

1− 6
( Mψ

MZ′

)2
+ 24

( Mψ

MZ′

)4]

, (8.88)

where αd = g2
d/4π is the U(1)d fine structure constant.

This decay width depends on αd, Mψ and MZ′ , which are unknown, so it is not pos-

sible to find bounds with certainty. We can estimate the results by considering Mψ ∼
62.5 GeV, but the choice of the coupling must be done with care. For the results obtained
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FIGURE 8.6: Width to mass ratio for the Z′ boson as a function of the
Z′ mass with the inclusion of decay into tensor dark matter. The solid
line corresponds to the predictions using the central value of ρ0 and the
shadow band to the 1σ region for ρ0 − 1. We show the contribution of Z′

decay into TDM (red) for Mψ = 62.5 GeV and gd = 10−3, the contribution
from SM fermions (blue) and the total width (black).

only with SM fermions to remain more or less unchanged, that is, for the narrow width

approximation to remain valid, the Z′ decay width into tensor dark matter must be of

the order of the decay into fermions. For that to happen, we need the U(1)d coupling

to be of around gd = 10−3, or equivalently, αd = 10−5α. We plot the results with these

considerations in Fig. 8.6, where we can see that the narrow width approximation for

this case remains valid up to masses of 6 TeV, being around 46% at this value of MZ′ . To

illustrate how sensitive is this result for different values of Mψ, we show the contribu-

tions for Mψ = 20, 60 and 100 GeV in Fig. 8.7. The narrow width approximation is valid

only until masses of 1− 2 TeV for Mψ = 20 GeV and overpowers the contribution from

SM fermions.



114 Chapter 8. Simple Gauge Theory for Dark Matter and Collider Constraints

FIGURE 8.7: Width to mass ratio for the Z′ boson decay into tensor dark
matter as a function of the Z′ mass. The solid line corresponds to the
predictions using the central value of ρ0 and the shadow band to the
1σ region for ρ0 − 1. We show the contribution of Z′ decay into TDM
for Mψ = 20 GeV (red), 60 GeV (green) and 100 GeV (purple), with
gd = 10−3. For comparison, we show the contribution from SM fermions

(blue).
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Chapter 9

Conclusions and perspectives

The Standard Model, as a quantum field theory, has a history of extraordinary success

at explaining several phenomenological observations. Its construction culminated with

the discovery of the Higgs boson in 2012, with a measured mass MH = 125.25 GeV [3].

After the great achievements of the Standard Model, there are still many questions yet

to decipher. Some attempts to solve these questions fall into extensions or modifications

of the theory, in what is called physics beyond the standard model.

One of the great mysteries yet to be solved by any theory is the nature of dark matter.

There has been an extensive effort in the spawn of more than five decades to try and

propose a description of this phenomenon, and yet there has been no success at finding

excruciating evidence that could point out as to what exactly is dark matter. However,

these efforts have at least produced a recipe that contains criteria that we must obey in

order to propose a candidate that could explain this unknown content of our universe.

The standard model uses only a few of the irreps of the Homogeneous Lorentz Group:

the (1/2, 0)⊕ (0, 1/2) for quarks and leptons, the (1/2, 1/2) for gauge bosons and the

(0, 0) for the Higgs boson; and proposals for physics beyond the standard model men-

tioned above use the very same representations. In this work we proposed a differ-

ent alternative, a (1, 0)⊕ (0, 1) space-time structure to describe a dark matter particle,

which we call tensor dark matter. We employ the covariant basis for the single spin

(j, 0) ⊕ (0, j) representation worked out in Ref. [73]. A field transforming in this rep-

resentation is conventionally described using an equivalent antisymmetric tensor with

two indices, and the quantum field theory for the j = 1 case was developed in Ref. [77].

We described and employed this formalism to obtain the interactions that such particle

would have with standard model particles and performed the calculation of numerous

processes. We compared our results with current experimental data.

As a starting point, we obtained the limits on Z and H boson decay from the measured

invisible decay widths of these particles, and concluded that for tensor dark matter,

masses below 42 GeV are ruled out.
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Next, we calculated the relic density for tensor dark matter, and comparing our results

with the measured relic abundance from the CMB data. We arrived at a relation between

the TDM mass and the coupling constants of the model.

From here, we went forward to the comparison of experimental bounds from a number

of observations. Firstly, from the direct detection front, we obtained the dark matter -

nucleon cross section and compared this result with the experimental limits from the

XENON1T experiment, finding that the spin portal coupling is heavily constrained, but

the scalar Higgs coupling to tensor dark matter falls into values of the order of O(10−3)

for masses around 100 GeV. Secondly, we looked into limits from indirect dark matter

searches. Tensor dark matter turns out to be a consistent candidate for the explana-

tion of the gamma ray excess in the Galactic Center, for values of the scalar coupling

to the Higgs of gs ∈ [0.98, 1.01] × 10−3 and M ∈ [62.470, 62.505] GeV. We showed

that for this mass and coupling window, other experimental observations are success-

fully explained, such as annihilation into µ+µ−, τ+τ− and b̄b from the measurements of

gamma flux of 19 dwarf spheroidal satellite galaxies. Additionally, such parameters are

also consistent with dark matter annihilation into γγ from measurements of monoener-

getic spectral lines from self-annihilations of DM in the central region of the Milky Way

halo.

We also worked out the possibility of explaining the cosmic ray antiproton excess ob-

served in data from the AMS-02 collaboration, and show that with the inclusion of ten-

sor dark matter annihilating into fermions, a fit to this excess is improved for the mass

window consistent with the aforementioned indirect detection limits.

In summary, we showed that tensor dark matter, a spinor-like field in the (1, 0)⊕ (0, 1)

space-time structure, is a possible description of dark matter that is consistent with relic

density, constraints from Z0 and H invisible widths, bounds from direct detection exper-

iments such as XENON1T, and indirect detection limits from observations of the photon

flux in dwarf spheroidal satellite galaxies (dSphs), the cosmic ray antiproton excess, and

the Galactic Center gamma ray excess. This consistency is obtained only when the ten-

sor dark matter has a mass M ≈ MH/2, specifically within the [62.470, 62.505] GeV

window and with a coupling to the scalar Higgs portal gs ∈ [0.98, 1.01]× 10−3.

Such sharp prediction, along with the fact that the leading terms in the interaction La-

grangian are dimension-four, motivated us to explore a more general construction. We

introduced the possibility of dark matter interactions coming from a dark gauge struc-

ture, a dark gauge group that includes a factor U(1)d subgroup that mixes kinetically

with the U(1)Y of the standard model, and worked out the the formalism derived from

this inclusion, in what is known as a Hidden Dark Matter gauge structure.
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We showed that for an extension of the standard model with a spontaneously broken

U(1)d factor dark gauge group and kinetic mixing, when the Higgs sector of such theory

respects custodial symmetry, small couplings between the SM and dark sectors appear,

and new mixing terms exist in the neutral gauge sector. In this hidden dark matter sce-

nario, custodial symmetry still relates the W3
µ mass term to the SM Zµ mass term. There

is a tree-level mixing Z̃− V̄ mixing which modifies the custodial symmetry relation in

the extended theory, resulting in the EWPD parameter ρ0 6= 1. We calculate ρ0 in the

extended theory and use it to rewrite the Z and Z′ couplings in terms of ρ0 and the anal-

ogous ratio σ0 = M2
W/ĉ2

Z M2
Z′ ρ̂, which depend on measured observables and the mass of

Z′. We studied the intermediate Z′ contributions to the production of a charged lepton

pair at the LHC, where the corresponding cross section can be written in terms of two

parameters, cu and cd. These parameters carry all the information of the Z′ couplings

to SM fermions, and we calculated them in our formalism considering only the Z′ cou-

plings to SM fermions generated by the kinetic mixing. We compared the results of our

calculation using the range of values of ρ0 extracted from the global fit to the EWPD at

the 1σ level with the exclusion curves in the cu − cd plane for Z′ masses in the range

3.8− 7.0 TeV obtained by the CMS Collaboration. Consistency of our calculation with

the CMS data requires MZ′ ≥ 5.2 TeV.

There is still much work to be done in regards to this proposal. We focused mainly on

observables that were prominent in the particle physics community, but there are many

observables that we are yet to explore and will be important to study to continue test-

ing our dark matter model. One aspect that was not mentioned about this framework,

and unlike scalar DM models, a spin-1 DM field will have interactions with the electro-

magnetic multipoles, meaning that such DM particle would add E and B modes to the

CMB that should be consistent with the observations. Other cosmological observations

are of great importance, particularly the observed Lyman-α power spectrum and the

Tully-Fisher relation.

While the ΛCDM scheme works for large-scale structures of the Universe (for distances

larger than 1 Mpc), there are observations at small scales where structure formation is

nonlinear and cannot be successfully described by this framework. Among these prob-

lems are the missing satellites problem (cosmological simulations of DM haloes predict

large numbers of satellite galaxies while such amount is not observed in our galaxy),

the cusp-core problem (many low-mass galaxies’ density profiles are not in agreement

with the mass density profiles of DM haloes predicted by ΛCDM simulations) and the

too-big-to-fail problem (fewer galaxies with large central densities are found than what

is predicted from the ΛCDM scheme). There are some proposed solutions to these

problems that do not require a change in the DM framework, but there are proposals

that involve modifications to the nature of the DM particle (for example, warm dark
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matter). More interestingly, from the perspective of our work, dark matter with self-

interactions could alleviate some of these inconsistencies. We have yet to work out the

self-interactions of our model, which is an important step if we want to compare with

the cosmological observations mentioned.

In the short-term, the positron excess should also be looked into. The results of this work

are also on the edge of current bounds, so future observations of greater precision could

discard the model. Of course, as a result of this work, we plan to continue studying the

non-Abelian structure as an extension of the standard model in a more fundamental ap-

proach and the possible answers it may have for the dark matter mystery that concerns

the physics community today.
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Appendix A

Traceology of the (1, 0)⊕ (0, 1)
representation

The covariant basis is orthogonal with respect to the scalar product defined as 〈A|B〉 =
Tr(AB), thus these matrices satisfy the following relations

Tr (χ) = Tr (S) = Tr (M) = Tr (χS) = Tr (C) = 0,

Tr (χM) = Tr (χC) = Tr (MS) = Tr (MχS) = Tr (MC) = Tr (SχS) = Tr (SC) = Tr (χSC) = 0,

(A.1)

where we suppressed the Lorentz indices.

Calculations in this work requires traces of products of the Sµν tensor and other elements

in the covariant basis. Let us consider first

Tr (SMM) = Tr
(

χ2SMM
)

= −Tr (χSχMM) = −Tr (χSMMχ) = −Tr (SMM)⇒ Tr (SMM) = 0,

(A.2)

where we used Eqs. (2.33) and (2.34) and the cyclic property of a trace. Since χ com-

mutes also with C, this procedure can be used to show that in general if we have a term

with an odd numbers of S tensors the trace of this term will vanish

Tr(term with an odd # of S’s) = 0. (A.3)

The trace of terms with an even number of S factors can always be reduced to a linear

combination of terms with the trace of the product of two S or two M factors using the
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following (anti)commutation relations

[Mµν, Mαβ] = −i
(

gµα Mνβ − gνα Mµβ − gµβ Mνα + gνβ Mµα
)

, (A.4)

{Mµν, Mαβ} = 4
3
(gµαgνβ − gµβgνα)− 4

3
iεµναβχ +

1
6

Cµναβ, (A.5)

[Mµν, Sαβ] = −i
(

gµαSνβ − gναSµβ + gµβSνα − gνβSµα
)

, (A.6)
{

Mµν, Sαβ
}

= εµνσβχSα
σ + εµνσαχSβ

σ, (A.7)

[Sµν, Sαβ] = −i
(

gµα Mνβ + gνα Mµβ + gνβ Mµα + gµβ Mνα
)

, (A.8)
{

Sµν, Sαβ
}

=
4
3

(

gµαgνβ + gναgµβ − 1
2

gµνgαβ

)

− 1
6

(

Cµανβ + Cµβνα
)

. (A.9)

The simplest case appears in the calculation of H → D̄D

Tr
(

SµνSαβ
)

= Tr

(

1
2
[Sµν, Sαβ] +

1
2
{Sµν, Sαβ}

)

= 4
(

gµαgνβ + gµβgνα − 1
2

gµνgαβ

)

≡ 4Tµναβ.

(A.10)

Similarly, the calculation of Z0 → D̄D requieres

Tr
(

Mµν Mαβ
)

= Tr

(

1
2
[Mµν, Mαβ] +

1
2
{Mµν, Mαβ}

)

= 4(gµαgνβ − gµβgνα) ≡ 4Gµναβ.

(A.11)

The first example of the reduction mentioned above is faced in the calculation of Z0 →
D̄D which also requires to calculate

Tr
(

SµνSαβ Mρσ
)

= Tr

(

1
2

{

Sµν, Sαβ
}

Mρσ +
1
2

[

Sµν, Sαβ
]

Mρσ

)

=
−i
2

Tr
((

gµα Mνβ + gνα Mµβ + gνβ Mµα + gµβ Mνα
)

Mρσ
)

= −2i
(

gµαGνβρσ + gναGµβρσ + gνβGµαρσ + gµβGναρσ
)

, (A.12)
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and

Tr
(

Sαβ MµνSρσ Mγδ
)

= Tr

(

(
1
2
[Sαβ, Mµν] +

1
2
{Sαβ, Mµν})(1

2
[Sρσ, Mγδ] +

1
2
{Sρσ, Mγδ})

)

= Tr

((

i
2
(gµαSνβ − gναSµβ + gµβSνα − gνβSµα)− εµντβχSα

τ − εµνταχSβ
τ

)

(

i
2
(gγρSδσ − gδρSγσ + gγσSδρ − gδσSγρ)− εγδλσχSρ

λ − εγδλρχSσ
λ

))

= −gµαgγρTνβδσ + gµαgδρTνβγσ − gµαgγσTνβδρ + gµαgδσTνβγρ

+ gναgγρTµβδσ − gναgδρTµβγσ + gναgγσTµβδρ − gναgδσTµβγρ

− gµβgγρTναδσ + gµβgδρTναγσ − gµβgγσTναδρ + gµβgδσTναγρ

+ gνβgγρTµαδσ − gνβgδρTµαγσ + gνβgγσTµαδρ − gνβgδσTµαγρ

− 4
(

εµντβεγδλσTα
τ

ρ
λ + εµντβεγδλρTα

τ
σ

λ

+εµνταεγδλσTβ
τ

ρ
λ + εµνταεγδλρTβ

τ
σ

λ

)

. (A.13)

Similarly it can be shown that

Tr
(

Mµν Mαβ Mρσ
)

= −2i
(

gµαGνβρσ − gναGµβρσ − gµβGναρσ + gνβGµαρσ
)

, (A.14)

Tr
(

χSγδSαβ Mµν
)

= −2
(

εµνσβTγδα
σ + εµνσαTγδβ

σ

)

, (A.15)

Tr
(

χMµν Mαβ
)

= −4iεµναβ. (A.16)

The calculation of the trace of terms involving six or eight S or M factors (with an even

number of S factors) needed in this paper are reduced in a similar way.

There is a simpler way to obtain these results however, which is specially useful for

terms with six or more factors. Since the result rests only on the algebraic properties in

Eqs. (A.4, A.5,A.6,A.7,A.8,A.9) we can use any representation of these operators for the

calculation of the trace. In this concern the use of the representation where the internal

matrix indices transform as Lorentz indices is convenient, since in this case the calcu-

lation of the trace reduces to contractions of Lorentz indices which can be easily done

using conventional algebraic manipulation codes like FeynCalc. In this representation,

each internal matrix index a is replaced by a pair of antisymmetric Lorentz indices αβ

[76]. The explicit form of the operators in the covariant basis is given by
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(1)αβγδ =
1
2
(gαγgβδ − gαδgβγ), (A.17)

(χ)αβγδ =
i
2

εαβγδ, (A.18)
(

Mµν

)

αβγδ
= −i

(

gµγ1αβνδ + gµδ1αβγν − gγν1αβµδ − gδν1αβγµ

)

, (A.19)
(

Sµν

)

αβγδ
= gµν1αβγδ − gµγ1αβνδ − gµδ1αβγν − gγν1αβµδ − gδν1αβγµ. (A.20)

The explicit form of Cµναβ can be constructed from Eq. (2.38) and the above relations.
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