Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ugto.mx/handle/20.500.12059/5321
Registro completo de metadatos
Campo DCValorLengua/Idioma
dc.rights.licensehttp://creativecommons.org/licenses/by-nc-nd/4.0es_MX
dc.contributorALONSO RAMIREZ MANZANARESes_MX
dc.creatorErick Hernández Gutiérrezes_MX
dc.date.accessioned2021-11-10T18:29:12Z-
dc.date.available2021-11-10T18:29:12Z-
dc.date.issued2018-09-
dc.identifier.urihttp://repositorio.ugto.mx/handle/20.500.12059/5321es_MX
dc.description.abstractThis document presents an optimization of the COMMIT framework develop ed by the Dr. Alessandro Daducci and his collaborators. COMMIT framework has been used to filter tractograms which are useful to study the connections in the human brain. We parallelized with the CUDA language the algebraic op erations Ax and Aty in order to accelerate the optimization pro cedure necessary to filter a tractogram with COMMIT. The results of our parallel implementation of the operations were validated by comparing the results with the current version of COMMIT. This work shows exp eriments with real human brain data which demostrate that the parallel versions of the op erations Ax and Aty significantly reduced the computational time required to filter a tractogram. This thesis contribute with a faster version of the COMMIT framework which uses a NVIDIA GPU to accelerate the op erations Ax and Aty along with backward compatibility with the previous COMMIT scripts.es_MX
dc.language.isoengen
dc.publisherUniversidad de Guanajuatoes_MX
dc.rightsinfo:eu-repo/semantics/openAccesses_MX
dc.subject.classificationCGU- Licenciatura en Computaciónes_MX
dc.titleParallelization of COMMIT using CUDA : Acceleration with GPU of a large-scale problem for microstructure informed tractographyes_MX
dc.typeinfo:eu-repo/semantics/bachelorThesises_MX
dc.creator.idinfo:eu-repo/dai/mx/orcid/ 0000-0002-1416-5223es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/1es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/12es_MX
dc.subject.ctiinfo:eu-repo/classification/cti/1203es_MX
dc.subject.keywordsParallel Commitsen
dc.subject.keywordsParallel computingen
dc.subject.keywordsHuman brain – Connectionsen
dc.subject.keywordsCOMMIT Frameworken
dc.subject.keywordsTractographyen
dc.subject.keywordsGraphics carden
dc.subject.keywordsCUDA Language (Compute Unified Device Architecture)en
dc.contributor.idinfo:eu-repo/dai/mx/cvu/130877es_MX
dc.contributor.roledirectoren
dc.type.versioninfo:eu-repo/semantics/publishedVersiones_MX
dc.contributor.twoJOSE LUIS MARROQUIN ZALETAes_MX
dc.contributor.threeAlessandro Daducci-
dc.contributor.idtwoinfo:eu-repo/dai/mx/cvu/6243-
dc.contributor.idthreeinfo:eu-repo/dai/mx/orcid/0000-0002-4677-6678-
dc.contributor.roletwodirectoren
dc.contributor.rolethreedirectoren
Aparece en las colecciones:Computación Matemática

Archivos en este ítem:
Archivo Descripción TamañoFormato 
ERICK HERNÁNDEZ GUTIÉRREZ_Tesis24.pdf2.83 MBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.