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Abstract

This work presents a discrete convolution-based H∞ finite impulse response (H∞ FIR) filter. The

a posteriori H∞ FIR filter is developed by minimizing the squared H∞ norm of the weighted

disturbance-to-error transfer function, where the weights are related to errors. Since minimiza-

tion isn’t reachable without numerical approximations, Linear Matrix Inequality (LMI) based

algorithms are derived to compute the filter gain in batch form, also recursive (Kalman-like)

forms of the filter are provided in this work. It is shown numerically and experimentally that for

disturbed systems operating under measurement and initial errors, the developed H∞ FIR filter

surpasses the Kalman filter in accuracy and has almost the same robustness as an unbiased FIR

filter.
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a scholarship.

To all the teachers that I met through the classes, for the knowledge that were transmitted

to me along the master’s degree.

To my advisor Dr. Yuriy S. Shmaliy, for giving me the opportunity to work with him, his

advices and the time dedicated to solve all my doubts.

To all my classmates and co-workers of the postgraduate lab, for his commentaries to my

work.

To my friends and colleagues from the division, Perla, Oscar, Christian, Enrique, Daniel,

Armando, Gabriel and Andrés for the good times with them both in the classrooms and on the

university facilities.

To my friends from the Autonomous University of the State of Morelos, Alan, Eduardo, José,
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[5] J. J. López-Solórzano and Y. S. Shmaliy, “Suboptimal a posteriori H2-FIR Filter Using LMI

with Applications to Harmonic Models,” in 2022 IEEE Int. Summer Power Meeting/Int.

Meeting on Commun. and Computing (RVP-AI/ROC&C).
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Chapter 1

Introduction

1.1 Background

The practical applications of digital systems in adverse conditions, such as industrial ones, require

robustness from state space estimators [8]. An estimator is considered robust if it is insensitive

to disturbing factors, including its tuning factors [37]. It is known that the highest robustness is

achieved if the estimation errors are minimized for the maximized perturbation and tuning factors

[46]. This gives the best practical effect, although at the expense of the accuracy obtained in

contrast with optimum tuning [14]. Responding to practical needs, different types of robust state

space estimators have been developed during the last decades [10], [13], [18], [20] for adaptive

systems, state feedback control (SFC) and model predictive control (MPC).

The most effective robust estimators were obtained in the transform domain by minimizing

the estimation errors for maximized disturbances using the disturbance-to-error transfer function

T . Therefore, such observers serve linear time-invariant (LTI) systems. H2 filtering [21], [22]

minimizes the Frobenius norm of T in a similar way to optimal filtering. H∞ filtering [9], [30]

minimizes the induced norm of T in the worst error case and results in robust energy-to-energy

or ℓ2-to-ℓ2 structures. The generalized H2 filtering [40], [46] minimizes the energy-to-peak T

in estimators that have the structure ℓ2-to-ℓ∞. ℓ1 filtering [5], [43] minimizes the peak-to-peak

T in ℓ∞-to-ℓ∞ estimators. Setting aside the transfer function approach, the game theory H∞

approach [26], [39] provides estimators that minimize the ratio of the estimation error norm and

the disturbance and errors norms over a finite horizon of data points and can be applied to linear

time-variant (LTV) systems.

Robust estimators for uncertain systems were also developed, mostly using the approach

1



Chapter 1: Introduction 2

proposed in [11], [13], [24], [25], but these solutions are outside of the scope of this work.

1.2 Motivation

Looking at the robust algorithms mentioned above, it can be noticed that they all have Kalman-

like recursive forms. Note that recursions are mainly available for white Gaussian noise (WGN)

[37], except for Gauss-Markov noise. This means that robust recursive algorithms developed

for arbitrary norm-bounded disturbances ignore the correlation that inevitably causes estimation

errors. By contrast, batch estimators operate with full error covariances, do not ignore correlation

at finite horizons, and therefore provide estimates that are superior to recursive ones. Batch

estimators are commonly considered computationally complex, but this is no longer a problem

for modern computers, unlike in Kalman’s days. In support, it is worth noting other important

advantages of batch estimators [37]:

1. Limited input limited output stability.

2. Rejection of errors beyond the averaging horizon.

3. Reduction of numerical errors by averaging.

4. Increased robustness.

In general, batch estimators with finite impulse response (FIR) give more precision than

Kalman-like recursions that have infinite impulse response (IIR). Among the available FIR es-

timators, the unbiased FIR (UFIR) filter developed in [35], [38] is considered the most robust,

since this filter has the optimal horizon length as its only tuning factor.

Note that convolution-based filtering was originally discussed in [17], [46] and the Receding

Horizon (RH) FIR approach was developed for MPC and SFC in [18]. Thereafter, different robust

RH FIR filters were designed in [1]–[3], [19], [23] in batch form and using linear matrix inequality

(LMI), and some other preliminary results can be found in [7], [16], [41], [44], [45]. An important

limitation of the above solutions is that measurement errors and initial errors are ignored.

Although several other advanced H2-FIR robust estimators for complex environments have

been recently developed in [27]–[29], [34], H∞ FIR filters have not yet been developed operating

with initial and data errors, which motivates the present work.
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1.3 Objectives

The main objective of the work is to develop and critically evaluate the performance of robust H∞

filters, both batch and recursive forms, based on a state estimators and compare its performance

with other state estimation based filters.

1.3.1 Specific Objectives

1. Solve the H∞ FIR filtering minimization problem using LMI as numerical method to obtain

the gain of the filter.

2. Propose an iterative algorithm for computation of the H∞ FIR filter gain.

3. Test the tuning, accuracy and robustness of the H∞ FIR filter against other FIR filters.

4. Develop a recursive (Kalman-like) algorithm for the H∞ filter estimation computation.

5. Propose an iterative algorithm for computation of the recursive H∞ filter bias correction

gain.

6. Test the tuning, accuracy and robustness of the recursive H∞ filter against other recursive

filters.

1.4 Scope

In this work, the theory of robust a posteriori H∞ filtering with initial and measurement errors

is developed. Since the Bounded Real Lemma (BRL) only applies to constant matrices, the

BRL is modified for the covariance of the squared error by introducing an additional variable.

Furthermore, basic and iterative algorithms are provided to compute the gain of the H∞ FIR

filter using LMI. Based on numerical simulations and experimental data, it is shown that the H∞

FIR filter outperforms the Kalman filter (KF) in precision and demonstrates almost the same

robustness as the UFIR filter. Also, a recursive form for the H∞ FIR filter is developed with

basic and iterative algorithms for the computation of the bias correction gain of the filter. The

main contributions are the following:

� Framework for robust a posteriori H∞ FIR filtering with initial and data errors using LMI.

� LMI-based algorithm to compute the batch H∞ FIR filter gain.
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� Iterative LMI-based algorithm to compute the batch H∞ FIR filter gain.

� Numerical and experimental evidence of the better performance of the H∞ FIR filter com-

pared to other state estimation FIR filters.

� Framework for recursive robust a posteriori H∞ filtering with initial and data errors using

LMI.

� LMI-based algorithm to compute the recursive H∞ filter bias correction gain.

� Iterative LMI-based algorithm to compute the recursive H∞ filter bias correction gain.

� Numerical and experimental evidence of the better performance of the recursive H∞ filter

compared to other state estimation recursive filters.

The rest of the work is organized as follows. Chapter 2 discusses the theoretical basis of state

estimation, the FIR filtering with state space models, formulates the H∞ FIR filtering problem,

derives the a posteriori H∞ FIR filter with measurement and data errors, presents the basic

algorithm for computing the H∞ FIR filter gain and presents a numerical example for tuning the

filter under WGN.

Chapter 3 presents an iterative algorithm for computation of the H∞FIR filter gain where the

minimization is reached by taking in count the properties of the Generalized Noise Power Gain

(GNPG), presents a numerical example where the filter is tuned with both algorithms under WGN

to compare its accuracy, presents the robustness test to the filter and shows the performance of

the H∞ FIR filter against real data.

Chapter 4 derives the recursive a posteriori H∞ filter with measurement and data errors,

presents the basic algorithm for computing the recursive H∞ filter bias correction gain and a

Kalman-like algorithm for computation of the recursive H∞ estimations and presents a numerical

example for tuning the filter under colored Gauss-Markov disturbance and measurement noise.

Chapter 5 presents an iterative algorithm for computation of the recursive H∞ filter bias

correction gain where the minimization is reached by taking in count the properties of the GNPG,

presents a numerical example where the filter is tuned with both algorithms under colored Gauss-

Markov disturbance and measurement noise to compare its accuracy, presents the robustness test

to the filter and shows the performance of the recursive H∞ filter against real data. Finally the

conclusions are indicated.



Chapter 2

The a posteriori H∞ FIR Filter

2.1 State Estimation

The term “state estimation” suggests the desire to estimate the state of some process, system, or

object using its measurements [37]. Since measurements are commonly conducted in the presence

of noise, its desirable to have an accurate and precise estimator, preferably optimal and unbiased.

When some stochastic dynamic system (or process) appears and it is desired to predict its

further behavior, its necessary to know system characteristics at each time instant. State variables

describe mathematically the state of a system so it is obvious that a set of state variables should

be sufficient to predict the future system behavior.

Any stochastic dynamic system can be represented with a linear or nonlinear first-order vector

differential equation (in continuous time) of difference equation (in discrete time) with respect

to a set of its states. Such equations are called the state equations, where the state variables are

typically affected by internal noise and external disturbances, and the model can be uncertain

due to mismodeling.

To estimate the state of a system with random components represented with the state equation

means to evaluate the state approximately using measurements over a finite time interval or all

data available. Systems and processes can be either nonlinear or linear. Accordingly, there are

nonlinear and linear state space models. Linear models are represented with linear equations and

Gaussian noise. A model is said to be nonlinear if it is represented with nonlinear equations or

with linear equations having non-Gaussian random components.

In discrete time tk, a system can be represented in state space with a time step Ä = tk −

tk−1 using either the forward Euler (FE) method or backward Euler (BE) method. By the FE

5
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method, the linear discrete-time state equation appears to be predictive, and the state-space

model becomes

xk+1 = Fkxk + Ekuk +Bkwk, (2.1)

yk = Hkxk +Dkwk + vk, (2.2)

where xk ∈ R
K is the state vector, uk ∈ R

L is the input (control) vector, yk ∈ R
P is the

observation vector, wk ∈ R
M is the system error or disturbance and vk ∈ R

P is the observation

error. The time-varing matrices of the system are given by Fk ∈ R
K×K who is the process matrix,

Ek ∈ R
K×L, Bk ∈ R

K×M , Hk ∈ R
P×K who is the observation matrix and Dk ∈ R

P×M . The term

with uk is often omitted in observation equation assuming that the order of uk is smaller than

of yk. In most of the cases, the process noise is supposed to be zero mean and white Gaussian

wk ∼ N(0, Qk) with known covariance Qk = E
{

wkw
T
k

}

. The observation noise vk ∼ N(0, Rk)

is also often modeled as zero mean and white Gaussian with the covariance Rk = E
{

vkv
T
k

}

(E {·} means averaging). Furthermore, many problems suggest that wk and vk can be considered

as uncorrelated and independent processes. By the BE method, the relevant state-space model

attains the form

xk = Fkxk−1 + Ekuk +Bkwk, (2.3)

yk = Hkxk +Dkwk + vk, (2.4)

For LTI systems all matrices in (2.1)-(2.4) become constants as F , E, B, H, D.

2.2 Methods of Linear State Estimation

State estimation in discrete-time state-space can be conducted employing methods of optimal

linear filtering based on the state-space equations in (2.3)-(2.4). Irrespective of the estimator

structure, the notation x̂k|τ means an estimate of state xk at time index k given observations of

xk up to and including at time index Ä . A state xk to be estimated at time index k is represented

by the following standard variables:

� x̂−k ≜ x̂k|k−1 is the a priori state estimate at k given observations up to and including at

time index k − 1.

� x̂k ≜ x̂k|k is the a posteriori state estimate at k given observations up to and including at

k.
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� The a priori estimation error is defined by

ε−k ≜ εk|k−1 = xk − x̂−k .

� The a posteriori estimation error is defined by

εk ≜ εk|k = xk − x̂k.

� The a priori error covariance is defined by

P−
k ≜ Pk|k−1 = E

{

ε−k ε
−T

k

}

.

� The a posteriori error covariance is defined by

Pk ≜ Pk|k = E
{

εkε
T
k

}

.

In what follows these definitions will be used, while deriving the H∞ FIR filter.

2.3 Extended LTI Discrete-Time State-Space Model

Consider a LTI system represented in discrete-time state-space with the following state and

observation equations, respectively,

xk = Fxk−1 + Euk +Bwk, (2.5)

yk = Hxk + vk, (2.6)

where xk ∈ R
K is the state vector, uk ∈ R

L is the input vector, yk ∈ R
P is the observation vector,

wk ∈ R
M is the process noise and vk ∈ R

P is the observation noise. Assume that F ∈ R
K×K ,

E ∈ R
K×L, B ∈ R

K×M and H ∈ R
P×K are known matrices.

The model in (2.5)-(2.6) cannot be used directly in FIR filtering and requires an extension on

the horizon [m, k] of N points, from m = k −N + 1 to k. This can be done if (2.5) is rewritten

using the backward-in-time solutions as

xk = Fxk−1 + Euk +Bwk, (2.7a)

xk−1 = Fxk−2 + Euk−1 +Bwk−1, (2.7b)

...

xm+2 = Fxm+1 + Eum+2 +Bwm+2, (2.7c)

xm+1 = Fxm + Eum+1 +Bwm+1, (2.7d)

xm = xm + Eum +Bwm, (2.7e)
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where the initial state xm is supposed to be known and hence um = 0 and wm = 0 in (2.7e).

Then substituting (2.7d) into (2.7c) to modify (2.7c) for the initial state xm and doing so until

(2.7b) and (2.7a) are also modified for xm allow extending (2.5) on [m, k]. By introducing the

extended vectors

Xm,k =
(

xTm xTm+1 · · · xTk

)T

∈ R
NK , (2.8)

Um,k =
(

uTm uTm+1 · · · uTk

)T

∈ R
NL, (2.9)

Wm,k =
(

wT
m wT

m+1 · · · wT
k

)T

∈ R
NM , (2.10)

and referring to (2.7), the extended state equation can be written as

Xm,k = FNxm + SNUm,k +DNWm,k, (2.11)

where the extended matrices are

FN =
(

I F T · · · (FN−2)T (FN−1)T
)T

∈ R
NK×K , (2.12)

SN =























E 0 · · · 0 0

FE E · · · 0 0
...

...
. . .

...
...

FN−2E FN−3E · · · E 0

FN−1E FN−2E · · · FE E























∈ R
NK×NL, (2.13)

DN =























B 0 · · · 0 0

FB B · · · 0 0
...

...
. . .

...
...

FN−2B FN−3B · · · B 0

FN−1B FN−2B · · · FB B























∈ R
NK×NM . (2.14)

Similarly, the observation equation in (2.6) can be written as

yk = Hxk + vk, (2.15a)

yk−1 = Hxk−1 + vk−1, (2.15b)

...

ym = Hxm + vm. (2.15c)
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By substituting xk, xk−1, . . ., xm taken from (2.7) into (2.15) and assigning two vectors

Ym,k =
(

yTm yTm+1 · · · yTk

)T

∈ R
NP , (2.16)

Vm,k =
(

vTm vTm+1 · · · vTk

)T

∈ R
NP , (2.17)

the extended observation equation can be obtained as

Ym,k = HNxm + LNUm,k +GNWm,k + Vm,k, (2.18)

in which the extended matrices are

HN = H̄NFN ∈ R
NP×K , (2.19)

LN = H̄NSN ∈ R
NP×NL, (2.20)

GN = H̄NDN ∈ R
NP×NM , (2.21)

and matrix H̄N is diagonal

H̄N =























H 0 · · · 0 0

0 H · · · 0 0
...

...
. . .

...
...

0 0 · · · H 0

0 0 · · · 0 H























∈ R
NP×NK . (2.22)

The extended state-space equations described on (2.11) and (2.18) can be used to derive all

kinds of linear convolution-based batch state estimators (filters, smoothers, and predictors) for

given cost function, and the FIR filter will require a Finite Horizon (FH) [m, k] of N points.

To design a FIR filter, the state xk can be represented by the last row vector in (2.11) as

xk = FN−1xm + S̄NUm,k + D̄NWm,k, (2.23)

where the matrix S̄N is the last row vector in SN and so is D̄N in DN .

2.4 The H∞ FIR Filtering

Before discussing H∞ FIR filtering, recall that the H2 FIR filter minimizes the squared Frobenius

norm of the weighted error-to-error transfer function averaged over all frequencies [29]. Thereby,

it provides optimal H2 performance, but does not guarantee that possible peaks in the transfer

function T will also be suppressed by averaging. Moreover, if the H2 filter is not properly tuned,
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the peak errors in its output may grow due to bias errors, as in the KF and Optimal FIR (OFIR)

filter.

The H∞ filtering approach was developed to minimize the H∞ norm of the disturbance-

to-error (ς-to-ε) transfer function
∥

∥

∥T
∥

∥

∥

∞
= supÃmax[T (z)], where Ãmax[T (z)] is the maximum

singular value of T (z). A feature of the H∞ norm is that it minimizes the highest peak value of

T (z) in the Bode plot. In H∞ filtering, the induced H∞ norm

∥

∥

∥T
∥

∥

∥

∞
= sup

ς ̸=0

∥

∥

∥T ς
∥

∥

∥

2
∥

∥

∥ς

∥

∥

∥

2

= sup
ς ̸=0

∥

∥

∥ε

∥

∥

∥

2
∥

∥

∥ς

∥

∥

∥

2

(2.24)

of the ς-to-ε transfer function T [14] is commonly minimized, where the squared norms of the

disturbance
∥

∥

∥ς

∥

∥

∥

2

2
=

∑k
i=m ς

∗
i ς and the estimation error

∥

∥

∥ε

∥

∥

∥

2

2
=

∑k
i=m ε

∗
i ε are equal to their

energies on [m, k]. Therefore, theH∞ approach applies in both the time domain and the transform

domain. Since
∥

∥

∥T
∥

∥

∥

2

∞
represents the maximum energy gain from ς to ε, then it follows that the

H∞ norm reflects the worst estimator case and its minimization results in a robust estimator.

Moreover, for stable systems the H∞ norm coincides with the ℓ2 induced norm of the disturbance-

to-error operator [32]. Therefore, it is also referred to as
∥

∥

∥T
∥

∥

∥

∞
=

∥

∥

∥T
∥

∥

∥

2,2
.

In the standard formulation of H∞ filtering [14], the robust H∞ FIR filtering problem can be

formulated as follows. Find the fundamental gain HN for the H∞ FIR filter to minimize
∥

∥

∥T
∥

∥

∥

∞
,

given by (2.24) on the horizon [m, k], by solving the following optimization problem,

HN = inf
HN

sup
ς ̸=0

∑k
i=m ε

T
i Pεεi

∑k
i=m ς

T
i Pςςi

, (2.25)

where Pε and Pς are some proper weights. Since closed-form solutions for (2.25) can be found

only in some special cases, consider the following problem

HN ⇐ sup
ς ̸=0

∑k
i=m ε

T
i Pεεi

∑k
i=m ς

T
i Pςςi

< µ2, (2.26)

which allows to define HN numerically for a given small positive µ > 0 and develop suboptimal

algorithms. Note that the factor µ2, which indicates the fraction of the disturbance energy that

goes into the estimator error, should preferably be small. But because µ2 cannot be too small for

stable estimators, its value should be constrained.

2.4.1 The a posteriori H∞ FIR Filter

To derive the H∞ FIR filter, the column matrix rule and the BRL are needed.
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Lemma 1. (Column matrix rule). Given a block column matrix Zm,k =
(

zTm zTm+1 · · · zTk

)T

specified on [m, k]. Its recursive form is [19]

Zm,k = AwZm−1,k−1 +Bwzk, (2.27)

using the following strictly sparse matrices,

Aw =























0 I 0 · · · 0

0 0 I · · · 0
...

...
...

. . .
...

0 0 0 · · · I

0 0 0 · · · 0























, Bw =























0

0
...

0

I























. (2.28)

Proof. The proof is self-obvious. □ □ □.

Lemma 2. (Bounded real lemma (filtering)). Given a state space model

xk = Fxk−1 +Bwk, (2.29)

yk = Hxk +Dwk. (2.30)

Let µ > 0 and S = HB +D. If there exists a matrix X > 0 such that the following LMI is

soluble,
















−X−1 F B 0

F T −X 0 F THT

BT 0 −µPw ST

0 HF S −µP−1
y

















< 0, (2.31)

then the following inequality holds on [m, k],

∑k
i=m y

T
i Pyyi

∑k
i=mw

T
i Pwwi

< µ2. (2.32)

Proof. Consider the dissipativity inequality [31] on a FH [m, k],

V (xk)− V (xm) <

k
∑

i=m

s(wi, yi), (2.33)

where V (xk) is the Lyapunov (storage) function representing the energy stored in the system

at k and s(wi, yi) is a supply function representing the energy that is supplied to the system
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at i. Choose the storage function V (xk) = xTkKxk and, referring to (2.32), assign s(wi, yi) =

µ2wT
i Pwwi − yTi Pyyi > 0 to be the supply function. Then rewrite (2.33) as

k
∑

i=m

(yTi Pyyi − µ2wT
i Pwwi) +

k
∑

i=m+1

(V (xi)− V (xi−1)) < 0,

substitute yi taken from (2.30) and xi from (2.29), assign S = HB +D, go to

k
∑

i=m

[(HFxi−1 + Swi)
TPy((HFxi−1 + Swi))− µ2wT

i Pwwi]

+
k

∑

i=m+1

(xTi Kxi − xTi−1Kxi−1) < 0,

note that values beyond [m, k], namely at m − 1, are not available for FIR filtering, change the

lower limit in the first sum to m+ 1, unite all components in one sum, and come up with

k
∑

i=m+1

[(HFxi−1 + Swi)
TPy((HFxi−1 + Swi))− µ2wT

i Pwwi

+ xTi Kxi − xTi−1Kxi−1] < 0. (2.34)

To eliminate variables, rearrange the terms and rewrite (2.34) as

k
∑

m+1





xi−1

wi





T

Θ





xi−1

wi



 < 0,

which is satisfied if the following LMI holds,

Θ =





F TKF + F THTPyHF −K F TKB + F THTPyS

BTKF + STPyHF BTKB + STPyS − µ2Pw



 < 0. (2.35)

Then decompose (2.35) as





−K 0

0 −µ2Pw



+





F T F THT

BT ST









K 0

0 Py









F B

HF S



 < 0,

consider it as a Schur’s complement [6], and represent with another inequality

















−K 0 F T F THT

0 −µ2Pw BT ST

F B −K−1 0

HF S 0 −P−1
y

















< 0. (2.36)
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Now multiply (2.36) from the left-hand and right-hand sides with the following matrices, re-

spectively,
















0 0 I 0

I 0 0 0

0 I 0 0

0 0 0 I

















,

















0 I 0 0

0 0 I 0

I 0 0 0

0 0 0 I

















and obtain
















−K−1 F B 0

F T −K 0 F THT

BT 0 −µ2Pw ST

0 HF S −P−1
y

















< 0. (2.37)

Finally multiply (2.37) from both sides with
















µ0.5I 0 0 0

0 µ−0.5I 0 0

0 0 µ−0.5I 0

0 0 0 µ0.5I

















,

introduce a new variable X = K/µ, arrive at (2.31), and complete the proof. □ □ □.

To obtain the a posteriori H∞ FIR filter using lemma 2, consider the model in (2.23) and

(2.18) with Um,k = 0 and define the FIR estimate as

x̂k = HNYm,k

= HNHNxm +HNGNWm,k +HNVm,k. (2.38)

Now, using (2.23) with Um,k = 0 and (2.38), the estimation error εk can be transformed to

εk = BNxm +WNWm,k − VNVm,k, (2.39)

where the error residual matrices are defined by

BN = FN−1 −HNHN , (2.40)

WN = D̄N −HNGN , (2.41)

VN = HN . (2.42)

Using the following matrix forms given by lemma 1,

Wm,k = AwWm−1,k−1 +Bwwk, (2.43)

Vm,k = AwVm−1,k−1 +Bwvk, (2.44)
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where matrices Aw and Bw are defined by (2.28).

Now introduce two augmented vectors zk =
(

W T
m,k V T

m,k iTk

)T

, where ik = xm, and ςk =
(

wT
k vTk

)T

, and combine them in the following state-space model

zk = F̃ςzk−1 + B̃ςςk, (2.45)

εk = C̃ςzk (2.46)

in which the newly introduced block matrices have the form

F̃ς =











Aw 0 0

0 Aw 0

0 0 I











, B̃ς =











Bw 0

0 Bw

0 0











,

C̃ς =
(

WN −VN BN

)

. (2.47)

Note that the strictly sparse matrices F̃ς and B̃ς can significantly reduce computational com-

plexity.

An important property of the model in (2.45) and (2.46) follows immediately: all error residual

matrices are combined into a new observation matrix C̃ς , which is thus completely responsible

for the H∞ filter performance.

2.4.2 LMI Based Algorithm for H∞ FIR Filter Gain Computation

The state-space equations in (2.45) and (2.46) can’t be used directly on the inequality given by

lemma 2 due to weight Py in (2.31) corresponds to Pε in the H∞ FIR Filtering problem, and

Pε = Pk = E{εkε
T
k } is given by

Pε = BNÇmBT
N +WNQNWT

N + VNRNVT
N , (2.48)

where Çm = E{xmx
T
m} = x̂mx̂

T
m+Pm, QN = E{Wm,kW

T
m,k} and RN = E{Vm,kV

T
m,k}, the residual

matrices BN , WN , VN are defined by (2.40)-(2.42). As can be seen in (2.48), Pε is function of

the gain HN , which is a desired variable for the minimization of µ in the inequality in (2.31), so,

the inequality in (2.31) is nonlinear with respect to the gain HN due to the inversion of Pε.

To solve this problem, first rewrite Pε in (2.48) as

Pε = A− CHT
N −HNCT +HNDHT

N , (2.49)
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where the following matrices are introduced: A = FN−1Çm(FN−1)T+D̄NQND̄
T
N , C = FN−1ÇmH

T
N+

D̄NQNG
T
N , D = HNÇmH

T
N +ΩN , and ΩN = GNQNG

T
N +RN . Then decompose (2.49) as

Pε =
(

I HN

)





A −C

−CT D









I

HT
N



 ,

introduce new auxiliary matrices

H̃ς =
(

I HN

)

, (2.50)

PJ =





A −C

−CT D



 , (2.51)

and rewrite Pε as

Pε = H̃ςPJ H̃
T
ς (2.52)

Now replace F , B, H, Pw and Py in (2.35) with F̃ς , B̃ς , C̃ς , Pς and Pε respectively,




F̃ T
ς KF̃ς + F̃ T

ς C̃
T
ς PεC̃ς F̃ς −K F̃ T

ς KB̃ς + F̃ T
ς C̃

T
ς PεC̃ςB̃ς

B̃T
ς KF̃ς + B̃T

ς C̃
T
ς PεC̃ς F̃ς B̃T

ς KB̃ς + B̃T
ς C̃

T
ς PεC̃ςB̃ς − µ2Pς



 < 0, (2.53)

where Pς is given by

Pς = E{ςkς
T
k } =





Qk 0

0 Rk



 . (2.54)

Replace (2.52) into (2.53) as




F̃ T
ς KF̃ς + F̃ T

ς C̃
T
ς H̃ςPJ H̃

T
ς C̃ς F̃ς −K F̃ T

ς KB̃ς + F̃ T
ς C̃

T
ς H̃ςPJ H̃

T
ς C̃ςB̃ς

B̃T
ς KF̃ς + B̃T

ς C̃
T
ς H̃ςPJ H̃

T
ς C̃ς F̃ς B̃T

ς KB̃ς + B̃T
ς C̃

T
ς H̃ςPJ H̃

T
ς C̃ςB̃ς − µ2Pς



 < 0,

Then decompose it as




−K 0

0 −µ2Pς



+





F̃ T
ς F̃ T

ς C̃
T
ς H̃ς

B̃T
ς B̃T

ς C̃
T
ς H̃ς









K 0

0 PJ









F̃ς B̃ς

H̃T
ς C̃ς F̃ς H̃T

ς C̃ςB̃ς



 < 0, (2.55)

introduce a new matrix

J̃ς = H̃T
ς C̃ς =





WN −VN BN

HT
NWN −HT

NVN HT
NBN





=





D̄N −HNGN −HN FN−1 −HNHN

HT
ND̄N −HT

NHNGN −HT
NHN HT

NF
N−1 −HT

NHNHN



 , (2.56)

and replace (2.56) into (2.55) as




−K 0

0 −µ2Pς



+





F̃ T
ς F̃ T

ς J̃
T
ς

B̃T
ς B̃T

ς J̃
T
ς









K 0

0 PJ









F̃ς B̃ς

J̃ς F̃ς J̃ςB̃ς



 < 0,
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consider it as a Schur’s complement, and represent with another inequality

















−K 0 F̃ T
ς F̃ T

ς J̃
T
ς

0 −µ2Pς B̃T
ς B̃T

ς J̃
T
ς

F̃ς B̃ς −K−1 0

J̃ς F̃ς J̃ςB̃ς 0 −P−1
J

















< 0.

Now multiply this inequality from the left-hand and right-hand sides with the following matrices,

respectively,
















0 0 I 0

I 0 0 0

0 I 0 0

0 0 0 I

















,

















0 I 0 0

0 0 I 0

I 0 0 0

0 0 0 I

















and obtain
















−K−1 F̃ς B̃ς 0

F̃ T
ς −K 0 F̃ T

ς J̃
T
ς

B̃T
ς 0 −µ2Pς B̃T

ς J̃
T
ς

0 J̃ς F̃ς J̃ςB̃ς −P−1
J

















< 0. (2.57)

Inequality in (2.57) still nonlinear with respect to the gain HN due to the quadratic terms

HT
NHN in J̃ς defined by (2.56). To solve this problem, introduce an auxiliary matrix Z such that

Z > HT
NHN ,

and represent it with the inequality

Z −HT
NHN > 0.

If the Schur complement is used, last inequality can be equivalently replaced with the LMI as:





Z HT
N

HN I



 > 0. (2.58)

Now, let’s redefine J̃ς in (2.56) using the new variable Z to replace the quadratic terms,

J̃ς =





D̄N −HNGN −HN FN−1 −HNHN

HT
ND̄N −ZGN −Z HT

NF
N−1 −ZHN



 (2.59)
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Also, inequality in (2.57) is nonlinear with respect to the symmetric positive-definite matrix

K. To avoid the inversion of K, pre- and post-multiply the matrix (2.57) with

















K 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

















and obtain another form of the inequality in (2.57)

















−K KF̃ς KB̃ς 0

F̃ T
ς K −K 0 F̃ T

ς J̃
T
ς

B̃T
ς K 0 −µ2Pς B̃T

ς J̃
T
ς

0 J̃ς F̃ς J̃ςB̃ς −P−1
J

















< 0. (2.60)

Inequality in (2.60) has the form of a LMI if J̃ς defined by (2.59) is used.

The gain HN of the a posteriori H∞ FIR filter now can be determined by solving the following

minimization problem,

HN = min
HN ,Z,K,γ2

µ2

subject to (2.58), (2.60) and Z = HT
NHN . (2.61)

The third constraint of the minimization problem in (2.61), can be achieved by using Algo-

rithm 1 in which gamma is minimized in each iteration by increasing the trace of Z, at the end

of each iteration the trace of Z is compared with the trace of HT
NHN , if the difference between

them is greater than a small threshold ¶0 > 0, the routine is ended and the gain is obtained.

The best candidate for initializing the minimization procedure is of course the UFIR filter gain

ĤN = FN−1(HT
NHN )−1HT

N .

Using the gainHN , numerically determined by using Algorithm 1, the a posteriori H∞ filtering

estimate and error covariance for uncorrelated wk, vk, and xm can be obtained as, respectively,

x̂k = HNYm,k, (2.62)

Pk = BNÇmBT
N +WNQNWT

N + VNRNVT
N , (2.63)

where the error residual matrices are given by (2.40)-(2.42).
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Algorithm 1: Algorithm for H∞ FIR Filter Gain Computation

Data: ¶0, ĤN , Pς , Qm,k, Rm,k

Result: HN

begin

HN = ĤN ; /* Initialize with UFIR gain */

Z = ĤT
NĤN ;

while |tr(Z)− tr(HT
NHN )| < ¶0 do

Zprev = Z ;

HN = min µ2 subject to (2.58), (2.60) and tr(Z) > tr(Zprev) ;

end

end

2.5 Filter Tuning Example

Consider a radar and it is desired to measure a distance dk in meters to a car that moves in

discrete time index k with constant velocity vk in meters by seconds. The process equations can

be written as

dk = dk−1 + Ävk + w1k,

vk = vk−1 + w2k,

where w1k is a random error in the distance, w2k is the error in the velocity, and Ä = tk − tk−1.

Now assign two states. The first state is the distance x1k = dk, the second state is the velocity

x2k = vk. This gives the state equations:

x1k = x1(k−1) + Äx2k + w1k,

x2k = x2(k−1) + w2k.

Next, assume that noise wk ∼ N(0, Ã2w) only affects the velocity and assign

xk =





x1k

x2k



 , F =





1 Ä

0 1



 , B =





Ä

1



 , w2k = wk, w1k = 0. (2.64)

Then write the state equation

xk = Fxk−1 +Bwk. (2.65)
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For measured distance (first state), write the observation equation

yk = Hxk + vk, (2.66)

where H =
(

1 0
)

and vk ∼ N(0, Ã2v) is the measurement noise.

Now extend the state space (2.65)-(2.66) on [m, k], then the a posteriori H∞-FIR filter gain

can now be determined numerically by using Algorithm 1 and the estimation computed as x̂k =

HNYm,k. An example of the distance and the velocity generated with the standard deviations

Ãw = 12 m/s and Ãv = 10 m and with a sample period of Ä = 0.025 s is shown in Fig. 2.1.

Figure 2.1: Process of the radar system generated, (a) first state measurements and first state

without noise, (b) second state.
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The H∞ FIR filter gain was computed using a small threshold ¶0 = 0.01, and also an estima-

tion using the UFIR filter (Nopt = 20) was obtained as benchmark. The behavioral of Algorithm

1 could be seen graphically on Fig. 2.2. In Fig. 2.2(a) is shown the minimization of µ as the

trace of Z is increased, as can be seen, if the trace of Z is increased, µ takes lower values as it

reach a minimum, but Fig. 2.2(b) shows that this minimum value of gamma is not necessary

the minimum that we are searching for. Fig. 2.2(b) shows the comparison of the trace of Z and

the trace of HT
NHN as the trace of Z is increased, in this case both graphs are very similar with

lower values of the trace of Z but there is a point where this trace is increased and the other one

diverges, this is because at this point of the algorithm Z ̸= HT
NHN and the third restriction in

(2.61) isn’t satisfied, so the algorithm must be finished before both traces starts to diverge. Once

the algorithm is stopped, the H∞ FIR filter gain is obtained as the last value of HN before the

algorithm is stopped.

Figure 2.2: Solving the minimization problem using Algorithm 1: (a) minimizing µ as the trace

of Z is increased and (b) comparison between the trace of matrix HT
NHN and the trace of Z as

the trace of Z is increased.

Typical filtering errors are shown in Fig. 2.3, it can be inferred that UFIR filter is the one who

gives the less accurate estimates, while the estimation using the gain computed with Algorithm 1

looks like giving better estimates. The root mean square error (RMSE) for each filter is given in

Table 2.1, and, as can be graphically seen on Fig. 2.3, the UFIR filter is the less accurate. The

H∞ FIR filter using Algorithm 1 to compute the gain has lower errors than the UFIR.
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Figure 2.3: Filtering errors produced by the filters in the example system for: (a) first state and

(b) second state.

Table 2.1: RMSEs produced by the filters.

Filter RMSE

UFIR 33.2906

H∞ FIR 31.6697
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Iterative Algorithm for H∞ FIR

Filter Gain Computation

The state-space equations in (2.45) and (2.46) can’t be used directly on the inequality given by

lemma 2 due to weight Py in (2.31) corresponds to Pε in the H∞ FIR Filtering problem and

Pε = Pk = E{εkε
T
k } is function of the gain HN , and for that reason, the inequality is nonlinear

with respect to the gain HN . A solution for nonlinearities was proposed where the inequality

in (2.31) is substituted with Pε as function of HN , this solution gives an inequality where the

product HT
NHN makes nonlinear with respect to the gain HN but introducing a new variable Z

it can be transformed into a LMI by adding the inequality Z > HT
NHN , then by increasing the

trace of Z and checking if the constraint tr(Z) = tr(HT
NHN ) is satisfied, the H∞ FIR filter gain

HN is obtained (Algorithm 1). Another alternative to avoid the nonlinearity in the inequality in

Lemma 2 is the iterative algorithm presented bellow.

3.1 Generalized Noise Power Gain

An important indicator of the effectiveness of FIR filtering is the Noise Power Gain (NPG)

introduced by Trench in [42]. The NPG is the ratio of the output noise variance Ã2out to the input

noise variance Ã2in, which is akin to the noise figure in wireless communications. For WGN, the

NPG is equal to the sum of the squared coefficients of the FIR hk,

NPG =
Ã2out
Ã2in

=
N−1
∑

k=0

h2k, (3.1)

which is the squared norm of hk.

22
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In state space, the gain HN represents the coefficients of the FIR filter impulse response.

Therefore, the product HNHT
N plays the role of a generalized NPG (GNPG) [38]. The GNPG Gk

can be written as

Gk = HNHT
N . (3.2)

It follows that GNPG is a symmetric square matrix Gk = GT
k ∈ R

K×K , where the main diagonal

components represent the NPGs for the system states, and the remaining components the cross

NPGs. The main property of Gk is that its trace decreases with increasing horizon length, which

provides effective noise reduction. On the other hand, an increase in N causes an increase in bias

errors, and therefore Gk must be optimally set by choosing an optimal horizon length.

3.2 Iterative Algorithm for H∞ FIR Filter Gain Computation

First, take the inequality in (2.37) and replace F , B, H, Pw and Py with F̃ς , B̃ς , C̃ς , Pς and Pε,

respectively,
















−K−1 F̃ς B̃ς 0

F̃ T
ς −K 0 F̃ T

ς C̃
T
ς

B̃T
ς 0 −µ2Pς B̃T

ς C̃
T
ς

0 C̃ς F̃ς C̃ςB̃ς −P−1
ε

















< 0. (3.3)

Inequality in (3.3) is nonlinear with respect to the symmetric positive-definite matrix K, to

avoid the inversion of K, pre- and post-multiply the matrix (3.3) with

















K 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

















and obtain another form for the inequality,

















−K KF̃ς KB̃ς 0

F̃ T
ς K −K 0 F̃ T

ς C̃
T
ς

B̃T
ς K 0 −µ2Pς B̃T

ς C̃
T
ς

0 C̃ς F̃ς C̃ςB̃ς −P−1
ε

















< 0. (3.4)

If Pε is considered as constant then the inequality in (3.4) could be considered as a LMI. The

weight matrix Pε could be constant if before solving the LMI, a previous value of Pε is computed
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using

Pε = A− CHT
N −HNCT +HNDHT

N , (3.5)

where A = FN−1Çm(FN−1)T + D̄NQND̄
T
N , C = FN−1ÇmH

T
N + D̄NQNG

T
N , D = HNÇmH

T
N +ΩN ,

ΩN = GNQNG
T
N + RN , Çm = E{xmx

T
m} = x̂mx̂

T
m + Pεm , QN = E{Wm,kW

T
m,k} and RN =

E{Vm,kV
T
m,k}.

Define Pprev as the value of Pε computed before solving the minimization problem in which,

the gain that could be used for computing Pprev at the first time is the UFIR gain ĤN =

FN−1(HT
NHN )−1HT

N . At this time Pprev is a constant so if Pε is replaced with Pprev, (3.4) could

be represented as the LMI

















−K KF̃ς KB̃ς 0

F̃ T
ς K −K 0 F̃ T

ς C̃
T
ς

B̃T
ς K 0 −µ2Pς B̃T

ς C̃
T
ς

0 C̃ς F̃ς C̃ςB̃ς −P−1
prev

















< 0. (3.6)

After solving the LMI in (3.6) a value forHN will be obtained which will be used for computing

a new Pε using (3.5), whose trace is expected to be lower than the trace of Pprev. One way to

guarantee that the trace of Pε will be lower then the trace of Pprev is adding more constraints to

the minimization problem. To do this, first define the GNPG before solving the LMI as Gprev,

then define a new variable G such that

G > HNHT
N .

Now rewrite it as

G −HNHT
N > 0.

If the Schur complement is used, the last inequality can be equivalently replaced with the LMI

as




G HN

HT
N I



 > 0. (3.7)

A important property of the GNPG is that for a fixed N , if the trace of G is maximized, then

the value of the trace of the error covariance Pk will be minimized. Therefore, if the trace of

G is greater than the trace of Gprev, then the trace of Pε will be lower than the trace of Pprev.

Hence, the gain HN that will be used for computing Pε could be found numerically by solving
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the following minimization problem iteratively,

HN = min
HN ,G2,K,γ2

µ2

subject to (3.6), (3.7) and tr(G) > tr(Gprev). (3.8)

Using the gain HN computed after solving the minimization problem in (3.8), the trace of

Pε can be computed and compared with the trace of Pprev until the condition tr(Pε) < tr(Pprev)

does not fit. A pseudo code of the a posteriori iterative H∞ FIR filtering algorithm is listed as

Algorithm 2.

Algorithm 2: Iterative Algorithm for H∞ FIR Filter Gain Computation

Data: ĤN , Pς , Qm,k, Rm,k

Result: HN

begin

HN = ĤN ; /* Initialize with UFIR gain */

G = ĤNĤT
N ;

do

Pprev = A− CHT
N −HNCT +HNDHT

N ;

Gprev = HNHT
N ;

HN = min µ2 subject to (3.6), (3.7) and tr(G) > tr(Gprev) ;

Pε = A− CHT
N −HNCT +HNDHT

N ;

while tr(Pε) < tr(Pprev);

end

Using the gain HN , numerically determined by using Algorithm 2, the a posteriori H∞ FIR

filtering estimate and error covariance for uncorrelated wk, vk, and xm as, respectively,

x̂k = HNYm,k, (3.9)

Pk = BNÇmBT
N +WNQNWT

N + VNRNVT
N , (3.10)

where the error residual matrices are given by (2.40)-(2.42).

3.3 Numerical Example

Consider the tracking problem described in section 2.5, but for the disturbance wk and the

measurement noise vk consider the following cases:
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1. Considering both as white gaussian.

2. Considering disturbance wk as Gauss-Markov colored and measurement noise vk as gaussian.

3. Considering disturbance wk as gaussian and measurement noise vk as Gauss-Markov.

For all cases, the H∞ FIR filter gain will be computed using Algorithm 2, and also using

Algorithm 1, the filtering errors of the H∞ FIR filter will be compared against the filtering errors

of the KF, OFIR [36] and UFIR filters.

3.3.1 White Gaussian Disturbance and Measurement Noise

First, consider wk ∼ N (0, Ã2w) and vk ∼ N (0, Ã2v), extend the state space (2.65)-(2.66) on [m, k],

and compute the a posteriori H∞ FIR filter gain numerically by using Algorithm 1 and Algorithm

2. The estimation can be computed as x̂k = HNYm,k.

The estimations were computed with the standard deviations Ãw = 12 m/s and Ãv = 10 m

and with a sample period of Ä = 0.025 s, using this parameters, the optimal horizon for the UFIR

computation is Nopt = 20.

The behavioral of Algorithm 2 could be seen graphically on Fig. 3.1, in Fig. 3.1(a) is shown

the minimization of µ as the trace of G is increased, while Fig. 3.1(b) shows how the trace of Pε

is minimized as the trace of G is increased, as can be seen, the algorithm works while the trace of

Pε is minimized, if the trace starts to grew, then the algorithm is ended and the H∞ FIR filter

gain is obtained.

The RMSE for each filter is given in Table 3.1, it was obvious that KF and OFIR filter will

give the most accurate estimations because they were designed to operate under white gaussian

disturbance and measurement noise, so in this conditions the best option is to use KF or OFIR

filter, but the errors given by the H∞ FIR filter are near to the KF or OFIR errors. The robust

UFIR filter gives the less accurate estimation than other filters, but what is really important is

that both H∞ FIR filters gives similar errors, which means that the gain is similar too, but the

estimation with the gain computed using Algorithm 1 gives better estimates which means that

this algorithm gives a better accuracy in the H∞ FIR filter gain computation, but Algorithm

2 found the gain in less time than Algorithm 1, thus, the user must decide for himself which

algorithm suits him best if the one more accurate or the fastest one.
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Figure 3.1: Solving the minimization problem using Algorithm 2: (a) minimizing µ as function

of the trace of G and (b) the trace of error covariance Pε as function of the trace of G.

Table 3.1: RMSEs produced by the filters.

Filter RMSE

KF 31.2242

OFIR 31.6069

UFIR 33.2906

H∞ FIR (Algorithm 1) 31.6697

H∞ FIR (Algorithm 2) 31.6999

3.3.2 Colored Gauss-Markov Disturbance

Consider the vehicle tracking problem described in (2.65)-(2.66), where the white Gaussian mea-

surement noise vk ∼ N (0, Ã2v), has the standard deviation Ã2v = 10 m/s, for this case the vehicle

trajectory is affected by the Gauss-Markov process disturbance wk = Θwk−1 + µk, where the

scalar disturbance factor Θ is chosen as 0 < Θ < 1, and the driving noise µk ∼ N (0, Ã2µ) has a

standard deviation Ãµ = 12 m/s.

To compare the estimation errors, the disturbance process is generated by changing Θ from

0.05 to 0.95 with a step 0.05. Next, the following scenarios of filter optimal tuning are considered:

1. For Θ and Nopt(Θ).
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2. For Θ = 0.05 and Nopt = 17.

3. For Θ = 0.95 and Nopt = 7.

Typical tracking RMSEs are shown in Fig. 3.2 as functions of Θ, and it can be stated the following

features:

� Case 1 (theoretical): Tuning for Θ and Nopt(Θ). When the filters are optimally tuned for

Θ, their RMSEs reach the lowest possible values, as shown in Fig. 3.2(a). The H∞ FIR

(Algorithms 1 and 2) filter and the UFIR filter do it with a lower rate that speaks in favor

of their higher robustness. Note that filter tuning to each Θ is hardly possible in practice,

so this case can be considered theoretical.

� Case 2 (regular): Tuning for Θ = 0.05 and Nopt = 17. When the disturbance is not

specified, all filters are usually tuned near to white noise this is the reason this is considered

the regular case. Increasing Θ causes all errors to increase at a high rate. Accordingly, all

filters produce consistent and large errors when Θ reaches 0.95, as shown in Fig. 3.2(b).

� Case 3 (robust): Tuning for Θ = 0.95 and Nopt = 7. When the disturbance boundary is

known, all filter can be tuned for Θ = 0.95. This drastically lowers the RMSEs in all filters

compared to tuning for Θ = 0.05 (Fig. 3.2(b)). It can be seen that all filters demonstrate

a better robustness. However, the highest robustness is exhibited by the H∞ FIR filter

(Algorithms 1 and 2) and the UFIR filter. Among these filters, as is shown in Fig. 3.2(c),

the UFIR filter looks a bit more robust, although a bit less accurate, as expected.

Comparing the RMSEs shown in Fig. 3.2(a) and Fig. 3.2(c), it can be concluded that tuning

for each Θ gives the smallest errors, but can hardly be implemented practically. On the contrary,

tuning for Θ = 0.95 gives slightly more errors, but this case is feasible and robust. When the

H∞ FIR filter is tuned near to white noise (Fig. 3.2(b)), its behavioral is the same like the other

filters, increasing the errors as the color factor is increased. By the other hand, if the H∞ is tuned

to the maximized disturbance (Fig. 3.2(c)) then the errors doesn’t have a significant difference if

the disturbance is decreased, which means robustness.

One way to see the comparison between of the robustness ϱ of the filters tuned in robust mode

is with the ratio of the RMSE when the model has Θmax and the RMSE when the model has

Θmin.

0 < ϱ =
RMSE(Θmin)

RMSE(Θmax)
< 1 (3.11)
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Figure 3.2: Typical RMSEs generated by the filters as functions of the process color factor

0.05 ⩽ Θ ⩽ 0.95 in different scenarios of tuning: (a) theoretical: tuning to each Θ, (b) regular:

tuning to Θ = 0.05 that corresponds to Nopt = 17, and (c) robust: tuning to Θ = 0.95 that

corresponds to Nopt = 7.
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This measure suggests that the filter has the highest robustness ϱ = 1 when RMSE(Θmin) =

RMSE(Θmax), and the lowest robustness ϱ = 0 when RMSE(Θmin) = 0. Since these boundaries

are practically unreachable, it is considered 0 < ϱ < 1. Table 3.2 shows the robustness ϱ of each

filter tuned for the robust case (Fig. 3.2(c)), it can be seen that H∞ FIR filter has almost the

same robustness than the UFIR filter.

Table 3.2: Robustness ϱ of the filters tuned in robust mode (Gauss-Markov disturbance).

Filter ϱ

KF 0.3127

OFIR 0.3498

UFIR 0.6428

H∞ FIR Alg. 1 0.6196

H∞ FIR Alg. 2 0.6196

It is worth noting for practical usefulness that further maximizing the disturbance matrix QN

by the factor of 4 does not change the RMSE with a noticeable difference, so the H∞ FIR filter

produces almost the same errors. This means that the robust mode is completely achievable in

H∞ FIR filtering by maximizing the errors for Θmax.

3.3.3 Colored Gauss-Markov Measurement Noise

Consider the vehicle tracking problem with the white Gaussian disturbance wk ∼ N (0, Ã2w) and

the colored noise vk = Ψvk−1 + Àk, where À ∼ N (0, Ã2ξ ) and the color factor 0 < Ψ < 1 is chosen

for stability. Using Ãw = 10 m/s, Ãξ = 12 m/s, the same scenarios of tuning are considered:

1. For Ψ and Nopt(Ψ).

2. For Ψ = 0.05 and Nopt = 23.

3. For Ψ = 0.95 and Nopt = 66.

Fig. 3.3 shows the RMSEs produced by filters as functions of the colored noise factor Ψ. The

theoretical case (tuning for Ψ and Nopt(Ψ)) is shown in Fig. 3.3(a), as in the colored disturbance

example, all filters produce consistent errors that grow and at a low rate.
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Figure 3.3: Typical RMSEs generated by the filters as functions of the colored measurement noise

factor 0.05 ⩽ È ⩽ 0.95 in different scenarios of tuning: (a) theoretical : tuning to each È, (b)

regular: tuning to È = 0.05 that corresponds to Nopt = 23, and (c) robust: tuning to È = 0.95

that corresponds to Nopt = 66.
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The regular case (tuning for Ψ = 0.05 and Nopt = 23) can be seen in Fig. 3.3(b) as in the

colored disturbance example, increasing Ψ causes all errors to increase at a high rate. In Fig.

3.3(c) is shown the robust case (tuned for Ψ = 0.95 and Nopt = 66), in this case, it can be seen

that all filters demonstrate a higher robustness.

The H∞ FIR filter (Algorithms 1 and 2) and the UFIR filter demonstrate almost the same

robustness, although the H∞ is more successful in accuracy. Finally, it must be noticed that

maximizing the measurement noise matrix RN by the factor of 4 does not significantly change in

the errors.

Analyzing the robustness ϱ of the filters tuned for the robust case (Table 3.3), it can be

noticed that the H∞ FIR filter is almost as robust as the UFIR filter.

Table 3.3: Robustness ϱ of the filters tuned in robust mode (Gauss-Markov measurement noise).

Filter ϱ

KF 0.4429

OFIR 0.4468

UFIR 0.6843

H∞ FIR Alg. 1 0.6552

H∞ FIR Alg. 2 0.6630

3.4 Experimental Verification

Now, the accuracy and robustness of the H∞ FIR filter is tested using real data from the KUKA

LWR IV+ robot angular velocity measured along the coordinate x. Data available from [33]

shows that a robot travels with a velocity that varies quasi periodically about the mean value, as

shown in Fig. 3.4(a). If the average ”slow” velocity is desired to be known, the fast variations can

be considered as colored process noise (CPN). Since the original data in Fig. 3.4(a) are highly

oversampled, the signal must be thinned in time, the thinning factor is selected as 56, and then

the following polynomial tracking model is used,

xk = Fxk−1 +Bwk, (3.12)

yk = Hxk +Dwk + vk, (3.13)
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where the first state is the velocity of the robot and the second state its acceleration. The model’s

matrices are given by

F =





1 Ä

0 1



 , B =





1

1/Ä



 , H =
[

1 0
]

.

where Ä = 0.56 s is the thinned sample period and D will be computed numerically.

To have a pseudo ground truth, the UFIR a posteriori filtering estimate x̂Uk is computed on

the horizon of Nopt = 64 points that corresponds to the horizon of 36 s and averages 8-9 quasi

periodic variations. Then a (q = 32)-lag UFIR smoothing estimate xk−q = F−qx̂Uk is obtained,

this smoothed estimation could be considered as the pseudo ground truth. The thinned data and

the pseudo ground truth are shown in Fig. 3.4(b).

Figure 3.4: (a) Measurements of the velocity of the robot KUKA LWR IV+. (b) Thinned in time

measurements and the first state of the pseudo ground truth.
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In the test it will be assumed wk as a colored Gauss-Markov disturbance and vk as white

gaussian measurement noise. The accuracy of the H∞ FIR filter will be compared with the

accuracy of the KF, OFIR, Optimal unbiased FIR (OUFIR) [37], maximum likelihood FIR (ML-

FIR) [37], UFIR (Nopt = 48), H2-OFIR [28], H2-OUFIR filters [29].

The measurement noise vk is computed as follows, first, rewrite (3.13) as

vk = yk − (Hxk +Dwk),

where xk is the pseudo ground truth. At this step, the value of D is unknown, so the term

Hxk + Dwk can’t be computed, but this term can be considered as the measurements average

ȳk, then the measurement noise can be computed as,

vk = yk − ȳk,

the average ȳk can be computed using the UFIR (N = 10) estimation of the oversampled mea-

surements and then thinning in time by 56 the result. The difference yk − ȳk is shown in Fig.

3.5(a) and this difference is considered the white gaussian measurement noise vk, the standard

deviation Ãv is computed as E{vkv
T
k }, obtaining a value of 400.16 µm/s.

The disturbance can be computed as follows, first write the product Dwk in terms of the

measurements average ȳk,

Dwk = ȳk −Hxk,

and replace it on (3.12),

xk = Fxk−1 +BD−1(ȳk −Hxk), (3.14)

using xk as the pseudo ground truth, D can be computed numerically by changing its value until

the right-hand side of (3.14) matches with the pseudo ground truth. In this case, D was computed

obtaining a value of -0.5350252. Using this value of D, the disturbance wk can be computed as

wk = D−1(ȳk −Hxk)

the disturbance is considered as a Gauss-Markov process, hence µk can be computed as µk =

wk−Θwk−1, where Θ is selected as the value that causes a white gaussian behavioral for µk. Fig.

3.5(b) shows the computed Gauss-Markov disturbance with Θ = 0.64 and Ãµ = 13.03 mm/s.
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Figure 3.5: (a) White gaussian measurement noise with Ãv = 400.16 µm/s, (b) Gauss-Markov

disturbance with Θ = 0.64 and Ãµ = 13.03 mm/s.

The filters were tuned using the values of Θ, Ãµ and Ãv computed before. The errors of each

filter are shown in Fig. 3.6, as can be seen, in presence of a colored Gauss-Markov disturbance,

the robust filters (UFIR, H2-OUFIR and H∞ FIR) has the most accurate estimations, Table

3.4 shows the RMSE produced by each filters, under colored disturbance KF, OFIR, OUFIR

and ML-FIR don’t give an accurate estimation, UFIR filter being a robust filter, gives a good

estimation, it was expected that H2-OFIR gives better estimations than UFIR, but H2 has larger

errors than UFIR, it can be caused by the size of the batch (N = 48) and it needs a bigger batch,

H2-OUFIR has a good estimation, but the H∞ FIR filter (computed with any algorithm) has

less errors than any other filter.
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Figure 3.6: Filtering errors in the first case for (a) first state and (b) second state

Table 3.4: RMSE produced by the filters in the experiment using real data.

Filter RMSE

KF 3.9349

OFIR 3.9346

OUFIR 3.9344

ML 3.9344

UFIR 1.1203

H2-OFIR 2.2917

H2-OUFIR 1.1051

H∞ FIR Alg. 1 1.0615

H∞ FIR Alg. 2 1.0724



Chapter 4

Recursive a posteriori H∞ Filter

The batch form of the H∞ FIR filter is computationally time consuming, especially when N k 1,

due to large dimensions of all extended vectors and matrices. An efficient computation of (2.62)

can be done if recursions for x̂k are found into an iterative algorithm.

The objective is to find a bias correction gain for a Kalman-like algorithm such as the H∞

norm of the ς-to-ε is minimized

KH∞ ⇐ sup
ς ̸=0

∑k
i=m ε

T
i Pεεi

∑k
i=m ς

T
i Pςςi

< µ2, (4.1)

where KH∞ is the recursive H∞ filter bias correction gain. As in the batch form, the bias

correction gain KH∞ can be defined numerically for a given small positive µ > 0.

4.1 Kalman Filering Algorithm

The recursive algorithm of the Bayesian estimator associated with one-state linear models [37]

can easily be extended to the K-state linear model

xk = Fkxk−1 + Ekuk +Bkwk, (4.2)

yk = Hkxk +Dkwk + vk, (4.3)

where the noise vectors wk ∼ N(0, Qk) ∈ R
M and vk ∼ N(0, Rk) ∈ R

P are uncorrelated. The

corresponding algorithm was derived by Kalman in his seminal paper [15] and is now commonly

known as Kalman filter (KF). Kalman derived his recursive filtering algorithm in 1960 by applying

the Bayesian approach to linear processes with WGN.

The KF algorithm operates in two phases:

37
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1. In the prediction phase, the a priori estimate and error covariance are predicted at k using

using measurements at k − 1.

2. In the update phase, the a priori values are updated at k to the a posteriori estimate and

error covariance using measurement at k.

Consider a K-state space model (4.2)-(4.3). The Bayesian approach can be applied similarly

to the one-state case, as was done by Kalman in [15].

The first thing to note is that the most reasonable prior estimate can be taken from (4.2) for

the known estimate x̂k−1 and input uk if the zero mean noise wk is ignored. This gives the prior

estimate

x̂−k = Fkx̂k−1 + Ekuk. (4.4)

To update x̂−k , is needed to involve the observation (4.3). This can be done if the measurement

residual is considered

sk = yk −Hkx̂
−
k

= Hkxk + vk −Hkx̂
−
k

= Hk(xk − x̂−k ) + vk (4.5)

= Hkε
−
k + vk,

as can be seen in (4.5), the measurement residual is the difference between data yk and the

predicted data Hkx̂
−
k . The measurement residual covariance Sk = ST

k = E{sks
T
k } can then be

written as

Sk = E{(Hkε
−
k + vk)(Hkε

−
k + vk)

T }

= HkP
−
k H

T
k +Rk. (4.6)

Since sk is generally biased, because x̂−k is generally biased, the prior estimate can be updated

as

x̂k = x̂−k +Kksk, (4.7)

where the matrix Kk is introduced to correct the bias in x̂−k . Therefore, Kk plays the role of the

bias correction gain.

As can be seen, the estimate (4.7) will be optimal if Kk is found such that the mean square
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error (MSE) is minimized. To do this, refer to (4.2)-(4.3) and define the errors

ε−k = xk − x̂−k ,

εk = xk − x̂k,

P−
k = E

{

ε−k ε
−T

k

}

,

Pk = E
{

εkε
T
k

}

involving (4.4)–(4.7).

The prior estimation error ε−k can be transformed as

ε−k = Fkxk−1 + Ekuk +Bkwk − Fkx̂k−1 − Ekuk

= Fk(xk−1 − x̂k−1) +Bkwk (4.8)

= Fkεk−1 +Bkwk

and, for mutually uncorrelated εk−1 and wk, the prior error covariance P
−
k can be transformed to

P−
k = FkPk−1F

T
k +BkQkB

T
k . (4.9)

Next, the estimation error εk can be represented by

εk = Fkxk−1 + Ekuk +Bkwk − Fkx̂k−1 − Ekuk −Kksk

= ε−k −Kk(Hkε
−
k + vk) (4.10)

= (I −KkHk)ε
−
k −Kkvk

and, for mutually uncorrelated ε−k and vk, the a posteriori error covariance Pk can be transformed

to

Pk = (I −KkHk)P
−
k (I −KkHk)

T +KkRkK
T
k

= P−
k − P−

k H
T
k K

T
k −KkHkP

−
k +Kk(HkP

−
k H

T
k +Rk)K

T
k (4.11)

= P−
k − P−

k H
T
k K

T
k −KkHkP

−
k +KkSkK

T
k .

What is left behind is to find the optimal bias correction gain Kk that minimizes MSE.

This can be done by minimizing the trace of Pk, which is a convex function with a minimum

corresponding to the optimal Kk. Using the properties of the derivative of the trace of a matrix

[4], [12], the minimization of tr(Pk) by Kk can be carried out if ∂
∂Kk

tr(Pk) = 0 as

∂

∂Kk
tr(Pk) =

∂

∂Kk
tr(P−

k )−
∂

∂Kk
tr(P−

k H
T
k K

T
k )−

∂

∂Kk
tr(KkHkP

−
k ) +

∂

∂Kk
tr(KkSkK

T
k )

=
∂

∂Kk
tr(KkSkK

T
k )− 2

∂

∂Kk
tr(KkHkP

−
k ) (4.12)

= 2KkSk − 2P−
k H

T
k = 0.
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This gives the optimal bias correction gain

Kk = P−
k H

T
k S

−1
k . (4.13)

The gain Kk (4.13) is known as the Kalman gain and its substitution on the left-hand side

of the last term in (4.11) transforms the error covariance Pk into

Pk = P−
k − P−

k H
T
k K

T
k −KkHkP

−
k + P−

k H
T
k S

−1
k SkK

T
k

= P−
k −KkHkP

−
k (4.14)

= (I −KkHk)P
−
k .

The above derived standard KF algorithm gives an estimate at k utilizing data from zero to

k. Therefore, it is also known as the a posteriori KF algorithm, the pseudo code of which is listed

as Algorithm 3.

Algorithm 3: The a posteriori (standard) KF Algorithm

Data: yk, uk, x̂0, P0, Qk, Rk

Result: x̂k, Pk

begin

for k = 1, 2, . . . do

x̂−k = Fkx̂k−1 + Ekuk ; /* a priori state estimate */

P−
k = FkPk−1F

T
k +BkQkB

T
k ; /* a priori error covariance */

sk = yk −Hkx̂
−
k ; /* measurement residual */

Sk = HkP
−
k H

T
k +Rk ; /* innovation covariance */

Kk = P−
k H

T
k S

−1
k ; /* Kalman gain */

x̂k = x̂k +Kksk ; /* a posteriori state estimate */

Pk = (I −KkHk)P
−
k ; /* a posteriori error covariance */

end

end

The algorithm requires initial values x̂0 and P0, as well as noise covariances Qk and Rk to

update the estimates starting at k−1. Its operation is quite transparent, and recursions are easy

to program, fast to compute, and require little memory, making the KF algorithm suitable for

many applications.
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4.2 Recursive a posteriori H∞ filter

4.2.1 Recursive Disturbance-to-Error State Space Model

One of the best ways to determine KH∞ is using the BRL defined in Lemma 2. But first a state

space model where is desired the disturbance ςk as the input and the estimation error εk as the

output. To derive this state space model, consider the BE-based state-space model of the LTI

system modified as

xk = Fxk−1 +Bwk, (4.15)

yk = Hxk + vk (4.16)

Referring to (4.4)-(4.11), the recursive state estimation x̂k can be obtained as

x̂k = Fx̂k−1 +KH∞(yk −HFx̂k−1), (4.17)

and the estimation error εk can be represented as

εk = (I −KH∞H)Fεk−1 + (I −KH∞H)Bwk −KH∞vk, (4.18)

Now, introduce a state vector zk = εk and an augmented vector ςk =
(

wT
k vTk

)T

, and

combine them in the following state-space model

zk = F̃ςzk−1 + B̃ςςk, (4.19)

εk = C̃ςzk (4.20)

in which the newly introduced block matrices have the form

F̃ς = (I −KH∞H)F, B̃ς =
(

(I −KH∞H)B −KH∞

)

, C̃ς = I. (4.21)

4.2.2 Algorithm for Recursive H∞ Filter Bias Correction Gain Computation

The state-space equations in (4.19)-(4.20) can’t be used directly on the inequality given by lemma

2 due to weight Py in (2.31) corresponds to Pε in the recursive H∞ filtering problem, and referring

to (4.11), Pε = Pk = E{εkε
T
k } is given by

Pε = P−
ε − P−

ε H
TKH∞

T
−KH∞HP−

ε +KH∞(HP−
ε H

T +Rk)K
H∞

T
, (4.22)

where P−
ε is the a priori error covariance P−

k in which referring to (4.9) and (4.11) is given by

P−
ε = F [(I −KH∞H)P−

k−1(I −KH∞H)T +KH∞RkK
H∞

T
]F T +BQkB

T . (4.23)
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As can be seen in (4.22), Pε is function of the bias correction gain KH∞ , which is a desired

variable for the minimization of µ in the inequality in (2.31), so the inequality is nonlinear with

respect to the bias correction gain KH∞ due to the inversion of Pε.

To solve this problem, first rewrite Pε in (4.22) as

Pε =
(

I KH∞

)





P−
ε −P−

ε H
T

−HP−
ε HP−

ε H
T +Rk









I

KH∞
T



 ,

introduce new auxiliary matrices

K̃ς =
(

I KH∞

)

, (4.24)

PJ =





P−
ε −P−

ε H
T

−HP−
ε HP−

ε H
T +Rk



 , (4.25)

and rewrite Pε as

Pε = K̃ςPJ K̃
T
ς (4.26)

Now replace F , B, H, Pw and Py in (2.35) with F̃ς , B̃ς , C̃ς , Pς and Pε respectively,




F̃ T
ς KF̃ς + F̃ T

ς C̃
T
ς PεC̃ς F̃ς −K F̃ T

ς KB̃ς + F̃ T
ς C̃

T
ς PεC̃ςB̃ς

B̃T
ς KF̃ς + B̃T

ς C̃
T
ς PεC̃ς F̃ς B̃T

ς KB̃ς + B̃T
ς C̃

T
ς PεC̃ςB̃ς − µ2Pς



 < 0, (4.27)

where Pς is defined by (2.54).

Replace (4.26) into (4.27) as




F̃ T
ς KF̃ς + F̃ T

ς C̃
T
ς K̃ςPJ K̃

T
ς C̃ς F̃ς −K F̃ T

ς KB̃ς + F̃ T
ς C̃

T
ς K̃ςPJ K̃

T
ς C̃ςB̃ς

B̃T
ς KF̃ς + B̃T

ς C̃
T
ς K̃ςPJ K̃

T
ς C̃ς F̃ς B̃T

ς KB̃ς + B̃T
ς C̃

T
ς K̃ςPJ K̃

T
ς C̃ςB̃ς − µ2Pς



 < 0.

Then decompose it as




−K 0

0 −µ2Pς



+





F̃ T
ς F̃ T

ς C̃
T
ς K̃ς

B̃T
ς B̃T

ς C̃
T
ς K̃ς









K 0

0 PJ









F̃ς B̃ς

K̃T
ς C̃ς F̃ς K̃T

ς C̃ςB̃ς



 < 0, (4.28)

introduce new matrices

J̃ς = K̃T
ς C̃ς F̃ς =





(I −KH∞H)F

(KH∞
T
−KH∞

T
KH∞H)F



 , (4.29)

L̃ς = K̃T
ς C̃ςB̃ς =





(I −KH∞H)B −KH∞

(KH∞
T
−KH∞

T
KH∞H)B −KH∞

T
KH∞



 , (4.30)

and replace (4.29) and (4.30) into (4.28) as




−K 0

0 −µ2Pς



+





F̃ T
ς J̃T

ς

B̃T
ς L̃T

ς









K 0

0 PJ









F̃ς B̃ς

J̃ς L̃ς



 < 0,
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consider it as a Schur’s complement, and represent with another inequality
















−K 0 F̃ T
ς J̃T

ς

0 −µ2Pς B̃T
ς L̃T

ς

F̃ς B̃ς −K−1 0

J̃ς L̃ς 0 −P−1
J

















< 0.

Now multiply the inequality from the left-hand and right-hand sides with the following ma-

trices, respectively,
















0 0 I 0

I 0 0 0

0 I 0 0

0 0 0 I

















,

















0 I 0 0

0 0 I 0

I 0 0 0

0 0 0 I

















and obtain
















−K−1 F̃ς B̃ς 0

F̃ T
ς −K 0 J̃T

ς

B̃T
ς 0 −µ2Pς L̃T

ς

0 J̃ς L̃ς −P−1
J

















< 0. (4.31)

Inequality in (4.31) still nonlinear with respect to the bias correction gain KH∞ due to the

presence of the quadratic term KH∞
T
KH∞ in J̃ς and L̃ς defined in (4.29)-(4.30) respectively. To

solve this problem, introduce an auxiliary matrix Z such that

Z > KH∞
T
KH∞ .

Represent it as

Z −KH∞
T
KH∞ > 0.

If the Schur complement is used, the last inequality can be equivalently replaced with the

LMI as:




Z KH∞
T

KH∞ I



 > 0. (4.32)

Now. let’s redefine J̃ς in (4.29) and L̃ς in (4.30) using the new variable Z to replace the

quadratic terms,

J̃ς =





(I −KH∞H)F

(KH∞
T
−ZH)F



 , (4.33)

L̃ς =





(I −KH∞H)B −KH∞

(KH∞
T
−ZH)B −Z



 , (4.34)
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Also, inequality in (4.31) exists another nonlinearity which is the inversion of the positive

definite matrix K. To avoid the inversion of K, pre- and post-multiply the matrix (4.31) with

















K 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

















and obtain another form of the inequality in (4.31)

















−K KF̃ς KB̃ς 0

F̃ T
ς K −K 0 J̃T

ς

B̃T
ς K 0 −µ2Pς L̃T

ς

0 J̃ς L̃ς −P−1
J

















< 0. (4.35)

As is desired to have only linearities in (4.35), K and KH∞ can’t be variables of the LMI at

the same time, so the minimization problem has to be solved in two steps: The first one is to

compute a value for K using a constant KH∞ and the second one is to solve the minimization

problem using the value of K found in step one as a constant. The best candidate for initializing

the minimization procedure is of course the UFIR filter bias correction gain KU
k = GkH

T .

Before computing a value for K, a initial value for P−
ε is needed. In stationary mode, k = ∞,

(4.23) becomes the Lyapunov equation

F (I −KH∞H)P−
ε (I −KH∞H)TF − P−

ε + FKH∞RkK
H∞

T
F T +BQkB

T = 0, (4.36)

the initial value of P−
ε can be obtained using the initial bias correction gain KH∞ by solving the

discrete Lyapunov equation (DLE) in (4.36).

Now with a numerical value of P−
ε , a prior value forK can be obtained by solving the following

minimization problem with a constant KH∞

K = min
K,γ2

µ2

subject to (4.35). (4.37)

Using a constant value of K, the recursive H∞ filter bias correction gain KH∞ can be obtained

by solving the following minimization problem

KH∞ = min
KH∞ ,Z,γ2

µ2

subject to (4.32), (4.35) and Z = KH∞
T
KH∞ . (4.38)
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The Algorithm 4 was designed for two things, the first one is to satisfy the third constraint

in the minimization problem in (4.38), and the second one to update the values of K used as

constant in (4.38) which will be updated using (4.37). In the algorithm, µ is minimized in each

iteration by increasing the trace of Z, at the end of each iteration the trace of Z is compared with

the trace of KH∞
T
KH∞ , if the difference between them is greater than a small threshold ¶0 > 0,

the routine is ended and the gain is obtained, if not, a new value of P−
ε and K is computed using

the last value of KH∞ , and the routine is repeated until the recursive H∞ filter bias correction

gain is obtained.

Algorithm 4: Algorithm for recursive H∞ Filter Bias Correction Gain Computation

Data: ¶0, K
U
k , Pς

Result: KH∞

begin

KH∞ = KU
k ; /* Initialize with UFIR bias correction gain */

Z = KUT
KU ;

while |tr(Z)− tr(KH∞
T
KH∞)| < ¶0 do

P−
ε ⇐ Solution of the DLE (4.36) ; /* a priori error covariance */

K = min µ2 subject to (4.35) ; /* Update K */

Zprev = Z ;

KH∞ = min µ2 subject to (4.32), (4.35) and tr(Z) > tr(Zprev) ;

end

end

Using the bias correction gain KH∞ , numerically determined by using Algorithm 4, the a

posteriori recursive H∞ filtering estimate and error covariance for uncorrelated wk, vk, and xm

can be obtained as Kalman-like recursions. A pseudo code of the recursions for H∞ filtering is

listed in Algorithm 5.
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Algorithm 5: The a posteriori Recursive H∞ Filter Algorithm

Data: yk, x̂0, P0, Qk, Rk,K
H∞

Result: x̂k, Pk

begin

for k = 1, 2, . . . do

x̂−k = Fx̂k−1 ;

P−
k = FPk−1F

T +BQkB
T ;

sk = yk −Hx̂−k ;

x̂k = x̂k +KH∞sk ;

Pk = (I −KH∞H)P−
k (I −KH∞H)T +KH∞RkK

H∞
T
;

end

end

4.3 Filter Tuning Example

Consider the tracking problem described in section 2.5, but wk is considered CPN, and it can be

viewed as a Gauss-Markov process

wk = Θwk−1 + µk, (4.39)

where Θ is a color factor and µk ∼ N(0, Ã2µ).

Also, consider vk as colored measurement noise (CMN)

vk = Ψvk−1 + Àk, (4.40)

where Ψ is a color factor and Àk ∼ N(0, Ã2ξ ).

The process of the state space (2.65)-(2.66) generated with the CPN and the CMN with the

standard deviations Ãµ = 12 m/s and Ãξ = 10 m, the color factors Θ = 0.2 and Ψ = 0.4 and the

sample period Ä = 0.025 s is shown in Fig. 4.1.
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Figure 4.1: Process of the radar system generated, (a) first state measurements and first state

without noise, (b) second state.

The process noise covariance Qk = E{wkw
T
k } is defined as

Qk = ΘQkΘ
T +Qµ, (4.41)

where Qµ = E{µkµ
T
k }. The process noise covariance Qk could be computed numerically as the

solution of (4.41) written as a DLE

ΘQkΘ
T −Qk +Qµ = 0. (4.42)

Arguing similarly, the measurement noise covariance Rk could be obtained as the solution of

the DLE

ΨRkΨ
T −Rk +Rξ = 0, (4.43)
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where Rξ = E{ÀkÀ
T
k }.

To test the robustness of the filter, the noise covariances Qk and Rk were tuned using Θ =

Θmax = 0.95 and Ψ = Ψmax = 0.95. The recursive H∞ filter bias correction gain were computed

using Algorithm 4 with a small threshold ¶0 = 0.001, then the a posteriori estimation is obtained

using Algorithm 5, also estimations using the recursive UFIR filter and the KF [38] are obtained

as benchmark.

The behavioral of Algorithm 4 could be seen graphically on Fig. 4.2. Fig. 4.2(a) shows the

minimization of µ as the trace of Z is increased, as can be seen, if the trace of Z is increased, µ

takes lower values as it gets to a minimum, but Fig. 4.2(b) shows that minimum value of µ is not

necessary the minimum that we are searching for. Fig. 4.2(b) shows the comparison of the trace

of Z and the trace of KH∞
T
KH∞ as the trace of Z is increased, in this case both graphs are

very similar with lower values of the trace of Z but there is a point where this trace is increased

and the other one diverges, this is because at this point of the algorithm Z ≠ KH∞
T
KH∞ and

the third restriction in (4.38) isn’t satisfied, so we have to stop the algorithm before both traces

starts to diverge and obtain the recursive H∞ filter bias correction gain.

Figure 4.2: Solving the minimization problem using Algorithm 4: (a) minimizing µ as the trace

of Z is increased and (b) comparison between the trace of matrix KH∞
T
KH∞ and the trace of

Z as the trace of Z is increased.

Typical filtering errors are shown in Fig. 4.3, the UFIR filter estimate gives larger errors than

any other estimation, when there is a presence of non-Gaussian noises, KF isn’t the best option,

so its desired to have an estimator who gives better estimations than Kalman’s, in this case, the
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recursive H∞ filter gives better estimation as is shown in Table 4.1.

Figure 4.3: Filtering errors produced by the filters in the example system for: (a) first state and

(b) second state.

Table 4.1: RMSEs produced by the filters.

Filter RMSE

KF 38.3775

UFIR (Recursive) 39.6717

Recursive H∞ 38.1486



Chapter 5

Iterative Algorithm for Recursive

H∞ Filter Bias Correction Gain

Computation

The state-space equations in (4.19)-(4.20) can’t be used directly on the inequality given by lemma

2 due to weight Py in (2.31) corresponds to Pε in the recursive H∞ filtering problem and Pε =

Pk = E{εkε
T
k } is function of the bias correction gain KH∞ , and for that reason, the inequality is

nonlinear with respect to the bias correction gainKH∞ . A solution for nonlinearities was proposed

where the inequality in (2.31) is substituted with Pε as function of KH∞ , this solution gives an

inequality where the product KH∞
T
KH∞ makes nonlinear with respect to the bias correction

gain KH∞ but introducing a new variable Z it can be transformed into a LMI by adding the

inequality Z > KH∞
T
KH∞ , then by increasing the trace of Z and checking if the constraint

tr(Z) = tr(KH∞
T
KH∞) is satisfied, the recursive H∞ filter bias correction gain KH∞ is obtained

(Algorithm 4). Another alternative to avoid the nonlinearity in the inequality in Lemma 2 is the

iterative algorithm presented bellow.

5.1 Generalized Noise Power Gain in Recursive Form

If the UFIR filter gain HN = FN−1(HT
NHN )−1HT

N is used, the GNPG Gk can be written as

Gk = FN−1(HT
NHN )−1HT

NHN (HT
NHN )−T (FN−1)T

= FN−1(HT
NHN )−1(FN−1)T , (5.1)

50
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then, a convolution based estimation can be obtained as

x̂k = HNYm,k

= FN−1(HT
NHN )−1HT

NYm,k (5.2)

= FN−1(HT
NHN )−1(FN−1)T (FN−1)−THT

NYm,k

= Gk(F
N−1)−THT

NYm,k,

and, by applying the decomposition

HN =





HN−1

HFN−1,



 (5.3)

the recursion for the GNPG (5.1) can be obtained if G−1
k is transformed as

G−1
k = (FN−1)−THT

NHNF
−(N−1)

= (FN−1)−T
(

HT
N−1 (FN−1)THT

)





HN−1

HFN−1,



F−(N−1)

= (FN−1)−T (HT
N−1HN−1 + (FN−1)THTHFN−1)F−(N−1)

= (FN−1)−THT
N−1HN−1F

−(N−1) +HTH

= F−T (FN−2)−THT
N−1HN−1F

−(N−2)F−1 +HTH

= F−TG−1
k−1F

−1 +HTH.

This gives the recursive form of G−1
k−1:

G−1
k−1 = F T (G−1

k −HTH)F. (5.4)

Using (5.3), (5.4) and HT
N = (FN−1)TG−1

k HN from the UFIR filter gain, the product HT
NYm,k
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in (5.2) can be transformed as

HT
NYm,k =

(

HT
N−1 (FN−1)THT

)





Ym,k−1

yk





= HT
N−1Ym,k−1 + (FN−1)THT yk

= (FN−2)TG−1
k−1HN−1Ym,k−1 + (FN−1)THT yk

= (FN−2)TG−1
k−1x̂k−1 + (FN−1)THT yk

= (FN−2)TF T (G−1
k −HTH)Fx̂k−1 + (FN−1)THT yk (5.5)

= (FN−1)T (G−1
k −HTH)x̂−k + (FN−1)THT yk

= (FN−1)T (G−1
k x̂−k −HTHx̂−k +HT yk)

= (FN−1)T (G−1
k x̂−k −HT (yk +Hx̂−k ))

= (FN−1)T (G−1
k x̂−k −HT sk).

By replacing (5.5) into (5.2), the following recursion is obtained for the estimate

x̂k = Gk(F
N−1)−T (FN−1)T (G−1

k x̂k −HT sk)

= Gk(G
−1
k x̂−k −HT sk)

= x̂−k − GkH
T sk. (5.6)

Analyzing (5.6) as Kalman recursions, it can be say that the bias correction gain Kk can be

related to the GNPG Gk by the following relationship:

Kk = GkH
T . (5.7)

5.2 Iterative Algorithm for Recursive H∞ Filter Bias Correction

Gain Computation

First, take the inequality in (2.37) and replace F , B, H, Pw and Py with F̃ς , B̃ς , C̃ς , Pς and Pε,

respectively,
















−K−1 F̃ς B̃ς 0

F̃ T
ς −K 0 F̃ T

ς C̃
T
ς

B̃T
ς 0 −µ2Pς B̃T

ς C̃
T
ς

0 C̃ς F̃ς C̃ςB̃ς −P−1
ε

















< 0. (5.8)
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Inequality in (5.8) is nonlinear with respect to the symmetric positive-definite matrix K, to

avoid the inversion of K, pre- and post-multiply the matrix (3.3) with

















K 0 0 0

0 I 0 0

0 0 I 0

0 0 0 I

















and obtain another form for the inequality,

















−K KF̃ς KB̃ς 0

F̃ T
ς K −K 0 F̃ T

ς C̃
T
ς

B̃T
ς K 0 −µ2Pς B̃T

ς C̃
T
ς

0 C̃ς F̃ς C̃ςB̃ς −P−1
ε

















< 0. (5.9)

If Pε is considered as constant then the inequality in (5.9) could be considered as a LMI.

The weight matrix Pε could be constant if before solving the LMI, a previous value of Pε is

obtained, to compute that value first write Pε = Pk = E{εkε
T
k } in terms of the state-space model

(4.15)-(4.16) as

Pk = F̃ςPk−1F̃
T
ς + B̃ςPςB̃

T
ς , (5.10)

where Pς = E{ςkς
T
k } is given by (2.54).

The statement Pε = Pk = Pk−1 is true if the stationary mode k = ∞ is considered, then

(5.10) can be transformed in the Lyapunov equation

F̃ςPεF̃
T
ς − Pε + B̃ςPςB̃

T
ς = 0. (5.11)

A value for Pε can be computed by solving the DLE defined in (5.11).

Then, define Pprev as the value of Pε computed before solving the minimization problem in

which, the bias correction gain that could be used for computing Pprev at the first time is the

UFIR bias correction gain KU
k = GkH

T . At this time Pprev is a constant so if Pε is replaced with

Pprev, (5.9) could be represented as the inequality

















−K KF̃ς KB̃ς 0

F̃ T
ς K −K 0 F̃ T

ς C̃
T
ς

B̃T
ς K 0 −µ2Pς B̃T

ς C̃
T
ς

0 C̃ς F̃ς C̃ςB̃ς −P−1
prev

















< 0. (5.12)
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As is desired to have only linearities in (5.12), K and KH∞ can’t be variables of the LMI at

the same time, so the minimization problem has to be solved in two steps: The first one is to

compute a value for K using a constant KH∞ and the second one is to solve the minimization

problem using the value of K found in step one as a constant.

A prior value for K can be obtained by solving the following minimization problem with a

constant KH∞

K = min
K,γ2

µ2

subject to (5.12). (5.13)

After solving the LMI in (5.12) with a constant value for K, a value for KH∞ will be obtained

which will be used for computing a new Pε solving the DLE (5.11), whose trace is expected to be

lower than the trace of Pprev. One way to guarantee that the trace of Pε will be lower then the

trace of Pprev is adding more constraints to the minimization problem. To do this, first define

the GNPG before solving the LMI as Gprev, then define a new variable G such that

GHT > KH∞ .

Now rewrite it as the LMI

GHT −KH∞ > 0. (5.14)

A important property of the GNPG is that if the trace of G is maximized, then the value

of the trace of the error covariance Pk will be minimized. Therefore, if the trace of G is greater

than the trace of Gprev, then the trace of Pε will be lower than the trace of Pprev. Hence, the bias

correction gain KH∞ that will be used for computing Pε could be found numerically by solving

the following minimization problem iteratively,

KH∞ = min
KH∞ ,G,γ2

µ2

subject to (5.12), (5.14) and tr(G) > tr(Gprev). (5.15)

Using the bias correction gain KH∞ computed after solving the minimization problem in

(5.15), the trace of Pε can be computed and compared with the trace of Pprev until the condition

tr(Pε) < tr(Pprev) does not fit.

A pseudo code of the recursive a posteriori iterative recursive H∞ filter bias correction gain

computstion is listed as Algorithm 6.
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Algorithm 6: Iterative Algorithm for recursive H∞ Filter Bias Correction Gain Com-

putation

Data: ĤN , Pς

Result: KH∞

begin

HN = ĤNĤT
NH

T ; /* Initialize with UFIR bias correction gain */

G = ĤNĤT
N ;

do

Pprev ⇐ Solution of the DLE (5.11) ;

K = min µ2 subject to (5.12) ; /* Update K */

Gprev = G ;

KH∞ = min µ2 subject to (5.12), (5.14) and tr(G) > tr(Gprev) ;

Pε ⇐ Solution of the DLE (5.11) ;

while tr(Pε) < tr(Pprev);

end

Using the bias correction gain KH∞ , numerically determined by using Algorithm 6, the a

posteriori recursive H∞ filtering estimate and error covariance for uncorrelated wk, vk, and xm

can be obtained as Kalman-like recursions using Algorithm 5.

5.3 Numerical Example

Consider the tracking problem described in section 2.5, but for the disturbance wk and the

measurement noise vk consider the following cases:

1. Considering both as Gauss-Markov.

2. Considering disturbance wk as Gauss-Markov colored and measurement noise vk as gaussian.

3. Considering disturbance wk as gaussian and measurement noise vk as Gauss-Markov.

For all cases, the recursive H∞ filter bias correction gain will be computed using Algorithm

6, and also using Algorithm 4, the filtering errors of the recursive H∞ filter will be compared

against the filtering errors of the KF and recursive UFIR filter.
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5.3.1 Gauss-Markov Disturbance and Measurement Noise

First, consider wk = Θwk−1+µk and vkΨvk−1+ Àk, where µk ∼ N(0, Ã2µ) and Àk ∼ N(0, Ã2ξ ), now

extend the state space (2.65)-(2.66) on [m, k], and compute the a posteriori recursive H∞ filter

bias correction gain numerically by using Algorithm 4 and Algorithm 6. The estimation can be

computed using Algorithm 5.

The estimations were computed with the standard deviations Ãµ = 12 m/s and Ãξ = 10 m

and with a sample period of Ä = 0.025 s, the color factors where selected as Θ = 0.2 and Ψ = 0.4,

using this parameters, the optimal horizon for the UFIR computation is Nopt = 20.

The behavioral of Algorithm 6 could be seen graphically on Fig. 5.1, in Fig. 5.1(a) is shown

the minimization of µ as the trace of G is increased, while Fig. 5.1(b) shows how the trace of Pε

is minimized as the trace of G is increased, as can be seen, the algorithm works while the trace

of Pε is minimized, if the trace starts to grew, then the algorithm is ended and the recursive H∞

filter bias correction gain is obtained.

Figure 5.1: Solving the minimization problem using Algorithm 6: (a) minimizing µ as function

of the trace of G and (b) the trace of error covariance Pε as function of the trace of G.

The RMSE for each filter is given in Table 5.1, in this case the process has lower values for

color factor and it is expected that KF give the most accurate estimations, but the recursive H∞

filter was the one with the lower errors.
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Table 5.1: RMSEs produced by the filters.

Filter RMSE

KF 38.3775

Recursive UFIR 39.6717

Recursive H∞ FIR (Alg. 4) 38.1486

Recursive H∞ FIR (Alg. 6) 38.3265

5.3.2 Colored Gauss-Markov Disturbance

Consider the vehicle tracking problem described in (2.65)-(2.66), where the white Gaussian mea-

surement noise vk ∼ N (0, Ã2v) has the standard deviation Ã2v = 10 m/s, for this case the vehicle

trajectory is affected by the Gauss-Markov process disturbance wk = Θwk−1 + µk, where the

scalar disturbance factor Θ is chosen as 0 < Θ < 1, and the driving noise µk ∼ N (0, Ã2µ) has a

standard deviation Ãµ = 12 m/s.

To compare the estimation errors, the disturbance process is generated by changing Θ from

0.05 to 0.95 with a step 0.05. Next, the following scenarios of filter optimal tuning are considered:

1. For Θ.

2. For Θ = 0.05.

3. For Θ = 0.95.

Typical tracking RMSEs are shown in Fig. 5.2 as functions of Θ, and it can be stated the following

features:

� Case 1 (theoretical): Tuning for Θ. When the filters are optimally tuned for Θ, their RMSEs

reach the lowest possible values, as shown in Fig. 5.2(a). The recursive H∞ (Algorithms 4

and 6) filter and the recursive UFIR filter do it with a lower rate that speaks in favor of

their higher robustness. Note that filter tuning to each Θ is hardly possible in practice, so

this case can be considered theoretical.
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Figure 5.2: Typical RMSEs generated by the filters as functions of the process color factor

0.05 ⩽ Θ ⩽ 0.95 in different scenarios of tuning: (a) theoretical: tuning to each Θ, (b) regular:

tuning to Θ = 0.05, and (c) robust: tuning to Θ = 0.95
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� Case 2 (regular): Tuning for Θ = 0.05. When the disturbance is not specified, all filters

are usually tuned near to white noise this is the reason this is considered the regular case.

Increasing Θ causes all errors to increase at a high rate. Accordingly, all filters produce

consistent and large errors when Θ reaches 0.95, as shown in Fig. 5.2(b).

� Case 3 (robust): Tuning for Θ = 0.95. When the disturbance boundary is known, all filter

can be tuned for Θ = 0.95. This drastically lowers the RMSEs in all filters compared to

tuning for Θ = 0.05 (Fig. 5.2(b)). It can be seen that all filters demonstrate a better

robustness. However, the highest robustness is exhibited by the recursive H∞ filter (Al-

gorithms 4 and 6) and the recursive UFIR filter. Among these filters, as is shown in Fig.

5.2(c), the recursive H∞ filter (Alg. 4) looks a bit more robust.

Comparing the RMSEs shown in Fig. 5.2(a) and Fig. 5.2(c), it can be concluded that tuning

for each Θ gives the smallest errors, but can hardly be implemented practically. On the contrary,

tuning for Θ = 0.95 gives slightly more errors, but this case is feasible and robust. When the

recursive H∞ filter is tuned near to white noise (Fig. 5.2(b)), its behavioral is the same like the

other filters, increasing the errors as the color factor is increased. By the other hand, if the H∞

is tuned to the maximized disturbance (Fig. 5.2(c)) then the errors doesn’t have a significant

difference if the disturbance is decreased, which means robustness.

Analyzing the robustness ϱ of the filters tuned for the robust case (Table 5.2), it can be seen

that the recursive H∞ filter using either Alg. 4 or 4 has more robustness than the recursive UFIR

filter.

Table 5.2: Robustness ϱ of the filters tuned in robust mode (Gauss-Markov disturbance).

Filter ϱ

KF 0.3127

UFIR 0.4135

Recursive H∞ Alg. 4 0.5287

Recursive H∞ Alg. 6 0.4874

It is worth noting that the robustness of the recursive filters are lower than the batch form

filters, and also are less accurate, but the estimation computation takes considerably less time

than in batch form.
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5.3.3 Colored Gauss-Markov Measurement Noise

Consider the vehicle tracking problem with the white Gaussian disturbance wk ∼ N (0, Ã2w) and

the colored noise vk = Ψvk−1 + Àk, where À ∼ N (0, Ã2ξ ) and the color factor 0 < Ψ < 1 is chosen

for stability. Using Ãw = 10 m/s, Ãξ = 12 m/s, the same scenarios of tuning are considered:

1. For Ψ.

2. For Ψ = 0.05.

3. For Ψ = 0.95.

Fig. 5.3 shows the RMSEs produced by filters as functions of the colored noise factor Ψ. The

theoretical case (tuning for Ψ and Nopt(Ψ)) is shown in Fig. 5.3(a), as in the colored disturbance

example, all filters produce consistent errors that grow and at a low rate. The regular case (tuning

for Ψ = 0.05) can be seen in Fig. 5.3(b) as in the colored disturbance example, increasing Ψ

causes all errors to increase at a high rate. In Fig. 5.3(c) is shown the robust case (tuned for

Ψ = 0.95), in this case, it can be seen that the recursive UFIR filter demonstrates more robustness

than any other filter, but also the recursive H∞ filter has higher robustness.

The recursive H∞ filter (Algorithms 4 and 6) and the recursive UFIR filter demonstrate high

robustness, although the H∞ is more successful in accuracy. Analyzing the robustness ϱ of the

filters tuned for the robust case (Table 5.3), it can be noticed that the recursive H∞ filter has a

high robustness considering that isn’t a filter in batch form.

Table 5.3: Robustness ϱ of the filters tuned in robust mode (Gauss-Markov measurement noise).

Filter ϱ

KF 0.4430

UFIR 0.8185

Recursive H∞ Alg. 4 0.6373

Recursive H∞ Alg. 6 0.6244
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Figure 5.3: Typical RMSEs generated by the filters as functions of the colored measurement noise

factor 0.05 ⩽ È ⩽ 0.95 in different scenarios of tuning: (a) theoretical : tuning to each È, (b)

regular: tuning to È = 0.05, and (c) robust: tuning to È = 0.95.
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5.4 Experimental Verification

Now, the accuracy and robustness of the recursive H∞ filter is tested using the same real data

that was used to test the batch form of the H∞ FIR filter in Section 3.4.

The filters were tuned using the using the state-space equations (3.12)-(3.13) and the values

of Θ, Ãµ and Ãv computed in Section 3.4. The errors of each filter are shown in Fig. 5.4, as can

be seen, in presence of a colored Gauss-Markov disturbance, the robust filters (recursive UFIR

and recursive H∞) has the most accurate estimations, Table 5.4 shows the RMSE produced by

each filters, under colored disturbance KF doesn’t give an accurate estimation, UFIR filter being

a robust filter, gives a good estimation, the recursive H∞ filter (computed with any algorithm)

estimation is near to the UFIR estimation but a little more accurate.

Figure 5.4: Filtering errors in the first case for (a) first state and (b) second state
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Table 5.4: RMSE produced by the filters in the experiment using real data.

Filter RMSE

KF 3.9349

Recursive UFIR 1.4310

Recursive H∞ Alg. 4 1.4164

Recursive H∞ Alg. 6 1.4233



Conclusions

The H∞ FIR filter was developed to suppress all peaks in the disturbance-to-error transfer func-

tion T by minimizing the H∞ norm of T , the H∞ norm reflects the worst estimator case and its

minimization results in a robust estimator. The cost function to minimize in the H∞ FIR filter

problem can’t be minimized as a convex function so numerical approaches are needed.

In this work, a LMI-Based algorithm for computation of the H∞ FIR filter gain was proposed,

in which the quadratic constraints and nonlinearities in the variables of the inequality are avoid.

In this case, the H∞ FIR gain is obtained one time without initial parameters working as an

unbiased FIR filter. A numerical example were provide to show how to tune the H∞ FIR filter

using the LMI-Based algorithm.

The LMI-Based algorithm requires considerable computational time when the size of the batch

has a lot of discrete points, an iterative algorithm for computation of the H∞ FIR filter gain was

provided to reduce the computation time. The iterative algorithm is less accurate to compute the

H∞ FIR filter gain than the LMI-Based algorithm which means that it has a little more errors,

but as it can compute the filter gain in less time, the user can choice which algorithm to use, if

the one who gives better accurate estimations or the one who takes less computation time to find

the filter gain.

The robustness of the H∞ FIR filter was tested, where it was found that the filter is almost

as robust as the UFIR filter, but giving more accurate estimations. Another remarkable result

in this work is that, there isn’t necessary to know the exact value of the disturbance and error

covariances to have accurate estimation in H∞ FIR filtering, another proof of the robustness of

the filter.

The H∞ FIR filter was tested against real data considered under Gauss-Markov disturbance.

The H∞ FIR filter estimation was the more accurate among estimations of KF, OFIR, OUFIR,

ML-FIR, UFIR, H2-OFIR and H2-OUFIR filters.

The batch form of the H∞ FIR filter is computationally time consuming, especially when
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N k 1, due to large dimensions of all extended vectors and matrices. One solution to this is

using recursive algorithms to compute the estimation. In this work was presented a method to

obtain H∞ filtering recursively using a Kalman-like algorithm.

The way of obtaining the bias correction gain of the recursiveH∞ filter is by using an algorithm

in which all nonlinearities of the minimization problem are disappeared and the minimization

problem can be solved using LMI. The recursive H∞ filter is almost robust as the UFIR filter,

and it can works with less error than KF if there are colored noises in the system.

If a faster computation of the recursive H∞ filter bias correction gain is needed an iterative

algorithm for computation of bias correction gain was provided, this new iterative algorithm gives

a little more errors than the LMI-based algorithm, but it can compute the filter gain in less time.

The robustness of the recursive H∞ filter was tested, where we can find that the filter is

almost as robust as the UFIR filter. The H∞ FIR filter in recursive mode has largest errors than

the batch form, but it has almost the same robustness and it can compute the estimation takeing

considerably less time.

The recursive H∞ filter was tested against real data under Gauss-Markov disturbance, and

its estimation has lower errors than the recursive UFIR filter and KF, which makes the recursive

H∞ filter a good alternative if is desired to use a recursive filter.
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Appendix A

MATLAB Code for H∞ FIR Filter

Gain Computation (Alg. 1)

function [H_inf_gain ,gamma] = H_inf_FIR_Filter_Gain(N,F,D_N ,H_N ,G_N ,Q_N ,R_N ,d_0)

%% UFIR gain computation

C_N = H_N/(F^(N-1));

UFIR_gain = (C_N ’*C_N)\C_N ’;

%% Sparce matrices generation

Aw = zeros(N,N);

Aw(1:end -1,2:end) = eye(N-1);

Bw = zeros(N,1);

Bw(end) = 1;

%% Disturbance -to -Error state space matrices

st = size(F,1); % Number of states

F_c = [Aw zeros(N,N) zeros(N,st);

zeros(N,N) Aw zeros(N,st);

zeros(st ,N) zeros(st ,N) eye(st)];

B_c = [Bw zeros(N,1);

zeros(N,1) Bw;

zeros(st ,1) zeros(st ,1)];

%% Disturbance covariance

Q = Q_N(1,1); % Process noise covariance
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R = R_N(1,1); % Measurement noise covariance

P_c = diag([Q R]);

%% Auxiliar variables

x_m = zeros(st ,st);

A = (F^(N-1))*x_m*(F^(N-1))’ + D_N(end -1:end ,:)*Q_N*D_N(end -1:end ,:) ’;

C = (F^(N-1))*x_m*H_N ’ + D_N(end -1:end ,:)*Q_N*G_N ’;

Omega_mk = G_N*Q_N*G_N ’ + R_N;

P_J = [A -C;

-C’ (H_N*x_m*H_N ’+ Omega_mk)];

%% Algorithm 1

H_inf_gain = sdpvar(st,N);

assign(H_inf_gain ,UFIR_gain); % Initialice with UFIR gain

Z = sdpvar(N,N);

assign(Z,UFIR_gain ’* UFIR_gain); % Initialice with UFIR gain

gamma2 = sdpvar (1);

K = sdpvar(N*st+st);

while (abs(trace(value(Z))-trace(value(H_inf_gain)’*value(H_inf_gain))) < d_0)

H_inf_gain_prev = value(H_inf_gain);

Z_prev = value(Z);

gamma_prev = sqrt(value(gamma2));

J_c = [D_N(end -1:end ,:)-H_inf_gain*G_N , ...

-H_inf_gain F^(N-1)-H_inf_gain*H_N;

H_inf_gain ’*D_N(end -1:end ,:)-Z*G_N , ...

-Z H_inf_gain ’*(F^(N-1))-Z*H_N];

M1 = [-K K*F_c K*B_c zeros(N*st+st,N+st);

F_c ’*K -K zeros(N*st+st ,2) F_c ’*J_c ’;

B_c ’*K zeros(2,N*st+st) -gamma2*P_c B_c ’*J_c ’;

zeros(N+st,N*st+st) J_c*F_c J_c*B_c -inv(P_J)];

M2 = [Z H_inf_gain ’;

H_inf_gain eye(2)];
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obj = gamma2;

const = [M1 <=0,M2 >=0,gamma2 >=0,K>=0, trace(Z)==1.01* trace(Z_prev)];

opt = sdpsettings;

opt.solver = ’mosek’;

optimize(const ,obj ,opt);

end

gamma = gamma_prev;

H_inf_gain = H_inf_gain_prev;

Code A.1: H inf FIR Filter Gain.m

function [x_e_pos ,P_pos] = FIR_estimation(y,N,F,D_N ,H_N ,G_N ,Q_N ,R_N ,FIR_gain)

K = size(F,1); % Number of states

x_e_pos = zeros(K,length(y));

P_pos = zeros(K,K,length(y));

m = 0;

for k = N:length(y)-1

m = m+1;

Y_mk = transpose(y(m+1:k+1)); % Batch of N points of the measurements

% Initial value covariance

x_e_pos_m = (x_e_pos(:,m+1))*x_e_pos(:,m+1) ’;

x_m = x_e_pos_m + P_pos(:,:,m+1);

% Convolution -based FIR filtering

x_e_pos(:,k+1) = FIR_gain*Y_mk;

% Error covariance matrix

B_N = (F^(N-1)) - FIR_gain*H_N;

W_N = D_N(end -1:end ,:)-FIR_gain*G_N;

V_N = FIR_gain;

P_pos(:,:,k+1) = B_N*x_m*B_N ’ + W_N*Q_N*W_N ’ + V_N*R_N*V_N ’;

end

Code A.2: FIR estimation.m
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MATLAB Code for H∞ FIR Filter

Gain Computation (Alg. 2)

function [H_inf_gain ,gamma] = H_inf_FIR_Filter_Gain_it(N,F,D_N ,H_N ,G_N ,Q_N ,R_N)

%% UFIR gain computation

C_N = H_N/(F^(N-1));

UFIR_gain = (C_N ’*C_N)\C_N ’;

%% Sparce matrices generation

Aw = zeros(N,N);

Aw(1:end -1,2:end) = eye(N-1);

Bw = zeros(N,1);

Bw(end) = 1;

%% Disturbance -to -Error state space matrices

st = size(F,1); % Number of states

F_c = [Aw zeros(N,N) zeros(N,st);

zeros(N,N) Aw zeros(N,st);

zeros(st ,N) zeros(st ,N) eye(st)];

B_c = [Bw zeros(N,1);

zeros(N,1) Bw;

zeros(st ,1) zeros(st ,1)];

%% Disturbance covariance

Q = Q_N(1,1); % Process noise covariance
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R = R_N(1,1); % Measurement noise covariance

P_c = diag([Q R]);

%% Auxiliar variables

x_m = zeros(st ,st);

A = (F^(N-1))*x_m*(F^(N-1))’ + D_N(end -1:end ,:)*Q_N*D_N(end -1:end ,:) ’;

C = (F^(N-1))*x_m*H_N ’ + D_N(end -1:end ,:)*Q_N*G_N ’;

Omega_mk = G_N*Q_N*G_N ’ + R_N;

%% Algorithm 2

H_inf_gain = sdpvar(st,N);

assign(H_inf_gain ,UFIR_gain); % Initialice with UFIR gain

% Disturbance -to -Error state space matrix

C_c = ([D_N(end -1:end ,:)-H_inf_gain*G_N -H_inf_gain ...

(F^(N-1))-H_inf_gain*H_N]);

GNPG = sdpvar(st);

assign(GNPG ,UFIR_gain*UFIR_gain ’) % Initialice with UFIR gain

gamma2 = sdpvar (1);

K = sdpvar(N*st+st);

while 1

P_prev = A - C*value(H_inf_gain)’ - value(H_inf_gain)*C’ + ...

value(H_inf_gain)*(H_N*x_m*H_N ’+ Omega_mk)*value(H_inf_gain)’;

H_inf_gain_prev = value(H_inf_gain);

gamma_prev = sqrt(value(gamma2));

GNPG_prev = value(H_inf_gain)*value(H_inf_gain)’;

M1 = [-K K*F_c K*B_c zeros(N*st+st,st);

F_c ’*K -K zeros(N*st+st ,2) F_c ’*C_c ’;

B_c ’*K zeros(2,N*st+st) -gamma2*P_c B_c ’*C_c ’;

zeros(st,N*st+st) C_c*F_c C_c*B_c -inv(P_prev)];

M2 = [GNPG H_inf_gain;

H_inf_gain ’ eye(N)];

obj = gamma2;
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const = [M1 <=0,M2 >=0,gamma2 >=0,K>=0 ,0.99* trace(GNPG)<=trace(GNPG_prev)];

opt = sdpsettings;

opt.solver = ’mosek’;

optimize(const ,obj ,opt);

P_e = A - C*value(H_inf_gain)’ - value(H_inf_gain)*C’ + ...

value(H_inf_gain)*(H_N*x_m*H_N ’+ Omega_mk)*value(H_inf_gain)’;

if ~( trace(trace(P_e)) < trace(trace(P_prev)))

break;

end

end

gamma = gamma_prev;

H_inf_gain = H_inf_gain_prev;

Code B.1: H inf FIR Filter Gain it.m
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MATLAB Code for Recursive H∞

Filter Bias Correction Gain

Computation (Alg. 4)

function [K_H_inf ,gamma] = rec_H_inf_Filter_BCG(K_UFIR ,F,B,H,Q,R,d_0)

st = size(F,1); % Number of states

%% Disturbance covariance matrix

P_c = diag([Q R]);

%% Algorithm 4

K_H_inf = sdpvar(st ,1);

assign(K_H_inf ,K_UFIR); % Initialice with recursive UFIR

Z = sdpvar (1,1);

assign(Z,K_UFIR ’* K_UFIR); % Initialice with recursive UFIR

gamma2 = sdpvar (1);

while (abs(trace(value(Z)) - trace(value(K_H_inf)’*value(K_H_inf))) < d_0)

% a priori error covariance update

K_H_inf_prev = value(K_H_inf);

gamma_prev = sqrt(value(gamma2));

P = dlyap(F*(eye(st)-K_H_inf_prev*H) ,...

F*K_H_inf_prev*R*K_H_inf_prev ’*F’+B*Q*B’);

P_J = [P -P*H’;
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-H*P H*P*H’+R];

% Computation of K

F_c = (eye(st)-K_H_inf_prev*H)*F;

B_c = [(eye(st)-K_H_inf_prev*H)*B -K_H_inf_prev ];

J_c = [(eye(st)-K_H_inf_prev*H)*F;

(K_H_inf_prev ’-K_H_inf_prev ’* K_H_inf_prev*H)*F];

L_c = [(eye(st)-K_H_inf_prev*H)*B -K_H_inf_prev;

(K_H_inf_prev ’-K_H_inf_prev ’* K_H_inf_prev*H)*B ...

-K_H_inf_prev ’* K_H_inf_prev ];

K = sdpvar(st);

M1 = [-K K*F_c K*B_c zeros(st,st+1);

F_c ’*K -K zeros(st ,2) J_c ’;

B_c ’*K zeros(2,st) -gamma2*P_c L_c ’;

zeros(st+1,st) J_c L_c -inv(P_J)];

obj = gamma2;

const = [M1 <=0,gamma2 >=0,K >=0];

opt = sdpsettings;

opt.solver = ’mosek’;

optimize(const ,obj ,opt);

K = value(K); % K as constant

% H_inf bias correction gain computation

Z_prev = value(Z);

F_c = (eye(st)-K_H_inf*H)*F;

B_c = [(eye(st)-K_H_inf*H)*B -K_H_inf ];

J_c = [(eye(st)-K_H_inf*H)*F;

(K_H_inf ’-Z*H)*F];

L_c = [(eye(st)-K_H_inf*H)*B -K_H_inf;

(K_H_inf ’-Z*H)*B -Z];

M1 = [-K K*F_c K*B_c zeros(st,st+1);
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F_c ’*K -K zeros(st ,2) J_c ’;

B_c ’*K zeros(2,st) -gamma2*P_c L_c ’;

zeros(st+1,st) J_c L_c -inv(P_J)];

M2 = [Z K_H_inf ’;

K_H_inf eye(st)];

obj = gamma2;

const = [M1 <=0,M2 >=0,gamma2 >=0 ,0.99* trace(Z)== trace(Z_prev)];

opt = sdpsettings;

opt.solver = ’mosek’;

optimize(const ,obj ,opt);

end

gamma = gamma_prev;

K_H_inf = K_H_inf_prev;

Code C.1: rec H inf Filter BCG.m

function [x_e_pos ,P_pos] = recursive_estimation(y,F,B,H,Q,R,K)

st = size(F,1); % Number of states

x_e_pos = zeros(st ,length(y)); % a posteriori estimation

x_e_pri = zeros(st ,length(y)); % a priori error covariance

P_pos = zeros(st ,st ,length(y)); % a posteriori estimation

P_pri = zeros(st ,st ,length(y)); % a priori error covariance

for k = 1: length(y)-1

x_e_pri(:,k+1) = F*x_e_pos(:,k);

P_pri(:,:,k+1) = F*P_pos(:,:,k)*F’ + B*Q*B’;

s = y(k+1) - H*x_e_pri(:,k+1);

x_e_pos(:,k+1) = x_e_pri(:,k+1) + K*s;

P_pos(:,:,k+1) = (eye(st)-K*H)*P_pri(:,:,k+1)* + ...

(eye(st)-K*H)’ + K*R*K’;

end

Code C.2: recursive estimation.m



Appendix D

MATLAB Code for Recursive H∞

Filter Bias Correction Gain

Computation (Alg. 6)

function [K_H_inf ,gamma] = rec_H_inf_Filter_BCG_it(K_UFIR ,GNPG_UFIR ,F,B,H,Q,R)

st = size(F,1); % Number of states

%% Disturbance covariance matrix

P_c = diag([Q R]);

%% Disturbance -to -Error state space matrix

C_c = eye(st);

%% Algorithm 6

K_H_inf = sdpvar(st ,1);

assign(K_H_inf ,K_UFIR);

GNPG = sdpvar (2);

assign(GNPG ,GNPG_UFIR)

gamma2 = sdpvar (1);

while 1

K_H_inf_prev = value(K_H_inf);

gamma_prev = sqrt(value(gamma2));
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F_c = (eye(st)-K_H_inf_prev*H)*F;

B_c = [(eye(st)-K_H_inf_prev*H)*B -K_H_inf_prev ];

P_prev = dlyap(F_c ,B_c*P_c*B_c ’);

GNPG_prev = value(GNPG);

% Computation of K

K = sdpvar(st);

M1 = [-K K*F_c K*B_c zeros(st,st);

F_c ’*K -K zeros(st ,2) F_c ’*C_c ’;

B_c ’*K zeros(2,st) -gamma2*P_c B_c ’*C_c ’;

zeros(st,st) C_c*F_c C_c*B_c -inv(P_prev)];

obj = gamma2;

const = [M1 <=0,gamma2 >=0,K >=0];

opt = sdpsettings;

opt.solver = ’mosek’;

optimize(const ,obj ,opt);

K = value(K); % K as constant

% H_inf bias correction gain computation

F_c = (eye(st)-K_H_inf*H)*F;

B_c = [(eye(st)-K_H_inf*H)*B -K_H_inf ];

M1 = [-K K*F_c K*B_c zeros(st,st);

F_c ’*K -K zeros(st,st) F_c ’*C_c ’;

B_c ’*K zeros(st,st) -gamma2*P_c B_c ’*C_c ’;

zeros(st,st) C_c*F_c C_c*B_c -inv(P_prev)];

M2 = GNPG*H’ - K_H_inf;

obj = gamma2;

const = [M1 <=0,M2 >=0; gamma2 >=0,GNPG (1,1) ==1.1* GNPG_prev (1,1)];

opt = sdpsettings;

opt.solver = ’mosek’;

optimize(const ,obj ,opt);
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P_e = dlyap(value(F_c),value(B_c*P_c*B_c ’));

if ~( trace(trace(P_e)) < trace(trace(P_prev)))

break;

end

end

gamma = gamma_prev;

K_H_inf = K_H_inf_prev;

Code D.1: rec H inf Filter BCG it.m


	Title Page
	Abstract
	Acknowledgments
	Dedication
	Contents
	List of Figures
	List of Tables
	Publications
	Acronyms
	Introduction
	Background
	Motivation
	Objectives
	Specific Objectives

	Scope

	The a posteriori H FIR Filter
	State Estimation
	Methods of Linear State Estimation
	Extended LTI Discrete-Time State-Space Model
	The H FIR Filtering
	The a posteriori H FIR Filter
	LMI Based Algorithm for H FIR Filter Gain Computation

	Filter Tuning Example

	Iterative Algorithm for H FIR Filter Gain Computation
	Generalized Noise Power Gain
	Iterative Algorithm for H FIR Filter Gain Computation
	Numerical Example
	White Gaussian Disturbance and Measurement Noise
	Colored Gauss-Markov Disturbance
	Colored Gauss-Markov Measurement Noise

	Experimental Verification

	Recursive a posteriori H Filter
	Kalman Filering Algorithm
	Recursive a posteriori H filter
	Recursive Disturbance-to-Error State Space Model
	Algorithm for Recursive H Filter Bias Correction Gain Computation

	Filter Tuning Example

	Iterative Algorithm for Recursive H Filter Bias Correction Gain Computation
	Generalized Noise Power Gain in Recursive Form
	Iterative Algorithm for Recursive H Filter Bias Correction Gain Computation
	Numerical Example
	Gauss-Markov Disturbance and Measurement Noise
	Colored Gauss-Markov Disturbance
	Colored Gauss-Markov Measurement Noise

	Experimental Verification

	Conclusions
	Bibliography
	Appendix MATLAB Code for H FIR Filter Gain Computation (Alg. 1)
	Appendix MATLAB Code for H FIR Filter Gain Computation (Alg. 2)
	Appendix MATLAB Code for Recursive H Filter Bias Correction Gain  Computation (Alg. 4)
	Appendix MATLAB Code for Recursive H Filter Bias Correction Gain  Computation (Alg. 6)

