Please use this identifier to cite or link to this item: http://repositorio.ugto.mx/handle/20.500.12059/5228
Full metadata record
DC FieldValueLanguage
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.contributorOCTAVIO JOSE OBREGON DIAZes_MX
dc.creatorJESUS FUENTES AGUILARes_MX
dc.date.accessioned2021-09-13T16:58:36Z-
dc.date.available2021-09-13T16:58:36Z-
dc.date.issued2021-08-
dc.identifier.urihttp://repositorio.ugto.mx/handle/20.500.12059/5228-
dc.description.abstractAmong the generalised measures of entropy, there is a special class of measures whose functional dependence dismisses all free parameters, but instead relies exclusively on probability. For this class, we will pay attention to the full-stable measures of entropy having a well defined thermodynamic limit, provided these attributes are necessary for physical observables to be recovered from entropy. To our knowledge, there are only two generalised entropies fulfilling these requirements. Then we investigate their basic mathematical aspects as well as their impact on physics, information and computer sciences. We will prove formally such entropies converge asymptotically to the Boltzmann-Gibbs measure, whereas they induce a generalised classification of entropies. We study the consequences these entropies convey in diffusion and transport phenomena, which leads us to derive master equations out of equilibrium. Interestingly, our master equations adopt a similar structure to some chemotaxis-aggregation models studied in biology. Further, given that entropy is at the interface between statistical mechanics and information theory, we propose a non-extensive information theory, where data compression and channel capacities are improved, in relation to Shannon's formulation, in a scenario of high probabilities. Finally, we bring this non-extensive information theory in its algorithmic counterpart to obtain generalisations to Kolmogorov's statistical complexity.es_MX
dc.language.isoenges_MX
dc.publisherUniversidad de Guanajuatoes_MX
dc.rightsinfo:eu-repo/semantics/openAccesses_MX
dc.subject.classificationCLE- Doctorado en Físicaes_MX
dc.titleOn Non-Extensive Entropies: With Applications in Stochastic Dynamics and Information Theoryes_MX
dc.typeinfo:eu-repo/semantics/doctoralThesises_MX
dc.creator.idinfo:eu-repo/dai/mx/cvu/558745es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/1es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/22es_MX
dc.subject.keywordsNon-Extensive entropyes_MX
dc.subject.keywordsStatistical mechanicses_MX
dc.subject.keywordsSuperstatisticses_MX
dc.subject.keywordsBiostatisticses_MX
dc.subject.keywordsGeneralised diffusion and transport theoryes_MX
dc.subject.keywordsKolmogorov complexityes_MX
dc.subject.keywordsModified complexityes_MX
dc.subject.keywordsNon-Extensive information theoryes_MX
dc.contributor.idinfo:eu-repo/dai/mx/cvu/3214es_MX
dc.contributor.roledirectores_MX
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_MX
Appears in Collections:Doctorado en Física

Files in This Item:
File Description SizeFormat 
JESÚS FUENTES AGUILAR_Tesis24.pdf11.59 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.