Por favor, use este identificador para citar o enlazar este ítem: http://repositorio.ugto.mx/handle/20.500.12059/7540
Título: Kurtosis and entropy for the automatic detection of pneumonia
Autor: URIEL CALDERON URIBE
ID del Autor: info:eu-repo/dai/mx/cvu/781331
Resumen: Pneumonia is a lung infection caused by a virus or bacteria. It is characterized by symptoms such as high fever, severe pain in the chest, cough, and expectoration, among others. Today, the main way to detect pneumonia is through X-ray imaging, where an expert diagnoses a patient based on features that can be seen on the images. However, this process is susceptible to errors that can lead the expert to make a false diagnosis. Computer-assisted techniques have proven to be a great tool to support the diagnosis of pneumonia. In this work, a classifier (based on the logistic regression method) was developed that allows the detection of pneumonia based on signal processing features (Kurtosis and entropy). This system generates an accuracy comparable to that generated by more robust algorithms such as neural networks.
Fecha de publicación: 3-nov-2022
Editorial: Universidad de Guanajuato. Dirección de Apoyo a la Investigación y al Posgrado
Licencia: http://creativecommons.org/licenses/by-nc-nd/4.0
URI: http://repositorio.ugto.mx/handle/20.500.12059/7540
Idioma: eng
Aparece en las colecciones:Revista Jóvenes en la Ciencia

Archivos en este ítem:
Archivo Descripción TamañoFormato 
3852-Texto del artículo-12663-1-10-20221031.pdf619.03 kBAdobe PDFVisualizar/Abrir


Los ítems de DSpace están protegidos por copyright, con todos los derechos reservados, a menos que se indique lo contrario.