Please use this identifier to cite or link to this item: http://repositorio.ugto.mx/handle/20.500.12059/1929
Title: Autómata Celular Estocástico paralelizado por GPU aplicado a la simulación de enfermedades infecciosas en grandes poblaciones
Authors: HECTOR CUESTA ARVIZU
Authors' IDs: info:eu-repo/dai/mx/rn/3189578
Abstract: Un gran número de áreas de la ciencia están siendo beneficiadas por la reducción de tiempo de cómputo gracias al uso de las Unidades Gráficas de Proceso (GPU). En el caso de la Epidemiología, tales unidades agilizan la simulación de escenarios con poblaciones grandes, escenarios en los que el tiempo de procesamiento es muy significativo. El presente artículo introduce la simulación de eventos epidemiológicos basado en un modelo de Autómatas Celulares Estocásticos (AC), el cual ofrece la implementación de las características principales de una enfermedad infecciosa a gran escala: contacto, vecindario, trayectorias y transmisibilidad. Un caso de estudio es simulado en una implementación del algoritmo AC para una enfermedad infecciosa de tipo SEIRS (Susceptible, Expuesto, Infectado, Recuperado y Susceptible). Una población de 1 000 000 de individuos es paralelizada a través de un algoritmo de balanceo de procesos implementado en el lenguaje de programación C-CUDA. El resultado dado por el software paralelizado por GPU es comparado contra un análisis hecho del modelo paralelizado por multi-hilos CPU. Los resultados demuestran que el tiempo de cómputo puede ser reducido significativamente gracias al uso de C-CUDA.
Issue Date: 30-Sep-2012
Publisher: Universidad de Guanajuato
License: http://creativecommons.org/licenses/by-nc-nd/4.0
URI: http://repositorio.ugto.mx/handle/20.500.12059/1929
Language: spa
Appears in Collections:Revista Acta Universitaria



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.