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Abstract

Coronary heart disease is the leading cause of death worldwide, with
an estimated 17.9 million deaths yearly. This condition is characterized by
plaque building up inside the coronary arteries, which supply blood to the
heart muscle. Plaque buildup narrows the arteries, reducing blood flow to
the heart muscle. Early detection of coronary artery disease is crucial because
it allows for timely intervention and treatment, which can help prevent the
disease from progressing and potentially causing severe complications such as
heart attacks, heart failure, and even death. This work proposes various novel
deep learning-based methodologies for detecting stenosis in X-ray Coronary
Angiography (XCA) images.

The first approach involves using pre-trained Convolutional Neural Networks
(CNN) on ImageNet, such as VGG16, ResNet50, and Inception-v3, with fine-tuning
and cut strategies. The proposed method outperforms vanilla pre-trained networks
and models trained from scratch, with an optimized ResNet50 achieving the best
results while requiring fewer parameters than Inception-v3 and VGG16.

The second approach is a Hybrid Classical-Quantum Network, which combines
a classical CNN and a Quantum Network (QN). This scheme improves stenosis
detection concerning classical transfer learning approaches. The main contribution
of this research was related to the QN architecture, where multiple (and smaller)
Variational Quantum Circuits (VQCs) can replace a single VQC boosting the hybrid
model.

The third proposal is the Hierarchical Bezier Generative Model, which generates
a large-scale labeled dataset for stenosis detection in XCA images. The generative
model is based on prior knowledge of the blood vessel structure. It demonstrates the
value of transferring the weights pre-trained using a more alike (artificial) dataset
instead of the ImageNet dataset for stenosis detection tasks with only limited data
available.

Lastly, Lightweight Residual Attention Networks (LRA-Nets) for stenosis
detection were introduced, which consist of Deep-Wise Separable Convolutions, a
pruning convolution kernel ratio, and an attention module. LRA-Nets outperform
Residual models with or without attention mechanisms and achieve better
classification performance with a smaller dilation ratio for the attention blocks.

The Gradient-weighted Class Activation Map (GradCAM) technique visually
explains each model’s prediction, allowing a probability of stenosis and an
explainable heat map of high-attention regions that can be used in medical praxis.
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Resumen

La enfermedad coronaria es la principal causa de muerte en todo el mundo, con
un estimado de 17,9 millones de muertes al año. Esta afección se caracteriza por
la acumulación de placa dentro de las arterias coronarias, que suministran sangre
al músculo cardíaco. La acumulación de placa estrecha las arterias, lo que reduce
el flujo de sangre al músculo cardíaco. La detección temprana de la enfermedad
de las arterias coronarias es crucial porque permite la intervención y el tratamiento
oportunos, lo que puede ayudar a prevenir que la enfermedad progrese y cause
complicaciones graves, como ataques cardíacos, insuficiencia cardíaca e incluso
la muerte. Este trabajo propone varias metodologías novedosas basadas en el
aprendizaje profundo para detectar estenosis en imágenes de angiografía coronaria
de rayos X.

El primer enfoque implica el uso de redes neuronales convolucionales (CNN)
previamente entrenadas en ImageNet, como VGG16, ResNet50 e Inception-v3, con
estrategias de ajuste y corte. El método propuesto supera a las redes preentrenadas
y a los modelos entrenados desde cero, con un ResNet50 optimizado que logra los
mejores resultados y requiere menos parámetros que Inception-v3 y VGG16.

El segundo enfoque es una red híbrida clásica-cuántica, que combina una CNN
clásica y una red cuántica (QN). Este esquema mejora la detección de estenosis
con respecto a los enfoques clásicos de aprendizaje por transferencia. La principal
contribución de esta investigación estuvo relacionada con la arquitectura QN,
donde múltiples (y más pequeños) circuitos cuánticos variacionales (VQC) pueden
reemplazar un solo VQC impulsando el modelo híbrido.

La tercera propuesta es el modelo generativo jerárquico Bezier, que genera
un conjunto de datos etiquetados a gran escala para la detección de estenosis
en imágenes XCA. El modelo generativo se basa en el conocimiento previo de
la estructura de los vasos sanguíneos. Demuestra el valor de transferir los pesos
previamente entrenados utilizando un conjunto de datos (artificiales) más parecido
en lugar del conjunto de datos de ImageNet para tareas de detección de estenosis
con solo datos limitados disponibles.

Por último, se introdujeron las Redes de Atención Residual Livianas (LRA-Nets)
para la detección de estenosis, que consisten en Convoluciones Separables
Profundas, factor de poda para las capas convolucionales y un módulo de atención.
LRA-Nets supera a los modelos Residual con o sin mecanismos de atención y
logra un mejor rendimiento de clasificación empleando un factor de reducción más
pequeño para los bloques de atención.

La técnica Gradient-weighted Class Activation Map (GradCAM) proporciona
una explicación visual de la predicción de cada modelo, lo que permite obtener no
solo una probabilidad de estenosis, sino también un mapa de calor explicable de las
regiones de alta atención que se puede utilizar en la praxis médica.
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Introduction

“The stars are yours, if you have the head, the hands, and the heart for

them."

— Ray Bradbury, R Is for Rocket

1.1 | Motivation

Coronary Heart Disease (CHD) is the leading cause of death worldwide. According to

the World Health Organization [2021], it is estimated that CHD takes the life of 17.9

million people (one-third of all global deaths) every year. Therefore, this condition

seriously affects people’s life quality and survival time. The primary pathological

feature of CHD is the deficient supply of oxygen-rich blood to the heart muscle due

to a partial narrowing or complete blocking of a coronary artery by adipose plaque

formation [Britannica, The Editors of Encyclopaedia, 2021; National Heart, Lung, and

Blood Institute, 2021]. This degenerative process, known as stenosis, can eventually

cause life-threatening problems such as heart attacks and strokes [Athanasiou et al.,

2017; National Heart, Lung, and Blood Institute, 2021]. Figure 1.1 illustrates coronary

artery deterioration caused by stenosis.

In Mexico, as claimed by the report of the Instituto Nacional de Estadística y

Geografía [2022], CHD has represented the most significant cause of death during the

last decades. For instance, of the CHD casualties in 2021, a total of 226,703 cases were

reported, that is, 7,999 more cases than in 2020. In particular, the ischemic losses (related

to reduced blood flow for stenosis) represented 78.2%, with 177,263 cases.

Further tests may be carried out to diagnose CHD, including Computed

Tomography Angiography (CTA) and other less invasive procedures such as Magnetic

Resonance Angiography (MRA) and Ultrasound (US) imaging. However, X-Ray
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Figure 1.1: Coronary stenosis characterization. The coronary artery blood flow is affected by
the accumulation of plaque, generating a narrowing of the coronary artery. LifeART Collection
Images Copyright ©1989-2001 by Lippincott Williams & Wilkins, Baltimore, MD.

Coronary Angiography (XCA) remains the gold standard for CHD diagnosis [Nandalur

et al., 2007] because of the accurate definition of coronary anatomy, obtaining

high-resolution images of the main coronary arteries and their corresponding

branches [Johal et al., 2021].

The XCA exams involve taking X-rays of the heart arteries, including dye injection

and radiation exposure. They create detailed X-ray images allowing cardiologists to

detect the blockage sections within coronary arteries, as shown in Figure 1.2.

In daily clinical practice, the physician finds the narrowed regions during an

exhaustive visual examination of the X-ray images. As such, an in vivo assessment and

treatment, such as angioplasty, where a short wire-mesh tube called a stent is inserted

into the artery to restore the blood flow of the blocked or narrowed coronary arteries,

can be performed [Athanasiou et al., 2017; Eckert et al., 2015; Johal et al., 2021].

Therefore, early stenosis detection is essential in cardiology to diagnose and

provide suitable medical treatment before permanent heart damage. Nevertheless,

the automation of this task is considered a challenging problem up to date because

of background noise [Manson et al., 2019], non-coronary vascular structures, and

multiple superposed branching points [Chang et al., 2019], among others. In the

last decade, Deep Learning based methods have achieved outstanding performance
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Stenosis Bifurcations

BackgroundStent

Figure 1.2: XCA sample image. The created X-ray image can include specific characteristic
regions, such as stents, background artifacts, coronary blood vessels with bifurcations, and
stenosis cases.

gains for several real-world applications. In particular, for computer vision problems,

Convolutional Neural Networks (CNN) have been applied successfully in the

medical imaging domain for different tasks, such as segmentation, identification, and

classification [Mohapatra et al., 2021; Sarvamangala and Kulkarni, 2021]. The core of

CNN is its capability to extract, select and classify features during the optimization

step, while in traditional Machine Learning methods, each of these steps is conducted

independently. For this reason, CNN has become a de-facto standard for computer

vision problems.

This doctoral thesis addresses and introduces a state-of-the-art automatic stenosis

detection in XCA images based on Deep Learning and Quantum Machine Learning

algorithms that could support the physician’s decision-making process. Herein, four

main contributions are presented. The first method introduced was a network-cut

and fine-tuning approach in that an optimal cut and fine-tuned layers were

selected by minimizing the loss function. The second method presented a Hybrid

Classical-Quantum Network, which involved connecting a Quantum Network to the

head of a classical network to enhance the feature representation. Next, a Hierarchical

Bezier Generative Model addresses the problem of a small XCA image dataset. And

finally, a Lightweight Residual Attention Network, including separable convolutions, a

pruning strategy, and an attention module, achieve high classification rates with lower

computational requirements regarding the required parameters.
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1.2 | X-Ray Coronary Angiography Stenosis Datasets

The public Deep Stenosis Detection Dataset (DSDD) [Antczak and Liberadzki, 2022]

was employed in this work, and it consists of small grayscale XCA image patches of

32 × 32 pixels from different image positions and sources. It contains 1,519 images,

where only 125 are positive cases of stenosis and 1,394 negative cases, which generate

an unbalanced ratio of 1:11, i.e., one positive case for eleven negative ones. This database

does not specify a partition for training and testing sets.

Figure 1.3 shows examples of positive and negative stenosis cases in the dataset. A

stenosis region is characterized by a rapid reduction of the blood vessel diameter, and a

non-stenosis region by an uniform tubular shape of the blood vessel.

Figure 1.3: Dataset sample from X-ray Coronary Angiography images. Four negative and four
positive stenosis cases are shown.

1.3 | Objectives

1.3.1 | General Objective

The main objective of this research is to develop automatic methods for stenosis

detection in XCA images, achieving high-performance and accuracy rates such that

the proposed system can support medical practice decisions, thus, advancing the

state-of-the-art in this problem. The following specific objectives have been established

to accomplish the general objective.

1.3.2 | Speciüc Objectives

■ Compare state-of-the-art convolutional neural network architectures for natural

image classification and select the more suitable for stenosis detection in XCA

images.

■ Develop a new training strategy based on Transfer Learning to optimize the

trainable parameters and develop more efficient models.
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■ Propose novel convolutional neural network architectures for stenosis detection

in XCA images that achieve state-of-the-art results.

■ Explore and develop hybrid models, combining quantum machine learning and

deep learning to improve classical convolutional models.

■ Compare different strategies to deal with the limited and unbalanced annotated

data, i.e., labeled XCA images, to train a convolutional network from scratch and

achieve adequate training.

■ Propose a new generative model that generates new stenosis samples to pre-train a

convolutional model with synthetic data and improve classification performance.

1.4 | Document structure

The rest of this dissertation is organized as follows:

■ Chapter 2 introduces the mathematical background of Convolutional Neural

Networks, including their core components such as convolutional layers, pooling

layers, and activation functions. Also, the Cross-Entropy Loss function employed

for optimization is described. Next, modern convolution architectures are

depicted. Finally, are given visual explanations of how Convolutional Neural

Networks model predictions can be performed.

■ Chapter 3 presents a novel Transfer Learning and Network cut for stenosis

detection employing different modern convolutional architectures. Numerical

results show outstanding performance for this task. Moreover, an L2-Constrained

SoftMax loss function was used to improve the model accuracy further.

■ Chapter 4 solved the stenosis classification problem employing a novel

hybrid classical-quantum convolutional neural network. First, a background in

quantum computing is introduced. Secondly, a novel quantum layer reduces the

computation time and processes a more significant number of classical features.

Finally, extensive experiments demonstrate the potential of the hybrid model.

■ Chapter 5 addresses the lack of annotated data for accurate stenosis detection in

XCA images by generating synthetic images that model real coronary vascular

structure regions. A robust Bezier-based generative model faithfully generates

image patches with blood vessel structures, including bifurcations and stenosis.
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■ Chapter 6 brought the mathematical foundations of attention mechanisms and

a sequential model-based optimization approach, the Tree-structured Parzen

Estimator. These two modules are the key components of an Attention-based

Convolutional Neural Network for stenosis detection. Furthermore, this

architecture was developed to be Lightweight regarding the number of

parameters and operations.

■ Chapter 7 includes the contributions and publications achieved during the

doctoral studies. Furthermore, final remarks on this work and future research

directions are presented.
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2

Convolutional Neural Networks
Review

“Begin at the beginning, the King said gravely, and go on till you come

to the end: then stop."

— Lewis Carroll, Alice in Wonderland

This chapter introduces several fundamental concepts in Convolutional Neural

Networks (CNN) that will be used in this chapter and subsequent chapters, including

their essential components and hyperparameters, loss functions, and optimizers.

Moreover, a review of modern convolutional architectures employed as backbone

models for this doctoral research is included. Finally, the classification performance

metrics that will be used are described.

2.1 | Convolutional Neural Networks

A Convolutional Neural Network (CNN) is an end-to-end supervised Deep Learning

algorithm which is a specific type of Neural Network (NN) that is designed for image

analysis exploiting the semantic representation of image pixels (i.e., 2D grayscale or

3D-colored images). CNNs consist of alternating convolutional and pooling layers

attempting to extract discriminative features (e.g., edges, interest points) across a set

of input images upon going deeper and deeper into the network. At the network’s top,

the features feed a set of fully connected layers to estimate the correct class for each

input. The last layers are also known as the network head.

The convolutional layer uses K filters that perform convolution operations over the

input data. All filters are convolved across the complete input image to produce

a 2D activation map for each filter during optimization. Formally, let fconv(·, W) :
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R
hin×win×cin → R

hout×wout×1 be a single standard convolution operation that takes as

input Xin and produces Xout parameterized by the kernel W ∈ R
k×k computed as:

Xout(i, j) = fconv(X
in, W) =

k

∑
u=1

k

∑
v=1

cin

∑
m=1

W(i, j) ∗ Xin
m (i + r× u, j + r× v), (2.1)

where ∗ represents the convolution operation, k is the filter size, and r is the dilation

ratio. Here hin, hout, and win, wout denote the height and width of the input and output

feature maps, respectively, and cin indicates the number of input channels.

Figure 2.1 exhibits the general mechanism of the convolution operation. Therefore,

Figure 2.1: Single standard convolution operation. During the convolution, a kernel of size k× k
is convolved with the input feature maps across each channel.

a convolutional layer learns dynamic filters that allow the network to detect specific or

relevant visual features. Hitherto, the features extracted from low-level layers are more

generic (e.g., luminance, edges, contrasting colors, and curves) than those extracted by

the top layers. The resulting output Xout is called a features map or activation map. Thus,

a convolutional layer with K filters produces K-features maps such that Lconv(·, W) :

R
hin×win×cin → R

hout×wout×cout
, now parameterized by the set of cout = K kernels as W ∈

R
k×k×cout

.

A common choice is to keep a small kernel size at k = {3, 5, 7} to learn small

patterns, that can be easily computed. Notice that the convolution operation requires

some hyperparameters to be set that control the height and width of the output feature

map. The dilation ratio r enlarges the receptive field without increasing the number of

parameters or the amount of computation. Finally, the stride s controls the number of

8



Chapter 2. CNN Background 2.1. Convolutional Neural Networks

pixels by which the convolution kernel moves after each operation. Values of r = 1 and

s = 1 are the typical configuration of these hyperparameters. Then, the spatial resolution

of the output feature map can be calculated as follows:

hout =
⌊hin + 2 p− r× (k− 1)− 1

s
+ 1
⌋

, (2.2)

wout =
⌊win + 2 p− r× (k− 1)− 1

s
+ 1
⌋

, (2.3)

where +·, is the round toward negative infinity and p is the padding determining how

many zero values are added to the image’s border.

An activation function is usually applied after the convolution operation to clip the

range of values of the feature map and increase the non-linearity aimed at solving the

vanishing and exploding gradients problem. The standard activation functions include:

Sigmoid, Tanh, ReLU, and leaky ReLU, shown in Figure 2.2. The characteristic curve of

Figure 2.2: Common activation functions. An activation function introduces the non-linearity
and clips the range of values of the feature map after the convolution operation.

the Sigmoid curve is S-shaped with a consistently positive output in the range [0, 1]. The
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Sigmoid tends to be zero when the input is large or small; thus, the gradient becomes

very small. The formula of the Sigmoid function is defined as:

Ã(x) =
1

1 + e−x
. (2.4)

Like the sigmoid function, the Tanh function’s input is real numbers but with a range

from [−1, 1]. In addition, this function is characterized by exhibiting a fast saturation

behavior, leading that the gradient approaching zero when the output is close to ±1.

Bearing in mind that:

tanh(x) =
ex − e−x

ex + e−x
. (2.5)

The ReLU function is a piece-wise function that forces the output to be zero if the

input value is less than or equal to zero. Otherwise, the output value is equal to the

input value. The ReLU function lacks saturation and is computationally more efficient

to compute, it is defined as follows:

δ(x) = (x)+ = max(0, x). (2.6)

The leaky ReLU is based on a ReLU and includes a slight slope, such as ³ = 0.1 for

negative values, ensuring that these inputs are never ignored, as given next,

δL(x) =







x, if x > 0

³x, otherwise.
(2.7)

In summary, the ReLU is a good default choice of activation function after the

convolution operation since there is no vanishing gradient problem, unlike sigmoid

and Tanh functions, and there is no hyperparameter to set like leaky-ReLU. Notice that

these activation functions were defined for scalar input. For the vector input, the scalar

activation function is element-wisely applied.

The pooling layer, also known as the downsampling layer, reduces the spatial size of

the input feature map Xin. Consequently, the number of parameters in the network is

also reduced and controls overfitting [Scherer et al., 2010]. Typically, the pooling layer is

applied between successive convolution layers so that deeper layers learn different scale

features. The most common pooling operations are max-pooling and average pooling

which operate in a channel-wise manner; thus, they map R
hin×win×cin → R

hout×wout×cin
.

In max-pooling, the maximum value in a local neighborhood of size k× k centered

at (i, j) is taken in each channel of the input feature map as follows:

Xout
m (i, j) = fmax(X

in
m ) = max

u,v
Xin

m (i + u, j + v), (2.8)

10



Chapter 2. CNN Background 2.2. SoftMax and Cross-Entropy Loss

where u = {1, 2, · · · , k} and v = {1, 2, · · · , k} are the vertical and horizontal index in

the local neighborhood, respectively.

On the other hand, average pooling computes the mean value of the window, such

as:

Xout
m (i, j) = favg(X

in
m ) =

1
n

k

∑
u=1

k

∑
v=1

Xin
m (i + u, j + v), (2.9)

where n = k × k. Like the convolution operation, the pooling layer requires a size

and a stride. A size of 3 × 3 pixels with a 2-pixel stride is common practice. It is

worth noting that a strided convolution can be employed instead of a pooling layer

for down-sampling.

After feature extraction performed by the convolutional layers, fully-connected or

dense layers, learn nonlinear combinations given a flattened version of these features

to accomplish the classification task. Multiple dense layers can be stacked to reduce the

dimensionality of the features (i.e., a Multi-Layer Perception Head). Hence, the dense

layer is characterized by connecting every neuron in the previous layer to every neuron

in the next layer. In such a way, the output size of the last dense layer corresponds to the

number of classes to be classified. The dense layer implements the following operation:

y = fdense(x
in, w) = fact(w

Txin + b), (2.10)

where fact is an activation function, xin is the flattened feature vector, w is the weights

vector of the layer, and b is the bias term. Ergo, the head of the CNN can be expressed as

Lhead(·, w) : R
N → R

c, with N standing for the flattened dimension of the last feature

maps, and c is the number of classes. Therefore, a CNN can be defined as follows:

N = Lhead(x
(l), w(l)) ◦ Lconv(X

(l−1), W(l−1)) ◦ · · · ◦ Lconv(X
(1), W(1)), (2.11)

where (l) is the l-th layer and ◦ defines the stack of layers.

Figure 2.3 illustrates a typical CNN architecture consisting of blocks of convolutional

layers followed by pooling layers (feature extraction). Finally, consecutive fully

connected layers (feature selection) are used to generate the required output neurons.

2.2 | SoftMax and Cross-Entropy Loss

The SoftMax function is usually the activation function in the last fully connected layer.

The main purpose of the SoftMax function is to map the vector from the last fully

connected layer of arbitrary real numbers (logits-l) into probabilities with real values
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Figure 2.3: Typical CNN architecture with convolutional, pooling, and dense layers.

in the range (0, 1) that sum up to 1.0. Formally, the SoftMax function ς(l) : R
C → R

C is

defined as:

ŷ(c) = ς(l)(c) =
el(c)

C

∑
k=1

el(k)
, (2.12)

where l(j) denotes the j-th element (j = {1, 2, . . . , C}, where C is the number of classes).

The SoftMax can be interpreted as the probabilities that the target class be t = c, for

c = {1, 2 · · · , C} given the input l as:

ŷ(c) = ς(l)(c) = P(t = c|l), (2.13)

Any classification algorithm minimizes the number of misclassified examples in the

training data. In the NN, optimizing the weights with the backpropagation algorithm

and any gradient descent optimizer is necessary. The model weights are optimized

to increase the probabilities for the correct classes and decrease them otherwise

for all training examples. Let Dtrain = {X,Y}, X = {x(1), x(2), · · · , x(n)}, Y =

{y(1), y(2), · · · , y(n)}, be the training dataset where X is the input data and Y their

respective classes, θ the parameters of the model, and l = {l(1), l(2), · · · , l(n)} the logits

generated by the last layer of the model, the likelihood can be defined as follows:

L(θ) = P(Y|l, θ) =
n

∏
i=1

P
(

y(i)|l(i), θ

)

. (2.14)

Maximizing the likelihood is the same as maximizing the log-likelihood because taking

the log allows replacing the product into a sum, which is numerically more stable and

easier to optimize:

ℓ(θ) = log P(Y|l, θ) =
n

∑
i=1

log P(y(i)|l(i), θ). (2.15)
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Given a one-hot (or probabilistic) y(c), and the model prediction ŷ(c), we can write the

log-likelihood function as:

ℓ(θ) =
n

∑
i=1

C

∑
c=1

y(c) log ŷ(c) (2.16)

Notice that this maximization problem needs to be changed using duality into a

minimization problem in order to use gradient descent optimizers. Thus, the Negative

log-likelihood (NLL) used in the Cross-Entropy loss is taken as ξ(θ) = −ℓ(θ).

2.3 | Modern Convolutional Neural Networks

The ImageNet Large Scale Visual Recognition Challenge (ILSVRC) was developed in

2010 to serve as a standard benchmark for image classification. The task consists of

classifying imagery obtained from different search engines into the correct one of 1,000

possible classes. The training set has around 1.2 million images, with 732 to 1,300

training images per class. In 2012, Krizhevsky et al. [2012] proposed a CNN called

AlexNet, to solve the ILSVRC. AlexNet vastly outpaced the performance of traditional

machine learning algorithms. The AlexNet architecture had eight hidden layers: the

first five were convolutional layers with ReLU activation function, some followed by

max-pooling layers, and the last three fully connected layers. Different kernel size was

employed in the convolutional layers. In the first layer, an 11× 11 kernel; in the second, a

5× 5, and 3× 3 in the subsequent three layers. However, it shows a significant problem:

it had around 60 million parameters in only five layers, which led to overfitting.

Subsequently, different CNN dominated the ILSVRC. Then, in 2014, Simonyan

and Zisserman [2015b] proposed the Visual Geometry Group (VGG) architecture that

follows the critical ideas of AlexNet. The fundamental idea behind this architecture is to

increase the network depth with small 3× 3 convolution filters with a stride of 1 pixel,

which significantly improves the AlexNet. The VGG has convolutional layers starting

with 64 feature maps per convolution block (two to four successive convolutions layers)

and increasing to 512 feature maps, each with a ReLU activation function, followed

by max-pooling layers and three fully connected layers at the top of the model. This

configuration allows pushing the network depth to 11-19 weight layers, considered very

deep at the time.

Another winner architecture of the ILSVRC was Inception, which was proposed

in 2014 by Szegedy et al. [2015]. Inception contains 48 convolutional layers that form

three distinct types of Inception modules (A, B, and C) containing parallel 1× 1, 3× 3,

and 5× 5 convolution kernels whose outputs are concatenated to reduce the number
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of connections/parameters without decreasing network efficiency. Later the authors

proposed an improved version of Inception, the so-called Inception-v3 [Szegedy et al.,

2016]. Here, the 5× 5 convolutions were replaced by two consecutive 3× 3 convolutions

and 3 × 3 convolutions with a 1 × 3 followed by a 3 × 1 convolution. Additionally,

a Batch Normalization (BN) layer was applied after each convolution operation [Ioffe

and Szegedy, 2015]. This factorization mechanism can replace any k × k convolution

with a 1 × k convolution followed by a k × 1 convolution. Let Xconv be the feature

maps after the convolution operation and before a non-linearity function, a BN layer

is computed over a batch of size B, Xconv
B = {Xconv

i ; i = 1, · · · , b} such that:

X̂conv
i = BN(Xconv

i ) = γ
Xconv

i − µB
√

Ã2
B + ϵ

+ ´, (2.17)

where γ and ´ are the hyperparameters to learn that normalize the batch. By noting that

µB and Ã2
B are the mean and variance of the batch, and ϵ is a small value avoiding zero

divisions.

The 2015 ILSVRC winner was the Residual Network (ResNet) proposed by He

et al. [2016]. This family of networks introduces a residual connection to the model

that successfully tackled the vanishing gradient problem. A residual connection allows

skipping to process a few layers. Residual blocks formed by convolutional layers and

skip connections increased the number of convolutional layers in order of magnitude,

from tens to hundreds, such as ResNet18, 34, 50, and 101. Formally, a residual block is

defined as:

Xout = δ
(

Fres(X
in, Wi) + Fdown(X

in, Ws)
)

, (2.18)

where Fres(·, Wi) represents the residual mapping to be learned, i.e., multiple

convolutional layers, Fdown(·, Ws) performs a linear projection to match the dimensions

(e.g., when the input/output channels changed), and δ is the ReLU function. The

residual mapping follows the order of execution as Convolution → BN → ReLU →
Convolution→ BN. Additionally, the ResNet replaced the fully connected layers of the

VGG with a Global Average Pooling (GAP) [Lin et al., 2013] layer and only one fully

connected layer with 1,000 neurons, which produces the output class probabilities. This

operation is parameter-free and applies a dimensionality reduction; thus, it reduces each

feature map Xm ∈ R
hin×win

to a single scalar value as follows:

zm = LGAP(Xm) =
1

hin × win

hin

∑
i=1

win

∑
j=1

Xm(i, j). (2.19)
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Table 2.1: Top-1 and Top-5 comparison performance of modern CNN architectures on the
ImageNet validation set. The model size is given in Megabytes (MB), and the number of
parameters in Millions (M).

Model Size [MB] Top-1 / Top-5 Accuracy Parameters [M] Depth

AlexNet 238 0.63/0.84 62.3 8

VGG16 528 0.71/0.90 138.4 16

ResNet50 98 0.74/0.92 25.6 107

Inception-v3 92 0.77/0.93 23.9 189

To sum up, Table 2.1 compares these four families of models on the ILSVRC

concerning model size, classification error rate, and model depth. Only the best VGG

and ResNet configurations are displayed.

2.4 | Gradient Class Activation Map

The Gradient-weighted Class Activation Map (GradCAM) [Selvaraju et al., 2017]

technique visually explains the prediction for a CNN model. GradCAM uses

the gradients of a given class, backpropagating the information into a particular

convolutional layer (in most cases into the last convolutional layer) to generate a

coarse localization map highlighting the input image regions strongly influencing the

predicted class. Taking a particular class c, the GradCAM is obtained as follows:

Lc
Grad-CAM = δ

(

∑
k

³c
kX(k)

)

, (2.20)

where δ is the ReLU activation function, X(k) are the feature maps at the k-th layer that

receives the gradient of the class, and ³c
k is the neuron importance weight defined as:

³c
k = LGAP

(

∂l(c)

∂X(k)

)

. (2.21)

Notice that the score gradient l(c) for class c are the logits computed

before the SoftMax function. Then, these gradients are backpropagated and

global-average-pooled. Hence, ³
(c)
k captures the importance of their respective feature

maps for a target class c. The general pipeline of the GradCAM is displayed in Figure 2.4.
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Figure 2.4: GradCAM pipeline. The GradCAM method generates a coarse localization map
highlighting regions strongly influencing the predicted class.

2.5 | Classiücation Performance Metrics

In this dissertation, five binary metrics were used for measuring the performance of the

stenosis classification algorithms. Those metrics can be derived from a binary confusion

matrix, which is a 2× 2 matrix with the structure described in Table 2.2

Table 2.2: Confusion matrix for binary classification.

Predicted

Positive Negative

Actual
Positive TP FN

Negative FP TN

In the binary confusion matrix, TP refers to the number of true positives, which are

the stenosis cases correctly classified, and TN is the number of true negatives; thus,

the no stenosis cases correctly classified. Similarly, FP denotes the false positives cases,

and FN represents the number of false positives, which are the incorrectly classified

instances of no-stenosis and stenosis, respectively.

In such a way, the evaluation metrics are Accuracy, Sensitivity, Specificity, Precision,

and F1-score, defined as follows. Accuracy is the ratio of the correctly classified test

instances over the total number of test cases and is formally defined as:

Accuracy =
TP + TN

TP + TN + FP + FN
. (2.22)
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Sensitivity or true positive rate measures the correctly classified positive instances as

follows:

Sensitivity =
TP

TP + FN
. (2.23)

Specificity or true negative rate gives the rate of correctly classified negative instances,

which is given by:

Specificity =
TN

TN + FP
. (2.24)

Precision gives a positive predictive value. This value provides how efficiently the

classifier avoids FP. It can be formally defined as follows:

Precision =
TP

TP + FP
. (2.25)

The F1-score is a balanced measure that computes the harmonic mean of precision and

sensitivity and is given by:

F1-score =
TP

TP + 0.5× (FP + FN)
. (2.26)

After presenting the foundation of CNNs, the GradCAM technique, and the

classification metrics that will be employed in this work, stenosis detection based on

transfer learning is discussed in the next chapter.

17





3

Transfer Learning for Stenosis
Detection

“Human has always striven to retain the past, to keep it convincing;

there’s nothing wicked in that. Without it we have no continuity; we

have only the moment."

— Philip K. Dick, Now Wait for Last Year

3.1 | Mathematical Foundations

A domain D is composed of a feature space X and a marginal distribution P(X) with

X = {x(1), · · · , x(n) ∈ X} such that:

D = {X , P(X)}. (3.1)

Two domains are different if they have distinct feature spaces or other marginal

probability distributions. Hence, given a specific domain, a task T is defined by:

T = {Y , f (·)}, (3.2)

which consists of a label space Y and a predictive function f (·). The function f (·) is

expected to be learned from the training data within pairs {x(i), y(i)}, where x(i) ∈ X

and y(i) ∈ Y . Notice that once the function f (·) is trained, it can be used to predict

the label of a new instance x̂. Some machine learning models compute a conditional

distribution of the classes, such as:

f (x̂) = {P(y(k)|x̂)}, y(k) ∈ Y . (3.3)
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In this manner, transfer learning employs the knowledge implied in a given source

domain Dsrc with their respective learning task Tsrc to improve the learning of a

target decision function ftrg(·) on the target domain Dtrg with its target task Ttrg.

Transfer learning in the deep learning context requires a pre-trained model fsrc(Xsrc) =

f
(h)
src ◦ f

(n)
src ◦ · · · ◦ f

(1)
src (Xsrc), where each layer f (i) has parameters θi that optimized a

source loss ξsrc employing a large dataset following the source marginal distribution

as Dsrc ∼ Psrc(·). Notice that f
(h)
src is the head of the model, typically the dense layers

(feature selection), and the first n-layers are convolutional layers (feature extraction).

In such a way, given a smaller dataset following the target distribution as Dtrg ∼
Ptrg(·) the key idea is to re-train (fine-tune) some layers of the pre-trained model while

keeping some frozen in training, solving the optimization problem:

arg min
θ(i)

ξtrg

(

fsrc(θ
(1), · · · , θ

(n), θ
(h))
)

, ∀i ∈ S (3.4)

where S is the subset of layers to optimize, typical choices are fine-tuning all S =

{1, . . . , n}, freezing all S = {}, and fine-tuning the last k-layers S = {n − k, · · · , n}
resulting in the fine-tuned model ftrg(Xtrg). It is important to note that the last dense

layer with weights θ
(h) is changed to match the target task (i.e., the number of classes).

Also, notice that this layer is always trainable. Figure 3.1 illustrates the general pipeline

of transfer learning for deep learning, particularly for CNN.

Figure 3.1: Transfer Learning for CNN pipeline. The top layers are set as trainable; meanwhile,
the bottom ones remain frozen.
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3.2 | Related Work

Machine learning-based methods have been proposed to detect automatic stenosis in

XCA images [Kishore and Jayanthi, 2019; Sameh et al., 2017; Wan et al., 2018]. These

studies first extract discriminative features based on texture and shape information.

Then, a feature selection process is performed to choose the most suitable features to

feed a classifier. Finally, different classifiers, such as Naive Bayes and Support Vector

Machine, accomplish stenosis detection. However, features extracted in a hand-crafted

manner limit the effectiveness of feature selection and, consequently, the classification

performance.

Despite the dissimilarity between natural and medical imaging, recent studies have

developed deep learning methods based on transfer learning to tackle medical imaging

domain detection tasks, such as chest imaging [Xu et al., 2019; Yadav and Jadhav, 2019],

breast imaging [Shen et al., 2019; Wu et al., 2018], and retinal imaging [Chakravarthy

et al., 2019], showing outstanding performance compared to the hand-extracted

feature-based methods. However, the success of transfer learning with convolutional

networks relies on the generality of the learned representations constructed from a large

database like ImageNet [Azizpour et al., 2015].

For stenosis detection in XCA images, Wu et al. [2020] proposed a deep learning

framework consisting of two stages. First, candidate frames were selected from the full

raw XCA based on the segmentation results that produce a UNet [Ronneberger et al.,

2015]. Subsequently, an object-based detection network employing a VGG [Simonyan

and Zisserman, 2015a] as a backbone network classifies the stenosis regions. The model

was trained from scratch (i.e., the weights of the kernels were initialized randomly).

Following the same idea, Pang et al. [2021] detected stenotic regions, including prior

coronary artery displacement information. They used a ResNet50 model trained on

ImageNet as a backbone of the object detector network. Only the last full connection

layer and SoftMax layer of ResNet-50 were fine-tuned. Later, Danilov et al. [2021]

evaluated different object detection network configurations, including a Single Shot

multi-box Detector (SSD) [Liu et al., 2016], Faster Region-Based Convolutional Neural

Networks (Faster-RCNN) [Ren et al., 2015], and Region-based Fully Convolutional

Networks (R-FCN) [Dai et al., 2016]. In their networks, different backbones networks

have been employed, such as MobileNet-v2 [Sandler et al., 2018], ResNet (50, 101) [He

et al., 2016], and Inception-v4 [Szegedy et al., 2017]. To train the above-mentioned

backbone networks, they used models pre-trained on the Common Objects in Context

(COCO) 2017 dataset [Lin et al., 2014]; thereafter, a fine-tuning strategy for the whole

network was applied.
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Instead of detecting and classifying a stenosis case as an object in the XCA image,

it can be more suitable to classify the whole image as a single class into the stenosis

and no stenosis. Therefore, Cong et al. [2019] put forward a previous step to separate

the images by angle view. Then, the candidate frame selection is performed by a CNN

composed of a pre-trained Inception-v3 as a feature extractor feeding a Bi-directional

Long-Short-Term Memory (BiLSTM). Consequently, an independent pre-trained on the

ImageNet dataset Inception-v3 network classified these filtered images into stenosis and

non-stenosis classes. In this case, all the layers of the network were fine-tuned.

However, the previous methods require the whole angiographic test and assume

that a single stenosis region is present in the image. Another approach to solving

this task is using a patch-based classification network. In this way, the full-size XCA

image generates n-patches to be classified as positive or negative stenosis cases. This

patch-based approach can be seen as each patch representing a labeled object. In

this context, Antczak and Liberadzki [2018] employed a VGG-based model of only

five convolutional layers to classify XCA image patches into the stenosis and no

stenosis categories. In addition, a pre-training strategy was performed by synthetic data,

consisting of a Bezier-based generative model to improve the results. Subsequently, the

pre-trained model was fully fine-tuned using a subset of negative data to maintain a

balanced training and testing dataset.

3.3 | Transfer Learning and Network Cut

A novel method is proposed to detect coronary artery stenosis automatically in XCA

images, employing three pre-trained CNNs (VGG16, ResNet50, and Inception-v3) on

the ImageNet dataset. A transfer learning strategy is performed from these models.

The method incorporates a network-cut approach, where after a pooling layer, the

model can be trimmed and connected to the custom classifier layers (top dense layer).

Hence, the number of transferred layers and parameters of each architecture decreases.

Figure 3.2 shows the network-cut approach framework.

3.3.1 | Network Cut

The optimal cut and fine-tuned layers were selected by minimizing the loss target

function ξtrg such as:

arg min
θ(i)

ξtrg

(

fsrc(θ
(1), · · · , θ

(m), θ
(h))
)

, s.t. m f n ∀i ∈ S (3.5)
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Figure 3.2: Transfer Learning and Network Cut. The top dense layers are set as trainable, and
the last convolutional block is trimmed from the network. Meanwhile, the new last convolutional
block is set to trainable and the bottom ones remain frozen.

where m is the position of the cut-layer, n is the total convolutional layers of the source

model, and S is the subset of layers to be fine-tuned. The cut layer used at the end

of the fine-tuned layer of the pre-trained network is carried out in descending and

progressive ways. Accordingly, four characteristic behaviors can be distinguished from

these network configurations:

1. Feature extractor: The weights of the pre-trained convolutional layers remain

fixed, and only the dense layers are trained with the target task.

2. Fine-tuning: The whole network is fine-tuned in a layer-wise manner from top to

low-level blocks, where the blocks of convolutional layers pass to trainable on a

descendent way.

3. Network-cut and feature extractor: the network is trimmed on an early

convolutional block, retaining its weights. Then only the last dense layers are

trained with the target task.

4. Network-cut and fine-tuning: the network is cut up after a pooling layer, but a

fine-tuning process is carried out in the remaining bottom layers as well as the top

dense layers optimizing the target task.

In such a way, the VGG16 was divided into four cut blocks: one is set after the

first convolutional block (i.e., first convolution and pooling layer), and the remainder
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after each double convolutional block. The ResNet50 was also divided into four cut

blocks: one before each residual block. In this manner, the first cut block only maintains

the first convolutional, batch normalization, and pooling operation. Finally, for the

Inception-v3, three cut blocks were set: one before each type of Inception block (A, B,

and C). In general, if the backbone model has a cut block in the first block, only the first

convolutional layer is maintained. On the other hand, if the cut block is set in the fourth

block, the last block of layers is removed.

3.4 | Results and Discussion

3.4.1 | Implementation Details

The fine-tuning process employs the Stochastic Gradient Descent with Momentum

(SGDM) optimizer [Qian, 1999] with a learning rate of 10−3 and a momentum of

0.9. The model was trained with a batch size of 32 for 100 epochs minimizing the

Cross-Entropy Loss. If the validation loss is not improving during 20 epochs, the

learning rate is decreased by a factor of
√

0.1. The model was implemented using the

PyTorch framework, and the experiments ran on Google’s cloud servers, including a

Tesla P4 GPU with 2560 CUDA cores and 8 GB of RAM.

3.4.2 | Ablation Study

An ablation study is conducted on an ideally balanced dataset employing the ADSS

dataset (see Section 1.2). From the original ADSS dataset, a balanced subset was

extracted such that 250 real XCA image patches of size 32 × 32 pixels in grayscale,

with 125 patches identified with stenosis and 125 with no stenosis. The image patches

were resized to 96 × 96 pixels for the Inception-v3 to fit into the default model

configuration. Moreover, the images were converted to 3-channel images, cloning the

grayscale image into the other two channels. Additionally, the z-score normalization

was performed, changing the image range to [0, 1] and applying the ImageNet mean

µ = [0.485, 0.456, 0.406]
T

and standard deviation Ã = [0.229, 0.224, 0.225]
T

. The dataset

was stratified into a fine-tuning (training) set, and testing set, each with 125 images. The

training subset was additionally partitioned into 5-fold for cross-validation.

From the ablation study for the VGG16, it can be seen in Table 3.1 that the best

model configuration (with the lowest validation loss) was the VGG16 without the last

convolutional block (the cut block is the fourth) with all the parameters fine-tuned.

This model required 5 million fewer parameters than the original (vanilla) VGG16. In
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the case of the ResNet50, Table 3.2 shows that the optimal model configuration was

cutting the fourth residual block and fine-tuning the remaining residual blocks but

keeping the first convolutional layer idle (block 0). This model cut reduced the vanilla

ResNet50 size by 2.75x (i.e., by 15 million parameters). Finally, applying the network

cut to the Inception-v3, the best configuration was a trimmed version, without the

InceptionC blocks (the last inception block), and applying a fine-tuning to the remaining

of the model, as shown in Table 3.3. This configuration required 13.66 million fewer

parameters than the vanilla Inception-v3, with a total of 27.49 million.

The three models had poor performance in minimizing the validation loss when

the full model was frozen, and only the head layers (the dense layers) were trained.

Ergo, when the pre-trained model acts as a feature extractor. This phenomenon was also

observed when the models were trimmed. Scilicet, fine-tuning only the dense layers is

not optimal. Similarly, when the models only maintained the first convolutional block

and the rest of the model was trimmed, the model reached higher losses than keeping

an extra convolutional, residual, or inception block respectively.

Therefore, the model configuration that minimizes each validation loss for the

vanilla VGG16, ResNet50, and Inception-v3 was selected as the default model

for subsequent comparison. Henceforth, Trim VGG16, Trim ResNet50, and Trim

Inception-v3, respectively.

3.4.3 | Stenosis Classiücation Performance Comparison

The proposed network-cut approach aims to efficiently fine-tune a pre-trained

network for stenosis detection employing a small and unbalanced dataset. Hence, the

performance of the Trim VGG16, ResNet50, and Inception-v3 models were evaluated on

the public dataset: DSSS (see Section 1.2). To sum up, the DSSS only contains 1,519 XCA

image patches of size 32× 32, where only 125 are positive cases of stenosis and 1,394

negative cases. The dataset was split into an 80:20 training/test partition and employed

5-fold cross-validation.

Table 3.4 shows the classification results comparing the vanilla version of the

networks and their corresponding trained-from-scratch performance with the proposed

fine-tuning network-cut approach. This table shows that fine-tuning and cutting

the models boost the performance concerning their vanilla configuration. Also, the

Trimmed models achieved higher classification rates when trained from scratch,

except the Trim VGG16, which showed poor performance (i.e., made all predictions

as negative cases of stenosis). Particularly fine-tuned, the Trim VGG16 reached the

best overall accuracy, specificity, precision, and F1 score with 0.9717, 0.9900, 0.8726,
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Table 3.1: VGG16 ablation study for transfer learning and network cut. The optimal
configuration is selected such that the mean validation loss is minimized. The validation loss
standard deviation is also specified with ±. The number of parameters is given in Millions (M).

Cut block Fine-tuned block Best Parameters Trainable

4 3 2 1 4 3 2 1 0 Validation Loss [M] Parameters [M]

: : : :

6 6 6 6 6 0.2044 (± 0.1363)

134.26

134.26

6 6 6 6 : 0.2015 (± 0.1160) 134.23

6 6 6 : : 0.2364 (± 0.1405) 134.00

6 6 : : : 0.2358 (± 0.1129) 132.53

6 : : : : 0.2683 (± 0.0993) 126.63

: : : : : 0.2911 (± 0.0778) 119.55

6 : : :

— 6 6 6 6 0.0994 (± 0.1626)

127.19

127.19

— 6 6 6 : 0.1027 (± 0.1629) 127.15

— 6 6 : : 0.1049 (± 0.1627) 126.93

— 6 : : : 0.1109 (± 0.1595) 125.45

— : : : : 0.1112 (± 0.1493) 119.55

6 6 : :

— — 6 6 6 0.1149 (± 0.1824)

31.63

31.63

— — 6 6 : 0.1149 (± 0.1816) 31.59

— — 6 : : 0.1140 (± 0.1818) 31.37

— — : : : 0.1140 (± 0.1819) 29.89

6 6 6 :

— — — 6 6 0.2173 (± 0.1246)

7.74

7.74

— — — 6 : 0.2161 (± 0.1251) 7.70

— — — : : 0.2106 (± 0.1245) 7.48

6 6 6 6
— — — — 6 0.2942 (± 0.1836)

1.91
1.91

— — — — : 0.3193 (± 0.1964) 1.87
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Table 3.2: ResNet50 ablation study for transfer learning and network cut. The optimal
configuration is selected such that the mean validation loss is minimized. The validation loss
standard deviation is also specified with ±. The number of parameters is given in Millions (M).

Cut block Fine-tuned block Best Parameters Trainable

4 3 2 1 4 3 2 1 0 Validation Loss [M] Parameters [M]

: : : :

6 6 6 6 6 0.5913 (± 0.0110)

23.51

23.51

6 6 6 6 : 0.5614 (± 0.0363) 23.50

6 6 6 : : 0.5198 (± 0.0506) 23.29

6 6 : : : 0.5190 (± 0.0412) 22.07

6 : : : : 0.5432 (± 0.0301) 14.97

: : : : : 0.5533 (± 0.0313) 0.004

6 : : :

— 6 6 6 6 0.1298 (± 0.0889)

8.55

8.55

— 6 6 6 : 0.1261 (± 0.1113) 8.54

— 6 6 : : 0.1500 (± 0.1035) 8.32

— 6 : : : 0.1514 (± 0.1034) 7.10

— : : : : 0.1546 (± 0.0969) 0.002

6 6 : :

— — 6 6 6 0.1558 (± 0.1707)

1.45

1.45

— — 6 6 : 0.1541 (± 0.1802) 1.44

— — 6 : : 0.1510 (± 0.1823) 1.22

— — : : : 0.1475 (± 0.1864) 0.001

6 6 6 :

— — — 6 6 0.2967 (± 0.1485)

0.2259

0.2259

— — — 6 : 0.3361 (± 0.1658) 0.2163

— — — : : 0.3707 (± 0.1495) 0.0005

6 6 6 6
— — — — 6 0.4245 (± 0.0788)

0.0096
0.0096

— — — — : 0.4428 (± 0.0749) 0.0001
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Table 3.3: Inception-v3 ablation study for transfer learning and network cut. The optimal
configuration is selected such that the mean validation loss is minimized. The validation loss
standard deviation is also specified with ±. The number of parameters is given in Millions (M).

Cut block Fine-tuned block Best Parameters Trainable

3 2 1 3 2 1 0 Validation Loss [M] Parameters [M]

: : :

6 6 6 6 0.3011 (± 0.1210)

41.15

41.15

6 6 6 : 0.3273 (± 0.1279) 40.54

6 6 : : 0.2791 (± 0.1200) 36.96

6 : : : 0.3552 (± 0.1050) 13.66

: : : : 0.4351 (± 0.0375) 0.003

6 : :

— 6 6 6 0.1520 (± 0.0982)

27.49

27.49

— 6 6 : 0.2664 (± 0.1080) 26.88

— 6 : : 0.2913 (± 0.1094) 23.30

— : : : 0.3437 (± 0.0853) 0.003

6 6 :

— — 6 6 0.1804 (± 0.1314)

4.18

4.18

— — 6 : 0.1913 (± 0.1214) 3.58

— — : : 0.2576 (± 0.1019) 0.002

6 6 6
— — — 6 0.2924 (± 0.1447)

0.6065
0.6065

— — — : 0.3353 (± 0.0866) 0.00007

0.8168, respectively, and the second-best sensitivity with 0.7680. The fine-tuned Trim

Inception-v3 achieved the best sensitivity (0.7760), competitive accuracy (0.9651), and

specificity (0.9821). The fine-tuned Trim ResNet50 also attained the best specificity

(0.9900), competitive accuracy (0.9612), and precision (0.8551). It is worth noticing that

although the Trim VGG16 obtained four of the five higher metrics, it is the model

with the higher number of parameters, up to 15.8x more than Trim ResNet50 and 4.7x

more than Trim Inception-v3. Moreover, Vanilla and Trim VGG16 trained from scratch

showed lower performance.

3.4.4 | Class Activation Maps Visualization

A class activation map was obtained to visually explain the areas where the image

features have the most significant impact on prediction. Figure 3.3 shows the case

examples of predictions using the Trimmed versions of the VGG16, ResNet50, and
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Table 3.4: Transfer learning and network cut classification performance. The mean and standard
deviation of each metric are shown.

Model Pretrained Accuracy Sensitivity Specificity Precision F1-score

Vanilla VGG16

:
0.9270 0.2000 0.9921 0.2800 0.2317

± 0.0113 ± 0.2479 ± 0.0102 ± 0.3436 ± 0.2844

6
0.9691 0.7440 0.9892 0.8693 0.7975

± 0.0039 ± 0.0650 ± 0.0060 ± 0.0633 ± 0.0283

Trim VGG16

:
0.9178 0.0000 1.0000 0.0000 0.0000

± 0.0000 ± 0.0000 ± 0.0000 ± 0.0000 ± 0.0000

6
0.9717 0.7680 0.9900 0.8726 0.8168

± 0.0034 ± 0.0299 ± 0.0014 ± 0.0187 ± 0.0235

Vanilla ResNet50

:
0.9204 0.2480 0.9806 0.4968 0.3162

±0.0092 ±0.1568 ±0.0058 ±0.1073 ±0.1597

6
0.9520 0.5520 0.9878 0.8016 0.6528

± 0.0049 ± 0.0531 ± 0.0018 ± 0.0285 ± 0.0440

Trim ResNet50

:
0.9349 0.4800 0.9756 0.6402 0.5471

± 0.0092 ± 0.0669 ± 0.0062 ± 0.0809 ± 0.0674

6
0.9612 0.6400 0.9900 0.8551 0.7154

± 0.0120 ± 0.1734 ± 0.0042 ± 0.0400 ± 0.1320

Vanilla Inception-v3

:
0.9507 0.5840 0.9835 0.7636 0.6581

± 0.0075 ± 0.0862 ± 0.0058 ± 0.0636 ± 0.0630

6
0.9625 0.7040 0.9857 0.8175 0.7525

± 0.0077 ± 0.0967 ± 0.0051 ± 0.0515 ± 0.0598

Trim Inception-v3

:
0.9599 0.7280 0.9806 0.7746 0.7462

± 0.0032 ± 0.0854 ± 0.0043 ± 0.0247 ± 0.0409

6
0.9651 0.7760 0.9821 0.7988 0.7861

± 0.0064 ± 0.0320 ± 0.0060 ± 0.0605 ± 0.0357
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Inception-v3, respectively. In the GradCAM images, red tones stand for high-attention

regions, and purple for low-attention ones. Bellow each image, the probability of

stenosis is set. For values higher than 0.5, the models classify as stenosis cases.

As one can see, Trim VGG16 and Trim Inception-v3 presented isolated horizontal

high-attention regions; in most cases, the GradCAM image showed constant attention

(purple tones).

Meanwhile, Trim ResNet50 obtained high-attention regions over blood vessel areas,

identifying prominent features (regions in red tones). From this last case, when a

false positive was predicted (subfigure (b), seventh image), the GradCAM retrieved

high-attention regions in background areas. On the other hand, when a false negative

was presented (subfigure (b), fourth image), the image presented non-highlighted

regions in red tones. Thus, the model was not able to learn specific rich feature locations.

These images provide valuable information about the localization of features that

significantly impact the prediction stage.

3.5 | Conclusion

This chapter introduced a network-cut and fine-tuning method for stenosis detection

in XCA images. The extensive numerical experiments were implemented based on

20 different setups for the pre-trained (on the ImageNet dataset) with three different

fine-tuning strategies for the VGG16, ResNet50, and Inception-v3 networks. The optimal

cut and fine-tuned layers were selected by minimizing the loss function. They have

demonstrated that employing a pre-trained network on a limited and unbalanced

XCA dataset performs efficiently for stenosis detection. The results of the pre-trained

networks showed that the optimal model configuration for the VGG16, ResNet50,

and Inception-v3, required cutting the last convolutional, residual, or Inception block,

respectively.

Moreover, the best loss was achieved when fine-tuning was applied in all remained

layers for VGG16 and Inception-v3, and froze the first convolutional layer for the

ResNet50. The proposed scheme allowed an accuracy, sensitivity, specificity, precision,

and F1-score improvement concerning the vanilla pre-trained networks and with the

configurations trained from scratch. Furthermore, it allowed us to reduce the network

complexity regarding parameters, where the Trim ResNet50 only required 8.55M of

parameters compared with 27.49M for Trim Inception-v3 and 127.19M for Trim VGG16.

Besides, a class activation map using the GradCAM technique was performed to

provide a deep learning-based visual explanation for the areas where the image features
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significantly impact prediction. This visual study verified that Trim ResNet50 retrieved

the best gradient maps over the image, i.e., with high-attention regions in blood vessel

pixels, contributing to computer-aided diagnosis in cardiology.

The classification results reached in the proposed network cut approach could be

further improved by analyzing the family of residual networks, which achieved the

best performance when trained from scratch and very competitive classification results

with fewer parameters.

31



Chapter 3. Transfer Learning for Stenosis Detection 3.5. Conclusion

(a)

(b)

(c)

Figure 3.3: Fine-tuning and the network cut GradCAM. (a) Trim VGG16, (b) Trim ResNet50,
and (c) Trim Inceptionv3.
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4

Hybrid Classical-Quantum
Convolutional Neural Networks for

Stenosis Detection

“Nothing is real unless it is observed."

— John Gribbin, In Search of Schrödinger’s Cat: Quantum Physics

and Reality

4.1 | Mathematical Foundations

The classical computational unit is the bit, which can take one of two states for

computation, either 0 or 1. On the other hand, the corresponding unit of quantum

computing is the qubit. Instead of having a scalar value as classical bits, a qubit can be

any linear combination (superpositions) of the computational basis states |0ð = [1, 0]T and

|1ð = [0, 1]T (i.e., any state ψ is written in Dirac notation |ψð). Hence, a qubit is described

by a two-dimensional Hilbert space, whose state can be expressed as:

|ψð = ³ |0ð+ ´ |1ð , (4.1)

where ³ and ´ are two complex numbers that satisfy |³|2 + |´|2 = 1.

By writing a quantum state in polar form, i.e., ³ = aeiθ and ´ = beiϕ, where eiθ is the

global phase and eiϕ is the relative phase, with ϕ = (φ− θ). In quantum mechanics, the

global phase has no physical meaning; in this way, it can be omitted. Thus, Equation (4.1)

can be written as follows:

|ψð = a |0ð+ b eiϕ |1ð . (4.2)

Since a2 + b2 = 1 needs to be fulfilled, a = cos
(

θ
2

)

and b = sin
(

θ
2

)

have the same

relationship. In such a way, a single-qubit state is parametrized by two angles (θ and ϕ)
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as follows:

|ψð = cos
(

θ

2

)

|0ð+ eiϕ sin
(

θ

2

)

|1ð . (4.3)

Therefore, each qubit state vector and operation can be represented in 3D space (Bloch

sphere), as illustrated in Figure 4.1.

Figure 4.1: 3D representation of the state of a single qubit. θ is inclination angle from +z
direction and ϕ is azimuth from +x direction.

A multiple-qubit state consisting of n unentangled qubits can be represented as the

tensor product (¹) of the states of the individual qubits given by:

|Ψð = |ψ1ð ¹ |ψ2ð ¹ · · · ¹ |ψnð . (4.4)

The state can also be written using a bit-string representation. For instance, the 3-qubit

state |0ð ¹ |0ð ¹ |1ð is |100ð (from right to left).

Notwithstanding, if the n qubit state cannot be decomposed into the tensor product

of individual states, the qubits are considered entangled. If a pair of qubits are entangled,

the measurement on one qubit instantaneously affects the other.

In order to manipulate single or multiple qubits, a quantum computer employs

quantum gates, represented by a unitary matrix U, such that UU† = U†U = In, where In

is the identity matrix in R
n and U† is the conjugate transpose. In this manner, a sequence

of quantum gates forms a quantum circuit C defined as:

C(θ) =
n

∏
i=1

Vi(θi)Wi, (4.5)
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where Wi are un-parameterized gates (e.g., CNOT gates) and Vi(θi) are a set of q

quantum variational gates (e.g., one of the rotation gates RX, RY, RZ) such as:

Vi(θi) =
q
⊗

j=1

Rj,i(θj,i), (4.6)

where Rj,i is the j-th rotation gate acting on the i-th qubit, and θj,i its respective rotation

angle. Table 4.1 illustrates the most frequently used quantum gates, circuit symbols, and

mathematical expressions.

Table 4.1: Graphical and mathematical notation of the most employed quantum gates.

Name Circuit Notation

Hadamard H H = 1√
2

[

1 1
1 −1

]

X-Rotation RX(θ) RX(θ) =

[

cos(θ/2) −i sin(θ/2)
−i sin(θ/2) cos(θ/2)

]

Y-Rotation RY(θ) RY(θ) =

[

cos(θ/2) − sin(θ/2)
sin(θ/2) cos(θ/2)

]

Z-Rotation RZ(θ) RZ(θ) =

[

e−iθ/2 0
0 eiθ/2

]

Pauli-X X Ãx =

[

0 1
1 0

]

Pauli-Y Y Ãy =

[

0 −i
i 0

]

Pauli-Z Z Ãz =

[

1 0
0 −1

]

CNOT CNOT =









1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0









Measurement —

4.2 | Related Work

In recent years, a new paradigm in the context of Quantum Machine Learning [Biamonte

et al., 2017] has appeared, which is paramount because it is founded on the

power and properties of quantum computing. In the literature, a few works have

explored including a quantum component in a CNN. Konar et al. [2020] proposed a
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Quantum-inspired Neural Network (QIS-Net) to segment brain magnetic resonance

images automatically. The quantum network comprises three layers of quantum

neurons (input layer, intermediate layer, and output layer), introducing a Multi-level

Sigmoid activation function at the last activation function. The input layer of the

QIS-Net architecture maps each normalized image information (pixel intensities) into

a quantum state for subsequent processing of the intermediate and output layers. The

results showed good accuracy and Dice similarity scores concerning classical neural

networks for image segmentation. However, the QIS-Net presented one main drawback,

it requires a qubit per pixel, which results prohibitive because quantum devices (and

simulators) have a limited number of qubits.

To deal with the aforementioned pitfall, a hybrid model has been proposed by Iyer

et al. [2020], that classified pigmented skin lesions employing a variational classifier,

extracting a feature descriptor from a classical neural network that feeds a 2-qubit

quantum circuit to obtain the two predicted labels: melanoma or melanocytic nevi.

Similarly, Sleeman et al. [2020] introduced a hybrid method connecting a classical

convolutional autoencoder to a quantum Restricted Boltzmann Machine. This hybrid

autoencoder algorithm showed competitive results using two representative datasets,

the Modified National Institute of Standards and Technology (MNIST) [LeCun et al.,

1998] and Fashion-MNIST [Xiao et al., 2017]. Henderson et al. [2020] introduced a new

type of quantum convolution layer that transforms the data using several quantum

circuits seen as filters, like a classical convolutional layer. Specifically, the quantum

layer is the first transformation, and the remaining architecture on top is like a classical

CNN. Such a work showed that the CNN disposing of a quantum layer had higher test

accuracy using the MNIST [LeCun et al., 1998] dataset.

Moreover, Mari et al. [2020] introduced a hybrid transfer learning framework. In this

method, a quantum circuit is connected at the top of a pre-trained classical CNN focused

on image recognition (Hymenoptera subset of ImageNet and Canadian Institute For

Advanced Research (CIFAR)-10 datasets Krizhevsky [2009]). Herein, the classical layers

and the quantum circuit parameters were jointly trained to simplify the quantum

encoding and decoding phases. In such a way, Acar and Yilmaz [2021] employed this

hybrid transfer learning framework to perform COVID-19 detection by using a few

training images, achieving higher accuracy rates than traditional methods. In summary,

such a hybrid network evidenced a solid potential of quantum computing for image

classification in small training datasets; this was the primary assumption in designing

this study.
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4.3 | Hybrid Classical-Quantum Convolutional Neural

Network

This chapter proposes a Hybrid Classical-Quantum Network (H-CQN) for stenosis

detection in XCA images. This hybrid approach was first introduced by Mari et al.

[2020], consisting of a classical network, henceforth a backbone network, an embedding

layer, a Quantum Network (QN), a decoding layer, and a classical SoftMax layer, as

shown in Figure 4.2. Beneath the discoveries of the previous chapter, where the best

network was a trimmed ResNet50 as a backbone network, the family of the ResNet

was explored, including smaller models, such as ResNet18 and ResNet34. Furthermore,

since the QN size depends on the number of features to be processed, a Distributed

Variational Quantum Circuit is proposed to keep small quantum circuits.

Figure 4.2: Proposed Hybrid Classical-Quantum Network. This network comprises five main
components: a pre-trained classical network, an embedding layer, a Quantum Network, a
decoding layer, and a classical SoftMax layer.

4.3.1 | Quantum Network

Analogously to a classical layer, a quantum circuit contains a set of quantum gates

whose parameters can be learned to extract discriminant features from an input.

Thereunto, a Quantum Layer can be defined as:

L(|Ψð , θ) : |Ψð →
∣

∣Ψ′
〉

= C(θ) |Ψð , (4.7)

where |Ψð and |Ψ′ð are the input and output quantum state, respectively, C is the

quantum circuit defined by Equation (4.5), and θ is the set of parameters of the layer.

Since the QN size depends on the number of qubits required by the input state,

using a more flexible quantum network is convenient. For such a reason, r-independent

Variational Quantum Circuit (VQC) operates a Distributed Variational Quantum Circuit

(D-VQC) that distributes the data among them. Through this strategy, there is no
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tangible wire connecting the circuits. Following this idea, let n be the size of the input

quantum state |Ψð, a quantum layer with D-VQCs is formally described as:

L(|Ψð , θ) : |Ψð →
∣

∣Ψ′
〉

=
r
⊎

i

Ci(θi) |Ψið , (4.8)

where
⊎

represents the concatenation operator that stacks the output state of each

independent VQC in a single vector. Notice that each sub-state |Ψið has n
r qubits, as

seen in Figure 4.3, where the inputs are split into two independent 2-qubit VQC instead

of a single 4-qubit quantum circuit per layer.

L(1)

|ψ1ð
C(1)1 (θ

(1)
1 )

|ψ2ð

|ψ3ð
C(1)2 (θ

(1)
2 )

|ψ4ð

L(2)

C(2)1 (θ
(2)
1 )

|ψ′1ð

|ψ′2ð

C(2)2 (θ
(2)
2 )

|ψ′3ð

|ψ′4ð

Figure 4.3: Quantum Network employing layers with a D-VQC. Each quantum layer, L(q),

is divided into two independent quantum circuits C(q)i of 2-qubits, each parameterized by their

corresponding weights θ
(q)
i , i ∈ (1, 2). ψi is the i-th input qubit, and ψ′i its corresponding output

qubit.

Particularly, two types of VQCs were employed: a 2-qubits and a 4-qubits circuit.

Therefore, a VQC of qi-qubits is defined as:

C = K

qi
⊗

k=1

Ry(θk), (4.9)

where K is obtained from the entangling unitary operation made of CNOT gates over

each consecutive couple of qubits. Thereby, K is defined as follows:

K = I{k, k + 1} ¹ CNOT, ∀k ∈ qi (4.10)

where I is the identity matrix, and the indices {k, k + 1} denote the consecutive rows

of the matrix, indicating the qubits to perform the CNOT gate. Figure 4.4 shows the

architecture details of the 2-qubit and 4-qubit VQCs analyzed in this study.
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|ψ1ð |ψ′1ð

|ψ2ð |ψ′2ð

Ry(θ1)

Ry(θ2)

(a)

|ψ1ð |ψ′1ð

|ψ2ð |ψ′2ð

|ψ3ð |ψ′3ð

|ψ4ð |ψ′4ð

Ry(θ1)

Ry(θ2)

Ry(θ3)

Ry(θ4)

(b)

Figure 4.4: VQC configurations used in the proposed quantum network architecture. a) 2-qubit
VQC. b) 4-qubit VQC.

4.3.2 | Encoding and Decoding Layers

In order to operate a quantum circuit and, consequently, a quantum network, it is

paramount to encode classical data into quantum data. For example, to map classical

data onto a quantum network, a real vector x ∈ R
n must be embedded in a quantum

state |Ψxð.
Let E(x) be the encoding operator; hence, the encoded quantum state is obtained by:

E : x→ |Ψxð = E(x) |Ψ0ð , (4.11)

where |Ψ0ð is an initial state (e.g., the ground state |0ð¹n). The encoding

determines how many qubits are required in the quantum circuit. Different encoding

strategies can be found, such as threshold encoding [Henderson et al., 2020], angle

encoding [Stoudenmire and Schwab, 2016], and amplitude encoding [LaRose and Coyle,

2020]. Given its simplicity, angle encoding is the most widely used encoding approach,

where single-qubit rotation gates encode the classical input. Each element of the input

determines the angle of the rotation gate (e.g., an RY rotation gate). As such, this

approach requires n qubits to encode n input variables and can be defined as:

|Ψxð =
n
⊗

i=1

R(xi) |Ψ0ð , (4.12)

where R is a rotation matrix, and xi is the i-th element of x.

The encoding step is usually applied to the initial state of the Hadamard gate H,

leading to a uniform superposition state as follows:

|Ψxð =
n
⊗

i=1

R(θi)(H |Ψ0ð). (4.13)
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Notice that θi is the rotation angle of the gate, and x is the output from an arbitrary

pooling layer of a CNN; hence, to make a proper rotation, a base amplitude was defined

and scaled by a normalized value of xi. Accordingly, θi was obtained by:

θi =
1
2

πx̂i, (4.14)

where x̂i ∈ x̂ is computed as:

x̂ = tanh
(

»
x

||x||2

)

, (4.15)

where » is a regularization parameter to control the saturation interval of the hyperbolic

tangent (tanh) function [Latha and Thangasamy, 2011], and x is the feature vector to be

encoded. By doing so, the feature vector lies on a hypersphere of radius ». Besides, the

value of » can be trained within the optimization process.

Finally, in the decoding stage, m f n qubits are measured in the output quantum

state |Ψ′ð by a given local observable A, for instance, the Pauli operator ÃZ. Variance

and expected value are examples of the most common observables. Measurements can

be made globally, where all qubits are measured, or locally, where only a few qubits

are measured individually or in pairs. In such a way, the decoded data can be obtained

through repeated measures such as:

M :
∣

∣Ψy

〉

→ y =< Ψy|A¹m|Ψy > . (4.16)

4.3.3 | Classical-Quantum Network

Since the input and output of a quantum network are classical values, all the encoding,

transformation, and decoding can be defined as:

Q(x; θ) : x ∈ R
n → y ∈ R

m =M◦ C ◦ E , (4.17)

where the parameters θ can be updated using optimization algorithms.

In a deep learning context, Q(x; θ) can be seen as a layer in a deep neural

network [Henderson et al., 2020]. Furthermore, it can be embedded in a classical CNN

as follows:

N = L(x(l), θ
(l)) ◦ L(x(l−1), θ

(l−1)) ◦ · · · ◦ L(x(1), θ
(1)), (4.18)

where each layer L(x(i), θ
(i)) is a classical or a quantum layer.

Since real quantum computers provide minimal qubit circuits (e.g., two or four-qubit

systems), using the raw images to fit directly into a quantum network remains

intractable. As such, in this work, the QN was taken as an architectural unit designed
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to improve the final feature representation of a classical CNN. Let x ∈ R
c be the

GAP output of the last convolutional layer of the CNN. This feature map captures

channel-wise information about the whole network. Then, a classical linear layer maps

the feature vector into a squeezed vector with a reduction ratio of r. This vector is

then used as input for the quantum network. Therefore, the reduction layer is formally

described as

Fsq(x) : x ∈ R
c → x ∈ R

c
r = Wx + b, (4.19)

where W ∈ R
c× c

r is a and b ∈ R
c
r is the bias vector. Finally, a classical classification layer

using a SoftMax activation function retrieved the class probabilities. Figure 4.2 shows

an overview of the squeeze and encoding process to map classical to quantum data.

Figure 4.5: Squeeze, scaling, and angle encoding process in order to map the classical feature
vector into a quantum network.

4.4 | Results and Discussion

4.4.1 | Implementation Details

All the models were trained employing the SGDM optimizer with a learning rate of

10−3 and a momentum of 0.9. The models were configured with a batch size of 32 and

trained for 100 epochs minimizing the Cross-Entropy Loss. If the validation loss is not

improving during 20 epochs, the learning rate is decreased by
√

0.1. The models were

implemented using the Pytorch and the Pennylane framework, and the experiments ran

on Google’s cloud servers, including a Tesla P4 GPU with 2560 CUDA cores and 8 GB

of RAM.
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Table 4.2: ResNet ablation study for quantum-transfer learning. The optimal configuration is
selected such that the validation loss is minimized. The number of parameters is given in Millions
(M). The mean and standard deviation for the validation loss are shown.

Backbone #-Qubits #-Quantum Best Parameters

Network per circuit Circuits Validation Loss [M]

ResNet18

2

1 0.3247 (± 0.0436)

11.18
2 0.6420 (± 0.0334)

3 0.6240 (± 0.0195)

4 0.6349 (± 0.0197)

4

1 0.2818 (± 0.0952)

11.18
2 0.6426 (± 0.0193)

3 0.6270 (± 0.0186)

4 0.5887 (± 0.0258)

ResNet34

2

1 0.2899 (± 0.0706)

21.29
2 0.6065 (± 0.0315)

3 0.6085 (± 0.0339)

4 0.6195 (± 0.0104)

4

1 0.3480 (± 0.0751)

21.29
2 0.6346 (± 0.0263)

3 0.6528 (± 0.0435)

4 0.6371 (± 0.0112)

4.4.2 | Ablation Study

In order to select the best performance Classical-Quantum model, an ablation study

is first conducted on an ideally balanced dataset employing the ADSS dataset

(see Section 1.2), keeping only a total of 250 real XCA image patches of size 32 × 32

pixels in grayscale, with 125 patches identified with stenosis and 125 with no stenosis.

Additionally, the z-score normalization was performed, changing the image range to

[0, 1] and applying the ImageNet mean µ = [0.485, 0.456, 0.406]T and standard deviation

Ã = [0.229, 0.224, 0.225]T. The dataset was split in a stratified manner into a training and

testing set, each with 125 images. The training subset was additionally partitioned into

5-fold for cross-validation.

The pre-trained model on the ImageNet dataset ResNet18 and ResNet34 were

employed as backbone networks. Then, different Quantum Networks configurations
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were evaluated, including two and four qubits circuits. It is important to point out that

the ResNet18 has 11.18 M of parameters and the ResNet34 has 21.29 M. The Quantum

Network only contains c
r parameters, therefore # Qubits × # Quantum circuits, which

represents a slight increase in the number of parameters. The model with the best

validation loss was selected for the upcoming experiments employing the unbalanced

ADSS dataset. Particularly, for the ResNet18, the configuration with a single quantum

circuit with four qubits achieved the lower loss, and for the ResNet34, the two-qubit

single quantum circuit, as shown in Table 4.2.

4.4.3 | Stenosis Classiücation Performance Comparison

The proposed hybrid classical-quantum network approach aims to enhance the

feature representation by fine-tuning a pre-trained network for stenosis detection. The

performance was evaluated on the public dataset: ADSS (see Section 1.2) with 125

positive cases of stenosis and 1,394 negative cases of size 32× 32, employing the best

models obtained from the ablation study. Also, the hybrid classical-quantum networks

were compared against their classical version, using pre-trained and scratch models.

A 5-fold cross-validation technique was employed to validate the model

performance. Numerical results are shown in Table 4.3. The stenosis classification results

showed that the pre-trained classical network results improved substantially when

the quantum module was employed. For example, the Quantum ResNet18 enhances

all the evaluation metrics concerning the Vanilla ResNet18, reaching an accuracy,

sensitivity, specificity, precision, and F1-score of 0.9691, 0.7360, 0.9900, 0.8679, and

0.7950, respectively. This hybrid network setting achieved the best specificity and

precision. The Quantum ResNet34 also ameliorated the five evaluation metrics. With

the top accuracy, sensitivity, and F1-score of 0.9730, 0.8080, and 0.8310, respectively.

The proposed Quantum ResNet18 obtained the second-best accuracy, sensitivity, and

F1-score. Notice that the Quantum ResNet18 requires 11.18 M of parameters and 21.29 M

by the Quantum ResNet34, which is almost a 2x smaller model. The vanilla models

trained from scratch surpassed the performance of the quantum models. However, they

do not achieve competitive classification rates.

4.4.4 | Class Activation Maps Visualization

Figure 4.6 presents the GradCAM outcome comparing the Vanilla ResNet18 and the

Quantum ResNet18 for some challenging test XCA images showing non-stenosis and

stenosis cases in the first and third rows. Similarly, Figure 4.7 shows the GradCAM

43



Chapter 4. Hybrid Classical-Quantum CNN 4.4. Results and Discussion

Table 4.3: Classical-Quantum Transfer Learning classification performance. The mean and
standard deviation of each metric are shown.

Model Pretrained Accuracy Sensitivity Specificity Precision F1-score

Vanilla ResNet18

:
0.9507 0.6560 0.9771 0.7205 0.6844

± 0.0055 ± 0.0742 ± 0.0049 ± 0.0350 ± 0.0453

6
0.9651 0.6960 0.9892 0.8583 0.7646

± 0.0064 ± 0.0784 ± 0.0051 ± 0.0571 ± 0.0507

Quantum ResNet18

:
0.9211 0.3600 0.9713 0.5255 0.4221

± 0.0170 ± 0.1431 ± 0.0093 ± 0.1334 ± 0.1329

6
0.9691 0.7360 0.9900 0.8679 0.7950

± 0.0064 ± 0.0697 ± 0.0027 ± 0.0322 ± 0.0483

Vanilla ResNet34

:
0.9507 0.6240 0.9799 0.7444 0.6745

± 0.0036 ± 0.0599 ± 0.0074 ± 0.0573 ± 0.0224

6
0.9671 0.7600 0.9857 0.8420 0.7901

± 0.0029 ± 0.0839 ± 0.0082 ± 0.0863 ± 0.0250

Quantum ResNet34

:
0.9151 0.5520 0.9477 0.6990 0.5358

± 0.0654 ± 0.2352 ± 0.0850 ± 0.2190 ± 0.1738

6
0.9730 0.8080 0.9878 0.8572 0.8310

± 0.0032 ± 0.0392 ± 0.0029 ± 0.0288 ± 0.0220

for the Vanilla ResNet34 and the Quantum ResNet34. The test images include

high-contrasted background, blood vessel bifurcations, and multiple blood vessels, each

of different widths. It is observed that high-intensity regions (red color) focused on a

background region in the Vanilla models, while the Quantum models set great attention

over blood vessel regions. Moreover, the Quantum models correctly classify challenging

test images (see first positive image). However, in both cases (classical and quantum),

the configurations were unable to classify as non-stenosis an XCA image with multiple

blood vessel bifurcations (see seventh negative image) and as a stenosis case for an

XCA image with a severe blood flow reduction (see fourth positive image). Also,

the Quantum ResNet18 could locate high-attention regions over blood vessel pixels

in negative stenosis cases but not the Quantum ResNet34. These visual examinations

provide valuable information about the localization improvement of features with the

Quantum models concerning their classical configuration.
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(a)

(b)

Figure 4.6: Hybrid Classical-Quantum Transfer Learning GradCAM (a) Vanilla ResNet18 (b)
Quantum ResNet18

4.5 | Conclusion

This chapter presented a Hybrid Classical-Quantum Network for stenosis detection

in XCA images demonstrating the quantum computing potential. The framework

connects a QN plugged into a classical CNN that produces the primary features

representation. This research contributes to the QN architecture, where multiple (and

smaller) VQCs can replace a single VQC. Additionally, to facilitate overall training

convergence, a novel squeeze, scaling, and angle encoding process map the classical
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(a)

(b)

Figure 4.7: Hybrid Classical-Quantum Transfer Learning GradCAM (a) Vanilla ResNet34 (b)
Quantum ResNet34

feature vector into a quantum network. This proposed approach bound the input

features of the QN, avoiding and controlling saturation by a smoothing parameter »

that was learned during the optimization process. Numerical results demonstrate that

the proposed hybrid model significantly improved the detection performance when

the CNN sub-module was pre-trained with the ImageNet dataset. Concerning the

classical transfer learning approach, the quantum models obtained the best evaluation

metrics, with a significant boost in the sensitivity and F1-score, both up to 4%. Also, the

GradCAM technique was applied to obtain a heat map of the regions that have more
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influence in the classification process. This visualization reveals that if the high attention

region is mostly on background pixels, the network misclassifies the input XCA image.

Furthermore, the proposed approach can be easily customized and integrated into any

CNN architecture.
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5

Generative Model for Coronary
Angiography Stenosis cases

“Victories over ingrained patterns of thought are not won in a day or a

year."

— Isaac Asimov, The Naked Sun

5.1 | Mathematical Foundations

Given a finite set of samples x ∈ X ∼ P(X) the goal of a generative function G(θ) is

to learn a set of parameters θ such that unlimited synthetic samples x̃ ∼ P(X̃) can be

generated. Another way to state this goal is that an optimal θ needs to be found such

that P(X̃) ≈ P(X). In these settings, the generator needs to be trained to minimize a

distance D between real and synthetic data as follows:

D = min
θ

d(P(X), P(X̃)), (5.1)

where d(·) is a similarity metric.

In order to represent the marginal distribution P(X̃) it is important to have

generative models of great capacity so no single expression defines it. However, it can

be encoded in two main directions. One option is an explicit density estimation, where

explicitly define and solve for P(X̃) in a sequential mode, which results in computational

slowness, i.e., fully visible belief network and variational autoencoders. The second

option is an implicit density estimation, such that a model learn P(X̃) without explicitly

defining it, i.e., Generative Stochastic Networks and Generative Adversarial Networks.

However, the generator can generate similar-looking samples from the same data mode.
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Instead of working in the distribution space, another option exists where the feature

space is approximated. Feature space-based generative model defines a function family

g(θ) ∈ G(θ) that explicitly and efficiently generates and refines synthetic samples using

prior modeling information about the samples X, i.e., curve modeling. In this way, the

generative model minimizes a distance D between real and synthetic feature space such

as:

D = min
θ

d(X , X̃ ), (5.2)

where d(·) is a distance function.

In the deep learning context, the feature space is computed employing a CNN, as

illustrated in Figure 5.1.

Figure 5.1: Feature based generative model. The generative model G(θ) minimizes a distance D
between real X and synthetic feature space X̃ . The same CNN computes the feature space.

5.2 | Related Work

Only a handful of generative models have been explored in the medical image

domain in the literature. For instance, Cohen et al. [2018] discussed the injected bias

in Generative Adversarial Networks (GANs) and how distribution matching losses

can lead to the misdiagnosis of medical conditions due to the lack of criteria for

ensuring or preserving intra-operative content. Thus, the class labels might not be

preserved. In this wise, Gil et al. [2019] proposed a multi-objective optimization

strategy for a CycleGAN, ensuring a mapping between synthetic images and the real

domain, preserving anatomical content. This approach has been applied to simulate

intra-operative bronchoscopic videos and chest CT scans from simple graphical

primitives that generate sketches. Following this research direction, Tetteh et al. [2020]

presented a neural network to generate 3-D angiographic volumes, which implemented

a simulator of a vascular tree that followed a generative process inspired by the biology
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of angiogenesis (a model that mimics arterial growth). This approach simulates a

physiologically plausible blood vessel segment as a cylinder in 3D space that includes

different segment types, such as root, bifurcation, and leaves. Additionally, different

background and foreground intensity patterns with different signal-to-noise ratios

where evaluated in the generative process.

On the other hand, classical machine learning techniques have also been explored.

Keelan et al. [2016] developed a method to generate 3D coronary arterial trees based

on the tissue structure and the entry point positions of the largest arteries. The

parameters associated with an arbitrary tree configuration define a total cost function

which gives a numeric measure of the fitness of a given tree. The optimized blood

vessels were obtained using a simulated annealing-based approach and validated

through comparison with morphological data from the porcine arterial tree. Also, Jaquet

et al. [2018] proposed a patient-specific hybrid image-based and synthetic geometric

model for generating cardiac vascular trees, emerging from actual vascular tree models

segmented from CTTA images. The model consisted of a multiple tree angiogenesis

simulation governed by minimizing the total tree volume with flow-related and

geometrical constraints. Antczak and Liberadzki [2018] introduced a simplified X-ray

coronary blood vessel model. A 2D image was generated based on the assumption that

a Bezier curve involving additive random noise can parameterize a small blood vessel

region. Under this approach, the generated patches can include stenosis areas according

to the curve width. However, the curves are drawn with independent parameters,

generating images with non-vascular structures and non-visible stenosis areas due

to curves overlapping. Thus, bifurcation structures are not guaranteed. Nevertheless,

studying bifurcations in the coronary vascular tree is crucial to accurately classify and

localize coronary bifurcation lesions [Antoniadis et al., 2015; Chang et al., 2019; Chiastra

et al., 2016; Iakovou et al., 2011]. For such a reason, it is paramount to model bifurcations

and stenotic regions.

5.3 | Hierarchical Bezier-based Generative Model

A Hierarchical Bezier-based Generative Model (HBGM) is presented in this chapter.

Small regions of XCA artery blood vessels are modeled as grayscale images representing

a set of curves of several lengths, drawn on a gradient background, and noise-distorted.

Notice that no previous information on real XCA is used. Moreover, two constraints

are employed to accept a generated patch. First, the ratio of blood vessel pixels

concerning the image size must be above a threshold. Secondly, for patches where
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stenosis is created, the ratio of stenosis blood vessel pixels must be greater than a fixed

value. As such, the proposed generative model creates images including blood vessel

structures with stenosis regions, containing 10k images, 50% with stenosis, and 50%

with no-stenosis cases. The generative process is divided into three steps: drawing area

and gradient background generation, Bezier curve parametrization, and Bezier curve

drawing.

5.3.1 | Drawing Area and Background Generation

Let I ∈ R
w×h be the gray-scale patch generated with a given width w and height h,

respectively. Firstly, a white drawing area or canvas DA ∈ R
3w×3h is created as

DA = 255 J, (5.3)

where J ∈ R
3w×3h is an all-ones matrix. Then, the radial gradient background is

generated over the DA, were the intensity of each pixel u = (i, j)∀i ∈ [0, w], j ∈ [0, h] is

given by

DA(u) = ³ (1− d(u, cg)) + ´ d(u, cg), (5.4)

with cg as the center of the radial gradient, ³ = rand(0, a) and ´ = rand(a, b) with

0 < a < b f 255 are the lower and upper pixel intensities, and d(u, cg) is a distance

between the current position and the gradient center.

In this manner, let U be a uniformly distributed random variable in the interval [0, 1],

then a uniformly distributed function in the interval [a, b], here denoted as rand(a, b),

can be given by

rand(a, b) = a + (b− a)U. (5.5)

Thus, the radial gradient background is generated, centered as:

cg = [rand(−w, 2w), rand(−h, 2h)]. (5.6)

The distance d is defined by:

d(u, cg) =
1
2
|u− cg|√
w2 + h2

, d ∈ (0, 1). (5.7)

5.3.2 | Bezier Curve Parametrization

Under the prior assumption that a Bezier curve can parameterize a small region of a

single blood vessel [Antczak and Liberadzki, 2018], an arterial vessel structure can be

defined as a central (parent) Bezier curve B(p). Then this parent curve can hold a subset
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Figure 5.2: Cubic Bezier curve example. Four control points define this Bezier curve. Points P
p
0

and P
p
3 are the ends of the curve, and points P

p
1 , and P

p
2 determine the shape of the parent curve.

Point Pc
i are the points of the child curve.

of c Bezier curve children B(c) = {B(c)
1 , B

(c)
2 , · · · , B

(c)
c }. Moreover, it holds that any child’s

width is smaller than their respective parent’s. In such a way, a more complex vascular

model can be accomplished.

Any Bezier curves can be expressed as

B(t) =
n

∑
i=0

(

n

i

)

(1− t)n−itiPi, 0 f t f 1 (5.8)

where (n
i ) is the binomial coefficients, n is the curve degree, t is the number of points

that a Bezier curve was discretized (e.g., if ts = 100, the curve is constructed by the

values t = [0, 0.01, 0.02, · · · , 0.98, 0.99, 1]T, and Pi are the control points, were the first

and the last control points, P0, Pn, are always the curve’s endpoints. Thus, the parent

control points are randomly chosen to lie inside the canvas region, given by:

P(p) =













rand(−w, 2w) 0

rand( 0, w) rand( 0, h)

rand( 0, w) rand( 0, h)

rand(−w, 2w) h













, (5.9)

where the control points P
(p)
1 and P

(p)
2 determining the shape of the curve. Then, it

follows that the control point P
(c)
0 of any child curve is subject to lie on the parent curve

B(p), such as:

P
(c)
0 = [rand(B

(p)
0 , B

(p)
t )], (5.10)

Figure 5.2 shows a cubic Bezier curve with one parent and one child Bezier curve,

respectively.
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5.3.3 | Bezier Curve Drawing

The widths for each Bezier curve are given by

W(k)=







ω max
(

0.3, 1.0−10N
(

k, µ, Ã2
))

if stenosis (+)

ω otherwise,
(5.11)

where N (t, µ, Ã2) is a normal random variable with mean µ and variance Ã2 for a real

number k ∈ [0, ts], and ω is a basic width (given in pixels). Notice that if a curve, ergo,

a blood vessel, is constructed with a stenosis region, its width is affected by a stenosis

factor. Therefore, µ controls the position of the stenosis region center and Ã2 the stenosis’

length, as shown in Figure 5.3.

Figure 5.3: Parameters µ and Ã2 affect the stenosis position and length. From top to bottom:
µ = {40, 50, 60} and from left to right: Ã2 = {2, 4, 8}. The generated image is shown with the
corresponding segmentation and stenosis location ground-truth.

During image acquisition and transmission through analog circuitry in conventional

X-ray techniques, the Additive White Gaussian Noise (AWGN) is the most prevalent.

Moreover, X-ray imaging systems manifest blur that reduces the sharpness of image

edges and the overall contrast. The image can also exhibit the effects of Poisson,

Impulsive, and Quantization noises. However, these are rare occurrences related to

faulty device manufacturing [Lee and Kang, 2021; Manson et al., 2019; Mohan et al.,
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2020]. Therefore, AWGN and Gaussian blur are applied to the generated image

to simulate the image acquisition process. Algorithm 1 summarizes the proposed

generative framework.

Algorithm 1: Hierarchical Bezier-based Generative Patch Model
Data: Patch size (w, h), number of patches N, background limit intensities (a, b),

parent vessel basic width ω, number of child’s vessels C, stenosis case
(True or False), stenosis position µ, stenosis length Ã.

Result: Artificial XCA dataset
1 for n← 0 to N do

2 Create a canvas DA as (5.3);
3 Draw the gradient background such as (5.4);
4 Generate a parent Bezier curve B(p) following (5.8) with control points given

by (5.9);
5 Draw the curve B(p) with a width given by (5.11);
6 for c← 0 to C do

7 Generate each child Bezier curve B
(C)
c following subject to the control

point P
(c)
0 lie in B(p);

8 Draw the curve B
(C)
c with a width given by (5.11);

9 end

10 Add white noise in the image;
11 Add Gaussian Blur in the image;
12 end

5.3.4 | Generative Model Performance Measure

The objective of a generative model is to produce data that matches the observed (real)

data. Some widely used metrics in GANs [Borji, 2019] can be exploited to measure the

distance between the feature maps of observing real-world data X and the generative

model X̃ . The more relevant is the Average Log-likelihood [Goodfellow et al., 2014],

the Wasserstein Critic (WC) [Arjovsky et al., 2017], the Inception Score (IS) [Salimans

et al., 2016], and the Fréchet Inception Distance (FID) [Heusel et al., 2017]. Each one

has its drawbacks. For instance, the Average Log-likelihood metric requires a vast

number of samples to approximate the true log-likelihood. It also fails when the data

dimensionality is high. The WC distance is not a smooth function, requiring high

processing time to be computed. The IS is an asymmetric measure that only considers

P(X ) and ignores P(X̃ ). The FID assumes that features are of Gaussian distribution,

which is often not guaranteed; however, it performs well in terms of discriminability,
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robustness, and computational efficiency [Dimitrakopoulos et al., 2020; Liu et al., 2020;

Zhang et al., 2019]. Therefore, the FID is selected as a metric for the generative model,

given that CNN conducts the classification process.

The FID requires a feature function ϕ (by default, the activation is from the

penultimate pooling layer of a pre-trained Inception-v3 model) to evaluate the similarity

of real data and generated data. However, ϕ can use any pre-trained model. In this

work, ϕ is the feature vector obtained by applying a global average pooling over the

third residual block of the ResNet18 (pre-trained on the ImageNet dataset). Therefore,

an image is embedded into a vector with 256 features. These output vectors are

summarized as a continuous multivariate Gaussian; the mean and covariance are

estimated for the real XCA and the generated datasets. Thus, the FID is given by

FID(X , X̃ ) = ||µϕr − µϕg ||22 + Tr
(

Σϕr + Σϕg − 2
(

Σϕr Σϕg

)1/2
)

, (5.12)

where ϕr and ϕg are the embedding feature vectors of the real and artificial images,

with their respective means µϕr , µϕg and empirical covariance matrices Σϕr , Σϕg . Tr is

the trace of the matrix. Accordingly, a lower FID indicates a better-looking image patch;

conversely, a higher score indicates a poor-looking artificial patch.

5.4 | Results and Discussion

5.4.1 | Implementation Details

The HBGM is governed by a set of free parameters, summarized in Table 5.1. The grid

search optimization algorithm [Bergstra and Bengio, 2012] was employed to search

through the manually specified subset of the hyperparameter space of the HBGM

algorithm. A total of 10K images were selected, where the FID(X , X̃ ) < ϵ, with ϵ = 400.

Subsequently, three different ResNet models (18, 34, 50) were pre-trained using the

synthetic dataset employing the SGD optimizer with an initial learning rate of 10−2 and

a momentum of 0.9 during 500 epochs. Additionally, if the loss is not improving during

20 consecutive epochs, a learning rate decay policy was set by a factor of
√

0.1. Next,

a fine-tuning step was carried out for 100 epochs and with an initial learning rate of

10−2 for the full ADSS dataset. All the models were implemented using the PyTorch

framework, and the experiments ran on Google’s cloud servers, including a Tesla P4

GPU with 2560 CUDA cores and 8 GB of RAM.
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Table 5.1: Generative model parameters. A total of 10k images was generated, 50% with stenosis
cases and the remainder with non-stenosis.

Parameter Description Value(s)

(w, h) Patch size (32× 32)
a Gradient background lower intensity limit rand(25, 50)
b Gradient background upper-intensity limit rand(85, 105)
t Number of points for each curve 100
ω Basic width in pixels rand(1, 4)
P Number of parent’s curves rand(1, 3)
C Number of child’s curves rand(0, 3)
µ Stenosis position rand( 1

4 t, 3
4 t)

Ã Stenosis length rand(4, 8)

5.4.2 | Generative Model Performance

As expected, the FID retrieves a qualitative similarity measure between real and

artificial images. Accordingly, in evaluating each image of the BGM [Antczak and

Liberadzki, 2018], a mean FID of 92.7967 and a minimum and maximum score of

57.4544 and 376.6007 are obtained. Figure 5.4a shows the distribution of the similarity

scores given by the FID, showing a lower and upper quartile of 73.8502 and 94.0127,

respectively. Also, 1,159 of 10,000 samples have high FID values, indicating images with

a higher dissimilarity, which are shown as upper outliers in the box-plot.

Further, the proposed HBGM reached a mean FID of 84.0886, and a minimum

and maximum score of 63.7430 and 97.4983, respectively. Figure 5.4b shows the

corresponding distribution of the FID, with a lower and upper quartile of 80.2559

and 88.6376, respectively. Therefore, the proposed HBGM obtains a lower average FID,

indicating that more realistic visual images were generated.

Figure 5.5 shows a sample of the real and artificial images. Hence, the baseline

generative model creates blood vessel intersections, not bifurcations, as the proposed

generative model. Moreover, each parent blood vessel can contain c-bifurcations, being

able to model different stenosis percentages and blood vessel widths (see the third row

in Figure 5.5).

5.4.3 | Stenosis Classiücation Performance Comparison

Table 5.2 summarizes the stenosis detection results, highlighting more outstanding

metrics. The evaluated ResNet networks were trained by using four different strategies:

1. Trained from scratch: only the real XCA dataset was used to optimize a random
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(a) Baseline Generative Model. (b) Hierarchical Bezier Generative Model.

Figure 5.4: Fréchet Inception Distance (FID) distributions. (a) Baseline and (b) Proposed
Generative Models.

Figure 5.5: Generated XCA image patches with non-stenosis and stenosis. First row: real
patches, the second row: Baseline generative model patches, and third row: proposed generative
model patches. The proposed generative model creates patches with blood vessel bifurcations,
with a clearer stenosis area and blood vessels with different weights. The red arrows indicate the
stenosis case, the white ones the bifurcation points, and the green arrows the intersections of
two-parent curves. Besides, Pi represents the i-th parent curve and Pi

j the j-th child curve of the

i-th parent, respectively.

weight initialized network.

2. Pre-trained on ImageNet: a pre-trained network on the ImageNet dataset was

fine-tuned using only the real XCA dataset.

3. Pre-trained on BGM: the network was previously trained by employing the
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baseline of the artificial dataset and then fine-tuned with the real XCA images.

4. Pre-trained on HBGM: the network was previously trained by employing the

proposed artificial dataset and then fine-tuned with the real XCA images.

The fine-tuned models that employed the artificial baseline dataset show only an

improvement in sensitivity compared to the trained-from-scratch configuration. For

instance, in the ResNet18, the sensitivity obtained a gain from 0.6560 to 0.7280; in the

ResNet34, from 0.6240 to 0.6800, and for the ResNet50, from 0.2480 to 0.7120. Precision

and F1-score were also improved; reaching 0.5002 and 0.5851, respectively.

On the other hand, when the proposed synthetic dataset was employed to pre-train

the models, the best sensitivity and F1-score were attained for the ResNet18, with

0.9200 and 0.7931, respectively. Thus, boost of 23% and 3% for each metric concerning

the ImageNet pre-trained configuration. The ResNet18 pre-trained with the ImageNet

achieved the best specificity (0.9892) and precision (0.8583), 2% and 16% higher than the

pre-trained with the HBGM dataset.

The best accuracy was obtained for the ResNet50 pre-trained with ImageNet, with a

0.9671; this is a 3% gain compared to the ResNet50 pre-trained with the HBGM.

The comparative analysis proved the proposed generative model efficacy as a

pre-trained dataset and as an alternative to ImageNet pre-trained models for stenosis

detection. It is noteworthy that the ImageNet dataset has 1,281,167 images that optimize

the network for 600,000 epochs [He et al., 2016]; meanwhile, the HBGM performs a

pre-training step only for 200 epochs and fine-tuning for 100 epochs.

5.4.4 | Class Activation Maps Visualization

As mentioned before, the GradCAM is a procedure that generates a coarse localization

map, highlighting the most important regions in the image for predicting a class

of interest. Figure 5.6 shows the GradCAM visualization concerning the different

ResNet18 pre-training configurations. A reasonable prediction explanation produces

discriminative visualizations over blood vessel regions. Thus, discriminative regions

were highlighted in red and those with lower contributions in purple. It can be seen

that Resnet18 pre-trained with ImageNet showed high attention regions in background

areas for negative stenosis cases.

In constrast, pre-trained with the generative model put high attention in blood

vessel regions. Moreover, for positive stenosis cases, the ResNet18 pre-trained with

the HBGM, generated higher and more refined attention maps over blood vessel

regions than the pre-trained with BGM and ImageNet. Also, the stenosis probability
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Table 5.2: Transfer Learning classification performance from generative model. ∗ represents the
proposed generative dataset. The mean and standard deviation of each metric are shown.

Model Pretrained Accuracy Sensitivity Specificity Precision F1-score

Vanilla ResNet18

:
0.9507 0.6560 0.9771 0.7205 0.6844

± 0.0055 ± 0.0742 ± 0.0049 ± 0.0350 ± 0.0453

ImageNet
0.9651 0.6960 0.9892 0.8583 0.7646

± 0.0064 ± 0.0784 ± 0.0051 ± 0.0571 ± 0.0507

BGM
0.9289 0.7280 0.9470 0.5690 0.6293

± 0.0199 ± 0.1197 ± 0.0251 ± 0.0866 ± 0.0748

HBGM∗
0.9605 0.9200 0.9642 0.6970 0.7931

± 0.0045 ± 0.0320 ± 0.0045 ± 0.0191 ± 0.0195

Vanilla ResNet34

:
0.9507 0.6240 0.9799 0.7444 0.6745

± 0.0036 ± 0.0599 ± 0.0074 ± 0.0573 ± 0.0224

ImageNet
0.9671 0.7600 0.9857 0.8420 0.7901

± 0.0029 ± 0.0839 ± 0.0082 ± 0.0863 ± 0.0250

BGM
0.9355 0.6800 0.9584 0.5949 0.6323

± 0.0103 ± 0.0980 ± 0.0077 ± 0.0514 ± 0.0646

HBGM∗
0.9539 0.8000 0.9677 0.6897 0.7407

± 0.0105 ± 0.0543 ± 0.0085 ±0.0567 ± 0.0523

Vanilla ResNet50

:
0.9204 0.2480 0.9806 0.4968 0.3162

±0.0092 ±0.1568 ±0.0058 ±0.1073 ±0.1597

6
0.9520 0.5520 0.9878 0.8016 0.6528

± 0.0049 ± 0.0531 ± 0.0018 ± 0.0285 ± 0.0440

BGM
0.9164 0.7120 0.9348 0.5002 0.5851

±0.0122 ±0.0466 ±0.0153 ±0.0465 ±0.0328

HBGM∗
0.9474 0.8400 0.9570 0.6364 0.7241

± 0.0104 ± 0.0891 ± 0.0146 ± 0.0384 ± 0.0452

for true positive cases is higher than the other pre-training strategies. Thus, a visual

and quantitative validation of the benefits of pre-training with the proposed generative

model is presented.
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5.5 | Conclusions

Herein, a Hierarchical Bezier Generative Model has been proposed to address the

problem of a small and poorly diversified database for stenosis detection in XCA

images. A large-scale labeled dataset consisting of 10k images was created using

the proposed approach. Extensive experiments showed that pre-train ResNets using

this dataset and a posterior fine-tuning with real XCA images achieved the best

overall performance on two (of five) evaluation metrics and competitive results on the

remainder. Moreover, it demonstrated the value of transferring the weights pre-trained

using a more alike (artificial) dataset instead of the ImageNet dataset for stenosis

detection tasks with only limited data available.

One drawback of the proposed generative model is that the FID between synthetic

and real data is computed after creating the dataset. This implies that the parameters

that govern the model are not optimized and were handcrafted. The generative model

is governed by a set of free parameters that control the background of the image, the

number, and the width of the Bezier curve that simulate real coronary artery vessels.

Furthermore, parameters also include settings, allowing control of the stenosis grade of

a blood vessel. At this point, the FID between the generated and the real images cannot

be controlled as a discriminator loss function in the GANs. For this reason, one future

extension of the proposed HGBM is to learn the parameters that govern the model in a

deep learning way, such as classical GAN. The HGBM only requires a handful of free

parameters compared to the millions of parameters that requires a traditional GAN.
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(a)

(b)

(c)

Figure 5.6: HBGM Transfer Learning GradCAM for Vanilla ResNet18: (a) pre-trained with
ImageNet, (b) pre-trained with BGM, (c) pre-trained with HBGM.
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6

Attention-based Convolutional Neural
Network for Stenosis Detection

“Did you ever feel . . . some sort of extra power that you aren’t using -

you know, like all the water that goes down the falls instead of through

the turbines?"

— Aldous Huxley, Brave New World

6.1 | Mathematical Foundations

State-of-the-art networks for natural image classification have recently utilized attention

mechanisms to enhance network performance [Hu et al., 2018; Wang et al., 2020;

Woo et al., 2018]. These attention mechanisms aim to improve feature map learning

by refining channel attention or spatial attention relationships between features. This

section will examine three attention modules evaluated in XCA images for stenosis

detection.

6.1.1 | Squeeze-and-Excitation Attention Mechanism

A Squeeze-and-Excitation (SE) block [Hu et al., 2018] integrates two operations,

a squeeze operation and an excitation operation, to model channel-wise feature

relationships as a gating mechanism. This allows the network to enhance hierarchical

features in a channel-wise manner. The structure of an SE block is illustrated

in Figure 6.1.
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Figure 6.1: Squeeze-and-Excitation block. The input features are recalibrated (Fscale(·, ·)) by
learnable weights (Fex(·, W)) that capture the channel dependencies (Fsq(·)).

Squeeze operation

To capture channel dependencies between the input feature maps X ∈ R
h×w×c, where

h × w is the spatial size of the features and c is the number of channels, a GAP [Lin

et al., 2013] is used. GAP calculates the global spatial information by averaging the

features across the spatial dimensions, which results in a statistic z ∈ R
c (squeeze). Each

m-element of the statistic is given by:

zm = Fsq(xm) =
1

h× w

h

∑
i=1

w

∑
j=1

xm(i, j). (6.1)

Notice that this operation is parameter-free and applies a dimensionality reduction;

thus, it reduces each feature map xm ∈ R
h×w to a single scalar value zm.

Excitation Operation

The excitation operation is designed to reduce channel-wise feature complexity and

improve generalization. To accomplish this, a simple gating mechanism g(·, W) is

applied, defined as:

s = Fex(z, W) = Ã(g(z, W)) = Ã(W2δ(W1z)), (6.2)

where Ã and δ refer to the Sigmoid and ReLU activation function, respectively, and

noticing that
c

∑
m=1

sm = 1. The gating mechanism acts as a bottleneck with two

fully connected layers W1 ∈ R
c× c

r and W2 ∈ R
c
r×c. Here, the parameter r is a

reduction ratio controlling the number of parameters of the SE block. In such a way,

a Squeeze–Excitation operation SE(·, W) : R
h×w×c → R

1×1×c can be defined as:

s = SE(X, W) = Fex(Fsq(X), W). (6.3)
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Finally, the obtained values s are used to weight the input feature maps X, resulting

in a learnable recalibration that emphasizes or ignores specific channels. The rescaling

procedure is performed by:

x̂m = Fscale(xm, sm) = smxm, (6.4)

where Fscale(xm, sm) is a channel-wise multiplication between the feature map xm ∈
R

h×w and the scalar sm.

6.1.2 | Eþcient Channel Attention

Wang et al. [2020] proposed an Efficient Channel Attention (ECA) attention mechanism

based on SE blocks without dimensionality reduction. This approach uses a local

cross-channel interaction strategy, enabling each channel of a given input feature map

X ∈ R
h×w×c to have interdependence on every other channel within a small local group.

Local Cross-Channel Interaction

Once computed the statistic vector z ∈ R
c by Equation (6.1), channel attention can be

learned by:

s = Ã (Wz) , (6.5)

where W ∈ R
c×c parameter matrix. Aiming at guaranteeing both efficiency and

effectiveness, only local cross-channel interaction is considered between zm and its k

neighbors, i.e.,

sm = Ã

(

k

∑
j=1

w
j
mz

j
m

)

, z
j
m ∈ Ωk

m, (6.6)

where Ωk
m indicates the set of k adjacent channels of zm. Furthermore, if the channels

share the same weights wm, the parameters can be reduced from ck to k. Thus, notice

that such a strategy resembles a 1D convolution operation with a kernel size of k, such

as:

s = Ã ( fconv1D(z; k)) . (6.7)

The size of the kernel is obtained adaptive and proportional to the number of channels

c as follows:

k =

∣

∣

∣

∣

log2(c)

γ
+

´

γ

∣

∣

∣

∣

odd
, (6.8)

here | · |odd indicates the nearest odd number, ´ = 1 and γ = 2. The weighting process

is carried out like the SE module, obtaining each re-calibrated channel by x̂m = smxm.
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6.1.3 | Convolutional Block Attention

The Convolutional Block Attention Module (CBAM) [Woo et al., 2018] consists of two

sub-modules, the Channel Attention Module (CAM) and the Spatial Attention Module

(SAM). Given an input feature map X ∈ R
h×w×c, CBAM generates a refined feature map

X̂ ∈ R
h×w×c by inferring attention maps along the channel and spatial dimensions.

Channel Attention Module

The CAM in CBAM is an extension of the SE module, now using a max-pooling and an

average-pooling operation to generate two spatial feature vectors: zc
max and zc

avg ∈ R
c,

respectively. Notice that zc
avg is given by Equation (6.1), such as zc

avg = Fsq(X), and each

element of zc
max by:

zm = Fmax(xm) = max
m

xm. (6.9)

These feature vectors are then passed through a shared Multi-Layer Perceptron (MLP)

network with a Squeeze-and-Excitation mechanism, with a ReLU activation function

in-between. Keep in mind that the weights of the MLP network are shared between

the two input feature vectors, allowing them to influence the channel-wise attention

weights jointly. Hence, the channel attention map sc ∈ R
c is computed as

sc = FCAM(zc
avg, zc

max, W) = Ã
(

W2 δ(W1zc
avg) + W2 δ(W1zc

max)
)

. (6.10)

It is noteworthy that the number of parameters of the CAM is the same as the SE

attention module with 2c2

r , where r is the feature reduction ratio involving the MLP.

Figure 6.2 illustrates the CAM procedure. At this stage, an intermediate refined feature

map X′ is obtained by the element-wise multiplication of the channel-wise attention

vector sc and the input feature map X, as shown in the equation below:

X′ = sc ¹ X, (6.11)

where ¹ is the Hadamard product.

Spatial Attention Module

The SAM, as shown in Figure 6.3, takes the refined intermediate features X′ as input.

First, two pooling operations are applied along the channel axis: an average-pooling and

max-pooling, which generate two 2D maps denoted as zs
avg, zs

max ∈ R
h×w, respectively.

The two maps are then concatenated along the channel axis and fed into a 2D

convolutional layer, which computes the spatial attention feature map. The equation
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Figure 6.2: Channel Attention block. The sub-module includes two pooling Fmax, Favg layers,
and a shared MLP FCAM to exploit the inter-channel relationship of the features.

for computing spatial attention is:

ss = Ã
(

fconv2D(z
s
avg · zs

max; k)
)

, (6.12)

where k is the filter size, set as k = 7× 7 by default, and · represents the concatenation

operation.

Figure 6.3: Spatial Attention block. The sub-module includes two pooling Fmax, Favg layers along
the channel axis and a 2D convolution layer to capture the spatial relationship of the features.

6.2 | Related Work

As discussed in previous chapters, different deep learning approaches have been

used to develop strategies to detect stenosis in XCA images through object-based or

patch-based models. These methods have shown notable performance; nevertheless,

object-based approaches are limited to detecting a single stenosis case in the whole
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image. Meanwhile, patch-based methodologies are restricted to detecting small stenotic

regions (i.e., based on the patch size). Moreover, both approaches take as their backbone

network architectures designed for the ImageNet dataset, changing only the head of the

model.

Additionally, to only change the top layers to match the target domain, Moon et al.

[2021] utilized a pre-trained Inception-v3 model to classify stenosis in XCA images,

but after each inception module, a CBAM is included to enhance the channel and

spatial information. Only a subset of images extracted through automatic key-frame

detection algorithms is kept to train. Next, each image feeds the attention CNN model

to classify the stenosis cases. For every key-frame, distinct types of augmentation

strategies were deployed and evaluated. Pang et al. [2021] proposed a two-stage object

detector based on a ResNet50 architecture. Firstly, the feature maps were extracted,

generating candidate boxes. Secondly, the candidate boxes were classified as stenosis

or non-stenosis, employing a multi-head attention mechanism [Vaswani et al., 2017].

Finally, feature extraction and fusion sequences were introduced to correlate the

candidate boxes from consecutive XCA frames to increase classification accuracy.

In the medical domain, different attention mechanisms have been used within the

model to improve the network capabilities. For instance, Lu et al. [2022] presented

a CAD system combined with a 3D residual region proposal network and the SE

blocks for pulmonary nodule detection in CT images. This modified model can detect

more suspicious regions or nodules than vanilla models. Similarly, Gong et al. [2019]

proposed a novel approach employing a 3D CNN based on SE and residual networks

for pulmonary nodule detection. Specifically, a 3D region proposal network with a

U-Net-like structure was designed for detecting pulmonary nodule candidates. Then,

for the subsequent false-positive reduction, the classifier model was employed to

discriminate the true nodules from candidates accurately. In addition, the classification

performance was boosted by adaptively recalibrate the channel-wise residual feature

responses. Also, Cao et al. [2022] introduced a semantic segmentation deep glioma

model. The model used an encoder-decoder structure, where the encoder part uses an

improved Xception backbone network. In the improved Xception backbone network,

CBAM is added after each convolutional layer, thereby improving the segmentation

accuracy.
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6.3 | Lightweight Residual Attention Networks

The proposed Lightweight Residual Attention Networks (LRA-Nets) consist of SE,

ECA, or CBAM attention layers and Depthwise Separable Convolution (DSC) with

residual connections layers, as illustrated in Figure 6.4. The network follows the

structure of ResNet, where residual connections accelerate the training efficiency and

resolve the gradient degradation problem. Moreover, a pruning strategy was employed

in the convolutional layers by removing kernels. Thus unnecessary parts of neural

networks are discarded.

Figure 6.4: Attention ResNet. A Residual block within an attention module (AM) enhances the
feature maps of the block.

6.3.1 | Depthwise Separable Convolution

Let fconv(·, W) : R
h1×w1×c1 → R

h2×w2×c2 be a standard convolution operation (without

dilation) that takes as input Xin and produces Xout parameterized by the kernel W ∈
R

k×k×c1×c2 computed as:

xout
c2

(i, j) = fconv(x
in
c1

, W) =
k

∑
u=1

k

∑
v=1

c1

∑
m=1

Wm(i, j) ∗ xin
m (i + u, j + v), (6.13)

where ∗ represents the convolution operation and k the filter size, DSC factorizes a

standard convolution by two independent convolutions: (1) depthwise convolution and

(2) point-by-point convolution (1×1 convolution), as shown in Figure 6.5. The depthwise

convolution fdw−conv(·, W) : R
h1×w1×c1 → R

h1×w1×c1 decoupled the input feature map

from its channels, applying a single filter to each input channel, as follows:

xdw
c1
(i, j) = fdw−conv(x

in
c1

, W) =
k

∑
u=1

k

∑
v=1

Wm(i, j) ∗ xin
m (i + u, j + v). (6.14)
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Then, the pointwise fpw−conv(·, W) : R
h1×w1×c1 → R

h2×w2×c2 convolution combines

the features of each channel through a 1× 1 standard convolution, such as:

xout
c2

(i, j) = fpw−conv(x
dw
c1

, W) =
c1

∑
m=1

Wm ∗ xdw
m (i, j). (6.15)

This factorization reduces the number of parameters and computation operations.
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Figure 6.5: Depthwise Separable Convolution. A depthwise convolution and a point-by-point
convolution factorize a standard convolution.

6.3.2 | Pruning Convolutional Kernels

Kernel pruning methods have been proposed to speed up (simplify) pre-trained CNNs

models [Li et al., 2019; Osaku et al., 2021]. However, their effectiveness tends to be

below the original one and requires additional fine-tuning steps. In this sense, it is

straightforward to prune a scratch model where the channel and spatial relationship

have not been learned yet.

Let be a convolutional layer that uses the filters W ∈ R
k×k×c×N . Here, c is the number

of input feature maps, N is the number of filters (i.e., the number of output feature

maps), and k are the height and width of a (square) filter, respectively. A simple but

effective kernel pruning strategy is to reduce the number of filters by a ratio p g 1

such that N′ = N
p . For instance, in a ResNet18 with 64, 128, 256, and 512 kernels per

residual block, each residual block will be reduced equally by a pruning ratio p in order

to maintain their baseline structure employed for the ImageNet challenge.

70



Chapter 6. Attention-based CNN 6.4. Results and Discussion

6.4 | Results and Discussion

6.4.1 | Implementation Details

The proposed networks took as a backbone network the ResNet18, which is mainly

characterized by consisting of one 7× 7 convolutional layer, with a stride of two pixels,

followed by a max-pooling of size two; four residual blocks within 64, 128, 256, and

512 kernels, respectively, come after. Then, redundant kernels were removed in the

convolutional layers to obtain a smaller model. Similarly, the first convolution layer

kernel was changed for a 3× 3, and the first max-pooling was removed.

The training process employs the Stochastic Gradient Descent with Momentum

(SGDM) optimizer with a learning rate of 10−3 and a momentum of 0.9. The model

was trained with a batch size of 32 for 100 epochs minimizing the Cross-Entropy Loss.

The model was implemented using the PyTorch framework, and the experiments ran

on Google’s cloud servers, including a Tesla P4 GPU with 2560 CUDA cores and 8 GB

of RAM.

Moreover, k-fold cross-validation (5-fold) was set following an 80:20 ratio from the

validation subset. The validation step allows for saving the best weights during the

training process.

6.4.2 | Ablation Study

In order to select the dilation ratios for the attention modules and the pruning ratio,

an ablation study is first conducted using the Tree-structured Parzen Estimator (TPE)

algorithm [Bergstra et al., 2011, 2013], minimizing the validation Cross-Entropy Loss of

the first fold.

Table 6.1 summarizes the obtained LRA-Net architectures parameters. Notice that

these models employed the DSC and the pruning kernel strategy. This table shows that

the three attention-based models require a pruning ratio of two; thus, the number of

kernels was reduced by 50%. Also, each model’s default attention ratio (16) from the

vanilla attention models is reduced. In such a way, from more than 11 M parameters of

the vanilla attention ResNet18 models, the Light-weighted versions are 27.5x smaller,

with around 0.4 M parameters.

6.4.3 | Stenosis Classiücation Performance Comparison

The proposed LRA-Net architectures drastically reduce the number of parameters of

the networks and boost the performance metrics when trained from scratch. First, a
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Table 6.1: ResNet18 attention ablation study. The L before the attention module name (i.e.,
LECA) stands for Lightweight, that is the proposed model. n/a stands for Not Applicable.

Attention Attention Ratios Pruning ratio Best Val loss Parameters [M]

Vanilla ECA n/a n/a – 11.18

Vanilla SE 16, 16, 16, 16 n/a – 11.27

Vanilla CBAM 16, 16, 16, 16 n/a – 11.27

LECA n/a 2 0.0716 0.381

LSE 13, 7, 2, 14 2 0.0807 0.434

LCBAM 12, 14, 3, 9 2 0.0902 0.434

comparative study evaluated vanilla attention ResNet models trained from scratch

and pre-trained with the ImageNet dataset. Moreover, the best models obtained from

the ablation study were compared against vanilla attention ResNet models trained

from scratch. All the experiments employed the DDSS dataset containing 125 positive

stenosis cases and 1,394 negative cases of size 32× 32. Also, a 5-fold cross-validation

strategy was applied.

Tables 6.2 to 6.4 show the comparative study for vanilla attention models when the

backbone network was taken pre-trained with the ImageNet and trained from scratch.

In these comparative studies, different reduction ratios were evaluated for the attention

modules, keeping the same ratio from all the modules as typically employed.

For the vanilla SEResNet18 (Table 6.2), with a reduction ratio of 8 when the model

was trained from scratch, achieved four-of-five best metrics, with an accuracy of

0.9224, a sensitivity of 0.2880, precision of 0.5245, and F1-score of 0.3508. On the other

hand, when the backbone network was taken pre-trained, the SEResNet18 achieved

three-of-five best classification metrics (0.9704/0.7520/0.8066 for accuracy, sensitivity,

and F1-score, respectively) when the reduction ratio was set to 16. For specificity and

precision, it obtained the second best (0.9900 and 0.8704).

The vanilla CBAMResNet18 trained from scratch (Table 6.3) obtained the best

specificity and precision with a reduction ratio of 8, with 0.9871 and 0.6213, respectively.

When the backbone model was pre-trained, it attained a substantial boost in all the

metrics, mainly when the reduction ratio was 16, and the best accuracy (0.9684),

sensitivity (0.7200), and F1-score (0.7832) were obtained. Also, the second-best precision

(0.8851) and the third-best specificity (0.9907). The best of these two metrics was

achieved with a reduction ratio of 2 and 1, respectively.
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Table 6.2: Vanilla SE ResNet18 classification performance. The mean and standard deviation of
each metric are shown.

Pretrained Reduction ratio Accuracy Sensitivity Specificity Precision F1-score Parameters [M]

:

1
0.9224 0.1360 0.9928 0.3629 0.1860

12.57
± 0.0082 ± 0.1592 ± 0.0060 ± 0.3039 ± 0.2065

2
0.9184 0.1760 0.9849 0.3932 0.2337

11.88
± 0.0064 ± 0.1444 ± 0.0077 ± 0.2344 ± 0.1761

4
0.9184 0.1440 0.9878 0.4343 0.2083

11.53
± 0.0048 ± 0.1061 ± 0.0066 ± 0.2334 ± 0.1341

8
0.9224 0.2880 0.9792 0.5245 0.3508

11.35
± 0.0133 ± 0.1849 ± 0.0105 ± 0.1477 ± 0.1842

16
0.9151 0.1520 0.9835 0.4181 0.2103

11.27
± 0.0092 ± 0.1143 ± 0.0105 ± 0.2260 ± 0.1420

6

1
0.9704 0.7440 0.9907 0.8819 0.8054

12.57
± 0.0066 ± 0.0480 ± 0.0058 ± 0.0656 ± 0.0418

2
0.9678 0.7280 0.9892 0.8611 0.7875

11.88
± 0.0044 ± 0.0466 ± 0.0039 ± 0.0412 ± 0.0296

4
0.9684 0.7440 0.9885 0.8570 0.7932

11.53
± 0.0045 ± 0.0742 ± 0.0042 ± 0.0378 ± 0.0372

8
0.9658 0.7280 0.9871 0.8436 0.7785

11.35
± 0.0090 ± 0.0588 ± 0.0087 ± 0.0849 ± 0.0533

16
0.9704 0.7520 0.9900 0.8704 0.8066

11.27
± 0.0051 ± 0.0392 ± 0.0027 ± 0.0350 ± 0.0347

The vanilla ECAResNet18 does not need a reduction ratio to be specified, as seen

in Table 6.4. Thus, the pre-trained version obtained the best evaluation metric, with an

accuracy of 0.9704, a sensitivity of 0.7600, an specificity of 0.9892, a precision of 0.8675,

and F1-score of 0.8085.

In Summary, taking a pre-trained backbone model improves the classification

performance for the three attention-based models. Concerning these models, the Vanilla

ECAResNet18 obtained the overall best accuracy and sensitivity (0.9704 and 0.7600), the

Vanilla CBAMResNet18 the broad best specificity (0.9928) and precision (0.9156), with a

dilation ratio of 1 and 2, respectively, and the overall best F1-score (0.8066) by the Vanilla

SEResNet18 with a dilation ratio of 16.

It is important to point out that the CBAM and SE versions, with a reduction ratio

of 16, required 11.27 M of parameters, while the ECA version required 11.18 M. Also,

notice that low-performance metrics, particularly sensitivity, precision, and F1-score,

were obtained when the models were trained from scratch.

For such a reason, light-weighted models were proposed to improve the
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Table 6.3: Vanilla CBAMResNet18 classification performance. The mean and standard deviation
of each metric are shown.

Pretrained Reduction ratio Accuracy Sensitivity Specificity Precision F1-score Parameters [M]

:

1
0.9349 0.5360 0.9706 0.6114 0.5594

12.57
± 0.0118 ± 0.1835 ± 0.0086 ± 0.0695 ± 0.1309

2
0.9250 0.2560 0.9849 0.4809 0.3129

11.87
± 0.0092 ± 0.2080 ± 0.0125 ± 0.2580 ± 0.2119

4
0.9230 0.2240 0.9857 0.4489 0.2861

11.53
± 0.0094 ± 0.1727 ± 0.0104 ± 0.2709 ± 0.2092

8
0.9263 0.2480 0.9871 0.6213 0.3344

11.35
± 0.0097 ± 0.1462 ± 0.0066 ± 0.1201 ± 0.1617

16
0.9368 0.4000 0.9849 0.6060 0.4527

11.27
± 0.0214 ± 0.2896 ± 0.0097 ± 0.2788 ± 0.2900

6

1
0.9678 0.6880 0.9928 0.8991 0.7780

12.57
± 0.0038 ± 0.0392 ± 0.0039 ± 0.0464 ± 0.0270

2
0.9671 0.6640 0.9943 0.9156 0.7685

11.87
± 0.0036 ± 0.0320 ± 0.0037 ± 0.0526 ± 0.0241

4
0.9632 0.7200 0.9849 0.8115 0.7622

11.53
± 0.0038 ± 0.0438 ± 0.0027 ± 0.0270 ± 0.0291

8
0.9625 0.6800 0.9878 0.8371 0.7490

11.35
± 0.0026 ± 0.0253 ± 0.0043 ± 0.0458 ± 0.0125

16
0.9684 0.7200 0.9907 0.8851 0.7832

11.27
± 0.0057 ± 0.1315 ± 0.0058 ± 0.0490 ± 0.0602

Table 6.4: Vanilla ECAResNet18 classification performance. The mean and standard deviation
of each metric are shown.

Pretrained Accuracy Sensitivity Specificity Precision F1-score Parameters [M]

:
0.9257 0.3360 0.9785 0.5123 0.3797

11.18
± 0.0147 ± 0.2537 ± 0.0085 ± 0.1520 ± 0.2261

6
0.9704 0.7600 0.9892 0.8675 0.8085

11.18
± 0.0029 ± 0.0358 ± 0.0045 ± 0.0470 ± 0.0170

performance of scratch models and, simultaneously, reduce the number of parameters.

Numerical results are shown in Table 6.5, where a comparative study is performed with

the best models obtained in the ablation study and the best vanilla attention models

(trained from scratch).

The light-weighted models (LECA, LSE, LCBAM) optimized the reduction ratios

of each residual block and the pruning ratio of the convolutional layers. Bear in mind
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that the convolutional layers perform a deep-wise separable convolution. The LECA

achieved the best accuracy (0.9625), specificity (0.9892), and precision (0.8440) with gains

of 4%, 1%, and 33%, respectively, concerning the vanilla ECA variant. For sensitivity

and F1-score, the LCBAM model obtained the best values, with 0.7600 and 0.7625,

representing a boost of 23% and 21%, respectively, compared to the vanilla CBAM.

Table 6.5: ResNet18 attention comparative study. The L before the attention module name (i.e.,
LECA) stands for Lightweight, which is the proposed model, and n/a for not applicable. The mean
and standard deviation of each metric are shown.

Attention Attention Ratios Pruning ratio Accuracy Sensitivity Specificity Precision F1-score

Vanilla ECA n/a n/a
0.9257 0.3360 0.9785 0.5123 0.3797

± 0.0147 ± 0.2537 ± 0.0085 ± 0.1520 ± 0.2261

Vanilla SE 8,8,8,8 n/a
0.9224 0.2880 0.9792 0.5245 0.3508

± 0.0133 ± 0.1849 ± 0.0105 ± 0.1477 ± 0.1842

Vanilla CBAM 1,1,1,1 n/a
0.9349 0.5360 0.9706 0.6114 0.5594

± 0.0118 ± 0.1835 ± 0.0086 ± 0.0695 ± 0.1309

LECA n/a 2
0.9625 0.6640 0.9892 0.8440 0.7416

± 0.0099 ± 0.0933 ± 0.0032 ± 0.0517 ± 0.0764

LSE 13, 7, 2, 14 2
0.9559 0.6640 0.9821 0.7762 0.7072

± 0.0087 ± 0.1203 ± 0.0082 ± 0.0691 ± 0.0797

LCBAM 12, 14, 3, 9 2
0.9612 0.7600 0.9792 0.7695 0.7625

± 0.0070 ± 0.0669 ± 0.0066 ± 0.0519 ± 0.0441

6.4.4 | Class Activation Maps Visualization

To visually evaluate the attention modules, the GradCAM method provides a heat map

highlighting the most important regions in the image in red tones and low attention

regions in purple tones for predicting stenosis.

Figure 6.6 illustrates the GradCAM response for the SE attention modules when

trained from scratch (a), with the backbone network pre-trained (b), and the proposed

light-weighted approach (c). It can be seen that when the model was trained from

scratch, (a) the high attention regions lie over the corners of the images. Attention

improves when the backbone network was taken pre-trained (b), obtaining blood

vessel regions with high attention and background zones with low attention. The

light-weighted model presented greater attention over the blood vessel with non-false

positive or negative cases, producing more accurate attention zones. Also, notice that the

probability of stenosis for true positive cases in the light-weighted SE model is higher

than the trained from scratch and pre-trained models and lower for true negative cases.
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For the CBAMResNet18 variants (see Figure 6.7), the GradCAM put high attention

regions over non-blood vessels when the model was trained from scratch. These regions

were refined when the pre-trained model was fine-tuned, showing more accurate high

attention zones over the blood vessel pixels. In the case of the light-weighted model,

a higher probability for stenosis cases and a lower one for negative ones, than in the

vanilla configurations. This is visually reflected in a detailed gradient map with red

tones over blood vessel pixels and stenosis regions.

The third attention variant, the ECAResNet18, and the GradCAM are shown in

Figure 6.8, which featured more isolated high-attention regions for the light-weighted

model. These regions are located over blood vessel pixels. In addition, the

LECAResNet18 Figure 6.8(c) showed low attention to the negative stenosis cases in the

background zones of the image, contrary to the vanilla models (see Figure 6.8(a) and

(b)), where attention regions are not well defined over the blood vessel pixel.

6.5 | Conclusion

This chapter proposed Lightweight Residual Attention Networks (LRA-Nets) to classify

stenosis cases from XCA images. The models consist of three main elements, a

DSC, a pruning convolution kernel ratio, and an attention module: SE, ECA, and

CBAM, which reflect high classification rates with lower computational requirements

regarding the required parameters. The proposed model is 27.5× smaller than Vanilla

Attention ResNet18. The experimental results demonstrate that LRA-Nets consistently

outperformed Residual models with or without attention mechanisms. Additionally, the

individual selection of dilation ratios for the attention blocks improved the classification

performance, including a smaller dilation ratio than the default configuration. Also,

the pruning ratio drastically reduced the required kernels by each convolution layer.

In particular, more significant boosts were achieved with the LECA, achieving the best

accuracy (0.9625), specificity (0.9892), and precision (0.8440) with gains of 4%, 1%, and

33%, respectively, concerning the vanilla ECA variant. For sensitivity and F1-score,

the LCBAM model obtained the best values, with 0.7600 and 0.7625, representing a

boost of 23% and 21%, respectively, compared to the vanilla CBAM. Moreover, the

LECAResNet18 GradCAM maps retrieved a refined region proposal of the stenosis

location, which could support the physician’s decision-making process.

Although the recognition rates are high, further improvements can be explored, such

as an object-based recognition system and detecting stenosis cases from the full XCA

test. A future direction of this work concerning model compression may be to analyze
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other approaches, such as quantization, different low-rank-tensor decomposition, and

knowledge distillation.
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(a)

(b)

(c)

Figure 6.6: GradCAM for different variants of SEResNet18: (a) Trained from scratch, (b)
Pretrained, (c) Lightweighted.
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(a)

(b)

(c)

Figure 6.7: GradCAM for different variants of CBAMResNet18: (a) Trained from scratch, (b)
Pretrained, (c) Lightweighted.
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(a)

(b)

(c)

Figure 6.8: GradCAM different variants of ECAResNet18: (a) Trained from scratch, (b)
Pretrained, (c) Lightweighted.
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Conclusions

“Every real story is a never ending story."

— Michael Ende, The Neverending Story

In summary, this thesis explored different deep learning-based methods for stenosis

detection in XCA images. The first method introduced a network-cut and fine-tuning

approach for stenosis detection in XCA images. The method was evaluated through

extensive numerical experiments based on 20 different setups for pre-trained networks

(VGG16, ResNet50, and Inception-v3) with three different fine-tuning strategies. The

optimal cut and fine-tuned layers were selected by minimizing the loss function. The

results showed that employing this approach on a limited and unbalanced XCA dataset

performed efficiently for stenosis detection. Furthermore, the proposed scheme allows

accuracy, sensitivity, specificity, precision, and F1-score improvement concerning vanilla

pre-trained networks and configurations trained from scratch. Moreover, it allowed

reducing the network complexity in terms of parameters.

The second method presented a Hybrid Classical-Quantum Network (HCQN) for

stenosis detection. The framework involved connecting a QN to the head of a classical

CNN to enhance the feature representation. The main contribution of this research

was related to the QN architecture, where multiple (and smaller) VQCs can replace a

single VQC. Additionally, to facilitate overall training convergence, a novel squeeze,

scaling, and angle encoding process was introduced that maps the classical feature

vector into a quantum network. Numerical results validate that the proposed hybrid

model significantly improves the detection performance when the CNN sub-module

is pre-trained with the ImageNet dataset, demonstrating the quantum computing

potential. Furthermore, the proposed approach can be easily customized and integrated

into any CNN architecture.
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Next, a Hierarchical Bezier Generative Model (HBGM) was proposed to address

the problem of a small and poorly diversified database for stenosis detection in XCA

images. A large-scale labeled dataset consisting of 10k images was created using the

proposed approach. Extensive experiments showed that pre-training ResNets using

this dataset and a posterior fine-tuning with real XCA images achieved the best

overall performance on two (of five) evaluation metrics and competitive results on the

remainder. Moreover, it demonstrates the value of transferring the weights pre-trained

using a more alike (artificial) dataset instead of the ImageNet dataset for stenosis

detection tasks with only limited data available.

The last proposal was a Lightweight Residual Attention Network (LRA-Nets) to

classify stenosis cases from XCA images. The models have three main elements: a DSC,

a pruning convolution kernel ratio, and an attention module (SE, ECA, and CBAM).

The proposed model is 27.5× smaller than Vanilla Attention ResNet18. However, the

experimental results demonstrate that LRA-Nets consistently outperformed Residual

models with or without attention mechanisms. Additionally, the individual selection

of dilation ratios for the attention blocks contributed to the improved classification

accuracy of the proposed LRA-Nets. As a result, the proposed model achieves high

classification rates with lower computational requirements regarding the required

parameters.

Overall, these methods provide insights into the potential of deep learning-based

approaches to improve stenosis detection in XCA images and pave the way for future

research in this field.

7.1 | Algorithmic Limitations

The proposed models, such as the fine-tuning approach and hybrid classical-quantum

network, were developed using a limited and unbalanced dataset, which may not

generalize well to other XCA datasets. Moreover, these models relied on pre-trained

models from the ImageNet dataset, resulting in suboptimal GradCAMs. Although

the heat maps provided insight into the areas of interest detected by the network,

high relevance was assigned to regions without blood vessels. Despite the notorious

classification improvement with the hybrid classical-quantum network, it relied on a

quantum-device simulator that may contain bias.

The HBGM relied on handcrafted parameters, which could restrict the flexibility

and control of the generated images. Furthermore, the FID between the generated and

real images was not optimized as in the discriminator loss function of GANs. Finally,
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the proposed lightweight residual attention network was developed using attention

modules intended for natural images, limiting its ability to exploit the unique features

of XCA images.

7.2 | Future Work

Based on the limitations mentioned above, here are some potential avenues for future

work:

■ Exploring loss functions for unbalanced datasets, which would allow for better

generalization of the proposed models.

■ Propose a more efficient quantum encoding and quantum circuit design to

improve the classical-quantum bottleneck.

■ Develop new methods for generating synthetic data optimizing within the

generative process to increase flexibility and control over the generated images.

■ Design attention modules specifically designed for XCA images to improve the

performance of the lightweight residual attention network.

■ Explore the latest deep learning models (i.e., Visual Transformers) in the XCA

image domain.

7.3 | Scientiüc Contributions

The main contributions of each chapter and collaborations can be found in the following

articles:

Articles in indexed journals

■ Ovalle-Magallanes, E., Alvarado-Carrillo D. E., Avina-Cervantes, J. G.,

Cruz-Aceves, I., & Ruiz-Pinales, J. (2023). Quantum angle encoding with learnable

rotation applied to quantum–classical convolutional neural networks. Applied

Soft Computing, 141, 110307. https://doi.org/10.1016/j.asoc.2023.110307.

I.F.(2022) 8.7.

■ Ovalle-Magallanes, E., Avina-Cervantes, J. G., Cruz-Aceves, I., & Ruiz-Pinales,

J. (2022). LRSE-Net: Lightweight Residual Squeeze-and-Excitation Network for
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Stenosis Detection in X-ray Coronary Angiography. Electronics, 11(21), 3570.

https://doi.org/10.3390/electronics11213570. I.F.(2022) 2.9.

■ Ovalle-Magallanes, E., Avina-Cervantes, J. G., Cruz-Aceves, I., & Ruiz-Pinales, J.

(2022). Improving convolutional neural network learning based on a hierarchical

bezier generative model for stenosis detection in X-ray images. Computer Methods

and Programs in Biomedicine, 219, 106767. https://doi.org/10.1016/j.cmpb.

2022.106767. I.F.(2022) 6.1.

■ Ovalle-Magallanes, E., Avina-Cervantes, J. G., Cruz-Aceves, I., & Ruiz-Pinales,

J. (2022). Hybrid classical–quantum Convolutional Neural Network for stenosis

detection in X-ray coronary angiography. Expert Systems with Applications, 189,

116112. https://doi.org/10.1016/j.eswa.2021.116112. I.F.(2022) 8.5.

■ Ovalle-Magallanes, E., Aldana-Murillo, N. G., Avina-Cervantes, J. G.,

Ruiz-Pinales, J., Cepeda-Negrete, J., & Ledesma, S. (2021). Transfer learning

for humanoid robot appearance-based localization in a visual map. IEEE Access,

9, 6868-6877. https://doi.org/10.1109/ACCESS.2020.3048936. I.F.(2022) 3.9.

■ Ovalle-Magallanes, E., Avina-Cervantes, J. G., Cruz-Aceves, I., & Ruiz-Pinales,

J. (2020). Transfer learning for stenosis detection in X-ray coronary angiography.

Mathematics, 8(9), 1510. https://doi.org/10.3390/math8091510. I.F.(2022) 2.4.

Book Chapters

■ Ovalle-Magallanes, E., Alvarado-Carrillo, D.E., Avina-Cervantes, J.G.,

Cruz-Aceves, I., Ruiz-Pinales, J., Correa, R. (2023). Deep Learning-based

Coronary Stenosis Detection in X-ray Angiography Images: Overview and

Future Trends. Artificial Intelligence and Machine Learning for Healthcare.

Intelligent Systems Reference Library, Springer, Cham, 229, 197-223. https:

//doi.org/10.1007/978-3-031-11170-9_8. I.F.(2022) 0.85

Articles in peer-reviewed journals

■ Ovalle-Magallanes, E., Alvarado-Carrillo, D. E., Avina-Cervantes, J. G.,

Cruz-Aceves, I., Ruiz-Pinales, J., & Contreras-Hernandez, J. L. (2022). Attention

Mechanisms Evaluated on Stenosis Detection using X-ray Angiography Images.

Journal of Advances in Applied & Computational Mathematics, 9, 62-75. https://doi.

org/10.15377/2409-5761.2022.09.5.
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Rostro-Gonzalez, H., & Avina-Cervantes, J. G. (2021, October). Path planning for
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Automático.
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