Please use this identifier to cite or link to this item:
http://repositorio.ugto.mx/handle/20.500.12059/10482
Title: | Híper Heurísticas para la Selección de Métodos de Aprendizaje Profundo en la Clasificación de Textos Automatizada |
Authors: | Jonathan Estrella Ramirez |
Abstract: | In this paper, an evolutionary model, in the scope of automated machine learning, that learns selection hyper-heuristics for text classification is presented. A hyper-heuristic is a set of if-then rules that evaluate a set of meta-features, summarizing the data distribution of a dataset, to select the most adequate deep learning method for such a dataset. It is expected that datasets with similar distributions can use the same classification model, generalizing the selection process. The model initially creates a population of hyper-heuristics at random and then evolves them using specific mutation and crossover operators. During the evolution, each hyper-heuristic is evaluated for its classification performance with a training group of datasets. At the end of the evolution, the best hyper-heuristic is chosen and evaluated for classification with an independent group of datasets. The results indicate that the best hyper-heuristic generalizes well the selection process, by choosing adequate classification methods for the datasets; and reaches a better performance than two state-of-the-art automated machine learning systems. |
Issue Date: | 10-Jan-2024 |
Publisher: | Universidad de Guanajuato |
License: | http://creativecommons.org/licenses/by-nc-nd/4.0 |
URI: | http://repositorio.ugto.mx/handle/20.500.12059/10482 |
Language: | eng |
Appears in Collections: | Revista Jóvenes en la Ciencia |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Híper Heurísticas para la Selección de Métodos de Aprendizaje Profundo en la Clasificación de Textos Automatizada.pdf | 695.72 kB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.