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Introduction

Topological Data Analysis (TDA) is a recent development in data analysis where the focus is
on the geometry of a data sample, and whose primary tools come from algebraic topology. In
TDA, the main goal is to infer geometric and topological information of a topological space
using data sampled from the space. Nevertheless, there is an obstacle when dealing with finite
points embedded in a metric space. The natural way to endow a topology on a finite set is to
give it the subspace topology, which, in the case of metric spaces, coincides with the discrete
topology. A common approach in TDA avoids this problem by “approximating” the space with
balls centered at each of the sampled points. Then, using a range of different radii in order to
induce a filtration, one computes the so called ”persistent homology” [7].

While this method is adequate when considering one space at the time, unfortunately the
process is not functorial. That is, given a map between two different sets of finite points, there
is no canonical map between the corresponding unions of balls, nor between the corresponding
persistent homology groups. Without this functorial property, many tools such as the Mayer-
Vietoris sequence and homotopy invariance are lost in this setting.

There has also been increasing interest in computing homology at a fixed scale. Several
computations are accomplished in [11], [1], and [3]]. Since neither the appropriate exact nor
spectral sequences have been developed in this setting, the techniques in these papers are built
directly on the definition, which makes these homologies hard to compute. The papers implic-
itly encode the scale into the homology, which also fails to preserve the functoriality (from Top
to Ab).

In this thesis, we will develop Cech homology and cohomology theories for closure spaces,
also known as Cech spaces. Closure spaces, as with topological spaces, are uniquely deter-
mined by a neighborhood system at each point, but with closure spaces we can arrange for
every neighborhood to contain a ball of non-zero radius. This gives us a way to encode a scale
into the space itself. We will see that encoding the scale to the space instead of the homology
will be the key to achieving functoriality. We will go in more detail on closure spaces in general
in the first chapter using the book [2] as a guide. We then construct Cech homology and coho-
mology. Our primary goal for these theories is for them to have functoriality, excision and ho-
motopy invariance properties, but we check all the Eilenberg-Stenrod axioms for (co)homology.
Finally, once the Eilenberg-Steenrod axioms are established, we derive a Mayer-Vietoris theo-
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rem for Cech cohomology in the context of closure spaces in a similar way as described in [5].
A systematic approach to the algebraic topology of Cech spaces was started in [9], although the
possibility is mentioned sporadically in the literature [8]].

Further work will focus on develop a Mayer-Vietoris spectral sequence and implementing

it for computations of several spaces of interest.
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Chapter 1
Closure Spaces

In this chapter we will introduce the basic definitions and properties of closure spaces, which

will be used in the following chapters. These can be found in the chapter III of [2].
Definition 1.1. A closure space (X, c) is a set X along with an map ¢ : & (X) — £ (X) that

satisfies:

Cl) c(0)=0

C2) ForallU Cc X,U C ¢ (U)

C3) Forall Uy, Uy C X, ¢ (U3 UUs) = ¢ (Uy) Ue (Us)

We say that c is the closure operator of X. If there is no ambiguity, we will refer to c as the closure
of X.
Definition 1.2. The interior operator of X isanmap ¢ : & (X) — & (X) defined by

i (U) ==X\ ¢(X\U)

forallU C X.

Observation 1. The interior operator i satisfies the following properties, derived from the clo-
sure axioms (C1), (C2) and (C3):

M) i(X)=X
By definition and (C1)

P(X)=X\c(X\X)=X\c(@) =X\0=X

I2) ForallU C X, theni (U) C U
Let U C X. Using (C2) we have that X \ U C ¢ (X \ U) and so

i(U)=X\e(X\U)C X\ (X\U)=U
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13) For all U, Uy C X, we have i (Ul N Uz) =1 (Ul) Ni (UQ)
Let Uy, U, C X. Using De Morgan’s laws we have that X \ (U1 NUs) = (X \ U;) U (X \ Us).
It follows, using (C3), that

P(UiNTz) = X\ e (X \ (U1 ND))
=X\ e(X\U) U (X\ 1))
= X\ [c(X\ ) Ue((X\U))]
= X\ e (XANU)IN[X N\ e (X )]
=i (U1) i (Us)

Lemma 1.1. Given a set X and an operator i : &2 (X) — & (X) that satisfies (I11), (12), (13), then there
is a unique closure operator ¢ : & (X) — &2 (X) such that i is the interior operator in the closure space
(X, c).

Proof. 1f ¢; and ¢, are closure operators such that i is the interior operator of both ¢; and ¢,, then
for any U C X we have that

i(X\U)=X\c1(U)=X\c(U)

Thus, we have that ¢; (U) = ¢, (U), which proves that uniqueness of the closure operator.

Now, for any U C X, define
c(U)=X\i(X\U)

To prove that c is a closure operator, we have to show that it satisfies (C1), (C2), and (C3).

e Proof of (C1)
Note that
c(@)=X\i(X\0)=X\i(X)=X\X=0

Therefore, ¢ satisfies (C1).

e Proof of (C2)
For any A C X, using (I2), we have thati (X \ A) C X \ A; therefore,

A=X\(X\A) CX\i(X\A)=c(A)

e Proof of (C3)



Using (I3) we have that

c(Uyuly) =X \i(X\ (U;uly))
= X\ i (X\U)N(X\ D))
= X\ (@ (X\U)Nni (X \Uy))
= X\ (X\U1)) U (X \i(X\Us))
=c(Uy) Uc (Uy)

We conclude that indeed c is indeed a closure operator. O

Definition 1.3. A function f : (X,cx) — (Y, cy) between closure spaces is said to be continuous
if

flex (A)) C ey (f(A))
forall A C X.

Proposition 1.2. Given a function f : (X,cx) — (Y,cy) between closure spaces the following are
equivalent:

1) f is continuous.
2) Forall BCY,cx (f~H(B)) C f~t(ey (B)).

3) Forall BCY, f~' (iyv (B)) Cix (f~' (B)), with ix and iy are the interior operators for X and
Y, respectively.

Proof.

1) =2)
Suppose f is continuous. Given B C Y define A := f~'(B). Remember that f(A) =
f(f~"(B)) C B. Using the continuity of f we conclude that

flex (A)) Cey (f(A)) Cev (B).

Therefore,

ex (f71(B)) = ex (4)
C [T (f (ex (A)))

(
C 7 (e (B))



2) = 3)
Given B C Y, by defintion

Fl Gy (B) = f71 (Y \ey (Y \ B))
=)\ ey (Y B))
=X\ /ey (Y\ B))
CX\ex (f71(V\B))
=X\ex (FP M\ (D))
= X \ex (X\ f71(B))
=ix (f_l (B))

3) = 2)
Given B CY,

ex (F71(B)) = X \ix (X \ f71(B))
=X \ix (fT M\ F1(B))
=X \ix (7 (v\ B))
C X\ f Gy (Y\B))
= [T\ Gy (V) B))
= LY \iy (Y \ B))
= [ (ey (B))

2)=1)
Let A C X, we have that

ex (A) Cex (F7(f(A) C 7 (ev (F(A)).

Therefore

Flex (A) € £ (7 (er (F (A)) Cev (f(A))
L]

Definition 1.4. Given a closure space (X, c), and a subset A C X. A subset U C X is called a
neighborhood of A if
AcCi(U)

The collection of all neighborhoods of A is called the neighborhood system of A in X, and we
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denote it by N(A). If A = {z}, i.e., it’s just the set of a single point x € X, then its neighborhood
system will be denoted by M.

Definition 1.5. A filter (definition 12.B2, [2]) on a set X is a non empty collection .% of subsets
of X such that

e lfUc FandV C XsuchthatU Cc V,thenV € .Z.

o IfU Ve ZF,thenUNV € Z.

If O ¢ F,we say that .Z is a proper filter.

We say that a subset % C .# is a base of the filter F if for all U € .# thereis V € % such that
VcUuU.

If v C & (X) is a non empty collection of subsets of X such that all finite intersections form
a base of the filter .#, we say that + is a subbase of .F.

Proposition 1.3. A non empty collection of subsets B C & (X) is a base for a filter on X if and only if
forall U,V € Bthereis W € Bsuchthat W Cc UNV.

Proof. Suppose that B is a base for a filter .#. Let U,V € B. Since B C .#, we have that
UNV e Z. Using that B is a base. thereis W € Bsuchthat W Cc UNnV.
Now, suppose that for any U,V € B thereis W € B such that W C U N V. Define

F :={U Cc X|U' C U, forsome U’ € B}

In order to see that .% is a filter:

o LetU € .# and V C X such that U C V. By definition of .# there is U’ € B such that
U cUcV.Thus,V € .%.

o LetU,V € .#, then there are U’, V' € Bsuch that U’ C U and V' C V. By hypothesis, there
isWeBsuchthat W cU' NV cUNV.Thus, UNV € .Z.

]

Theorem 1.4. Let (X, c) be a closure space and let A C X be a subset. Then the neighborhood system
N(A) of Ais a filter on X whose intersection contains A.

Proof. First note that NV(A) is nonempty since i (X) = X D A. Now,

e Let U,V € N(A). By hypothesis, A C i (U) and A C i (V). Using the property (I3) of the
interior operator we have that

PH(UNV)=i(U)Ni(V)

Thus, ACi(UNV),andsoUNV € N(A).



e LetU € N(A)and V C X such that U C V. By hypothesis, A C i (U). Note that
i(U)=i(UnV)=iU)ni(V)cCi(V)

Thus, A Ci(V)andsoV € N(A).
[

Definition 1.6. Consider the neighborhood system of a A in (X, c¢). A (sub-)base of this filter is
called a (sub-)base of the neighborhood system of A in X. If A = {z}, for some = € X, the term local
(sub-)base at x will be used instead.

Observation 2. Consider a closure space (X, c) and a subset A C X. Using the definition for
bases and subbases of filters, we obtain the following properties:

e A collection V of subsets of X is a base of the neighborhood system of A in X if and only
if each V' € V is a neighborhood of A and every neighborhood of A containsa V' € V.

e A collection W of subsets of X is a subbase of the neighborhood system of A in X if and

only if all finite intersections of elements in W is a base of the neighborhood system of A.

Observation 3. Let B, be a local base at 2. Then the following are immediate from the defini-

tions:

(B1) B, # 0.

(B2) ForeachU € B,, = € U.

(B3) For each U;,U, € B, thereis U € B, such that U C U; N Us.

We have seen that a closure can be induced by the interior. Similarly we have that we can
define the closure with the neighborhoods at each point.

Theorem 1.5. (Corrolary 14.B7[2|]) Let (X, c) be a closure space, A C X a subset, and consider a point
v € X.Thenx € c(A)ifand onlyif ANU # O, for each U € B,, where B, is a local base at .

Proof. Suppose thereis U € B, suchthat U N A = @. Then U C X \ 4, and so
i(U)Ci(X\A) =X \c(4)

Using that z € i (U), it follows that = ¢ ¢ (A).

Now suppose that ¢ ¢ (A). Using that X \ ¢ (A) = ¢ (X \ A4), we conclude that X \ A is
a neighborhood of z. Since B, is a local base, there is U € B, such that U C X \ A, and so
UNAC(X\A)NA=0. O
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As in the case for the closure operator, we have a characterization of the interior operator
using a local basis.

Theorem 1.6. Let (X, c) be a closure space, A C X a subset, and consider a point x € X. Then
x € i (A) if and only if there is U € B, such that U C A, where B, is a local base at x.

Proof. Suppose = € i (A), then A € N,. Since B, is a local base of the neighborhood system N,
thereis U € B, such that U C A.

Now, suppose that there is U € B, such that U C A. It follows that then i (U) C i (A). Since
U € B, C N, we have that U is a neighborhood of z, i.e., x € i (U) C i (A). O

We’ve shown that for a closure space there is a special filter on each point called the neigh-
borhood filter. The converse is also true, i.e., given a filter for each point we can obtain a closure
such that these filters are the local neighborhood systems. Since a filter can be recover with a
base for it, we can consider the base instead of the whole filter. This serves as a motivation for
con the following theorem.

Theorem 1.7. (Theorem 14B.10 [2]) Let X be a set and for each x € X let BB, be a collection of subsets
of X satisfying the conditions (B1), (B2) and (B3) of Observation |3, Then there is an unique closure
operator c for X such that, for each v € X, B, is a local base at x for (X, c).

Proof. The Theorem [1.5/suggests us that we should define an operator ¢ : &# (X) — & (X) by
c(U)={zeX|VNU#Q,VV e B}

We must prove that in fact c is a closure operator and that B, are local bases at z in (X, ¢), for
eachr € X.

e Proof of (C1)
Note thatforallz € X and V € B,, VN QO = @. Thus, ¢ (1) = 0.

e Proof of (C2)
Let U C X. Using (B2), we have that, if + € U and V' € B,, then x € V. Therefore,
reVNUandsox € c(U). ThusU C ¢ (U).

e Proof of (C3)
Let V1, Vs, C X. Suppose that € ¢ (V}) U ¢ (V,). By definition, for each V' € B,, we have
that ViNV £ @ and Vo, NV # O. Thus, (V1 UVR) NV # O, and so z € ¢ (V4 U Vs).

Now, suppose = ¢ ¢ (Vi)Uc (V3). By definition there are Wy, W, € B, such that ViNW; = @
and Vo, N Wy = O. Using (B3), there is W € B, such that W C W; N Ws. It follows that

VuW)nW=WVinW)uVenW)c (VinW)u (VantWs) =0



Thus, x ¢ ¢ (V3 U V3).

This proves that c is in fact a closure for X.
Now we need to show that each B, is a local base at z.
Letx € X and U € B,. We know that UN (X \U) = @ and so z ¢ ¢ (X \ U). This means that

reX\c(X\U)=1i(U)

Thus, U is a neighborhood of x.
Now, let W be a neighborhood of z. This means that « ¢ ¢ (X \ W). By definition of ¢, there
is U € B, such that
UNX\W)=0

Therefore, U C V.
In conclusion, for each z € X, B, is a local base at x for (X, c). O

The following is an immediate corollary, using the definition of the filter.
Corollary. (Corollaries 14 B.11 [2])

1. For each x € X, let N, be a filter on X such that x € NN,. Then there is an unique closure
operator for X such that N is the neighborhood system at x in (X, c), Vo € X.

2. Foreach x € X, let y, be a nonempty family of subset of X such that x € N,. Then there is an
unique closure operator for X such that, for each x € X, vy, is a local subbase at x in (X, c).

Proposition 1.8. (Theorem 16 A.4 [2]]) Let f : (X,cx) — (Y,cy) be a map between closure spaces.
Then, f is continuous if and only if, foreach x € X and 'V € Nf(w), we have that =1 (V) € N, i.e., the
inverse image of a neighborhood of f(x) is a neighborhood of x.

Proof. First fix + € X. Suppose f is continuous. Using Proposition if Ve Ny, e,
f(x) € iy (V), then

Thus, [~ (V) € N,.
Now, suppose that, for each IV € Ny(,), we have that f (V) € N, and consider U C X
such that f(x) ¢ ¢y (f(U)). It follows that

fx) e Y \ey (fU)) =iy (Y \ f(U))



and so, Y\ f(U) is a neighborhood of f(z). By hypothesis, f~! (Y \ f(U)) is a neighborhood of
z. Note that f~1 (Y \ f(U))NU = Q. It follows that f(z) ¢ ¢y (f(U)) implies that = ¢ cx (U).
Thus, if 2 € cx (U), then f(x) € ¢y (f(U)). Since x was any element of X, we have that

flex (U)) Cey (f(U)),

i.e, f is continuous. ]

The tools we just described above will be helpful for the following constructions of closure

spaces.

Definition 1.7. Let X be a set and two closure operators ci, c; for X. If the identity map Idy :
(X,c1) = (X, c2) is continuous, we say that ¢, is weaker (coarser) than ¢; and that ¢, is stronger

(finner) than c,. This means that for any U C X
c1 (U)=Idx(c; (U)) Cea(Idx(U)) =2 (U).

We denote this relation by ¢ < ¢;.

Now consider two closure spaces (X, cy), (Y, cy). We would like to construct a closure on
the corresponding Cartesian product X x Y. For each (z,y) € X x Y, define the collection of
the sets

Vo) =72 Na)Um, "t (N) = {m " (U) U € o} U{m, (V) [V €N}

where 7, 7, are the respective projections. By Corollary [} this collection induces a closure cx,y
such that each v, ) is a local subbase at (z,y). Thus, the finite intersections of its elements are
a local base, i.e.,

By ={UXV|UeN,, VeN,}

is a local base at (z, y).

Definition 1.8. Given two closure spaces (X, cx) and (Y, cy), we define a closure operator cx y
for X x Y as above. We say this closure is the product closure for X x Y.

Lemma 1.9. The natural projections
7Tm2<XX}/,CX’y)—>(X,Cx) and 7TyZ(X><Y7CX,y)—><Y,Cy)

are continuous.

Proof. Let (z,y) €e X xY,U € N,andV € N,. Thenw, ! (U) =U xY € N, and 7,/ (V) =
X xV € N(zy). Using Proposition[I.8, we have that 7, and m, are continuous. O
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Proposition 1.10. Let (X x Y, cxy) be the product of two closure spaces (X,cx), (Y,cy). Then for
all AC Xand BCY:

® Cxy (A X B) = Cx (A) X Cy (B)
o ixy (Ax B)=ix (A) x iy (B).

Proof. Given A C X and B C Y. Consider (z,y) € cxy (A x B). Remember that B, =
{UXxVIU e N, V € N,} is a local base at (z,y) in the product closure, where V, and N, are
the neighborhood systems at = and y respectively. Using Theorem we have that for any
UeN,andV e N,

(AxBYN(UxV)£0

It follows that
ANU#O and BNV #0

This means that = € cx (A) and y € ¢y (B), i.e.,

(x,y) € cx (A) X ¢y (B)

Thus, cxy (A x B) C ¢x (A) X ¢y (B). Similarly, we have that cx (A) x ¢y (B) C cxy (A x B).
Now suppose (z,y) € ix,y (A x B). Then thereis U x V € By, ) suchthat U x V. C A x B,
with U € N, and V € N,. It follows that U C Aand V C B, and so

Z'ij (A X B) Cix (A) X 1y (B)
Similarly we have that ix (A) x iy (B) C ixy (A x B). O

Proposition 1.11. Given two continuous functions between closure spaces f : (Z,c,) — (X, cx) and
g:(Z,c,) = (Y,cy) there is a unique continuous function (f,g) : (Z,c,) = (X x Y, cxy) such that
m.(f,9) = fand 7 ,(f,g) = g, i.e., the following diagram commutes

A
/ (fvg)\‘
Y — Y

Ty

Proof. We know, from the category of sets, there is a unique map (f, g) such that 7,(f,g) = f
and 7,(f, g) = g defined as

(f,9)(2) = (f(2),9(2))

So we need to prove that (f, g) is continuous.

10



Lletze Z,U, € Nf(z) andV, € Ng(z). Then
f(z)€ix(U,) and g¢g(z) €ix (V)

Using Proposition[1.8] we have that f~! (U.),g~! (V.) € N.. Note that

(f,9)" (U= x V2) i={w € Z] (f, 9)(w) € Uz x V.}
={w e Z| f(w) € Uz, g(w) € V2}
= /W) NgT (V) €N
This means that the inverse image of the local base Byy(.) 4(»)) is a subset of the neighborhoods of
z. Remember that /V, is a filter and that the inverse image of the union of elements of B(.) ¢(»))
is the union of the inverse images of elements of By(.) (.)). Thus, the inverse image of a neigh-

borhood of (f(z), g(z)) is a neighborhood of z. Using proposition [1.8, we conclude that (f, g) is

a continuous function. O

Corollary. Given two closure spaces (X, cx), (Y, cy), the product closure cx y is the coarsest closure

operator for X x Y such that the natural projections
T, (X xY,exy) = (X,cx) and m,: (X xY,cxy) = (Y,cy)

are continuous.

Proof. Let c be a closure for X x Y such that the projections 7, and 7, are continuous. Using
Proposition there is a unique continuous map between (X x Y,c) and (X x Y, cxy) that
commutes with the natural projections.

X><Yc

/ (ma, ’ry) X‘

(X,ex) 7 XXYCXY) = (Yiey)
Since the identity is the only map that makes the diagram commutative, we have that
Idxuy : (X xY,c) = (X xY,cxy)

is continuous, and so cx y is coarser than c.
Since ¢ was arbitrary and cy y is itself a closure for X x Y such that the natural projections
7, and 7, are continuous, we have that cy y is the coarsest closure operator for X x Y such that

the natural projections 7, and , are continuous. O

Now consider a closure space (X, c). For A C X we would like to define a closure for A
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compatible with the closure for X. So, for each a € A consider the collection
M, ={UNAUeN,}

where N, is the neighborhood system at a. We will show that M, satisfies (B1), (B2), and (B3):

e Proof of (B1)
Since X € N,, we have that A € M,, and so M, # 0.

e Proof of (B2)
For each V € M, thereis U € N,, a neighborhood of a, such that V = U N A. Since a € U,
we havethata c UNA=V.

e Proof of (B3)
IfV,,Vy € M,, there are U,, U, € N, such thatV, = U,NA, fora = 1,2. Since UyNU, € N,
we have that
VinVo=({UNANU,NA)=UNU,)NAE M,

Using Theorem 1.7} there is a unique closure c4 for A such that each M, is a local base at a.

Definition 1.9. Let (X, cx) be a closure space and a subset A C X. Define a closure operator c4
for A as above. We say c4 is the subspace closure for A.

Proposition 1.12. Let (X, cx) be a closure space. Consider A C X and the natural inclusion . : A —
X. Then the subspace closure and interior operators defined on A satisfies:

e c,(U)=cx(U)NA, forallU C A.
e is(U)=ix(UU(X\A)NA, forallU C A.

Proof. e LetU C A. Consider a € ¢4 (U) C A. Given V' € N, a neighborhood of a in X. If
M, is the local base as in the definition of the subspace closure, then V := V"N A € M,
and

DAVNU=V'NANU=V'N(ANU)=V'NnU
Thus, a € c¢x (U) N A, and so
ca(U)Cex(U)N A

Now, leta € cx (U) N A. Given V € M, thereis V' € N, such that V = AN V’. It follows
that
DA0UNV =UNANV =UNANV)Y=UNV

Thus, a € c4 (U),and so cx (U) N A C ca(U).
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e From the definition of the interior, we have that A\ i4 (U) = c4 (A \ U). Note that

X\ix (UU(X\A)) =cx (X\(UU(X\A))

= ex (XAU)N(X\(X\ 4)))
(
(

ex (X\U)NA))

Cx A\U)

Then

A\ix (UU(X\U))=ANX \ix (UU(X\U))
— Anex (A\U)
=ca(A\U)
=A\ia(U)

Thus, is (U) = ix (U U (X \ U)) N A.

O
Corollary. The natural inclusion v : (A,ca) — (X, cx) is continuous.
Proof. Forany U C A
t(ca(U)) =ca(U) =cex (U)NACex (U) =ex (o (U))
and so the inclusion ¢ is continuous. N

Proposition 1.13. Let (X, cx) be a closure space and a subset A C X. Given a function between closure
spaces f : (Z,c,) — (A, ca), if ca is the subspace closure for Aand v : (A,ca) — (X, cx) is the natural

inclusion. Then f is continuous if and only if . f is continuous.

(X,Cx)

2
(Z,c.) — (A, ca)

Proof. We have shown that ¢ is continuous. Thus, if f is continuous, then ¢ f is continuous.
Suppose that . f is continuous. Let z € Z and V € My,), thereis V' € Ny(.) = N(,p)) such
that V = V' N A. Using Proposition[1.8] we have that f~! (V') is a neighborhood of z. Note that

FRV) = RN A) = VA = )
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Therefore, f is continuous. [

Corollary. The subspace closure c4 is the coarsest closure operator such that the natural inclusion
L:(Acq) — (X, cx)

1S continuous.

Proof. If cis a closure for Asuch that: : A — X is continuous. Using the following commutative
diagram
(X » CX )
(A,¢) T (A, ca)

and Proposition we have thatId, : (A,c) — (A, ca) is continuous, i.e., ¢4 is coarser than c.
Since c is arbitrary, we conclude that c4 is the coarsest closure that makes the natural inclusion
continuous. ]
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Chapter 2
Cech (co)homology

In this chapter we will define the Cech (co)homology for closure spaces.

2.1 Interior Covers

In order to construct the Cech (co)homology for closure spaces, first we need to discus what

covers means in the context of closure spaces.

Definition 2.1. Given a closure space (X, c), a collection of subsets % C (X)) is an interior
cover of X if

X= i)

vew
We denote by I'(X) to the collection of all interior covers of X. If A is a subspace of X, and
U4 C % is such that

Ac | (D),
UeWUa

then we say that the pair (%, %4) is an interior cover of the pair (X, A). We denote by I' (X, A)
to the collection of all interior covers of the pair (X, A)

Definition 2.2. Let %, ¥ € & (X), two collections of subsets of X. We say that ¥ is a refinement
of % if every set V € ¥ is contained in some U € % . We denote this relationship by % < 7.

Remark. We have that I'(X) is a partially ordered set with the “refinement” relation describe be-
fore. Also note that this partial order can be extended to the interior covers of the pair (X, A).
Let (%, %), (V. 7Vs) € T'(X, A), then we say that (¥, ¥,) is a refinement of (%, %) it % <V
and %4 < V4. With this relation, we have that in fact I'(X, A) is a partial order.

Example 2.1. Let G = (V, E) be an undirected graph without loops, i.e., {z,z} ¢ E, for each
r € V. Then we can define a closure operator over V, using IJ. We start by defining the closure
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operator on each point z € V' as
c(r)={yeV:{z,y} € E, ory =x}

and then extending it over unions, i.e.,

a€A

Observation 4. From the definition and the fact that G is undirected, we have that for any
r,yeV
rec(y)eyec(n) (2.1)

Furthermore using the definition on the interior and closure operators, if U C V, then we have
that

i(U)=V\e(V\U)

=V\( U C(y)>

yeV\U

= (] E\c(y) (2.2)

yeE\U
In this particular example, the following is true for any point z € V' and subset U C V:
rei(U)ec(x)CcU

This also shows that z € i (¢ (x)).

(=) Suppose that
zei(U)= () V\c(y)

yeV\U
Then, for each y € V' \ U we have that x € V' \ ¢ (y). Using (2.1), we have that z € V' \ ¢ (y)
if and only if y € V' \ ¢(z). Thus, foreachy € V \ U we have thaty € V' \ ¢(2), i.e,
V\U C V\ ¢ (z). Therefore, c (x) C U.

(<) Now suppose that ¢ (x) C U. Then we have that V' \ U C V' \ ¢(z), i.e.,, foreachy € V\ U
we have that y € V' \ ¢ (z). Finally, using and (2.2), we conclude that

x € ﬂ V\e(y)=i(U)

yeV\U
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Now let % be any interior cover of V. Define
vV ={c(z)|xr e X}

Since 7% is an interior cover, we have that for each x € F there is U € % such that z € i (U).
Using the previous result, we have that ¢ () C U, and so ¥ is a refinement of % .

Note that ¥ is itself an interior cover. Since ¥ is also a refinement for all interior covers, we
conclude that 7" is the supremum over all interior covers. This will be useful since we are going

to use inverse (and direct) limits in order to define the Cech (co)homology.

Definition 2.3. Given a closure space (X, c) and an interior cover % of X, we define the nerve of
the cover % to be the simplicial complex K whose vertices are the elements of %, and where
the set of n simplices is

{{Uo,...,Un}\ié)Ui # @}.

Definition 2.4. Given a pair (X, A), and a cover (%, % ,) € I'(X, A). Define the subcomplex of K
associated with the subspace A to be the subcomplex L4, of K4 such that a simplex {Uy,...,U,}
of Ky is also a simplex of Ly, if and only if each U; € %4, and UyN...NU, N A # O.

Remark. This construction associates to each pair (X, A) of closure spaces, such that A C X,
and cover (%, %) € I'(X, A) a pair of simplicial complexes that we are going to use in order to

define the Cech homology (and cohomology) of the space.

Definition 2.5. Given a pair of simplicial complexes (K, L), we denote H, (K, L) and H"(K, L)
to be the n'" homology and cohomology groups of the pair (K, L).

Definition 2.6. Given a closure space pair (X, A) along with a interior cover (%, % 4), we define
Hn(X, A; %, JZ/A) = Hn(Ko//, Log/A), and Hn(X, A; ‘?/, %A) = Hn<Ka//, L@/A),
the n'" homology and cohomology groups of the pair (X, A) relative to the cover (%, %)

Definition 2.7. A simplicial complex K is called acyclic if it has the same (co)homology groups
as the single point space.

2.2 Homomorphisms on refinements

Definition 2.8. Let f,g : (K3, L1) — (K&, L2) be simplicial maps between simplicial pairs. We
say that they are contiguous if for every simplex S in K there is a simplex S” in K, containing
both f(S) U g(S). Furthermore, if S is in Ly, then S” is in L.
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Definition 2.9. Let C': K — K’ be a map (which may not be a simplicial map) between simpli-
cial complexes. We say that C'is a carrier function if, for each simplex S of I, C(S) is a nonempty
subcomplex of K’ and if, for every face S’ of S, C(5’) is a subcomplex of C(.5).

If, for every simplex S of K, the complex C'(S) is acyclic, we say that C' is an acyclic carrier.

Definition 2.10. If f : K — K’ is a simplicial map such that for any S’ C S we have that
f(S") € C(S), then C'is called a carrier of f.

The following result can be found in [10], but the proof will be omitted since the theory

necessary is outside of the scope of this Thesis.

Theorem 2.1 (5.8, Chaper VI [10]). Let f, g : K1 — K be simplicial maps with an acyclic carrier C.
Then f, = g, and f* = g*.

The following is going to be an essential result that will be used constantly after and is a
direct result of the previous Theorem.

Lemma 2.2 ([10]). Let f,g : (K1, L1) — (K3, Ly) be simplicial maps that are contiguous. Then f and
g are homotopic, and so they induce the same homomorphisms on simplicial homology groups.

Proof. For each simplex S of K; define C'(S) as the least simplex of K that contains both f(.5)
and ¢(5). Since each simplex is acyclic, we have that C' is an acyclic carrier. Thus, using Theo-
rem 2.1 we conclude that in fact

f.=g9, and f["=g".

]

Proposition 2.3. Give a closure space pair (X, A) and two interior covers (%, %), (V. Vy) € I'(X, A).
If (U, U y) < (V, V), then there exists a simplicial map 73,, : (Ky, Ly,) = (Ky, Ly,), defined up to
contiguity.

Proof. Let V be a vertex in Ky, i.e.,, V € ¥. Since % < ¥, there is some set U € % such that
V C U. So we can define 7J,, on the vertices of Ky, choosing such a U foreach V € 7.

Now we need to show that 7}, ,, can be extended to a simplicial map. Take vertices V;, ...,V
of a simplex of Ky, and let Uy, ..., U, be the respective images under 7}, , . Note that

O£Von...NV, cUyn...NU,

Therefore Uy , . .., U, are vertices of a simplex of K. Now consider Ly,, Ly, the subcomplexes
of Ky, Kyassociated with A, respectively. If 1, ..., V,, are vertices of a simplex of Ly,, it means
that

OLANVN...NV, CANUyN...NU,
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so we have that Uy, ..., U, are vertices of a simplex in Ly,. Thus 7;,, can be extended as
desired.

Now, for each V' € ¥/, we define another map by making a second choice W € % such that
V C W. Let 7%, be this map sending V to W. Let V;, ..., V}, vertices of a simplex of Ky and let
Ty (V;) = Uj, 75, (V;) = W;, with j = 1,...,n. Note thateach V; C U, V; C W}, so

O#+Von..0nV,cUin..nU,NWy...0n W,

and thus follows that 7}, , 72, , are contiguous and each maps the pair (Ky, Ly, ) to (Ky, Ly,).
wUYV UV g A ‘A
l

Corollary. The simplicial maps 73,, and 75, induce the same homomorphism on homology
Ty, Hy (X, AV, V) = Hy (X, AU Un)

and the same homomorphism on cohomology
Tyg  H" (X, AU Ua) — H" (X, A3V, V)

We call them the homomorphisms associated with the pair of covers (%, %) < (¥, V4).

Note. We only write on the subindex one of the elements of the pair for clarity on the notation.

Theorem 2.4. Let %,V , W € I'(X) suchthat % <V < W, then
TV TYW e = TUW 4 and W;/q,/ﬂ':;g)/ =Ty ,

Proof. Take W € # to be a vertex of K. Since ¥ < #/, there existsa V' € # such that W C V.
Also % < ¥ implies there’s U € % such that V' C U. Thus, we may define 7y, (W) =V,
nt,, (V) :=U,and n},, (W) := U. If this is done for each vertex of Ky, then we have that

Ty Tyw = Ty
is satisfy in the vertices and so, when extended by linearity, it will be satisfied on all K. Then
the induced homomorphisms on (co)homology are equal. O
Corollary. Forany (%, %) € I'(X, A), the homomorphisms 7,4, , and 1,,, are the respective identity
maps.
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2.3 Inverse Limits

The definition of limit (direct or inverse) can be applied in a more general context using Cate-
gory Theory. Nevertheless, we will be taking a more elementary approach using directed sets
and Abelian groups, and so we’ll just be calling them groups.

We will follow the order from [12], but many of the proofs and some of the conclusions will
differ to siut the context of this Thesis, and with a more emphasis to the universal properties of

the inverse limit.

Definition 2.11. A directed set is a partially ordered set (D, <) with the additional condition that
for each pair of elements «, 3 € D there is a element v € D such that «, 8 < 7. We will denote
(D, <) by D when the context is clear.

If A and D are directed sets, a map f : A — D is an order-preserving function from A to D if,
forall a,b € Asuchthata <4 b, then f(a) <p f(b).

A directed set (D', <p) is a subset of (D, <p), denoted by D’ C D, if D' C D as a set, and the
natural inclusion is an order-preserving map.

A subset D' is cofinal in D if, for each a € D, thereis b € D’ such thata < b.

Definition 2.12. An inverse system of groups is a set of groups G,, indexed by a directed set
A such that for all o, 5 € A with a < 3 there’s a homomorphism 7.5 : Gg — G,. These
homomorphisms satisfy the conditions

1. Moo =1Idg, forall o € A.
2. TapTay = Tay, Whenever a < 5 < 7.

We will denote an inverse system of groups by {G., 73, A}. When the context allows it, this
will abbreviated by {G,, 7,3} or simply {G,}.

Let {G,} be an inverse system of groups. An element of the Cartesian product g € [[ G, is
acA

specified by it’s value in each coordinate, i.e., g = (g,), with g, € G,. Consider the subset

G := {(ga) e [] Ga

acA

9o = Tap(gs), whenever a < 6} c [] G
acA

Let g, h € G, with g = (g,) and h = (h,). If o < 3, then we have that

9o — ha = Tap(gs) — Tap(hp) = Tap(gs — hp)

and so g — h € G. Thus, G is a subgroup of [] G..
acA
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Definition 2.13. The group G defined above is called the inverse limit of the system {G,, }. We will
denote it by
G =1im{Ga, Tas}
A

If there’s no confusion, we will abbreviated this to G = lim{G} or simply G = lim{G.}.
A

Example 2.2. If A consists of one element o, then lim{G,} = Ga.

Example 2.3. If A is an index set with a maximum element, i.e., there is 5 € A such that for any
a € A, a < B. Thenlim{G,.} = Gg.
A

Definition 2.14. For each 3 € A, there are natural homomorphisms
g liin{Ga} — Gj

corresponding to the composite lim{G,} = H G, — Gj of the natural inclusion ¢ follow by

the natural projection 7. We say that 74 is the pro]ectzon of im{ G, Tap} into Gg.
a4

Remark. Let g = (¢9,) € G, and a < 3. Then, by construction,

Ta(9) = 9o = Tap(9s) = Tap(ma(9))

This means 7, = 7,373, whenever a < f.

Theorem 2.5 (Universal Property of inverse limits). Consider the inverse system of groups {G.,, mag, A}.
Given a group H and homomorphisms { f, : H — G4 }aca such that

fa = Waﬁfﬁ

whenever o < 3, there exits a unique homomorphism f : H — ligl{Ga}, such that

7Taf = fom (23)

i.e., the following diagram commutes

lim{G.}

/ Jwa
H— G,

fa
Proof. Let h € H, define g, := f.(h). Now, take g = (g») € Il G.. Note that, by hypothesis,

a€A

9o = fal(h) = map(fs(h)) = map(gs)-
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Thus, g € lim{G., Tas}, and we define f(h) := g = (ga) as constructed above.
A

Now we’ll show that f is a homomorphism. Take %y, hy € H, then

f(hi+ h2) = (fa(h1 + h2))aca
= (fa(h1) + fa(h2))aea
= (fa(h1))aca + (fa(h2))aca
= f(h1) + f(h2).

Thus, f is an homomorphism.

Finally we'll show that f is unique. Suppose f': H — lim{G,, 7.5} satisfies the condition
A
(2.3). Given h € H, we define g := (f — f’)(h). Note that the coordinates of ¢ are

= Ta(g)
= ma((f = f)(h))
=7a(f(h) = f'(h))
=7a(f(h)) = ma(f'(h))
= fa(h) = fa(h)
= 0.
and so g = 0. It follows that f = f. H

Now consider B C A, with B a directed set. Take all the groups G3, with 3 € B. Note
that the relations between the homomorphisms 73, remain even with the restricted indexes.
This allows us to consider a new inverse system {Gp, 73,, B}. Thus we have two inverse limits
11m{Ga, Tap} and 11m{G5, Tg, }. Since there are homomorphisms {rg : 11m{Ga, Tapt — Galaen

such that for any B ,v € B, with § < -, we have that

g =TTy,

i.e., the following diagram commutes

im{Go, Tap} —— G,

A
T8y
T3

Gg

If 7 is the natural projection from the inverse limit l%n{G 3, Mgy} into G, then by Theorem
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there’s a unique homomorphism 74 : liin{Ga, Tag} — li%n{G 3, T3y}, such that

/
7T67TBA = Tg,

i.e., the following diagram commutes

hﬁl{Gﬁ? Wﬁ"/}
B

TBA ,
s

li%n{Ga, Waﬂ} 7r—5> Gry

Definition 2.15. The homorphism 7 4 is called the projection map of im{ G, mas } into lim{Gp, 74 }.
A B

Remark. If C' C B C A are directed set, the uniqueness of the projection maps implies

TTcA = TTCcBTBA-

Now we will show that in order to compute an inverse limit we only need to use a cofinal
subset of the directed (index) set.

Theorem 2.6. Let {G,, map, A} be an inverse system of groups, and let B be a cofinal subset of A. Then
there is a homomorphism

map : Wm{Gg, mg, } — Im{Ga, Tap}
B A

Furthermore, 7 ap is an isomorphism whose inverse is the projection map mp 4.

Proof. Take any o € A. Since B is cofinal, there is a # € B such that o < . Thus, consider the

composition

. ﬂ-, 7Ta
fa = Waﬁﬂ'/lg : hgn{Gg,ﬂ'gfy} —ﬁ> Gg Z G
B

We write it as f, since the election on /5 does not change the resulting map. In order to see this,

such that 3; < 3, and so the following diagram commutes

consider 3, f; € B such that a < 3;, i = 1, 2, using that B is an ordered set, there existsa 5 € B
% w
hm{Gg,WBA,} m — G

\”W\A

\
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Note when a € B, we can simply take 8 = a. Now let oy, oy € A, such that a; < ay. Then there

are 31,0, € Bsuchthato; < 3;, i =1, 2.
that 8; < 3, 1 = 1, 2. It follows that

Tayas fas

Using that B is a directed set, there exists 8 € B such

= Taias <7T04252 ﬂ-,ﬁg)

_ /
= Tayas Moo By ﬂ-BQ

'
= Tayas Moz B, (7‘1’525#5)

/
= Tajag (71—0425277-525)77-/5

o /
= Ta100 T BT B

= (Tasas 7Ta25)7T/ﬁ

= Walgﬂ'lﬁ

= (Mo, 8,76,8) T

= T, (T3,87}5)

_ ’
= T Ty

:fal

i.e, the following diagram commutes

fay

G52
, 1
TBa By 8

/ |

/ 7818

B1 \ l
G,

faq

— Tagfy — Ga2

e

7Ta25

e

oy org

7Ta15

.

— Tayp1 — Ga1

Thus, {fo : im{Gg, 7, } — Ga}taca is an inverse system of homomorphisms. Using the univer-

B

sal property of the inverse limit, for this inverse system of homomorphisms, there is a unique

homomorphism

Tap  Im{Gs, T, } = Im{Gla, Tap}
B A

24



such that m,map = f,, i.e., the following diagram commutes

lign{Ga, Waﬁ}
A

TAB l
T

lim{Gs, mgy} ———— Ga
B

Now consider a € A and 3 € B as above. Using the properties of 745 and 754, we have that

To(TaBTBA) = (TaTAB)TBA
= faTBA
= (TapTy)TBA
= Waﬂ(’ﬂ'%ﬂ'BA)
= TapTp

:7‘('a

and that

T5(TBATAB) = (T3TBA)T AR

= TIgTTAB
/
:Wﬂﬁﬂ-ﬁ

o

This means that the following diagrams commute

djjm{ca} - Hm{Ga, Tas} Idym{cg) - lim{Gps, 74, }
: Z as tap g E By By
. /WVAB ‘ ) /WBA ‘
Hm{Gg, ms, } T and h%n{Ga’ Tap} fo
B
' /W'BA - fa - l ' /W'AB - T - l
I%H{Ga; Tap ) T Ga hin{GOé? Tag} fa Ga
B

Thus, using the uniqueness of the universal property of the inverse limit, we have that

mATAB = Idym{c;y and  mapTpa = Idym(c.)
B A
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]

Now let {G,, T3, A} and {H,,, k.,,, B} be two inverse systems of groups. If ¢ : B — Ais an
order preserving map, that is, for every v,n € B such that v < 7 then ¢(y) < ¢(n). For conve-
nience of notation, we will write ¢(y) = v/, ¢(n) = n'. Consider a family of homomorphisms
{fy : Gy = H,},ep such that the follonwing diagram commutes

Gn/ L} }I77
ﬂ',ylnll J{E’W}
G,\{/ —_— ny
el

whenever v < 7.

Definition 2.16. Such a family of homomorphisms { f, : G, — H., },cp is called an inverse system
of homomorphisms of the system {G, Tap, A} into {H,, k.,, B} corresponding to the order preserving
map ¢ : B — A. We will denote this family by {f, : G, — H,}, when B is clear from context.

We will extend the result in Theorem [2.5{to an inverse system of homomorphisms.

Theorem 2.7. Given { f, : G, — H.} an inverse system of homomorphisms of the system {G ., mos3, A}
into {H.,, k+y, B} corresponding an order preserving the map ¢ : B — A. There exists a unique
homomorphism

[ lim{Ga, Tap} — Bm{H,, Ky}
A B
such that
Ko f = foyTy,
i.e., the following diagram commutes

lm{ G, s} - ln{ . )

| B

G, - H,

Proof. Given ~ € B, consider the composition
lm{ Gl Tas) SN :

Using the universal property of the inverse limits, there is an unique f as desire. Furthermore,
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consider a subset B’ C B and define A’ := ¢(B’) C A. Then the following diagram commutes

. f .
I%H{Gm Tap} —— I%H{H'w Fyn }

WA'AJ{ J{’{B’B

Im{Go, Tarp } 7 Wm{ Hyr, oy }
A B’

where f’ is induced by the inverse system of homomorphisms { ., : Gy — Hy },cp corre-
sponding to ¢ : B’ — A’ O

Definition 2.17. The homomorphism f constructed above is called the inverse limit of the inverse
system of homomorphisms {f., : G, — H,}.

Theorem 2.8. Consider three inverse systems {G, mag, A}, {Hy, vy, B}, { Ky, tiog, C'}. Let ¢ : C' —
Band ¢ : B — A be two order preserving maps. For convenience of notation, write 1)(c) = o', () =
v. If{fy : Gy — H,}yep and {9, : Hy — K, },ec are inverse systems of homomorphisms corre-
sponding to ¢ and 1p. Then

{90 for : Gon — Ko}

is an inverse system of homomorphisms corresponding to ¢p : C' — A. Furthermore, if f, g, h are the
inverse limits of { f,},{9o}, {ho = 9o fo'}, respectively; then

h=gf

Proof. Consider o < . Then we have the following diagram

for 99
Ge// H@l KQ
WUIIGIIJ J{HOJGI J{ll/o"y]
Gor — Hy —5 K,

By hypothesis, the two squares are commutative, so the diagram is commutative. Thus { f, ¢, :
G,» — K,} is an inverse system of homomorphisms corresponding to ¢ : C' — A.

Using the following commutative diagram

. f . .
lin{Glo, Mg} —— T {Hy, sy} — lin{Ko 100)

TFU/IJ/ J{HU/ J{NJ

o,
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we have that

1o (9f) = (1o9) f
= (gokior) f
= 9o (ko' f)
= Go(forTon)
= (o for)Tom
= hoTgy(o)
= pyh

Thus, using the uniqueness of the universal property of the inverse limit, we conclude that
h=gf. [

2.4 Cech Homology definition

We will have a inverse systems of groups indexed by I'(X'), with homomorphisms defined by
the refinements. Using this we will be able to define the Cech homology of a closure space.

First, we need to show that in fact I'(X) is a directed set.
Lemma 2.9. For a given closure space pair (X, A), the set of all interior covers I (X, A) is a directed set.
Proof. Let (%, %) ,(V,7,) € I'(X, A). First, define
W ={UNV|\Ue%,VeV}
This is an interior cover of X, since

Uiw=U Uiwunv)

Wew Uceu vVey

= U U L@niv)
Uceu vey

= U [ion| Ui
Uew Vey

= U i (U)nX]
e

= U i)
Uew

=X
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Now, define #, :={UNV|U € %4,V € ¥4}. Using that

Uiw=U Uiwnv)

Wewa UceUps VEYV A

= U U L@ni(WV)

UEUs VEY A

:LJ/ i(U)N U/(V)
o> U i (U)Nn 4]
Uew
=|JiU)|nA
Uew
O A,

we conclude that the pair (%, %) is an interior cover of the pair (X, A). Also note that # is a
common refinement of both % and 7/, i.e., Z < # and ¥ < #', because for each W € # there
areU € %,V € ¥ suchthat W =UNV,andso W C U and W C V. Similarly, we have that
W4 is a common refinement of borh %4 and 7#,4. Thus, we conclude that (%, # ) < (%, % ,) and
(W W a) < (V. Va). 0

Recall that for each (%, %) € I'(X, A) thereis a group H,,(X, A; %, % ), and for a refinement
(%, %) < (¥, V) there is a homomorphism 7y 4, : H, (X, A; Y, V) — H(X, A; %, %,). Thus,
{H(X, AU Un), 70y ., (X, A)} is an inverse system of groups.

Definition 2.18. The n'* Cech homology group is the inverse limit of the inverse system defined
above, i.e.,
]j]n (Xv A) = 11<£I1 {Hn(X7 A7 %7 %A)a ﬂ-”//”//*}

I(X,A)
If A=, then H, (X, A) is written as H,, (X).

Observation 5. Even though I'(X) and I'(X, ) are different directed systems, we have that
each € TI'(X) has a corresponding (% ,0) € I'(X,0). Also, note that for any (%, %) €
['(X, ) the cover (% ,Q) is a refinement of (%, %Zy). Thus, we can consider I'(X) as a cofinal

subset of I'(X, @), and so if a limit process is over I'(X, @), then we will consider the limit over
'(X).

2.5 Direct limits

The notion of direct limit is dual to the inverse limit, in the sense that, categorically, a direct limit

is an inverse limit in the opposite category, and vice-versa. An important difference, however,
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is that direct limits preserve exact sequences, which will allow us to define a Mayer Vietoris for
cohomology and inverse limits do not.
Now, we will follow the structure of [12], but with a different take to the proofs, since they

rely on an inductive argument and we will take a more categorical one.

Definition 2.19. A direct system of groups is a set of groups G,, indexed by a directed set A,
such that, for all o, 3 € A with a > f3 there exists a homomorphism 7% : G5 — G,. These
homomorphisms satisfy the conditions

1. 7** =1Idg, forall o € A.
2. 787B7 = 727, whenever a > 3 > .

We will denote this by {G,, 7 A}. When context allows it, we will simply write {G,, A}, or
{G.}.

Now remember that in the context of (abelian) groups, the direct sum of a collection of
groups {G, }aca is

@ Go ={(ga) € H Ga

acA acA

go = 0, but for finite many a € A} C [] Ga
acA

along with the natural inclusions .° : G5 — @ G, defined by 1(gs) = (9 )aca, where g, = 0 if
a€cA
a # S.

Similar to the universal property of the product of groups, we have a corresponding prop-
erty for the direct sum.

Theorem 2.10 (Universal Property of the coproduct). Given a group H and a collection of groups
{Gu}aca, indexed by a set A. If for each a € A there is an homomorphism f, : G, — H, then there
exists a unique homomorphism f : @ G, — H such that

acA

f//a:fom

i.e., the following diagram commutes

D Ga

acA

1\,

Gaf—>H

Now, consider a direct system {G,, 7", A}. Let R be the subgroup of @ G, generated by
acA
elements of the form z5 — 7% (x4), for all « > 3. Define

G:= G./R

acA
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Definition 2.20. The direct limit of the direct system {G,, 7", A} is the group G defined as above.

We'll denote it by lim{Go, 7’} lim{Ga, 7}, or simply lim{G.,}, when A or 7*7 are clear from
A
context.

Note that the limit process identifies the element x5 € G5 with the elements 7 (z5) € G,,

whenever a > f.

Definition 2.21. For each 3 € A, there is a natural homomorphism 7 : G5 — lim{G,, 7}

corresponding to the composite

Gs % @ Ga % lm{Go, 7},

acA

where /# is the natural inclusion and p is the natural projection. We say 77 is the inclusion of G4
into lim{G,}.
H

Theorem 2.11 (Universal Property of direct limits). Let {G,, 7% A} de a direct system of groups.
Given a group H and homomorphisms { f, : Go — H }aca such that

fo = fam®”

whenever oo > (3. Then there exists a unique homomorphism f : im{G.} — H, such that

Jm% = fa (2.4)

i.e., the following diagram commutes

Gaf—>H

Proof. Using the universal property of the coproduct, there is a unique homomorphism

f:@Ga—>H

aEA
such that f@'o‘ = fo, 1.€., f(xa) = fo(zy), for each z,, € G,. Consider g € A such that 5 < «a. Let
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x5 € Gg, then 7°9(z5) € G, and so

Flag — 7%(25)) = f(zs) — F(7*P(2p))
= f3(x5) = fa(7*(25))
= fa(xs) — (fam”)(x5))
= fs(zs) — fo(2p)
=0

since, by hypothesis, fz = fam?. It follows that R C ker( f ), with R as defined in Using the
universal property of the quotient group, we have a unique homomorphism f : lim{G.} — H

such that for each 3 € A the following diagram commutes

lim{G.}

S

b G, —7f— H

B a€A
I %

Gg

We will show an alternative construction for the direct limit, which will result more useful

and eventually necessary in order to see that direct limits preserve exact sequences.

Consider the disjoint union of sets Ll,c4G,. Each point U,c4G,, can be thought as a pair
(%4, @) such that z, € G,. Define a relation between these pairs by (z,, «) ~ (23, 3) if there is
§ > a, 8 such that m°%(z,) = 7% (x3). This is an equivalence relation:

e Foreacha € A, 7*%(x,) = m**(x4), and s0 (x4, @) ~ (24, ). Thus, the relation is reflexive.

e Let (z,,a) ~ (73,3). This means that there is § > «, 8 such that m°%(z,) = 7% (z;). Thus,
(g, B) ~ (Ta, @), i.e., the relation is symmetric.

o Let (z4,a) ~ (xp5,5) and (x5, 8) ~ (z,,7). By definition, there are § > o, f and A > 53,7
such that

"

%(z,) = 7 (25), and () =7 (z,).
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Since A is a directed set, there exists > 9, A\, and it follows that

T (2a) = 7" (1°(24))

Thus, the relation is transitive.

Let G be the set of the equivalence classes on || G, with the equivalence relation described
acA

G = <|_| Ga>/~

a€cA

above, i.e.,

Now we will describe a group operation on G. Let [z, o], [23, 5] € G, define
[@ar 0] + [, B] = [ (2a) + 7 (), 0]

for some § € A such that § > «, 3. In order to see that this operation is well defined, first we
need to prove that the election of § does not affect the result. Let 6;,d, € A such that §; > o,
and J; > «a, 8. Using that A is a directed set, there is § € A such that § > ¢, d, and

T (70 (1) + P (15)) = 7O (2,) + 7O TP (14)
792 () + 7% (z5)
7T§62 520{(:6&) + 7T6627T62ﬁ<x5)

™
0% (%% (2q) + %% (5))

Thus 791%(z,) + 718 (25) ~ 7102%(2,) + 728 (25).

Then we need to prove that the election of the representatives does not matter for the oper-
ation. Let (z4,, 1) ~ (ZTay, a2) and (zg,, 5) ~ (x5,, ). Then there are o > vy, a0 and 3 > 5y, By
such that

T (xoq) = T (ma2)7 and 7% ([L’/gJ = 7P (J}52).
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Using that A is a directed set, there is § > «, 3. It follows that

w0 (2a,) + 1% (25,) = 701 (20,)) + 7 (77 (25,))
= 7T6a<7raa2 (xa2)) + ald (WBBQ (ZL‘@2))

da 1
=7 Q(xa2)+7T62(x32)
Thus, this operation is well defined. Furthermore, we have that:

e This operation is commutative, since

[was o + [25, 8] = [7°*(xa) + 7 (25), 8] = [7°(w5) + 7°*(xa), 8] = [wg, ] + [2a, O]

Forany «, 5 € A, [0, o] = [0, 5], which is the identity element because

and (z,, @) ~ (7°%(z,),0), for any § > a.

The inverse of [z, a] is [—x4, a].

For each o € A, there is a map 7* : G, — G defined by 7%(z,) = [z, a], which is the

inclusion from G,, into G. Furthermore, 7% is an homomorphism, since

[Za, ] + [Ya, @] = [ (20) + 7 (Ya), a] = [Ta + Ya, O]
If o, 3 € A are such that a > 3, then 727" = 77, i.e., the following diagram commutes
G
>

GﬁTG

T

This construction is equivalent to the direct limit in the sense that they are isomorphic to

each other. For this, we will show the following result.

Proposition 2.12. Let {G,} be a direct system of groups, and define G as above. If 7 : G, — G is the

inclusion from G, into G, then G also satisfies the universal property of the direct limit.
Proof. Given a group H and homomorphisms {f, : G, — H },ca such that

fﬂ = faﬂ-aﬂ
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whenever o > 3. Define f : G — H by f([za,a]) = fa(z.). This is well defined since, if
(Ta, @) ~ (x3,3), there is a § > «, 3 such that m°%(z,) = 7% (x5), and so

fa(@a) = f5(7°(20)) = f5(x°% (25)) = f5(x5)

Directly of the definition of 7* and f, we have that f7* = f,. In order to see that f is a homo-

morphism, note that, for any 6 > «, 3, we have

F([7* (wa) + 7% (25),0]) = f5(n°* (2a) + 7% ()

Suppose there exists another f': G — H such that f'7® = f,. Then

F([wa,a]) = F(7)) = fu(wa)

Thus, f' = f. O]
The universal property will give us the desired isomorphism.

Corollary. lim{G,} = G

Proof. Using the universal property of direct limits, there are 7 : lim{G,} — G,and 7 : G —

lim{G.}, such that 77* = 7%, and 77 = 7, for each a € A. Note that 7 : G — G satisfies
(Tm)T% = 7(7%) = 1%, (2.5)

i.e., the following diagram commutes

G
\ ™
‘ /71-cx
Ga
Using the uniqueness of the universal property, we conclude that 77 = Id . Similarly, we have
that 77 = Idlim{Ga}- O
—

The following lemmas will be used to prove that direct limits preserve exact sequences.
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Lemma 2.13. For each element x € lim{G.} thereisa € Aand a x5 € G such that
r =7 (25)

Proof. Using the Corollary for each € lim{G.}, we have that 7(z) € (. Therefore, there is
p € Aand xg € Gg such that

7(x) = 23, 8] = 7°(xp)
Thus,
w(x5) = m(r7(2p)) = m(r(z)) = =

O]

Lemma 2.14. For each 3 € A there is o > 3 such that ker(n?) C ker(7®%),i.e., if x5 € G is such that
7% (zp) = 0 there is o > (3 such that 7 (z5) = 0.

Proof. Consider 7,7 as in the corollary 2.5 Let 25 € ker(n”). Then

(25, 8] = 77(25) = 7(n”(25)) = 7(0) = [0, 5]

where ' € A can be any index different from (. This means that (z3, 5) ~ (0, 8’), and so there
is a > 3, #’ such that
78 (25) = 7% (0) = 0

]

Now consider B C A, as directed sets. Take all the groups G, with 5 € B. Note tha the
corresponding restrictions maps are preserve, and so {Gz, 7”7, B} is a new direct system of

groups. Remember that for each 3 € B there is a homomorphism 77 : G5 — lim{G,, 7"}, such
A
that 77 = 797%7, whenever 8 > . Using the universal property of direct limits we have that

there is a unique

sl l%n{Gg,WBV} — I%H{Ga,waﬁ}

such that 74#7% = 7f, where 7% : G5 — lim{G,} is the natural inclusion of G into im{G.}.
B B

Definition 2.22. 742 is called the inclusion map of lim{Gp} into im{G,}.
B A

Remark. Let C C B C A be directed sets. The uniqueness of the definition implies

7_[_AC — ﬂ_ABﬂ_BC.

Theorem 2.15. Let {G.,,, 7", A} be a direct system of groups, and let B be a cofinal set in A. Then there
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is a homomorphism

B4 I%Il{Ga,ﬂaB} — l%Il{Gﬁ,ﬂ'ﬁ’y}

Furthermore, w54 is an isomorphism whose inverse is w5.

Proof. Fix a € A. Since B is cofinal, there is 5 € B such that 3 > «. Thus, consider the

composition f, := 777 corresponding to the composite

Ga — Gﬁ1 — liLIl{Gg,ﬂﬁ’y}
B

Note that the election of 3 does not affect the composition. In order to proof this , consider
p1,82 € B with o < 3, i = 1,2. Using that B is a directed set, there is 3 € B such that

B > 1, B2, and so

TBib1e = (o gBB )b = B pBa _ B (rBBapbaoy — b pbaa

i.e., the following diagram commutes

a AN
WV W’l
Gﬁ — B > hm{Gﬁx T }
A V

Note that, when o € B, we can simply take § = «a. Also, this homomorphism satisfies that
if a; > an, then there is 5 € B such that 5 > «a;, as. It follows that

fay w102 = (Wﬁ’ﬂﬁal)ﬂalaz
— B pBaz

= fas

Using the universal property of the direct limit, there exists a unique homomorphism

B4 hLH{Ga,T('a'B} — l%n{Gg,?rﬁ”}
A

such that 7847% = f, = 77 7%, for each o € A.

37



Note that for each o € A, thereis a § € B such that § > « and so

(ﬂ_ABﬂ_BA>7Ta — WABfa

7]_AB (ﬂ_B’ﬂ_Ba)

i.e., the following diagram commutes

im{Go,mas})
A

ldjm (Ga}
- A
xBA
~
o im{Gps, 75, }
B
e T s
/ >
Ga T hgn{Gm’/Ta/g}
A
Thus, using the uniqueness of the universal property of direct limits we have that 748754 =
Idli_r>n{Ga}-
A

Now, for each 3 € B we can take f5 = 7% 7% = 7%, Tt follows that
(7TBA7TAB)7T’8/ =nB4rf = f5 = ™,
and so, using the same argument as before, we have that nBAgAB — Idjimic Be ]
=
B

Let {G,, 7", A} and {H,, ", B} be direct systems of groups. Consider ¢ : A — B an
order preserving map. For convenience of notation, we’ll write ¢(«) = o/ and ¢(5) = 3. Let
{fa : G — H,, a € A} be a family of homomorphisms such that the following diagram
commutes

’R'QBJ/ J/K;a/ﬂ/

Ga T} HO/

whenever a > (.

Definition 2.23. Such a family of homomorphisms {f, : G, = H., o € A} is called an direct
system of homomorphisms of the system {G.,, 77, A} into the system { H., k', B} corresponding to the
map ¢ : A — B. We will denote this family by {f, : G, — H, }, when A is clear from context.
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Theorem 2.16. Let {f, : G, — Ho } be a direct system of homomorphisms of the system {G,,, 7", A}
into {H.,, k", B} corresponding an order preserving the map ¢ : A — B. Then there exists a unique
homomorphism
£ lim{Ga, 7"} — Im{H,, x""}
A B

such that, for each o € A,

!/
fﬂ-a:/{afoc

where o = ¢(w), i.e., the following diagram commutes

i { G 1) 5 lin {577}

Proof. Given a € A, consider the composite x* f,, corresponding to

fa e
Go = Ho — lim{H,, x""}
B
Using the universal property of the inverse limits, there is a unique f as desire. O
Definition 2.24. This is called the direct limit of the direct system of homomorphisms { f,}.

Observation 6. Let A’ C A. Define B’ := ¢(A’). Then the following diagram commutes

lin{Gor, 7%}~ Tim{ H,, 577}
A’ B’

/ /
TAA J \L{BB

hl_}n{Ga7 ﬂaﬁ} T h_;)n{H’Ya "{777}

where f’ is induced by the inverse system of homomorphisms {f, : G, — H,», A’} corre-
sponding to the restriction ¢ : A" — B'.

Theorem 2.17. Let {G,, 7, A}, {H,, k", B},{L,,u°?,C} be three direct systems of groups. Let
¢: A— Band : B — C be two order preserving maps. For convenience of notation, write ¢p(a) =
o Y(y) =7 If{fa : Go = Hy} and {g, : H, — L./} are systems of homomorphisms corresponding
to ¢ and 1), and if, for each o € A, h,, is the composite corresponding to G, — H, — Lo». Then

{ha : Ga — La//}

is a direct system of homomorphisms corresponding to 1¢ : A — C. Furthermore, if f, g, and h are the

39



direct limits of { fo}, {9, }, and {h.}, respectively, then

h=gf

Proof. Consider o > . Then we have the following diagram

f 9p
Gﬁ —B> HB/ —B> LB//

|
71—045‘/ /@‘)‘lﬁ/ ua”ﬁ”
I

Go ——— Ho ——— Lar
By hypothesis, the two squares are commutative, and so the diagram is commutative. Thus
{ha = go fa : Ga = Lov} is a direct system of homomorphisms corresponding to ¢ : A — C.
Now, let o € A. Using the following commutative diagram

9o/

[
o / "
T J KY JMO‘
<+

1%H{Ga,ﬂ'aﬁ} T I%H{H’W"{m} T> I%D{LO_’MO'G}

we have that (¢f)7® = u®"h, = hr®. Therefore, using the uniqueness of h, as the direct limit of

homomorphisms, we have that in fact g f = h. ]
Theorem 2.18. Consider the same conditions as above. Write A’ := ¢(A) C Band A" = ¢(A’) C C.
Also, suppose that for each o € A the sequence
fa 9o
Ga — Ha/ — La// (26)

is exact, i.e., ker(go) = Im (f,). Then, the sequence

li%n{Ga} Ll {HLY % lim{Lov}
A/ A//

is exact, i.e., ker(g) = Im (f), where f, g are the direct limit of { fo, A}, {go, A'}.

Proof. From Theorem we have that the composite gf is the direct limit of the homomor-
phisms {0 = g,/ fo, A}, and so gf =0, i.e., Im (f) C ker(g).

Now, we will prove the other inclusion. Let y € ker(g) C lim{H, 7*’}. Recall, from the
A/
Lemma there are v/ € A’ and y» € H., such that y = 7 (y,/). It follows that

0=g(y) = g(w" (y3)) = 1" (9 (y1))
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Thus, g./(y,) € ker(1?"). Using the Lemma there is a ” € A” such that 8” > +” and
ker(u?") C ker(u?""). Thus, we have that

0=p"" (9 (yy)) = gﬂ(’fﬁlﬂ/(%/))a

and so %7 (y,/) € ker(gj). Using the exactness at Hy in the sequence @2.6) for 3 € A, there is

x5 € G such that f5(z5) = %7 (y,). If we define x = 7% (z3) € lim{G.}, then we have that
A

f(2) = f(n°(25)) = &7 (fa(as)) = &7 (77 () = 57 (y7) = y

Thus, ker(g) C Im (f). O

2.6 Cech Cohomology definition

We fixed a coefficient group for the simplicial cohomology, which for convenience it will be
omitted. Let (X, A) be a pair. We have shown in the Lemma 2.9 that I'(X) is a directed set.
Recall that for a given (%, %4) € I'(X, A), there is a simplicial pair (K, L4,), where K is
the nerve of % and Ly, is the subcomplex of Ky associated with the subspace A. Also, if
(V,74) € I'(X, A) is a refinement of (%, %), i-e., (% %,) < (¥, V4), then there is a simplicial
map 73,y : (Ky,Ly,) = (K, Ly,), and so

W;/g;/ : Hn<Ko)/, L%A) — H”(K% L/y/A)
is the induced homomorphism on the n'" cohomology groups. Write
Hn(X, A; 02/) = HH(K@/, Lo//A)

Thus, {H"( X, A; %, U ). Ty 4, ,I'(X, A)} is a direct system of groups.

The definition of the Cech cohomology is similar to the Cech homology, but instead of taking
the inverse limit we take the direct limit of the directed system described above.
Definition 2.25. Write H" (X, A) = lim {H"(X, A; (%, WU4)), Ty }- We call this the n'" Cech

T(X,A)
cohomology group of (X, A). If A = O, we write H" (X).
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Chapter 3
Eilenberg-Steenrod Axioms

In 1945, Eilenberg and Steenrod [6] defined the axioms for homology as a way to give a more
natural language for the homology groups in order to simplify their use. One should note that
they lacked the definition of functor and natural transformation, but the notions appear as part
of the axioms. As a part of their work, they sought to characterize different homology theories.
In particular, two homology theories that satisfy the axioms and are isomorphic for the one
point space, are isomorphic for any simplicial complex [6].

In this chapter, our main interest is to prove that the Cech (co)homology we defined in the
previous chapter satisfies the functoriality, homotopy invariance and excision properties, but
since the remaining properties are easy to establish, we will prove them as well. A first proof of
the Eilenberg-Steenrod axioms for Cech homology on topological spaces was given by Dowker
in 1952 [4]. The treatment given here is based on the books [12], [5], and [10].

Definition 3.1. A closure space pair (X, A;c) is a set pair (X, A), where (X, c) is a closure space
and A C X is endowed with the subspace closure, which is defined by

ca(U):=c(U)NA, forUcC A
We will refer to the closure space pair by (X, A), when ¢ is understood. Also, if A = ), we will

write the pair (X, 0) just as X.

Definition 3.2. Given two closure space pairs (X, A;cx) and (Y, B;cy) and a function between
set pairs f : (X, A) — (Y, B),1ie, f(A) C B.If f: X — Y is a continuous function, we say that
f:(X,A) — (Y, B) is continuous.

Remark. If f : (X, A) — (Y, B) is continuous, then f|4: A — B is a continuous function.
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Proof. For any C' C A, we have that

fea(C)) = fex (C)N A)
C [lex (@) N f(A)
Cey (f(C)NB
=cp(f(0))

]

We'll denote the category of closure space pairs by Cl. In the following chapter, we will
consider the closure space I = [0, 1] with the usual topology. Also, given a closure space pair
(X, A), we will write the closure space (X, A) x I = (X x I, A x I) with the product closure.

Since the constant functions ¢, ¢; : (X, A) — I, defined by ¢y(z) = 0 and ¢;(z) = 1, and the
identity Idx : (X, A) — (X, A) are continuous, then we have that g, g1 : (X, A4) = (X, A4) x [
defined by

go(z) = (z,0) and gi(z) = (z,1) 3.1)

are continuous.

Observation 7. The category Cl is an example of an admissible category for (co)homology theory

[5].

Definition 3.3. Let fo, f1 : (X, A) — (Y, B) be two continuous maps. We say that they are
homotopic in CI if there is a continuous function

H:(X,A) x I (Y,B)
such that fo = Hgo and f1 = Hg;, with go, g1 defined in (3.1), i.e.,
fo(r) =H(z,0) and fi(z) = H(z,1)
We will denote by f, ~ fi1 when the functions are homotopic, and we say H is a homotopy.

Let {H,, : Cl — Ab} be a sequence of functors from the category of closure space pairs Cl to
the category of Abelian groups Ab, and let 6,,(X, A) : H,(X,A) — H,_1(A) be a natural trans-
formation, which we will call the boundary map. The Eilenberg-Steenrod axioms, as defined in
[5] for admissible categories, are:

1. (Homotopy Invariance): If f,g : (X,A) — (Y, B) are homotopic maps in Cl, then the
induced maps on (co)homology are the same.
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2. (Exactness): Given a pair (X, A) with inclusions : : A — X and j : X — (X, A). For
homology, there are homomorphism 0, such that the sequence

oo Ho(A) S Hy(X) 25 Hy(X, A) S Hy y(A) > ...

is exact, and 0 commutes with homomorphisms induced by continuous maps.

For cohomology, there are homomorphisms 0 such that the sequence
e HY(A) & HYX) & (X, A) & Y A)
is exact, and 6 commutes with homomorphisms induced by continuous maps.
3. (Dimension): If P is one-point space. For homology,

0, n#0
H,(P)= 7
Z, n=20

For cohomology,

0, n#0
H"(P)= 7
Z, n=20

4. (Excision): For a pair (X, A), if U C X is such that ¢ (U) C i(A). Let¢ : (X \ U A\
U) — (X, A) be the natural inclusion. Then the induced homomorphism in (co)homology

isomorphisms.

First we will prove that the Cech homology and cohomology groups we defined on m
and are homology and cohomology theories. Thus, we need to prove these groups are
functorial.

3.1 Functoriality

We will first show that there exists homomorphisms at the level of interior covers. These ho-
momorphisms will define direct and indirect systems of homomorphisms for the case on coho-
mology and homology, respectively.

Lemma 3.1. Let f : (X, A) — (Y, B) be a continuous map between closure space pairs. If I' (X, A) and
I'(Y, B) are the sets of interior covers of (X, A) and (Y, B), respectively. Then there is an induced order
preserving map f~' : T(Y, B) — (X, B) defined by [~ (U, Uy) .= ([ (%), [~ (%a)), where

U @) ={f"W)Ue%} and [~ (U):={f"(U)|U € %}
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Proof. First, fix an interior cover (%, %) € T'(Y, B) of (Y, B). We will show that [~ (%, %3) is
an interior cover of (X, A).
Recall from[1.2} that forany U C Y, f~! (iy (U)) Cix (f~ (U)). It follows that

X=[()

= ( U iY(U))

Uew

= U [ v (U))

Uew
c U ix (/)
Uew

Therefore, we have that in fact f~! (%) is an interior cover of X. Now, since f(A) C B, we have
that

Ac 1 (B)

Cf_1< U iY(U))

Uep

= U v ()

Uews
c U ix(rm)
Ueus
Thus, (f~' (%), f~ (%)) is an interior cover of (X, A).

Now, we need to show that f~! is an order preserving map. Let (%, %3z) , (¥, ¥5) € T'(Y, B)
such that (%, %) < (¥, 7V3),i.e., foreach V € ¥ thereis U € % such that V' C U, and for each
V € ¥p thereis U € %p such that V C U. Since f~! (V) C f~1(U), we have that f~! (%) <
f7H(7), and similarly f~' (%) < f~' (¥B), ie., [ (U Us) < f~ (¥, ¥5). Therefore, f~! is in
fact an order preserving map. O

Proposition 3.2. Let f : (X,A) — (Y, B) be a continuous map between closure space pairs, and
(%, Ug) € T(Y,B), an interior cover of (Y, B). Consider (%', %" ) = [~ (%, Wg), which is an
interior cover of (X, A). If (K, La,) is the simplicial pair corresponding to the nerve of % and the
subcomplex of Ky corresponding to B C Y ; and (K4, Ly ) is the simplicial pair corresponding to the
nerve of %' and the subcomplex of K4 corresponding to A C X. Then there exists a simplicial map

fi i (Koo, Lyt ) — (Ky, Lay,)

Proof. In order to construct the simplicial map, we will define the map in the vertices, then we
extend it by linearity. Given U’ a vertex in K, using the definition of %’, there existsa U € %,
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which may not be unique, such that U’" = f~! (U). If we fix a choice of U, then we can define
LU =

In order to verify that we can extend f}, to a simplicial map, let U}, ..., U be vertices of
a simplex in K and let Uy, ..., U, be their respective images under f},. By definition of the
nerve of a cover, we have that UjN ... N U/} # &, and so

O#fUN..nU)CfU)N...0nfU)cUnN...NUy,,

since f (U}) = f (f~1(U;)) C U;. It follows that U; are vertices of a simplex in K. Therefore f},
can be extended to a simplicial map.

Now we will show that f},(Ly,) C Ly,. Let Uj,... U/ are vertices of a simplex in Ly,
i.e., they are vertices of a simplex in K that satisfy U/N...NU] N A # ©. Using that f (A) C B
and taking Uy, ..., U, as above, we have that

O#fUN...0nU NA)CfU)N..0nfU)YNfFA) CUN...NnU,NB
It follows that the U; are vertices of a simplex in Ly,. So the simplicial map f;}, constructed
before is a map from the pair (K-, Ly ,) to the pair (K, Ly,). O

Now, we will prove that the choice made in the construction of f}, doesn’t affect the induced
homomorphism on homology groups.

Lemma 3.3. Let f : (X, A) — (Y, B) be a continuous function and let (%, %) be a interior cover of
(Y, B), and let f;,, [7, be defined as above, but making different choices for each map f},, 3, Then f},, f3,
are contiguous, as maps of simplicial pairs.

Proof. Let Uy, ..., U, be vertices of a simplex in Ky, and let Uy, ..., U, and V;, ..., V, be their
respective images under f}, and f2,,ie., f~1(U;) = f~' (V;) = U]. It follows that

T UnN...nUNVoN...0V,) = fHU)N...0f (U INf(Vo)N..0f~H (V) = Uin..NU. # O

andsoUyN...NU,NVyN...NV, # O. Using the definition of the nerve of a cover, we have that
Uo, ..., Uy, Vo,...,V, are vertices of a simplex of K. Therefore, for any simplex S € Ky, the
corresponding images f4, (S) and f2, () are contained in some simplex of K. Furthermore, if

the U/ are vertices of a simplex in Ly ,, then
ODAUN..NUNA=f1UnNn...nU,NVoN...0V,NB)

By a similar reasoning, we have that Uy, ..., U,, V;, ..., V, are vertices of a simplex in Ly,. Thus,
for any simplex S'in Ly ,, f4, (S) and f3, (S) are contained in some simplex of Ly,,. This proof
that in fact f},, f7 are contiguous as maps of pairs. O
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Since contiguous simplicial maps induced the same homomorphism on (co)homology groups,
using lemma we have thatf induces well-defined homomorphisms in homology

f%* : Hn(X7A7 %/7%,.4) — Hn(Y7B7%7 02/3)

and in cohomology
I Ho(Y, By %, Ug) — Ho (X, A; U, U ).

Definition 3.4. We call fy, and f, the induced homomorphisms associated with the interior cover %
and the continuous map f for homology and cohomology, respectively.

Observation 8. If Idyx : (X, A) — (X, A) is the identity function and (%, %) € I'(X, A). Then
(Idx),, and (Idx )7, are the identity.

Now we will prove the induced homomorphisms respect the composition of functions,
given suitable interior covers.

Theorem 3.4. Let f : (X,A) — (Y,B)and g : (Y,B) — (Z,C) be continuous and let (¥, #¢) €
['(Z,C), an interior cover of (Z,C'). If we define (V,¥3) = g~ ' (W, #), then we can define the
induced simplicial maps such that

(9 = 93 Iy

Proof. For convenience write h = g f. From proposition[3.2} there exists induced simplicial maps
[y and gj,. Write (%, %) = f~' (¥, ¥5). Given U a vertex of K, we have that V := f}(U) is a
vertex of Ky such that U = = (V), and W := ¢,,(V) is a vertex of Ky such that g=' (W) = V.
It follows that

U=f(g (W) =(gf) (W) =h" (W),
and so we can define h},(U) := W. Therefore, we have that
hy = gy f-

O

We have shown there are induced homomorphisms, which satisfy functorial properties,
given an interior cover. Now we will show these homomorphisms define inverse and direct

systems for homology and cohomology, respectively. Thus, we will prove the following lemma.

Lemma 3.5. Let f : (X, A) — (Y, B) be continuous, and let (%, %g),(V,7s) € I'(Y). Define
(W' U' ) = [T UU), (V' V' a) = LV V). If (W Us) < (V,Vp), then the following
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diagram of simplicial pairs commutes

Iy

(Kyr,Ly1,) —— (Ky, Ly,)

1 1
ﬂ%/y/J/ J{W%"i/

(Kaz/', LOZ//A) T (K% L%B)

x»

Proof. Using Lemma [3.1]and that (%, %) < (¥, V), we have that (%', %' 4) < (V', V" 4). Now
let V/ € ¥, then there exists V € ¥ such that V' = f~! (V). Using that ¥ is a refinement of %,
there exists U € % such that V C U. If we define U’ := f~! (U), then we have that

Vi=frt(V)cf )=
Therefore, we can define the simplicial maps fj(V') :== V, 7k, (V) := U, f,,(U’) := U, and
Ty (V') := U'. Tt follows that for all vertices of Ky, we can define the maps such that

1 1 11
Ty fv = faTayry (3.2)

After extending by linearity, we have the equation holds for the whole complex K. [

In order to prove that the Cech homology and cohomology we defined is a functor, we will
use the following theorem.

Theorem 3.6. Let f : (X, A) — (Y, B) be a continuous function. Then there exists unique homomor-
phisms
fo :H,(X,A) = H,(Y,B) and f,: H"(Y,B) — H* (X, A)

such that for all (%, %) € I'(Y) the following diagrams commute

A, (X, A) — 5 [1,(v.B)

ﬂ'%/*l Jﬂ%* (3.3)
Hy (X, AU U 5) —— Ho(Y, B %, U)
and
12
H'Y,B; U, Up) —— H (X, A;U' U’ 4)
7% y;/, (3.4)
H" (Y, B) — H" (X, A)
where 7y, , Ty, are the natural projections from the inverse limits, and f,, 7, are the natural inclu-

sions from the direct limits.

48



Proof. Recall the definitions of the Cech homology and cohomology as inverse and direct limits,
respectively. We will use systems of homomorphisms in order to define the desired functions.
Consider (%, %) . (¥, V) € T(Y, B) such that (%, %) < (¥, V). Using Lemma 3.5/ and taking

homology, we have the following diagram commutes

fv.,

H,(X, A 7' V') —— H,(Y,B;7,Vp)

ﬂ%/«yl*l Jﬂ’a?l"t/*

Hn<X, AU, OZ/IA) T Hn(Ya B, OZ/B)

It follows that {fy, : H.(X, A, %", U ») — H,(Y,B;% Ug),(%, %g) € T'(Y,B)} is an inverse

system of homomorphisms. Thus, using Theorem there exists a unique homomorphism
fo:Hy(X,A) = H, (Y, B)

that satisfies 3.3l
Similarly by taking cohomology, we have that

o

H™Y,B, % Us) —— H"(X,A; %', %' ,)

* *
Ty ay Tyt

Hn(Y7Bv 4//7 %B) T) Hn(X7A7 /1//7 %/A)

v

and so {f;, : H*"(Y,B; %, %g) — H"( X, A; %", %" »), (%, %) € I'(Y,B)} is a direct system of
homomorphisms. Therefore, using Theorem there exists a unique homomorphism

f*:H*(Y,B) » H* (X, A)

that satisfies ]

With this last Theorem, we will show that the Cech Homology and Cohomology we defined

are functors, since the induced homomorphisms satisfy the functorial properties.

Theorem 3.7. Let f : (X, A) — (Y,B)and g : (Y, B) — (Z, C) be continuous functions. Then, using
the corresponding induced homomorphisms defined in Theorem|3.6|satisfy that

(9f), =g« fe and (g9f)" = f"g"

Furthermore,
(Idx), =ldg xa and (dx)" =Idg. x4
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Proof. Recall that {H, (X, A; (%, U,)), (% U,) € T (X, A}, {H.Y,B; (% Ug)), (% %) € T(Y,B)}
and {H,(Z,C; (W, 7)), (W #e) € T(Z,C)} are inverse systems, and both ¢7* : T'(Z,C) —
I['(Y,B) and f~' : T'(Y,B) — T'(X,C) are order preserving maps. Also, using Lemma
we have that both {fy, : H. (X, A%, %' ,) — H,Y,B;% Ug),(% %) € I'(Y,B)} and
{9w, - H,(Y.B;W'W'p) — H,(Z,C; W, We), W, W) € I'(Z,C)} are inverse systems of ho-
momorphisms. Thus, using Theorem 2.8} we have that in fact

(gf)* = Gu [x-

The case for cohomology is similar, since the Lemma [3.5|is on the simplicial maps and using
Theorem [2.17, we have that

(9f) =19
Finally, using Observation[8land by taking homology, we have that for all (%, %,) € I'(X, A) the

induced maps (Idx),,, and (Idx);, are the corresponding identities. Therefore, using Theorem
we have that (Idy), = Idy x4 and (Idx)" = Id . x 4)- O

3.2 Homotopy invariance

Theorem 3.8. If f, g : (X, A) — (Y, B) are homotopic maps in Cl, then the induced maps on homology

and cohomology are the same.

3.2.1 Proof of Theorem 3.8

Lemma 3.9. Let ¥ € I'(I) be a finite open cover of connected sets. Then Ky is acyclic (recall definition

2.7).

Proof. We will suppose there is no inclusions between different sets of the cover 7. If V1, V;, €
¥ are such that V; C V5. Let V' be the cover ¥ without V;. Then ¥’/ < ¥, since ¥’ is a
subcollection of ¥/, and ¥ < ¥” because V, € " and V; C V5. Thus, Ky and K are isomorphic
on (co)homology, and so, in order to prove the lemma we will focus on covers such that no
inclusions between different sets.

Now, with the hypothesis we set before, we can take ¥ = {V;,...,V, } such that V; = (a;, b;),
and that a; < a;4; and b; < b4, with ay = 0 and b, = 1. For each ¢ = 0,...,n, consider the
simplicial maps f; : Ky — Ky defined on the vertices by

fz(‘/}) =

V; Jforj <i
Vi Jforj>i
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We will show that f; and f;1; are contiguous. Let S be a simplex of Ky. If the indices of the
vertices of S are less or equal than 4, then f;(S) = fi+1(S5). If some of the indices of the vertices
of S are more than 7, then V;,; is a vertex of f;;1(5), and there are two possibilities: V; is a vertex
of fi+1(S) oritisn’t a vertex. In the first case, we have that f;,;(5) has all the vertices of f;(S5).
In the second case, let {V}, ,..., V], } be the vertices of S such that j; < i, for{ =0,..., k. Since
each element of ¥ are connected, there are a,b € I such thata < a;, b < b;, and

k
ﬂ le = (a7 b)
=0

Using that f;+1(5) is a simplex, we have that (a,b) N V41 # @, and so a < a; < a;41 < b < b;.
Thus, (a,b) NV; N Viyy # O. It follows that {V},, ..., V},, Vi, Vis1} are vertices of a simplex in K.
Therefore, f;+1 and f; are contiguous.

Finally, note that f, is the identity map and that f; is a constant map. Since f,, = fo, and

f." = fo*, we conclude that K is acyclic. =

Definition 3.5. A finite cover ¥ = {Vj, ..., V,} of I it’s called regular if each one of the elements
is open and connected, and if we can index the sets such that

e VNV, 1 £0O for i=0,....n—1
e VNV, =0 for j<i—1fori=1,...,n
e 0cVy 1eV,,and0¢ Vi, 1€V, ;.
Lemma 3.10. The set of all reqular covers of I is a cofinal subset I'(I), the set of all interior covers of 1.

Proof. Let 7 € I'(I). Since [ is a topological space, we have that i; (i; (A)) = i; (A). It follows
that 7/ = {i; (V) |V € ¥} is also an interior cover of I, which is also a refinement of ¥, because
ir(V)cViorall V C I.

Using that I is compact and that 7" is an open cover of I, we can consider there is a finite
refinement of open intervals. The result will be proved with induction. Suppose that there are
different intervals {Uy, ..., Uy}, ordered from left to right, with U; N U; = O, except when j =
i+ 1, such that each U; is contain in an element of 7. If 1 # Uy, then we have that U; = (a;, b;),
for each 0 < j < k, with Uy = [0,bg). Thus, there is Vi,; € ¥’ such that b, € V. Since V1 is
open, there is an open interval Uy := (aj41, bk+1) C Vipr, with b1 < a1 < by < b1, and so
U; N Upy1 = O, except with j = k. Since {b;} is an increasing sequence, we can cover [ with a

finite number of term, and the cover {Uy, ..., U,} is a regular cover. O

Definition 3.6. Let (%, %) € I'(X, A) be a cover. Suppose for each U € % there is a regular
cover {Vio, ..., Vun,} =t Y € I'(I). Consider the interior cover (#, #s.;) of (X x I, A x I)
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defined by
W ={UxV|Ue%, Vet and Wy ={UxXxV |U€ U,V €W}

We will call this an interior cover of X x I stacked over (%, % ,). Also, we will refer to ¥;; as the
stack corresponding at U.

For convenience, we will write U x Vi;; € # by (U, i), foreachU € % and i € {0,...,ny}.
Lemma 3.11. The subset of stacked covers is cofinal in I'(X x I, A x I).

Proof. First we are going to reference some tools we have shown before. Recall from Theorem
that for any local base B, ), if W C X x I, then we have that (z,t) € ix (W) if and only if
thereis B € B, such that B C . Also recall from the Definition [1.§that for any (z,t) € X x I,

B(J;,t) :{UX V| UGN;U, VEM}

is a local base at (z, t), where NV, N; are the neighborhood systems of x € X and ¢ € I. Finally,
from Proposition[1.10, forany U ¢ X and V' C I, we have thatix; (U x V) = ix (U) x i; (V).

Let (W, W) € T(X xI,Ax1I). Fix x € X, then we have that for each ¢t € I, there is
W € # such that (z,t) € ix (W), since # is an interior cover. Thus, there are U,;, € N, and
Vet € Nysuch that U, x V,, C W. Let #”, be the collection of all the sets of the form V. ;, with
t € I. Then ¥, is an interior cover of .

Using that regular covers are cofinal in I'(]), there exits a regular cover 7, = {Vy,..., V. }
of I that is a refinement of #”,. It follows that for each j € {0,...,n,} thereis t; € I such that
Vi C Vay,. Also, for each t; choose W; € # such that (z,t;) € ix;(W;), and U,,;, € N, such
that U, x V; C Uy, X Vai; C W We now define U, = ?jo Uspt; € N, since the neighborhood
system is a filter. It follows that U, x V; C W, for each]j_ =0,...,n,. Also,if x € A, we can
suppose that W; € #,.;.

Let Z be the collection of all the sets U, we defined above. We have that % is an interior
cover of X, since each U, is a neighborhood of z. For each (z,t) € X x I, there is U, € N, and
V; € V, such that (z,t) € ix (Uy) x i1 (V;) = ix 1 (U, x V;). Similarly, we have the same result
for any (z,t) € A x I. Therefore, if we define

W' ={U, xVijr e X,V; € ¥,} and W' s :={U, xVj|lz € A,V; € ¥},

we have that (#', %" 4.;) an interior cover stacked over (%, %), which is a refinement of
(7/7 WAXI ) L

Lemma 3.12. Let (#, W x1) € I'(X x I, A x I) be a stacked covering over (%, % ) € I'(X, A). If the

nerve Ky is a (finite) simplex, then the nerve Ky is acyclic.
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Proof. Without loss of generality, we suppose that U € % implies U # @. For each U € %, let
71 be the corresponding stack. Define

v ={VCIlUxVe¥}

and note that this forms a cover of /. Let s be a simplex of K with vertices {Uyx Vp, ..., U, xV,,}
in #'. Note that for each i € {0,...,n} thereisa j; € {0,...,ny,} such that V; = Vy, ;,. Then

nen=(0r)-(0v)

=(00) (0 s)

Since, by hypothesis, Ky is a simplex, we have that
(Ui #0
i=0

Therefore, (Uy x Vo) N...N (U, x V,,) # O ifand onlyif Vo N...NV, # O. Thus Ky = Ky. Since

¥ is a finite open cover of I by connected sets, its nerve is acyclic. O

Lemma 3.13. Let (#, #x1) € I'(X x I, A x I) be a covering stacked over the covering (%, %) €
I'(X, A). Consider the simplicial maps

l, u . (K@/, La//) — (Kw, Lw)
defined for U € % by
W(U)=(U,0), and uw(U)=(Uny)
Then, the induced maps on (co)homology are the same, i.e.,

le=u, and 1" =u"
Proof. Given a simplex S of K, consider the subcomplex C(S) of K consisting of all simplexes
whose vertices have the form (U, i) such that U is a vertex of S. Define

%' ={U e %|U vertexof S} and X'= (J U
vew
Thus, we have that S is the nerve of the covering %’ of X', and C(5) is the nerve of a covering
W' stacked over %'. Using Lemma C(9) is acyclic. Thus, C' is an acyclic carrier, and so,
using 2.1 we have that [, = u, and I* = u*.
O
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Theorem 3.14. Let go, g1 : (X, A) = (X x I, A x I) be defined by

go(x) = (2,0) and  gi(r) = (2,1)

Then the induced homomorphisms on (co)homology are the same, i.e.,

Go. = g1, and go, = g1,

Proof. Since the set of stacked coverings is cofinal, we will prove the result considering them.
Let (W, Ws.r) € T'(X x I, A x I)be a stacked cover over (%, % ,) € I'(X, A). Consider the cov-
ers of (X, A) given by (%, %) := g0+ (W, Waxr) and (%, U 4) = g1~ (W, Way ). By defini-
tion of a stacked cover, we have that for any U € % thereis aregular cover 7y :== Vi, ..., Vun,
of I. Recall, from the definition of a regular cover, that 0 € Vy;; if and only if i = 0, and so (z,0) €
UxVy,ifand only if x € U and ¢ = 0. Similarly, we have that (x,1) € UxVy;ifand onlyif x € U
and 7 = ny. With this we can consider the maps g;,, : (K%, L#,,) — (Ky, Ly) as inclusions,
for j=0,1,, because they can be defined on the vertices by ¢o,(U) = (U,0) and ¢,,(U) = (U, ny).
Thus we will consider (Ky,, L#,,) and (Ky,, L4, ,) as subcomplexes of (Ky, L, ,). Now, con-
sider the map my : (Ky, Ly, ,) — (Ku%,Lau,,) defined on the vertices by m(U,i) = (U,0).
For convenience, we will refer to 7y as the restriction corresponding to (K4, L#,,). On the
other hand, we have a simplicial map 7 : (K4, L#,) — (K%, L4, ,) defined on the vertices by
n(U) = (U,ny). Since # is stacked, we have that (%, % 1) = (%, % 4) = (%, %) as covers of
X, and so the simplicial maps 7, 7, and nm, correspond to the simplicial maps induced by the
refinement %, < %, % < %, and %, < % . It follows that the maps u, [, defined in Lemma
can be written as v = ¢;,n and [ = go,mn. Thus, we have the following commutative
diagram on homology

n H*(K”Z/NL”/AA)
o,

H*<KW/07 LW/OA)

since u, = [,. Using that n_ is an isomorphism, we have that g1, = goy, mo,. We also have the
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following commutative diagram, for j =0, 1,

M 95 4

H, (X, A) —=— H, (X xI,Ax1I)

ﬂ—%j J/ JK/W

H*(Ko)/ja LO)/jA) T H*(KW7 LWA>

95w,

where 74 and ky are the natural projections from the respective inverse limits. As we stated
before, 7, correspond to the simplicial maps induced by the refinement %, < %, and so
7o, Mo, = Ty It follows that

Ky g1« = 1y, Ton = Jow, 70T = Jow, T % — Kwgox

By uniqueness of the inverse limit of homomorphisms, we conclude that g1, = go, .

Similarly, on cohomology we have the following commutative diagram

from which we have that g3, = m*goy, since v* = [* and n* is an isomorphism. For j = 0,1, we

have the following commutative diagram

_*
95y

H*(KWv LWAXI) E— H*(Kﬂ//, L"Z/A)

| lﬂj

H (X xI,AxI) —— H,(X,A)

9j
where 7% and k” are the natural inclusions from the direct limit. It follows that
gk =7"g, = 1" g0y = 7 Pg0%, = 90" K"
Thus, by uniqueness of the direct limit of homomorphisms, we have that g;* = go*. [
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3.3 Exactness axiom

Theorem 3.15. Consider a pair (X, A) with inclusions . : A — X and j : X — (X, A). Then, for each
n > 1, there exists homomorphisms

On: Hy(X,A) = H, 1(A) and 6§, : H"(A) — H""(X, A)
such that the sequence on homology
oo Ho(A) S Ho(X) 2 Hy(X, A) S Hy ((A) — .
is a partial sequence, and the sequence on cohomology
e HY(A) & HY(X) L (X, A) L HTHA)

is exact. Furthermore, if f : (X, A) — (Y, B) is a continuous function, then the following diagrams

commiute
H,(X,A) —2 H,_(A) H"(A) —2— H"(X, A)
f{ Jf* and f*J Jf*
H,(Y,B) — H, 1(B) H"(B) —— H”*l(Y, B)

)

3.3.1 Proof of Theorem

Let (%, % ,) € I'(X, A) be a covering of (X, A). For the simplicial pair (K, Ly, ), along with the
inclusion maps j,, : (K%, @) — (K%, L#,) and hy, : (Ly,, 0) — (Ky,0), there is an homology
exact sequence

ho,

o= Ho(Ly,) == Ho(Ky) Jue g (Ko, Lay,) LN (L) = -+ (3.5)

and a cohomology exact sequence

*

n ha n ‘7;;/ n " n—1

Now, we will prove that {hy,, (% %) € U(X, A}, {ju.. (% Us) € T(X,A)}, and {0 %, (U, U,) €
I'(X, A)} are inverse systems; and that {h},, (%, %.) € I'(X,A)}, {jy, (% %,) € I'(X,A)}, and
{8'y, (%.%,) € T'(X,A)} are direct systems

Let (¥, 7,) € T'(X, A) such that (%, %,) < (¥, V). First, we have a simplicial map 77, :
(Ky,Ly,) = (K, Ly,). Since 7, (Ly,) C Ly, we have that the following commutative
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diagram

h“l/
Ly, —25 Ky

1 1
”%vl J”%ﬂt/

Lﬂ//A T> Kﬁ//
U

and so, on homology {h,, (% %) € I'(X,A)} is an inverse system and on cohomology
{hy, (%, %,) € I'(X,A)} is an direct system. Similarly, we have the following commutative
diagram

J
K'y/ *ﬂy> (K«//, Ly/A)

1 1
”%vl J{”%v/

Ky ﬁ (Kﬂ//; LOZ/A)
wu

Thus, we have that {jy,, (% %,) € I'(X,A)} and {j;,, (%, %,) € I'(X,A)} are inverse and
direct systems, respectively. Using the properties of the exactness axiom of simplicial homology,

we have that the following commutative diagram

&y

HH(K'Vu LV/A) I Hn—l(L"//A)

Ty J JW% Vo

Hn(Koz/J LJ//A) W Hn—l(L%A)

/

We conclude that {0', (%, %) € I'(X, A)} is an inverse system. Similarly, from the exactness
axiom of simplicial cohomology, we have that the following diagram commutes

!

H'"(Ly,) —= H""(Ky, Ly,)

* *
T -y T v

Hn(Ly/A) Ee— HnJrl(Ky/, Lﬂ//A)

5,
Therefore, {¢',,, (%, %) € I'(X, A)} is an direct system.

If we write the subscript corresponding to the direct set I'(X, A) whenever the limit pro-
cess differs from the direct set we defined the respective Cech homology for the groups and
homomorphisms on the sequence (3.5), we have the following sequence

. h, o . / .
= Ho () —52 H (X % (X, A) 25 Hyo (A = -+ B9)

which is of order two, since for each (%, %) € I'(X, A) the maps &' »ju, = jw.hw, = ha, 0o =
0. Similarly, we are going to write the subscript after taking direct limits of the groups and
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homomorphisms in the sequence (3.6), and we obtain the following sequence

v

h* v J* v 8§
e H (A)pyy 2 H (X gy 6 HY (X, A) — H (A)pyn) < - (38)

which is exact by using the Theorem 2.18]

Now, we want to relate F, (A)rx.a) i, (X)rex.a) a» (A)rx,4), and " (X)r(x, 4y, with the
respective groups without the subscript. In order to achieve it, we define two maps

¥ D(X, A) - T(X)
(U W) — U

and

¢:T(X,A) = [(A)
(U, W) — (U

It follows from the definition of interior cover of a pair that v is well defined and that is an
order preserving map. Also note that ¢ is surjective, since for any % € I'(X), the pair (%, % ) €
I'(X, A)issuch that (% ,% ) = % . Note that for each (%, %) € I'(X, A), we have that (Idx),, :
K9 — K4, and so

((dx),,. : Ho(Ky) = Ha(Ky), (% %) € T(X, A)}

is an inverse system of isomorphisms of the system { H,,(K#), 7 v ., I'(X) } into { H,,(K%), 7 ., T' (X, A) }
corresponding to the order preserving map . Similarly, we have that {(Idx);, : H"(Ky) —
H"(Ky), (%, %) € T'(X, A)}is an direct system of isomorphisms of the system { H"(K),I'(X, A)}

into {H"(K),I'(X)} corresponding to the order preserving map . Thus, we conclude that

Idx, : H, (X)— H, (X)r(x.4) and that Idx " : ar (X)rx.a) = H™ (X) are isomorphisms.

Now, consider the inclusion 0 : (A, A) — (X, A). Let (%, %4) € T'(X, A), and write (%', %' 4) :=
0~ (%, % ). From Proposition 3.2, we have that (%', %’ ;) € T'(A, A), and from the definition
of the interior cover, we also have that %', is an interior cover of A. For convenience, write
V= Uy =0 (Us) = o (%a). Consider the simplicial pair (K-, Ly, ) corresponding to
(%', %' 4). From the definition of the subcomplex L4 ,, we have that Ky = Ly ,. Now, using
the simplicial map 0}, : (K4, Lo ,) = (K#, L%, ), we have that 0},(Ky) = 63,(Ly,) C Ly,, and
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so, we can factor the simplicial map 6}, as

ho,
Ly, —— Ky
Zl

W

Ky

where ¢}, is the restriction of the codomain of the simplicial map 6}, and h,, is the inclusion

from the sumcomplex Ly, to K.

Now, define the map k,, : Ly, — Ky by k,(U) := U N A, for each vertex U in Ly,. We will
prove that k,, is a simplicial map. Let Uy, . .., U, be vertices of a simplex in Ly,, then

O+UsN...NU,NA=UNA),...,(Us"A) =ky(Up) ..., kyUy,)

Thus, we have that k,,(U,), ..., k,(U,) are vertices of a simplex of K, and so k, can be ex-

tended to a simplicial map as desired.

Note that k,,¢}, = Idk,, because for any vertex V in Ky there is a vertex U = (},(V) in Ly,
such that
V=67 (U) = UN A= ky(U) = ky{04(V))

We also have that ¢}k, and Id;,, are contiguous. In order to prove this, let Uy,...,U, be
vertices of a simplex in Ly,. If U} ,..., U/ are the respective images under ¢} k,,. Then, for each
j=0,...,n, we have that

Ui N A = kg (Uj) = ky(Uyky (Uy)) = ky(Uj) = U; N A
and so,

UnN...nU,NUN...NU NA=UynA)N...N U, NANUNA)N... N (U, NA)
=(UnNA)N...N U, NA)#0O

This means that Uy, ..., U,, U], ..., U, are vertices of a simplex of Ly,. Therefore, we conclude

that ¢}k, and the identity map are contlguous

Now, we have that {(4, : H,(Ky) = H,(Ly,), (% %s) € I'(X,A)} is an inverse system
of isomorphisms of the system {H,(K),I'(A)} into {H,(Ly,),T'(X, A)} corresponding to the
order preserving map ¢. Similarly, we have that {7, : H"(Ly,) — H"(Ky),(%, %) € I'(X,A)}
is an direct system of isomorphisms of the system {H"(L4,),['(X,A)} into {H"(K4),'(A)}
corresponding to the order preserving map ¢.
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Now, we show that ¢ is surjective. Let " € I'(A). Define
U ={UCX|U=XorU=VU(X\A),Ve?} and % :={VU(X\A|Ve7}
Using Proposition we have that

A= ia(V)

Vey

= U (ix (VU \A)n4

Vey

c Jix(VUu(x\4)

Vev

= U ix ()

UEWUx
and so, (%, ,) is in fact an interior cover of the pair (X, A). Since for any U € %, there is a
V e ¥ suchthatU =V U (X \ A), we have that
STU)=UNA=VUX\NA)NA=(VNAU(X\A)NA) =V

Thus, we have that ¢(%, %4) = 7. Now, we can say that there are isomorphisms

v v

(.o Hy(A) = Hy(A)pxsy and € H" (A)y ) — H” (A)

*

Now, by attaching the isomorphisms we defined before on the sequences and (3.8), we
obtain the following commutative diagrams

hd *F(X A)
Hn A)F(X,A X)F(XA
y w )
Hn+1 (X7 A) t. I n 1 (X A)
X
H, (A) —— H, 7. (X)
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where 0 := (¢,)7'9',, and

H (A)F(X,A) " (Xr(x,a
y wm
H (X, A) e J H1 (X, A)
T
H" (A) "(X

where § := §'*(¢*)7!. Recall that the sequence (3.8) is exact, using Proposmon. we have that
the bottom sequence is exact.

Finally, we need to prove that the homomorphisms 0 and ¢ satisfy functorial properties. Let
f (X, A) = (Y, B) be a continuous function. If g : A — B is the restriction of f on the domain
and codomain, we have the following commutative diagram on homology

B
. o, 0, .
Hp1 (X, A) —— Hy (A)px ) < Hu(4)

and so 6g* = f*0.
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3.4 Dimension Axiom

Theorem 3.16. Let P be a one-point space. Then

0, n#0
Z, n=20

0, n#0

, and H"(P)=
Z, n=20

3.4.1 Proof of Theorem

Definition 3.7. Let X be aset. If ¢ : & (X) — & (X) is defined by ¢(A4) = X for all nonempty
A C X and ¢(0) = O, we say it is a trivial closure operator (or sometimes called the indiscrete
closure operator).

The only neighborhood for this closure spaceis % = {X}. Thus, K is a one-point simplicial
and the inverse limit coincides with the homology of the simplex K.

Let P be a one-point space. Note that the only closure operator is the trivial one, and so the

) 0, 0
. (P) = n?
Z, n=0

Cech homology

The same occurs in Cech cohomology.

3.5 Excision Axiom

Theorem 3.17. Consider a pair (X, A). Let U C X be an open set in X, i.e., i (U) = U, with ¢ (U) C
i(A). Let v : (X \U,A\U) — (X, A) be the natural inclusion. Then the induced homomorphisms in
(co)homology are isomorphisms, which means that

b H (X \UA\U) = H,(X,A), and :H" (X,A) —» H (X\U A\U)

3.5.1 Proof for Theorem 3.17
The condition ¢ (U) C i (A) implies that
X =ix (X\U)Uix (A)

sinceix (X \U) =X \cx (U) DX \ix(A).
Define D C I'(X, A) as the collection of (#;7,4) € I'(X, A) such that for any V € ¥ with
VNU # O, wehave that V € ¥4 and V' C A. This subset D is cofinal in I'(X, A), since for any
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(W, #4) €T (X,A)wecandefine ¥, :={V C X|V =W\U, W € #y; or V=WnNA W € ¥4}
and 7 :={V C X|V=W\U W e¥;orV e ¥,}. Note that for each W € #, we have that

ix W\ U) Uix (WNA) = [ix (W) Nix (X \U)] U lix (W) Nix (A)]
=ix (W) N[ix (X \U)Uix (4)]
— iy (W)

It follows that

Ac | ix(W)= U lix(W\DUix(WnA)]= {J ix (V)

WeWa WeHa Verva
We also have that

X =ix (X\U)Uix(A)
= [X Nix (X \ U] U[ANix (4) Nix (A)]

C ( U iX(W)) Nix (X \U)

Wwew

- %ﬁﬂmmuwvm
= U ix (W\U)

\wew

v [ U (ix (W) Nix (A))

u{ U ix(WnA)

WeW,

We conclude that in fact (¥;7#},) is a interior cover of (X, A), and from the definition follows
that (7, 7,) is a refinement of the given (%, #).

Let (¥, 74) € D. For any V € ¥, we have that either V C X \ U or V. C A. Define My as
the subcomplex of Ky made of all the simplexes whose vertices are contained in X \ U. For
convenience we will write X’ = X \ U and A’ = A\ U. Recall that ¥’ := .~! (¥) is a covering
for X'. If V € ¥ issuch that V C X \ U, then we have V' := . (V) = V. Thus, there is a copy
of My as a subcomplex of K corresponding to the vertices V' € ¥’ for which thereis V € ¥
such that V' = .71 (V) =V, ie., V' € ¥. We call this copy My.

Now, consider the simplicial map ¢y : (Ky+,Ly,,) = (Ky, Ly,). Let V' be a vertex in K.
If V' is a vertex of My, then there is a corresponding vertex V' in My, and we can suppose that
L (V') := V. If V' is not a vertex of My, let V € ¥ be any vertex such that V' = .~ (V) = V' \ U.
We have that V' # V', ie, VN U # 0, and so, using that (¥, 7,) € D, we have that V' € 7,
and V' C A. It follows that V' is a vertex of Ly~ , and V is a vertex of Ly,, since V' N A\ U =
(VN A) £ 0.

Note that the definition of .}, sends homeomorphically the subcomplex M- to My and maps
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L"V’A/ into Lfy/A. Also note that Kﬂ//l = M«y/ U L'y//A, and K'y/ = M'y/U L'y/A.
The following lemma is equivalent to the excision for the singular (co)homology. It will be

used to finish the argument.

Lemma 3.18. Let K be a simplicial complex, and M, L be subcomplexes whose interiors cover K. Then

the inclusion
(M,MNL) <% (K, L)

induces an isomorphism in (co)homology.
Proof. Define A := K \ M. Then, we have that
KNL=(K\ANL=L\A

and that ¢ (A) = ¢ (K\ M) = K\ i (M) C i(L), since i (K) Ui (L) = K. Using the Excision

Axiom for simplicial homology, we have that
(M, ML) = (K\ AL\ A) = (K, L)

induces isomorphisms on (co)homology. O

Now note that in the following commutative diagram

H*(K«y//, Ly//A,) 47’) H*(K74 L“//A)

> T TW

H,(My+, My+ N Ly ) — > Ho(My, My Ly,)

the map jy is an isomorphism since is the induced map of an homeomorphism, and fy/, gy are
isomorphisms. Thus, ¢y is an isomorphism.

Similarly we have that there is a corresponding commutative diagram for cohomology

H*(Kyr, Lys ) +—————— H*(Ky, Ly)

Iy J lgw

H*(My//,Mn/// ﬂLﬂ///A,) T .[{*(.]\47/7 My/ﬂ LVA)

Thus, ¢, is an isomorphism.

Note that there is an inverse system of isomorphisms {¢y : H,(Ky+, Ly+,,) = H.(Ky,Ly,)}
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65

which induces an isomorphism on the inverse limit. Thus,

H, (X', A") = im{H.(Ky', Ly
D/

Similarly, there is a direct system of isomorphisms {v, : H*(Ky, Ly,) — H*(Ky:, Ly ,,)} which
induces an isomorphism on the direct limit. Thus, in cohomology

H, (X', A') & lin{H*(Ky, Ly )} < 1%11{1{*(}@, Ly,)} & H* (X, A)
Dl



Chapter 4
Mayer-Vietoris Sequence

In this chapter, we will prove that for any cohomology theory that satisfies the Eilenberg Steen-
rod axioms there is a Mayer-Vietoris sequence. We only examine the case of cohomology, since
the result depends strongly on the exact sequence for a pair, which is not satisfied for Cech
homology (even in the topological case). The Mayer-Vietoris sequence is an important tool that
allows us to compute the cohomology of a space from the cohomology of two subsets whose
interiors cover the space. As mentioned in the introduction, in future work we will generalize

these results to obtain the Mayer-Vietoris spectral sequence, and use it for several computations.

We obtain the Mayer-Vietoris Sequence using exact sequences. Thus, we will state and proof
this property in cohomology, since the Cech Cohomology satisfies the Exactness axiom and the
Cech Homology doesn’t. Also, we will prove a general Mayer-Vietoris Sequence, for which we

will use triplets (X, A, B), where B is a subspace of A, which also is a subspace of X.

Theorem 4.1. Given a cohomology theory (H*, ), and a triple (X, A, B) with inclusions
t:(A,B)— (X,B) and j:(X,B)— (X, A),
there is an exact sequence

S H"Y(A,B) — HY(X,A) — s H"(X,B) —— H"(A,B) —— ...

where 0 is the composite
H" YA, B) = H" ' (A) — H"(X, A)

Proof. Bothmaps ¢ : (A4,B) — (X,B) and j : (X, B) — (X, A) induce maps between the exact
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sequences of the pairs (X, A), (X, B), and (A, B) as seen in the following commutative diagram

. —— HY(X) —— H"(A) —— H"(X,A) —— H"(X) —— ...

| b |

(X)
|

— H"(X) —— H"(B) —— H"(X,B) —— H""}(X) —— ...
l

| g J

— H"(A) —— H"(B) —— H"(A,B) —— H""Y(B) —— ...

where the rows are exact. Now, we can consider the following commutative diagram by ar-

ranging terms on the previous diagram

/\ /\

H™Y(B) H"(A, B) H™ (X, A) H™(X)
H1(A) H"(X, B) H'(A) H"™'(X, B)
\ i / \
H"(X, A) H"(X) H"(B)

Using the following commutative diagram

(4,B) —— (X.B)

| s

(A A) —— (X, A)

and that H!x](A, A) = 0, we have that .*j* = 0.

Since the blue, red, and yellow sequences are exact, using the Braid Lemma 5.2 the sequence
HY(X,A) 1 H"(X.B) —— H"(A,B) —%— H™\(X,A) —— H™\(X,A)

is exact. ]

Theorem 4.2. Let X, X, be subspaces of X. The following are equivalent.
a) The excision map (X1, X1 N Xg) % (X1 U Xa, X») induces an isomorphism of cohomology.

b) The excision map (X,, X1 N X5) — LN (X1 U Xy, Xy) induces an isomorphism of cohomology.
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¢) The inclusion maps
11 (Xl,Xl N XQ) — (X1 U XQ,Xl N XQ)

and
’iQ : (XQ,Xl N XQ) — (Xl U XQ,Xl N X2)

induces epimorphisms on cohomology, and i,*, 15" induce an isomorphism

H™M(X; U Xo, X3 N Xo) = HY(X,, X1 N Xo) & H(Xo, X1 N Xo)

d) The inclusion maps
jl : (Xl UXQ,Xl sz) — (Xl UXQ,Xl)

and
j2 : (Xl UXQ,Xl ﬂXQ) — (Xl UXQ,XQ)

induces monomorphisms on cohomology, and
H"(X7UXo, X5 NXo) =" (H"( X1 U Xo, X1)) @ 52" (H"(X1 U Xy, X))
e) Forany A C X, N X, there is an exact Mayer-Vietoris sequence
o HY(XGUX, A) 520 g X Yo H(Xa, A) T HY (XN X, A) — H™H (X UXa, A) = ...

where f,: (X1NXy, A) = (X4, A)and g, : (Xo, A) — (X1U Xy, A) are the natural inclusions.

f) ForanyY D X, U X, there is an exact Mayer-Vietoris sequence

(I1*,02") h1*—h2*

4 Hn<Y, X1UX2) Hn<Y, Xl)@Hn(Y, XQ) E— Hn(}/, XlﬁXQ) — HnJrl(Y, XIUX2> — ...
where hy, = (Y, X1 N Xs) — (Y, X,) and [, : (Y, X,) — (Y, X1 U X5) are the natural inclusions.

Remark. Similarly as we showed in Lemma we have there is a relationship between the
Excision Axiom and the pairs { X7, X5} such that i (X;) Ui (X3) = X with the inclusion

(X17X1 N XQ) — (X1 U XQ,XQ)

inducing an isomorphism of cohomology.

Proof.
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a) = e)
Let A C X; N X;. The inclusion the natural inclusion of the triple

(Xla Xl N XQ, A) — (Xl U XQ, XQ, A)
induces the following commutative diagram

- — Hn(XlLJXQ,Xg) — Hn(XlLJXQ,A) E— Hn(XQ,A) E— Hn+1(X1UX2,X2) — e

B | J o

— Hn(Xl,XlﬂXQ) —_— Hn(Xl,A) —_— Hn(Xl ﬂXQ,A) — Hn+1<X1,X1ﬂX2) —
Using the lemma since k" is an isomorphism, there is an induced exact sequence
— H"(X1UX5, A) = H" (X1, A)OH" (X5, A) — H"(X1NX5, A) = H"™(XUX5, A) —
e) =c)

Set A := X; N X,. Using that H"(X; N X3, A) = H"(X; N X5, X5 N X3) = 0, we have the
following exact Mayer-Vietoris sequence

.= 0= Hn(Xl UXQ,Xl mX2> — Hn(Xth mX2> @Hn(XQ,Xl ﬂXg) —-0—=...
It follows that

H™ X, U Xo, X1 N X)) — , gols )| H (X1, X1 N Xo) & H" (X2, X1 N Xs)

(g1l*

Since g, = o ¢ (Xo, X1 N Xs) = (X7 U Xy, X7 N Xs), we have that in fact 4, i, induce
epimorphisms in cohomology.

c) =)
Consider the following commutative diagram

(X1, X1 N Xa) (X2, X1 N Xa)
k1 X1 UXQ,Xl mXQ ko
(X1 U Xy, Xo) (X1 U X5, X))

By hypothesis, i,* are epimorphism, i.e., Im (i,*) = H"(Xa, X1 N X3). Using Theorem [4.]
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o HY(XGUXs, Xa) 225 HY(X,UXs, X1NXa) 25 H"(Xa, X1NXs) S H™(X,UXs, Xo) — - -

b) = f)

on the triple (X; U X5, X,, X; N X3), there is an exact sequence

(4.1)

Thus, from the exactness of the previous sequence, we have that H"(X,, X; N X;) =

*

Im (i,,*) = ker(d), and so 6 = 0. Also, from the same sequence, we have that j,* is an

monomorphism, since
0=1Im(0) = ker(j.")

Now, we will show that k»" is an isomorphism. First, we will prove that k" is an epi-
morphism. Let a € H"(X,, X; N X,). Using that i," is an epimorphism, there is b €
H™(X; U Xs, X1 U Xy) such that i,*(b) = a. Using the hypothesis that

H' (X7 UXo, X1 NXo) = H' (X, X1 N Xs) & H'(Xo, X1 N Xy),

we have that i;*(b) = 0. Then, b € ker(i;*) = Im (j;*), and so there is c € H"(X; U X5, X7)
such that 7, (c¢) = b. It follows that

ko™ (c) = 2" (j1"(c)) = 12" (b) = a

Therefore, k;" is an epimorphism.

Now, we will show that k," is a monomorphism. Let ¢ € ker(ky"), i.e.,
0= k2" (c) = 12" (j1"(c)).

It follows that j,* (¢) € ker(iy"). Also, using the exact sequence (4.1), we have that ker(i;*) =

Im (51*), and so, using the direct sum assumption, we have that
,jl* (C) € ker(z’l*) ker(ig*) = O,

Since j;* is a monomorphism, as shown before, we have that ¢ = 0, hence k," is a

monomorphism.

Let Y D X; N Xs. The inclusion the natural inclusion of the triple

(Y, XQ,Xl N XQ) — (Y, X1 U XQ,Xl)
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induces the following commutative diagram

= Hn(Xl UXQ,Xl) — Hn(Y,Xl UXQ) — Hn<Y,X1) E— H?’L+1(X1 UXQ,Xl) —

& J J 5

— Hn(X27X1 ﬂXQ) E— Hn(Y,XQ) E— Hn(Y,Xl ﬂXQ) — Hn+1(X2,X1 ﬂXQ) —

Since ky" are isomorphisms, we can use the lemma for which there is an induced exact
sequence

(11*,127)
5

n n n hi™ —ho” n n+1
S HY(Y, X1UX)) H (Y, X)@H™ (Y, Xa) 22 Hr(Y, X0nXs) = H'PU(Y, XinXs) —

f) = d)
Set Y := X; U X,. Using that H"(Y, X7 U X,) = H"(X; U X5, X; U X3) = 0, we have the
following exact Mayer-Vietoris sequence
.= 0= Hn(Xl UX27X1) @Hn(Xl UXQ,XQ) — Hn(Xl UXQ,Xl ﬂXQ) —0—...
It follows that
H™"(X; U Xy, Xq) & H'(X; U Xy, Xo) # H™(X7 U Xy, X1 N Xy)
1 —n2
Since hy, = jJo @ (X7 U X5, X5 N Xs) — (X7 U X, X,), we have that in fact ji, j» induce
monomorphisms in cohomology.
d) = a)

Consider the following commutative diagram

(X1, X1 0 Xo) (X, X101 Xo)
k1 X1 UXQ,Xl ﬂXQ ko
(X1 U X, Xo) (X1 U X, X))

By hypothesis j,* is an monomorphism, i.e., 0 = ker(j,*). Using Theorem 4.1jon the triple
(X7 U Xy, X,, X7 N Xy), there is an exact sequence

o H™( X, XiNXa) 5 H'(X1UXa, Xa) 225 H'(X1UXa, X1NXa) 25 H™(X,, X1NXs) —
(4.2)
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we have that 0 = ker(j,") = Im (4), and so § = 0. Using again the exact sequence, we have
that i,,* is an epimorphism, since

H™"(Xa, X1 N Xo) = ker(6) = Im (iy")

We will show that k;* is an isomorphism. First, we will show that k;" is an epimorphism.
Leta € H"(X;, X1NX3). Using that4;* is an epimorphism, thereis b € H"(X;UX,, X1UX5)
such that 7,*(b) = a. Using the hypothesis that

H"( X1 UX5, X1NXo) = 1" (HN (X1 UX,, X1)) @ jo" (H" (X1 U Xo, Xo)),
there are b, € H" (X, U X5, X1), by € H"(X; U X5, X5) such that
b= ji"(b1) + 72" (b2)
It follows that
a=1i1"(b) =ir"(j1"(b1) + J2" (b2)) = 2" (1" (b1)) + 2" (j2" (b2)) = " (j2" (b)) = k" (bn),
since i5" jo* = 0. Thus, k;* is an epimorphism.
Now we will show that k" is a monomorphism. Let ¢ € ker(k;%), i.e.,
0 =Fk1"(c) =ir"(j2"(c)),

and so,
j2"(c) € ker(ir") = Im (j1"),
by using the exact sequence (4.2). By the direct sum assumption, we have that

Im (j1") N Im (j2") =0

and so j>"(¢) = 0. Since j»* is a monomorphism, we conclude that ¢ = 0. Therefore, k" is

a monomorphism.
O

Definition 4.1. A triad (X; X;, X5) consists of a space X and two subspaces X, X, of X. A triad
is called proper if the inclusions

(X1>X1 N X2> — (Xl U XQ,XQ) and (XQ,Xl N Xz) — (Xl U XQ,Xl)

induce isomorphisms on cohomology.
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If (X;X;,X5) and (Y;Y3,Y5) are triads, a continuous function between triads is a continuous
function f : X — Y such that f(X,) C Y,. We'll denote it by f : (X; X3, Xo) — (Y; Y7, Y2).

Theorem 4.3. Let (X; Xy, Xy) and (Y;Y1,Y3) be proper triads, and f : (X; X3, Xo) — (YY1, Y5) be
continuous. If B C Y1 NYyand A C Xy N Xy such that f(A) C B. Then f induces an homomor-

phism from the exact Mayer-Vietoris sequence of { X1, Xo; A} into the exact Mayer-Vietoris sequence of

Similarly, if V O Yy U Yy and U O Xy U Xy such that f(U) C V. Then f induces an homomor-
phism from the exact Mayer-Vietoris sequence of {U; X1, X, } into the exact Mayer-Vietoris sequence of

Proof. Consider the following commutative diagrams induced by inclusions

Hn(Xl,A> — Hn(Xl ﬂXQ,A) Em— Hn(XQ,A)

| J |

H™(Y1,B) +—— H"(Y1NY2,B) —— H"(Y,, B)

and
Hn(Xl,A> —_— Hn(Xl UXQ,A) — Hn(XQ,A)

J l J

H"(Y1,B) —— H"(Y1UY3, B) «—— H"(Y3, B)

These induce the following commutative diagram

Hn(Xl F‘IXQ,A) e Hn(Xl,A)@Hn(XQ,A> E— Hn(Xl UXQ,A)

| l J

H™(Yy MYy, B) —— H"(Y;, B) & H"(Ys, B) —— H"(Y; UY3, B)
Now, using that the excision maps
(X1, X1NX,) = (X1 UX, Xo) and  (Y7,Y1NY3) = (Y1 UY:, Y5)
induce isomorphisms on cohomology, we have the following commutative diagram

Hn(Xl UXQ,A) E— Hn(Xl UXQ,XQ) — Hn(Xl,Xl sz) E— Hn_l(Xl ﬂXg,A)

J J | J

H"(Y1UY3,B) —— H"(Y1UY3,Y;) —— H™"(Y,Y1NY;) —— H* (Y1 NY;, B)
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Therefore,
Hn(Xl U XQ,A) E— H’n—l(Xl N XQ,A)

| |

H"(Y1UY3, B) —— H" (Y1 NY3, B)

is commutative, and so

Hn(leXQ,A) e Hn(Xl,A) @Hn(XQ,A) e Hn(Xl UXQ,A) e anl(leX%A)

| | | |

H™(Y,NYs, B) — H™(Y,,B) & H"(Ys, B) —— H"(Y; UYs, B) —— H"}(Y; NYa, B)

is also commutative.
The proof is similar for {U; X, Xo}, {V; Y1, Ya}. O
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Chapter 5

Apendix

5.1 Algebra

Proposition 5.1. Consider the following commutative diagram of groups

B

AN

A ¢ 4 C

N L

B/

where ¢ is an isomorphism whose inverse is 1. If the sequence on top is exact, i.e., ker(g) = Im (f).
Then the sequence bellow is exact.

Proof. Since ¢'f" = (g9¢)(¢f) = gf = 0, we have that Im (f") C ker(¢'). Now, let ¥/ € ker(¢').
Then, we have that

o) = o) = 0
Thus, ¥(V) € ker(g) = Im (f), and so there exists a € A such that f(a) = ¥(V). It follows that
f'(a) = ¢(f(a)) = (v (b)) = ¥/
Therefore, ker(g’) C Im (f"). O
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Definition 5.1. We say that the following commutative diagram is a braid

« B v
A /\
A B C D
A AN A
é € n [} K A 1Y
e N S
E F G H
AN AN
v ™ P a T ¢
N / N
1 J K
\—/
1[} w

ELASBYLHGD K (5.1)
ELTST5G65 025D (5.2)
ASFL IS KSHTED (5.3)

ISrhBplhodhn (5.4)

If all four sequences are exact, we say that it is an exact braid.

Lemma 5.2 (Braid Lemma). In order to the braid to be exact, it suffices that the the composite I —
F — B is zero and that the sequences (5.1), (5.2)), and (5.3) are exact.

Proof. We'll prove exactness at each step:

1. (Exactnessat I — F' — B)
By hypothesis Im 7 C kern. Let f € kern. Using the commutativity of the diagram

and so f — 7 (i) € ker p = Ime. Thus, there is a € A such that

e(a) = f —m(i)

Note that a € ker « = Im 6, since
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because nm = 0. This means there is ¢ € E such that d(e) = a. It follows that

w(v(e) +1i) =nw(v(e)) + (i) = e(d(e)) + 7(i) = e(a) + w(i) = f —7(i) + 7(i) = f,

and so f € Im m. Therefore Im 7 = ker 1.

. (Exactness at ' — B — ()

First, note that
pn = (k0)n = r(0n) = K(op) = (ko)p = (0)p =0

This means that Im 7 C ker 8. Now, let b € ker 3. Using that

we have that j € kerw = Im p, and so there is f € F such that p(f) = j. It follows that

(b —n(f)) = 0(b) = 0(n(f)) = 0(b) — o (p(f)) = 0(b) — o (j) = 0,

which means that b — n(f) € ker# = Im . Thus, there is a € A such that a(a) = b — n(f).
Finally, we have that

n(e(a) + f) =nle(a)) +n(f) = ala) +n(f) =b—n(f) +n(f) =0

Therefore b € Im 7, and so we conclude that ker 5 = Im 7.

. (Exactnessat B — C' — H)

We have that
AB = AKb) = (Ak)0 = (¢7)0 = ¢(70) = ¢(0) = 0

It follows that Im 3 C ker \. Now, let ¢ € ker A C C. Using the commutativity of the
diagram, we have that

which means that ¢ € kery = Im k. This means there is g € G such that x(g) = c¢. Note
that 7(g) € ker ¢ = Imw, since



Thus, there is j € J such that w(j) = 7(g). It follows that

and so g — o(j) € ker 7. Then, there is b € B such that §(b) = g — o(j). Using that ko = 0,
we conclude that

and that ¢ € Im 3. Therefore, we conclude that ker A = Im £.

Lemma 5.3. Consider the following commutative diagram

[ i 1
" n+1 / in Pn 17 n "
’ Cn+1 Cn Cn Cn Cn—l e

j - jfa an Jﬂ{ j

8n+1

" / In dn " On "
' Dn+1 Dn DTZ Dn Dn—l

where the rows are long exact sequences and the vertical maps f are isomorphisms. Then there is an
exact sequence

L s CLe D, S BNYo%

n—1

D,

4>---

where u, = (in, f1), Un = fo = Jn, Dn = 6nPnqyn, and ¢, = (f) 7"
Proof. We will prove the exactness at each step:

1. (Imu, = kerv,)

Let ¢ € (. Since the diagram is commutative, we have that f,,i,(¢’) = j,.f}(¢), and so

Untin (€)= On(in(), () fuin(c)) = Jn(fr(c)) = 0

Then, we have that v,u,, = 0, i.e., Imu,, C kerv,. Now, let (¢,d") € kerv, C C, @& D).
We note that f,(c) = j,(d'), since 0 = u,(c,d') = fu.(c) — ju(d'). Using that f is an
isomorphism, and that

0= qn]n(d/) = ann(c) = f;{pn(c) = f;{(pn(c))a
we have that p,(c) =0, i.e,, ¢ € kerp,, = Im i,,. Consequently, there exists ¢’ € C}, such that
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in(c) = c. It follows that
Ja(falc) = d') = ju(fo() = n(d) = fulin(c)) = Jul(d) = fulc) = ju(d) = O,

and using that ker j,, = Im 0,44, there is d” € D, such that 0,,,(d") = [, (¢') — d'. Finally,
we have that

fTIL(C/ - 5n+1¢n+1(d”)) =

and that

in(¢' = On110n41(d")) = in(c)) = indny1(Pns1(d”)) = ¢ = 0(dny1(d")) = c.

Thus, we have that (¢,d’) = u, (¢’ — 0pr10n+1(d")), i-e., kerv, C Imu,. Therefore, Imu,, =

ker v,,.

. (Imwv,, = ker A,,)

Let (¢,d’) € C,, & D,,. First, we note that

Apvn(c, d') = 6npngn(fulc) = jn(d))
= 0nPnnfn(C) = 0ndngn(jn(d’))
= 0n®nfrPn(c) — 0200 (0(d))
= dnpn(c) =0,

which means that A,v, = 0, i.e.,, Imv, C kerA,. Now, let d € kerA,, C D,. Since
0 = An(d) = 6,(¢ngn(d)), we have that ¢,,q,(d) € ker 6, = Im p,, for which there is ¢ € C,,
such that p,(c) = ¢,,¢.(d). It follows that

Gn(fu(c) = d) = fipn(c) = qn(d) = £, OnGn(d) — gn(d) = ¢n(d) — gn(d) = 0.

Thus, we have that f,(c) — d € kerg, = Imj,, and so there exists d € D, such that
Jn(d') = fn(c) — d. It follows that d € Im v, since

d= fulc) = jn(d) = v,(c,d).

Therefore, we have that ker A,, C Im v,,, and with this we conclude that Im v,, = ker A,,.



3. (ImA, =keru, 1)

Let d € D,,. Then, we have that

unflAn<d) = (in71(5n¢nQn(d))a fé—1(5n¢nQn(d)))
= (O<¢nQn(d))v 8n71f1lzl¢nQn(d))
- <Ovan—1%b(d)) = (070)7

and so u, 1A, =0,ie., ImA, C keru,_,. Now, let ¢’ € keru,,_, C C/_,, i.e., we have that
(0,0) = up—1() = (in-1(), fl,_1(c)). Since i,,_1(¢’) = 0 and that keri,,_; = Imd,,_1, there
exists ¢’ € CV such that 6, (¢") = . We also note that

an—lfrlz/(cu) = frlz—lén(cﬂ) = faa1(d) =0,

and, using that ker 0,1 = Im g, there exists d € D,, such that ¢,(d) = f/(¢"). Therefore,

we have that
An(d> = 5n¢nqn(d) - n¢nf7,:(cﬂ) = 5n(cﬁ> = Cl’

We conclude that ker u,,_; € Im A,,, and so Im A,, = keru,,_;.
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