Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ugto.mx/handle/20.500.12059/10417
Título: Denoising and features extraction of ECG Signals using Unbiased FIR estimation techniques
Autor: CARLOS MAURICIO LASTRE DOMINGUEZ
ID del Autor: info:eu-repo/dai/mx/cvu/763720
Contributor: YURIY SHMALIY
Contributor's IDs: info:eu-repo/dai/mx/cvu/26159
Resumen: The electrocardiogram (ECG) signals bear fundamental information for deciding about heart diseases. So the scientific community has been performing many efforts during decades to extract features of heartbeats via ECG records with high accuracy and efficiency using different strategies and methods. However, the noise and artifacts provided by external factors avoid significant patterns associated with the ECG signals. These patterns play an important role to find specific abnormalities in ECG signals. Hence, techniques based on unbiased FIR (UFIR) filtering promises better results. In this dissertation, we have applied a model based on UFIR to ECG signals. Hence, we compare the proposed technique with traditional method such as predictors, standard filters (e.g. low-pass filter) wavelet filters, Savitsky-Golay filter. The UFIR method outperforms other studied techniques for ECG signals.
Fecha de publicación: may-2020
Editorial: Universidad de Guanajuato
Licencia: http://creativecommons.org/licenses/by-nc-nd/4.0
URI: http://repositorio.ugto.mx/handle/20.500.12059/10417
Idioma: eng
Aparece en las colecciones:Doctorado en Ingeniería Eléctrica

Archivos en este ítem:
Archivo Descripción TamañoFormato 
CARLOS MAURICIO LASTRE DOMÍNGUEZ_TesisDr24.pdf6.48 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.